
MOPBox: A Library Approach
to Runtime Verification

(Tool Demonstration)

Eric Bodden

eric.bodden@cased.de

Center for Advanced Security Research Darmstadt
Software Technology Group

Technische Universität Darmstadt, Germany

Abstract. In this work we propose MOPBox, a library-based approach
to runtime verification. MOPBox is a Java library for defining and eval-
uating parametric runtime monitors. A user can define monitors through
a simple set of API calls. Once a monitor is defined, it is ready to accept
events. Events can originate from AspectJ aspects or from other sources,
and they can be parametric, i.e., can contain variable bindings that bind
abstract specification variables to concrete program values. When a mon-
itor reaches an error state for a binding ~v = ~o, MOPBox notifies clients
of a match for ~v = ~o through a call-back interface. To map variable bind-
ings to monitors, MOPBox uses re-implementations of efficient indexing
algorithms that Chen et al. developed for JavaMOP.
We took care to keep MOPBox as generic as possible. States, transi-
tions and variable bindings can be labeled not just with strings but with
general Java Objects whose types are checked through Java Generics.
This allows for simple integration into existing tools. For instance, we
present ongoing work on integrating MOPBox with a Java debugger. In
this work, transitions are labeled with breakpoints.
MOPBox is also a great tool for teaching: its implementations of monitor
indexing algorithms are much easier to understand than the code gen-
erated by tools such as JavaMOP. Indexing algorithms use the Strategy
Design Pattern, which makes them easily exchangeable. Hence, MOPBox
is also the perfect tool to explore and test new algorithms for monitor
indexing without bothering about the complex intricacies of code genera-
tion. In the future, we further plan to integrate MOPBox with the Clara
framework for statically evaluating runtime monitors ahead of time.

1 Motivation and Description of MOPBox

In the past decade, researchers in Runtime Verification have developed a range of
specialized tools for generating runtime monitors from formal specifications [1–5].
Typically, those tools support parametric monitor specifications, i.e, specifica-
tions that allow the monitoring of individual objects or even combinations of
objects. Figure 1, for example shows a finite-state machine representing the

initialstart iterating updated error
create(c,i) update(c)

next(i)

next(i)

update(c)Σ

Fig. 1. Runtime monitor for FailSafeIter property [1]: Do not modify a collection while
iterating over it.

“FailSafeIter” property [1]: one should not use an iterator i for a collection any
longer if c was updated after i had been created. In this case, there exists a single
monitor instance (holding the state machine’s internal state) for any combination
of c and i occurring on the monitored program execution.

Research in Runtime Verification has made big leaps to making runtime mon-
itoring of such parameterized properties efficient [3,6–8] through the generation
of property-specific monitoring code. However, efficiency should not be the only
goal to pursue in runtime monitoring. While auto-generated monitoring code
may be maximally efficient, it is generally hard to understand and debug. In
addition, approaches based on code-generation often involve multiple, loosely
integrated tools, hindering integration of those tools into other applications.

Another problem with those loosely integrated tool chains is that they hinder
comparison of montoring approaches. In recent work, Purandare et al. perform
an in-depth comparison with respect to the relative performance of several mon-
itoring algorithms [9]. As the authors show, this performance can depend on the
property to be monitored: different algorithms are ideal for different properties.
Current tool chains cannot easily support multiple algorithms as they are not
integrated.

2 Defining monitor templates

In this work we hence propose MOPBox, a library-based approach to runtime
verification. MOPBox is a Java library for defining and evaluating parametric
runtime monitors such as the one shown in Figure 1. With MOPBox, a user
can define templates for runtime monitors through a simple set of API calls.1

Figure 2 shows how a user would define a monitor template for the FailSafeIter
property mentioned earlier.

First, in line 2, the user defines that she wishes to implement a template
based on finite-state machines, with String labels on transitions and variable
bindings that map from Var instances to any kinds of Objects. The range of
template variables Var is defined as an enum in line 4.

1 We use the phrase “monitor template” to denote a property that MOPBox should
monitor. During the execution of the program under test, each template will generate
a set of monitors, one monitor for each variable binding.

1 public class Fai lSa fe I te rMonitorTemplate
2 extends AbstractFSMMonitorTemplate<Str ing , Var , Object> {
3

4 public enum Var{ C, I }
5

6 protected void f i l l A l p h a b e t (IAlphabet<Str ing , Var> a) {
7 a . makeNewSymbol (” c r e a t e ” , C, I) ;
8 a . makeNewSymbol (”update” , C) ;
9 a . makeNewSymbol (” i t e r ” , I) ;

10 }
11

12 protected State<Str ing> se tupStatesAndTrans i t ions () {
13 State<Str ing> i n i t i a l = makeState (fa l se) ;
14 State<Str ing> i t e r a t i n g = makeState (fa l se) ;
15 State<Str ing> updated = makeState (fa l se) ;
16 State<Str ing> e r r o r = makeState (true) ;
17

18 i n i t i a l . addTrans i t ion (getSymbolByLabel (” c r e a t e ”) , i t e r a t i n g) ;
19 i n i t i a l . addTrans i t ion (getSymbolByLabel (”update”) , i n i t i a l) ;
20 i n i t i a l . addTrans i t ion (getSymbolByLabel (” i t e r ”) , i n i t i a l) ;
21 i t e r a t i n g . addTrans i t ion (getSymbolByLabel (” i t e r ”) , i t e r a t i n g) ;
22 i t e r a t i n g . addTrans i t ion (getSymbolByLabel (”update”) , updated) ;
23 updated . addTrans i t ion (getSymbolByLabel (”update”) , updated) ;
24 updated . addTrans i t ion (getSymbolByLabel (” i t e r ”) , e r r o r) ;
25 return i n i t i a l ;
26 }
27

28 protected I Index ingStrategy<Str ing , Var , Object> c r ea t e Index ingSt ra t egy () {
29 return new StrategyB () ;
30 }
31

32

33 protected void matchCompleted (IVar iab leBinding<Var , Object> binding) {
34 System . e r r . p r i n t l n (”MATCH f o r binding : ”+binding) ;
35 }
36

37 }

Fig. 2. Monitor template for FailSafeIter property in MOPBox

In lines 6–9, the user then lists the alphabet to be used, i.e., the different
kinds of events that the monitors of this template should prepare to process. At
this point the user also binds event names such as create to template variables
C and I. In the example, event labels are Strings because the user chose type
String as type parameter in line 2. One could have chosen other types of labels.
In a current piece of work we are integrating MOPBox with the Java debugger
of the Eclipse IDE [10]. In this setting, events are labeled with breakpoints that
are triggered at debug time [11].

In lines 13–16, the user calls the factory method makeState to create the
states that will make up the monitor template’s state machine. An error state
is created using makeState(true). In lines 18–24, finally, the user defines the
state machine’s transition relation. At the end of the method, by convention, the
user returns the machine’s initial state.

1 after (C o l l e c t i o n c) returning (I t e r a t o r i) :
2 ca l l (∗ I t e r a b l e +. i t e r a t o r ()) && target (c) {
3 IVar iab leBinding<Var , Object> binding
4 = new VariableBinding<Var , Object >() ;
5 binding . put (Var .C, c) ;
6 binding . put (Var . I , i) ;
7 template . processEvent (
8 ” c r e a t e ” ,
9 binding

10) ;
11 }

Fig. 3. AspectJ advice dispatching “create” events to the monitor template

In lines 28–30, the user selects an indexing strategy. An indexing strategy
implements an indexing algorithm that dispatches parameterized events to mon-
itors for the appropriate parameter instances. In this example, the user opted for
our implementation of Chen et al.’s Algorithm B [7]. MOPBox uses the Strategy
Pattern [12] to make indexing strategies easily exchangeable. This also facilitates
rapid prototyping and testing of new indexing algorithms. For instance, users
can instantiate multiple monitor templates that use different indexing strategies
but are otherwise identical. If for the same events one template finds a match
and the other one does not, this indicates a bug in one of the indexing strategies.
MOPBox holds no static state. To reset a monitor, one hence simply needs to
re-instantiate a template’s indexing strategy.

Last but not least, in lines 33–35, the user defines the call-back method
matchCompleted. MOPBox will call this method automatically whenever one of
the monitors of this template completes a match. MOPBox passes the matching
variable binding into the method as a parameter.

3 Sending events to monitor templates

In Figure 3 we show how users can use AspectJ [13] to send concrete pro-
gram events to a monitor template. The AspectJ advice intercepts calls to
Collection.iterator() and notifies the monitor template, passing in a vari-
able binding mapping the template variables C and I to concrete program val-
ues. Users do not necessarily have to use aspects to generate events. In a current
piece of work we are integrating MOPBox with the Java debugger of the Eclipse
IDE [10]. In that case, events are triggered directly by the debugger’s application
interface.

References

1. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding Trace Matching with

Free Variables to AspectJ. In: OOPSLA. (October 2005) 345–364
2. Bodden, E.: J-LO - A tool for runtime-checking temporal assertions. Master’s

thesis, RWTH Aachen University (November 2005)
3. Chen, F., Roşu, G.: MOP: an efficient and generic runtime verification framework.

In: OOPSLA. (October 2007) 569–588
4. Maoz, S., Harel, D.: From multi-modal scenarios to code: compiling LSCs into As-

pectJ. In: Symposium on the Foundations of Software Engineering (FSE). (Novem-
ber 2006) 219–230

5. Krüger, I.H., Lee, G., Meisinger, M.: Automating software architecture explo-
ration with M2Aspects. In: Workshop on Scenarios and state machines: models,
algorithms, and tools (SCESM). (May 2006) 51–58

6. Avgustinov, P., Tibble, J., de Moor, O.: Making trace monitors feasible. In:
OOPSLA. (October 2007) 589–608

7. Chen, F., Roşu, G.: Parametric trace slicing and monitoring. In: International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). Volume 5505 of LNCS., Springer (March 2009) 246–261

8. Chen, F., Meredith, P., Jin, D., Roşu, G.: Efficient formalism-independent moni-
toring of parametric properties. In: ASE. (2009) 383–394

9. Purandare, R., Dwyer, M., Elbaum, S.: Monitoring finite state properties: Algorith-
mic approaches and their relative strengths. In: RV ’11: International Conference
on Runtime Verification. (September 2011) To appear.

10. Eclipse IDE: http://eclipse.org/.
11. Bodden, E.: Stateful breakpoints: A practical approach to defining parameterized

runtime monitors. In: ESEC/FSE ’11: Joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering. (September 2011) New Ideas Track. To appear.

12. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.M.: Design patterns: Abstraction
and reuse of object-oriented design. In: Proceedings of the 7th European Confer-
ence on Object-Oriented Programming. ECOOP ’93, London, UK, UK, Springer-
Verlag (1993) 406–431

13. AspectJ team: The AspectJ home page, http://eclipse.org/aspectj/ (2003)

http://eclipse.org/
http://eclipse.org/aspectj/

	MOPBox: A Library Approach to Runtime Verification

