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Abstract

The IFDS and IDE frameworks by Reps, Horwitz and Sagiv
are two general frameworks for the inter-procedural anal-
ysis of data-flow problems with distributive flow functions
over finite domains. Many data-flow problems do have dis-
tributive flow functions and are thus expressible as IFDS or
IDE problems, reaching from basic analyses like truly-live
variables to complex analyses for problems from the current
literature such as typestate and secure information-flow.

In this work we describe our implementation of a generic
IFDS/IDE solver on top of Soot and contrast it with an
IFDS implementation in the Watson Libraries for Analysis
(WALA), both from a user’s perspective and in terms of the
implementation. While WALA’s implementation is geared
much towards memory efficiency, ours is currently geared
more towards extensibility and ease of use and we focus on
efficiency as a secondary goal.

We further discuss possible extensions to our IFDS/IDE
implementation that may be useful to support a wider range
of analyses.

Categories and Subject Descriptors F.3.2 [Semantics of
Programming Languages]: Program Analysis

General Terms Design, Performance, Documentation
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analysis, IFDS, IDE
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1. Introduction

The IFDS framework by Reps, Horwitz and Sagiv [7] is
a conceptual framework for computing the results to inter-
procedural, finite, distributive subset (IFDS) problems. In
such problems, flow functions are defined over a finite do-
main D and have to be distributive over the merge opera-
tor “T1”, i.e., for any flow function f and any a,b € D it
must hold that f(a) N f(b) = f(a Mb). Many data-flow
problems do have distributive flow functions and are thus
expressible as IFDS or IDE problems, reaching from basic
analyses like truly-live variables [7] to complex analyses for
problems from the current literature such as typestate [3] and
information-flow [[1]].

As Reps et al. show, when these conditions are fulfilled,
the inter-procedural data-flow analysis problem can be fully
reduced to a graph reachability problem: the IFDS frame-
work defines an algorithm operating on a so-called exploded
super graph. In this graph, any node (s, d) is reachable from
a special distinct start node if and only if the data-flow fact
d holds at statement s.

The IDE framework for inter-procedural distributive en-
vironments extends IFDS to allow analyses to compute addi-
tional values from a domain V" at the time at which reachabil-
ity is decided. Instead of merely deciding whether a node is
reachable, the IDE algorithm propagates additional V-type
information along any path in question. In this setting, flow
functions effectively become distributive environment trans-
formers, transforming mappings from D to V.

Soot [[6] is one one of the most widely used frameworks
for the static analysis and transformation of Java programs.
Over more than a decade, Soot has been maintained and
extended by an active user community, including many
users from research and some from industry. The prime
motivation for creating Soot in the first place was to fos-
ter inter-operability between different static analyses devel-
oped in the research community, and to enable objective
and realistic comparisons between different static-analysis
algorithms. One important feature that Soot has been lack-
ing ever since, however, is the implementation of an inter-
procedural program-analysis framework.
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We therefore developed an implementation of an IFDS/
IDE solver on top of Soot [6]. In this paper we discuss the
important design decisions we had to make and describe the
implementation from a user’s perspective. We think that with
an IFDS/IDE solver, the inter-operability and comparability
within Soot can be taken to another level. Multiple analy-
ses based on the same IFDS/IDE solver should be able to
integrate with ease. Moreover, general optimizations to this
solver will benefit all those analyses.

We further contrast our implementation with an existing
IFDS implementation in the Watson Libraries for Analysis
(WALA) [10]. The WALA-based implementation is quite
mature and has been successfully used to implement a num-
ber of analyses. It focuses very much on memory efficiency.
While we describe some performance optimizations in this
paper, our primary goals are extensibility and ease of use.

While our implementation is complete and tested, it has
not yet been released as part of Soot. We hope that an
active discussion at the SOAP workshop will allow us to
obtain community feedback on our design decisions and
on the implementation’s usability. As part of this paper we
also discuss possible extension to our implementation that
could support many whole-program analyses. Our current
implementation is available at: http://bodden.de/ide/

To summarize, this paper presents the following original
contributions:

¢ a description of our IFDS/IDE implementation from a
user’s perspective,

® an account of important implementation details, partic-
ularly deviations from the original IFDS and IDE algo-
rithms,

e a comparison with the IFDS implementation in WALA,

® a discussion of possibly useful future extensions.

We continue by describing the IFDS and IDE frameworks
on a conceptual level. Section 3] describes our actual imple-
mentation; we discuss differences to WALA in Section [}
Section 5 discusses possible extensions and related work.

2. The IFDS and IDE Frameworks

The so-called IFDS framework by Reps, Horwitz and Sa-
giv [7] defines a general way to solve inter-procedural,
flow-sensitive, context-sensitive analysis of finite distribu-
tive subset problems. The algorithm has worst-case com-
plexity O(ED?), where E is the number of control-flow
edges (or statements) of the analyzed program and D is the
size of the analysis domain. As this estimate shows, the effi-
ciency heavily depends on the size of the domain.

The main idea of the IFDS framework is to reduce any
program-analysis problem formulated in this framework to
a simple graph-reachability problem. The IFDS algorithm
builds, based on the program’s inter-procedural control-
flow graph, a so-called “exploded super graph” in which
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Figure 1: Function representation in IFDS, reproduced
from [7]]

a node (s, d) is reachable from a selected start node (sg,0)
if and only if the data-flow fact d holds at s. (By “fact” we
mean any logical statement, such as “variable v has defi-
nitely been initialized.”) To achieve this goal, the framework
has to encode data-flow functions as nodes and edges. Fig-
ure |1} reproduced from [7], shows how to represent com-
positions of typical gen and kill functions, as they are used
in information-flow analysis. The function id is the identity
function, mapping each data-flow fact before a statement
onto itself. In IFDS, the value 0 represents an empty fact that
is always valid, i.e., two nodes representing 0 will always be
connected. This 0 value is used to generate data-flow facts
unconditionally. The flow function a generates the data-flow
fact a, and at the same time kills all other facts (such as b).
Function f, on the other hand kills a, generates b and leaves
all other values (such as c¢) untouched.

As an example, in Figure[2] we show the exploded super-
graph for an information-flow analysis over the following
simple program, in which we assume it to be a violation if
the return value of secret () flows into print:

void main() {
int x = secret();
int y = 0;
y = foo(x);
print (y);
}
int foo(int p) { return p; 1}

The analysis in Figure [2| uses the program’s variables as
analysis domain. As we show in the figure, there are four
different kinds of edges a user needs to define.

Call edges connect call sites to callees, passing information
about code elements that concern the callee, e.g. actual
method arguments.

Return edges pass information the other way around, e.g.
about the return value.

Call-to-return edges pass information from directly before
a call site to all of the call site’s successor statements.
Such edges typically pass information that do not concern
the callee.

Normal edges for all other statements.
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Figure 2: Exploded super-graph for an IFDS information-flow analysis

Separable vs. non-separable functions The flow functions
in Figure [T] are what is frequently called “separable”: their
output only depends on the current statement but not on
the input value. This can be seen by the fact that all edges
contained in the graphs connect only to the unconditional
input 0. For separable IFDS problems, the IFDS algorithm
has the better complexity bound O(E D).

Many analysis problems, such as truly-

live variables [7] or secure information 0 a b
flow [L]], however, use flow equations that ¢ °
are non-separable. For instance, the func-
tion representation to the right could be
chosen to model an assignment b=a in . o o
an information-flow analysis. Here, a has 0 a p

the same value as before the assignment,

modeled by the arrow from a to a, and b obtains a’s value,
modeled by the arrow from a to b. If b was previously hold-
ing a secret value, then it will only remain to do so if a con-
tained a secret value as well. This is modeled by a missing
arrow from b to b.

The IDE framework

The IDE framework for “inter-procedural distributed envi-
ronment transformers” by the same authors [9]] is an exten-
sion of IFDS that effectively allows a program analysis to
extend the reachability to a value-computation problem. If a
data-flow fact d from the domain D is reachable at a given
statement, then the IDE algorithm will compute a value from
a secondary domain V' along all paths that reach d. IFDS can
be modeled as a special case of IDE in which this “value do-
main” V is the binary domain {T, L}. The complexity of
the IDE algorithm is the same as for IFDS: O(ED?).

IDE can be quite useful from a performance point of view.
For example, consider the problem of constant propagation.
In such a setting, any statement s must be associated with
information about a mapping from a finite set of variables
x € Var in scope at s to values val(z) € N. In theory, such
a problem could be solved in IFDS by using a finite domain
D := Var x N, assuming that we put a finite upper bound on
the representation of N. However, as can easily be seen, this
would cause the domain D to grow infeasibly large. In IDE,
on the other hand, one can model the problem by choosing
just D := Var as the finite domain and V' := N as the value
domain. Since the size of V is irrelevant to the complexity
of the IDE algorithm, IDE will terminate more quickly [9].

3. IFDS/IDE Implementation

We have implemented an IDE solver as an extension to
Soot. The implementation is written in pure Java. The solver
itself is also absolutely generic; it has no dependencies on
Soot and can therefore, in principle, even be re-used for
other static-analysis frameworks. We achieve this genericity
through the use of Java’s generic type parameters.

3.1 User perspective

Figure (3] shows how users define an IFDS problem; one
simply creates a class implementing the interface shown,
and passes it to an IFDSSolver object, followed by a call
to solve(). Our actual solver is completely generic and
has no dependencies on Soot. We achieve this genericity
through type parameters. The parameters N,D,M represent
nodes (typically Unit), data-flow facts (client specific) and
methods respectively (typically SootMethod). The method
initialSeeds returns the initial information used to boot-
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interface IFDSTabulationProblem<N,D,M> {
Multimap<M,D> initialSeeds ();
D zeroValue() ;
InterproceduralCFG<N,M>
interproceduralCFG () ;
FlowFunctions<N,D,M> flowFunctions(); }

Figure 3: Interface for defining IFDS problems

interface FlowFunctions<N, D, M> {
public FlowFunction<D>
getNormalFlowFunction (
N curr, N succ);
public FlowFunction<D>
getCallFlowFunction (
N callStmt, M destinationMethod) ;
public FlowFunction<D>
getReturnFlowFunction (
N callSite, M calleeMethod,
N exitStmt, N returnSite);
public FlowFunction<D>
getCallToReturnFlowFunction (

N callSite, N returnSite); 1}

Figure 4: Interface for defining flow functions

strap the analysis at program entry points (as defined through
the result of Scene.getEntryPoints()). The method re-
turns a multi map, associating entry-point methods with
D-type facts that hold at the beginning of those methods.
The method zeroValue returns the value representing the 0
node. (We experimented with using null as a representative
for 0 but quickly found that this made the code harder to
understand and also caused problems with some map-based
data structures that do not accept null as a key.) Method
interproceduralCFG returns an inter-procedural control-
flow graph. To this end, we provide a default implementation
in form of the class DefaultInterproceduralCFG, which
implements an inter-procedural control-flow graph with
node type Unit and method type SootMethod. The graph is
implemented as a combination of ExceptionalUnitGraphs
such that exceptional flow is handled properly be default.
Clients can customize DefaultInterproceduralCFG to
tailor it to their specific needs. It is the only Soot-specific
code. Users would need to customize only this class to use
our solver with a different analysis framework.

Method flowFunctions returns another object that in-
stantiates flow functions for individual flow edges. We show
the appropriate interface in Figure i} As explained before,
there are four categories of flow edges, and the interface mir-
rors this fact. One significant design decision is which kind
of context information should be passed to clients such that
they will be able to decide what particular flow function must
be instantiated. As we will explain in Section[d] our partic-
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interface
IDETabulationProblem<N,D,M,V>
extends IFDSTabulationProblem<N,D,M>{
EdgeFunctions<N,D,M,V> edgeFunctions ();
JoinLattice<V> joinLattice();
}

Figure 5: Interface for defining IDE edge functions

ular choice differs slightly from the one in WALA, but we
nevertheless think that our choice is appropriate (see Fig. ).

An individual flow function is simply a function object
with the following signature:

Set<D> computeTargets (D source);

For each source node, the function returns all target nodes
which flow edges connect to the given source.

Defining IDE problems

Users define IDE problems as extensions to IFDS problems
as shown in Figure 3] this time passing it to an IDESolver
object. (IFDSSolver is actually just a subclass of the more
generic IDESolver, converting an IFDS problem into an
IDE problem over a two-element domain.) The interface
contains a method edgeFunctions returning “edge func-
tions”, a term by which we denote the V—V type functions
that compute V-typed values along edges between D-typed
nodes. The instantiation of edge functions (not shown) hap-
pens similar to the one of flow functions, except that the re-
spective methods obtain additional D-typed source and target
nodes as inputs. As for flow functions, there are four meth-
ods for the four different categories of functions. The method
joinLattice returns a lattice object defining two V-typed
top and bottom elements as well as a join function over V.
The bottom element is used to initialize the function com-
putation at entry points. The top element is used at merge
points and is typically the neutral element of the join opera-
tor, which is used to merge V-type values a those points.
The definition of edge functions (Figure [6) requires a bit
more input from the analysis clients, who must not just de-
fine the function itself but also how to compose, join and
compare one function with another. The join operation for
edge functions must be consistent with the definition of the
join lattice. At this point, to obtain a reasonably efficient
analysis, it is paramount that edge functions can be com-
posed in place. As an example, consider the analysis prob-
lem of linear-constant propagation, in which we may wish
to compose functions Az. z 4+ 2 and Az. z + 3. In this case,
one should not return a function object stored as an explicit
composition, i.e., as Az. ( + 2) + 3 but rather immediately
reduce this function object to Az. x + 5. If this rule is not
obeyed, then function definitions could grow unduly large.
In related work, we use our IDE support to implement an
information-flow analysis for software product lines [1]].
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public interface EdgeFunction<V> {

V computeTarget (V source);

EdgeFunction<V>
composeWith (EdgeFunction<V>
secondFunction) ;

EdgeFunction<V>
joinWith (EdgeFunction<V>
otherFunction);

public boolean equalTo (EdgeFunction<V>
other) ;

Figure 6: Interface for defining a single IDE edge function

3.2 Important implementation details

We next discuss a few important differences between our
implementation and the algorithms that Reps, Horwitz and
Sagiv originally proposed.

The original formulation of the IFDS and IDE algo-
rithms [7, 9] requires that flow functions are invertible
because one part of the algorithm computes flow back-
wards [4]]. This puts an extra burden on the analysis client,
who thus has to explicitly define the inverse of each flow
function. We use a trick originally proposed by Naeem et
al. [4]] that allows IFDS and IDE implementations to cir-
cumvent this problem. The same authors also proposed an-
other trick that we make use of: to compute the program’s
inter-procedural super graph on the fly.

Another problem with the original algorithms is that
they store summaries of all computed paths in the form
of so-called path edges (or jump functions in the case of
IDE) in a single list that is not indexed. We instead use
a special indexed data structure (implemented in a class
JumpFunctions) that allows O(1) access to groups of path
edges according to various keys such as source statement and
node or just target statement. We implemented a similar data
structure for the summary edges that the algorithms store.
Those indexing data structures currently rely on Google’s
Guava collection library [3]], but this dependency could eas-
ily be removed.

3.3 On the finiteness of the analysis domain

The original formulation of the IFDS and IDE algorithms
demands that the analysis domain D be finite. Interestingly,
we found that this is not a real requirement. Since both algo-
rithms only explore those parts of the exploded super graph
that are actually reachable, it is sufficient if the abstraction
adheres to the so-called “ascending-chain condition”, i.e.,
every ascending chain obtained by applying the flow func-
tions to elements of the domain must eventually terminate
(e.g., by reaching the top element). This is important to
know, as it may be hard to impossible to enumerate large
domains, for instance all possible alias sets of a program.
Nevertheless, enumerating only the ones that do arise along
a particular path may well be tractable.

3.4 Backward Analyses

One question we could not yet find answered in the cur-
rent scientific literature is how to conduct a backwards
analysis using IFDS/IDE. We found out that we could ap-
ply a simple trick: we implemented a customized version
of DefaultInterproceduralCFG that instead of creating
normal ExceptionalUnitGraphs creates reverted versions
of those graphs, swapping heads with tails and successors
with predecessors. We then modified our original IDE solver
to accept multi-headed unit graphs—a quite natural exten-
sion of the original IDE algorithm.

4. Comparison to IFDS in WALA

The T.J. Watson Libraries for Analysis (WALA) [10] is an-
other Java analysis framework, originally developed by IBM
and now maintained as an open-source project. WALA’s de-
sign differs to Soot in several respects, however, also WALA
uses an intermediate representation for its analyses, in this
case a representation in SSA form. WALA also features an
implementation of an IFDS solver. We briefly outline the
main differences in its design compared to our solver, and
the consequences of those decisions.

Our own implementation was designed for maximal ex-
tensibility, maintainability and ease of use. Efficiency to us
is a secondary concern. WALA’s IFDS implementation is
tuned to be highly memory efficient. It uses bit vectors to
represent analysis domains. As a result, WALA users de-
fine flow functions not directly in terms of elements from
the analysis domain but rather in terms of integer numbers.
This can be quite efficient in cases where flow functions can
directly operate on those numbers (e.g. the special value 0 is
represented by the number 0), but can be awkward in other
cases, in which clients need to map those numbers back to
domain objects. We are yet looking for a way to achieve sim-
ilar efficiency while at the same time hiding such complex
implementation details.

WALA also provides additional context information for
instantiating flow functions: it passes a return site to the
method that creates call flow functions. This means that
clients can create different call flow functions for each pos-
sible successor of this call statement. This is useful in back-
wards analyses such as in Snugglebug [2]. WALA further
supports special call edges for the unresolved calls that
have no callees. In our approach, we instead assume that
users would propagate appropriate information using call-
to-return edges.

The original IFDS and IDE algorithms, as well as our
implementation, generate summary edges that connect call
sites with their successor statements, summarizing the ef-
fects of any potentially called method. WALA instead stores
summary edges on the side of the callee, which increases
sharing of those edges, decreasing memory consumption.
We plan to implement similar support in the future.
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A final important difference is that WALA’s solver only
supports IFDS problems while we support full IDE.

5. Extensions and Related Work

We briefly explain a set of possible extensions that we think
may be useful for implementing certain classes of analyses,
some of which have been proposed in related work.

Support for branched analyses Some forward analyses
are branched, i.e., propagate different information along dif-
ferent branches. For instance, a nullness analysis will prop-
agate “x is definitely null” along the true branch of a
conditional if (x==null) and the fact “x is definitely not
null” along the false branch. One can currently imple-
ment branched analyses by analyzing the structure of the
source statement in the method that creates “normal” flow
functions. However, this is rather verbose and it may be de-
sirable to have a cleaner interface for branched analyses.

Exceptional control flow A similar problem arises with
exceptional control flows. Currently, we treat exceptional
edges as normal flow edges. This is usually the right choice
for a conservative analysis but may not be desirable for a
data-flow analysis targeted towards analyzing exceptions.
Again, it may be desirable to support such analyses through
a dedicated interface.

Combination of multiple analyses It can easily be envi-
sioned that in the future, researchers will implement a wide
range of analyses in our IFDS/IDE framework. At this point
it would be desirable to have a means to easily combine mul-
tiple analyses with each other, and to increase the reuse po-
tential by pre-defining certain frequently-used domains and
flow functions. This is exactly the kind of reuse that is cur-
rently hard to achieve in Soot because there is no pre-defined
framework for inter-procedural analyses.

Persisting summaries Rountev et al. have developed a
mechanism for persisting IDE-based summary information
such that it can be re-used when re-running the analysis [8].
As the authors showed, this approach promises significant
performance gains when used to persist information for fre-
quently used large libraries. We believe that this would be
a quite useful extension that would immediately benefit all
analysis clients.

A concurrent solver Rodriguez and Lhotdk have proposed
a concurrent version of the IFDS algorithm based on Scala’s
actor framework. We believe that this idea could relatively
easily be ported to IDE and also to Java’s concurrency API.
Just as with persisting summaries, we believe that this would
be a useful extension that would benefit all analysis clients
and could promise significant speedups on multi-core ma-
chines.

Return Flow Functions Naeem et al. proposed an exten-
sion to return flow functions that allows clients to map in-
formation from a callee method back to its caller based on

caller-side information at the original call site [4]. We have
not currently implemented this feature.

6. Conclusion

We have presented our implementation of an IFDS/IDE
solver in Soot, from a user perspective and in terms of impor-
tant implementation details. Further, we have contrasted our
implementation with an existing IFDS implementation in
WALA. We hope that our solver implementation will serve
as a basis for future collaborative research in the area of
whole-program analysis. While not all analyses problems
may fit the IFDS/IDE framework, the ones who do could
benefit from mutual reuse and from additional performance
optimizations applied to the solver itself.
Acknowledgements. We thank Steven Fink for clarifica-
tions of some design decisions taken in WALA as well as
Bruno Dufour and the anonymous reviewers for their con-
structive comments on an earlier draft of this paper.
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