
InvokeDynamic support in Soot ∗

Eric Bodden
Secure Software Engineering Group

European Center for Security and Privacy by Design (EC SPRIDE)
Technische Universität Darmstadt

Darmstadt, Germany
eric.bodden@ec-spride.de

Abstract
Java Specification Request (JSR) 292, which was realized
with Java 7, defines a new java bytecode called invokedy-
namic, which can be used to call methods by name, with-
out determining statically where the implementation of the
called method is to be found. This mechanism eases the im-
plementation of highly dynamic languages for the Java Vir-
tual Machine.

In this work we explain how we extended the Soot frame-
work for static analysis and transformation of Java programs
to properly handle invokedynamic bytecodes. Our imple-
mentation required changes on all levels of Soot, as all inter-
mediate representations needed to be adapted appropriately.
We comment on the design decisions taken and how users
can use our implementation to statically process or generate
invokedynamic instructions.

Our support has been integrated into Soot release 2.5.0
and is thus already available for everyone to use.

Categories and Subject Descriptors F.3.2 [Semantics of
Programming Languages]: Program Analysis

General Terms Design, Documentation

Keywords Static analysis, dynamic analysis, invokedy-
namic, JSR292

1. Introduction
Prior to Java 7, the Java Virtual Machine specification [7]
allowed for different method invocation bytecodes, tai-

∗ This work was supported by the German Federal Ministry of Education
and Research (BMBF) within EC SPRIDE and by the Hessian LOEWE
excellence initiative within CASED.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SOAP’12 June 14, Beijing, China.
Copyright c© 2012 ACM ISBN 978-1-4503-1490-9/12/06. . . $10.00

lored towards the invocation of virtual and static meth-
ods (invokevirtual/invokestatic), constructors and private
methods (invokespecial) as well as invocations of methods
on interface types (invokeinterface). Despite their variety,
all those bytecodes have in common that, given any fixed call
site, there is a fixed algorithm for looking up an appropriate
unique callee method, depending on the particular type of
bytecode chosen. This fact makes it very hard to generate
Java compliant bytecode for highly dynamic languages such
as Ruby or Groovy [4, 5].

Java Specification Request (JSR) 292, titled Supporting
Dynamically Typed Languages on the JavaTM Platform [2]
set out to change this fact by introducing a new bytecode
called invokedynamic. The new bytecode allows program-
mers to call a method just by name. Method resolution is
implemented through custom, user defined lookup methods.

Soot [8] is one one of the most widely used frame-
works for the static analysis and transformation of Java
programs [6]. In this work we explain how we extended
Soot to include support for reading, representing and writ-
ing invokedynamic bytecodes. This is a major change to Soot
that modifies all its internal representations.

The remainder of this paper is structured as follows. Sec-
tion 2 explains JSR 292 and the invokedynamic bytecode in
more detail. Sections 3–6 then explain how we represent
invokedynamic instructions in all the different intermediate
representations that Soot supports. In Section 7 we explain
the current limitations of our approach and some pitfalls that
we came across. Section 9 explains related work and Sec-
tion 10 concludes.

2. Invokedynamic as described in JSR292
During the past few years, people noticed that the built-in
Java bytecodes do not provide sufficient flexibility when try-
ing to implement highly dynamic and often untyped lan-
guages on top of the Java Virtual Machine, languages such as
Ruby or Groovy. Such languages frequently allow dynamic
redefinition of methods. For instance, consider the following
pseudo-code example:

1 o .m = { re turn 1 ; }
2 p r i n t (o .m()) ; / / p r i n t s 1
3 o .m = { re turn 2 ; }
4 p r i n t (o .m()) ; / / p r i n t s 2

In this case, the same invoke expression o.m can bind to two
completely different methods, defined as unnamed closures.
Generating JVM compliant bytecode for such code snippets
is everything but straightforward. Just for the above simple
example, one would need to do all of the following. First
one would need to extract both closures into typed, named
methods, say m1 and m2. Then one would need to generate a
method m() that dispatches to m1 or m2 respectively, depend-
ing on the particular call site. But where should m itself be
stored? The optimal location would be the runtime type of o,
but this type is not known at compile time. As can be seen by
this very simple example, the compilation of dynamic lan-
guages for the Java virtual machine raises many important
design questions and is usually everything but straightfor-
ward.

JSR 292 [2] describes a new bytecode, invokedynamic,
and a series of new constant-pool entries that, together, al-
low the execution of invokedynamic instructions. Unlike all
other Java bytecode invoke instructions, the target method of
an invokedynamic instruction is not defined by the language
semantics, but rather by a user-defined method, called the
bootstrap method.

The purpose of a bootstrap method is to associate an in-
vokedynamic statement with a CallSite object. When an in-
vokedynamic instruction executes, the virtual machine calls
the call-site object’s getTarget() method, which, as defined
through user-written code, returns a MethodHandle object,
i.e., a handle to the method to be invoked. Call sites may
be constant or mutable, i.e., may or may not return the same
method handle object on each call. The virtual machine can
exploit knowledge about immutability for internal optimiza-
tions. Further, invokedynamic instruction can be associated
with its own bootstrap method, or multiple instructions can
share the same method.

A bootstrap method computes a method handle based on
a method name associated with the invokedynamic call site.
As opposed to normal Java method names, invokedynamic
method names can be any Utf8 string. The following code
shows an example bootstrap method for the closure-example
from above:

1 C a l l S i t e b o o t s t r a p (Lookup c a l l e r , S t r i n g
name , MethodType type , O b j e c t . . . a r g s) {

2 i f (name . e q u a l s (" c1 "))
3 re turn c a l l e r . f i n d S t a t i c (
4 AllMethods . c l a s s , " c o n s t 1 " , t y p e) ;
5 i f (name . e q u a l s (" c2 "))
6 re turn c a l l e r . f i n d S t a t i c (
7 AllMethods . c l a s s , " c o n s t 2 " , t y p e) ;
8 . . .
9 }

In this example, we assume that the first invokedynamic in-
struction uses "c1" as method name, and the second one uses
"c2". The bootstrap method retrieves appropriate method
definitions by using a lookup object caller . This object is
passed implicitly by the Java Virtual Machine. It represents
the calling context with its lookup rules. In the example, all
actual method definitions reside in a single class AllMethods.
This is a common implementation strategy, for instance for
JRuby. The virtual machine also implicitly passes a method-
type argument. As shown, this method type can be used dur-
ing method lookup.

In addition, the invokedynamic call site can provide the
bootstrap method with a free number of additional static
arguments, here shown as args. The arguments are called
static because the bootstrap method is executed at load time.
For the same reason, static arguments are restricted to the
argument types that can be encoded in the constant pool; the
static arguments must be constants.

Finally, a number of regular (dynamic) invocation argu-
ments, which are used to call the method pointed to by the
method handle that the call-site object’s getTarget() method
returns.

To summarize, an invokedynamic instruction includes:

• An unnamed type signature. (Used to allow modular
static type checking, bytecode verification and implicit
type conversions.)

• A number of regular (dynamic) method arguments. Those
arguments will be passed to the method call after resolu-
tion.

• A reference to a bootstrap method which initializes the
dynamic call site, effectively binding the site to a con-
crete method handle.

• An uninterpreted Utf8 string, which can be seen as the
method name. This string is passed as an argument to the
bootstrap method.

• An arbitrary number of additional static arguments.
Those arguments are passed to the bootstrap method as
well; they must be constants.

JSR 292 extensions to the Java bytecode format
The information is stored in the bytecode’s constant pool
in a rather complex way, using various constant pool en-
tries and a new attribute, BootstrapMethods. Our extension
to Soot’s bytecode parser Coffi parses these entries to cre-
ate Jimple expressions from invokedynamic bytecodes. The
BootstrapMethods attribute is stripped during this process; it
will not occur as a tag on the corresponding SootClass. In-
stead, the attribute is re-generated when Jimple is converted
back to bytecode. (see Section 6)

Further information on the bytecode format can be found
in the official documentation for the package java.lang.

invoke.1

3. Jimple representation
Jimple is Soot’s primary intermediate representation. In-
structions are represented in a simple three-address code for-
mat, in which control flow only occurs through conditional
and unconditional branches (as well as exceptions). In our
extension to the Jimple IR, a invokedynamic bytecode is rep-
resented as a JDynamicInvokeExpr, whose constructor expects
four arguments:

SootMethodRef bootstrapMethodRef A reference to a
(static) bootstrap method. This method can reside in the
same class as the invokedynamic instruction or in any
other class. The bootstrap method receives three implicit
arguments from the virtual machine, in addition to the
explicit static arguments provided. A standard bootstrap
method would start with the following argument signa-
tures:

java.lang.invoke.MethodHandles$Lookup A lookup
object representing the current class context.

java.lang.String The uninterpreted Utf8 string stated at
the invokedynamic site.

java.lang.invoke.MethodType A method-type object
representing the resolved method type for this invoke-
dynamic site.

List bootstrapArgs A number of static bootstrap argu-
ments. Those arguments are passed to the bootstrap
method in addition to the three implicit arguments men-
tioned above. The bootstrap method’s signature must be
defined accordingly. Those arguments must all be Jimple
Constant objects.

SootMethodRef methodRef A method reference stating
the name and type signature of this invokedynamic call
site. The method name may be any valid Utf8 string. The
sole purpose of this name is to be passed, by the vir-
tual machine, as an argument to the provided bootstrap
method. The type signature is used for type checking the
invokedynamic call site in its invocation context. This
is necessary to guarantee the integrity of the bytecode.
In this signature, the name of the declaring class must
be soot.dummy.InvokeDynamic. Soot will handle this spe-
cial class as a phantom class (even if phantom classes
are disabled otherwise.) The dummy class name is only
used internally by Jimple as a placeholder; it is stripped
when the JDynamicInvokeExpression is converted to byte-
code, because invokedynamic instructions do not have a
declaring class.

1 See http://docs.oracle.com/javase/7/docs/api/java/lang/invoke/

package-summary.html

List methodArgs A number of regular, dynamic, method
arguments in the form of Jimple Immediate objects.

Textual representation
Soot supports Jimple as a full-fledged source-code language,
i.e., Soot can not only pretty-print the Jimple IR but can also
parse .jimple files that contain such pretty printed code (or
modifications thereof). This has special implications on how
we chose to pretty-print invokedynamic instructions.

Figure 1 shows a pretty-print of a typical invokedy-
namic instruction in Jimple format (line breaks added to
enhance readability). Here the string “+” following the key-
word dynamicinvoke is the uninterpreted Utf8 string denoting
the call site’s method name. This string is printed as an ac-
tual quoted string constant so that it can be parsed again
by the Jimple parser. (Again, note that any Utf8 string is
allowed!) On the next line, the expression contains an un-
named method signature, stripped of any declaring class
name and method name (because these were given before).
In the above example, r1 is the dynamic argument to this
call; according to the signature, it may hold any kind of
Object. The last three lines contain a regular staticinvoke
expression, representing the bootstrap method and the static
constant arguments to invoke it at load time.

The Jimple parser fully supports this syntax, which means
that Soot users may directly write Jimple files in the above
syntax to create invokedynamic bytecodes.

4. Grimp, Grimple and Shimple IRs
In addition to Jimple, Soot also features the Grimp and
Grimple IRs, which contain aggregated Jimple expressions,
and the Shimple IR for SSA form. For all those IRs, the
representation of invokedynamic expressions is the same as
in Jimple.

5. Baf IR
Before Jimple is converted to bytecode, it is first converted
into the stack-based Baf IR. During this conversion, Soot
generates Baf code to push the instruction’s dynamic argu-
ments onto the stack, followed by a BDynamicInvokeInst that
holds the remainder of the information, i.e., the Utf8 method
name, the reference to the bootstrap method and its static ar-
guments. In analogy to the textual Jimple format, the textual
Baf format consists of the two instructions shown in Fig-
ure 2.

Note that Baf is currently an output-only IR, i.e., there is
no parser that could parse Baf instructions back into Soot.

6. Jasmin
The last step before the final conversion to bytecode is to
convert Baf to Jasmin, a textual assembler for Java bytecode.
Soot uses a fork of the Jasmin project; Jasmin is no longer
maintained. Jasmin differs from Baf in that it is very close to
the bytecode, e.g., uses the same format for class references.

dynamicinvoke

"+"

<java.lang.Object (java.lang.Object)>(r1)

<jsr292.cookbook.binop.RT: java.lang.invoke.CallSite

bootstrapOpLeft(java.lang.invoke.MethodHandles$Lookup,

java.lang.String,java.lang.invoke.MethodType,int)>(1)

Figure 1: Example of Jimple syntax of invokedynamic bytecodes

load.r r0;

dynamicinvoke

"+"

<java.lang.Object (java.lang.Object)>

<jsr292.cookbook.binop.RT: java.lang.invoke.CallSite

bootstrapOpLeft(java.lang.invoke.MethodHandles$Lookup,

java.lang.String,java.lang.invoke.MethodType,int)>(1);

Figure 2: Previous example in Baf syntax

invokedynamic

"+"

(Ljava/lang/Object;)Ljava/lang/Object;

jsr292/cookbook/binop/RT/bootstrapOpLeft(Ljava/lang/invoke/MethodHandles$Lookup;

Ljava/lang/String;Ljava/lang/invoke/MethodType;I)

Ljava/lang/invoke/CallSite;

((I)1)

Figure 3: Previous example in the syntax of Soot’s version of the Jasmin IR

We extended Jasmin to accept invokedynamic instructions in
the syntax shown in Figure 3.

This is format quite similar to Baf. The only notewor-
thy difference is that the static arguments to the bootstrap
method are all preceded by a bracketed type identifier, in the
example (I). This is necessary to allow Jasmin to determine
which kind of class constant to generate as a bytecode rep-
resentation of that constant value. In the above example, I
would indicate an int.

7. Current limitations and pitfalls
The current support for JSR292 in our extension to Soot is
fairly complete. However, a few items are missing. First,
JSR292 allows constant arguments to bootstrap methods in
the form of method handle or method type constants. Our
extension to Soot does not currently support those constants;
such support could be added. Adding the support would
mostly complicate the Jimple and Jasmin parsers, which
would need to cope with some form of textual representation
of method handles in argument positions.

We do not currently support bytecode constants of type
CONSTANT_MethodType_info. As of now, such support did not
seem necessary. We plan to add appropriate support if the
need arises.

Current pitfalls include the odd argument passing to boot-
strap methods. Remember that a bootstrap method always
receives three implicit arguments from the virtual machine.
Those arguments are of type Lookup, String, and MethodType.
This does not mean, however, that one can rely on the boot-
strap method’s signature to start with those argument types.
Instead, a bootstrap method could consume any number of
those arguments through a varargs argument, as in:

CallSite bootstrap(Object caller,

Object... nameAndTypeWithArgs)

For this reason, Soot currently does not check the correctness
of the bootstrap method’s arguments against the provided
arguments. Users hence have to be careful to provide a
correct signature. Note that we do check, however, that the
correct return type, java.lang.invoke.CallSite, is provided.

8. Using the invokedynamic support
We envision multiple use cases for our invokedynamic sup-
port in Soot. First, researchers can use Soot to conveniently
generate invokedynamic instructions. Generating such in-
structions based on our Jimple representation should be
much simpler than generating them using low-level byte-
code manipulation libraries such as ASM [1].

Secondly, in the future we plan to add support for taking
into account invokedynamic instructions during call-graph
construction and points-to analysis. Such support could be
added by at least two different means: through static analysis
or through runtime monitoring. With a static analysis, one
could try to simulate the effect of the bootstrap methods,
hence attempting to at least resolve method handles already
at compile time (or at least a coarse-grain approximation
of those). Another approach would be to actually monitor
dynamically which method handles a call site resolves to
as the program executes. The monitoring code could write
appropriate information into a log file and make that log
file available to static analyses. In previous work, we have
implemented a similar approach for Java’s reflection API, in
a tool called TamiFlex [3].

Both the static and dynamic approach would need to cater
for special cases, though, in which a call site does not actu-
ally resolve to a method handle representing an actual Java
method. The package java.lang.invoke supports the genera-
tion of special method handles for imaginative methods that
do not actually exist in code.2 Examples include methods
returning constants, or methods inserting a dynamic guard.
A static analysis would need to simulate the effects of such
methods; a dynamic analysis would need to log such method
handles appropriately.

9. Related Work
In previous work, we developed the TamiFlex system for
handling reflective method calls during static analysis [3].
TamiFlex records dynamic information about such calls, to
then make them available to static analyses implemented in
Soot. We are currently extending TamiFlex to include sup-
port for invokedynamic instructions as well. In general, re-
flective method calls have much in common with invoke-
dynamic instructions in the way in which static analyses
can (or cannot) handle them. Invokedynamic instructions are
more flexible, however, allowing for custom, yet type-safe,
lookup.

ASM [1] has support for reading and writing invokedy-
namic bytecodes, but generally does not have any support
for advanced data-flow analysis.

10. Conclusion
We have presented an extension to Soot that allows Soot to
parse, represent and synthesize invokedynamic bytecodes.
The extension modifies all of Soot’s internal representation.
Our extension will enable users of Soot to partially ana-
lyze or instrument invokedynamic instructions in the future.
Also, our extension makes Soot the first tool that we know of
that supports invokedynamic as a source-level construct: re-
searchers can write invokedynamic in Jimple source code to

2 See http://docs.oracle.com/javase/7/docs/api/java/lang/invoke/

MethodHandles.html

them have Soot convert them to Java bytecode. Our exten-
sion is available with the main Soot distribution since ver-
sion 2.5.0.

Extending Soot with invokedynamic support was not a
trivial task. Problems arose with the Coffi frontend, which
converts bytecode into Jimple, and with Jasmin, the assem-
bler that converts Baf back into bytecode. Those two compo-
nents of Soot deal with byte-level operations, are almost un-
documented and not structured to be easily extensible. Fur-
ther problems arose due to a lack of documentation of the
bytecode layout chosen for invokedynamic bytecodes. Ora-
cle’s documentation on this issue is quite incomplete. The
Jimple, Shimple and Baf IRs were quite straightforward to
extend.

Acknowledgements Thanks to Matthias Perner for provid-
ing an initial implementation of invokedynamic based on the
JDK 7 beta. Thanks to Andreas Sewe and Rémi Forax for an-
swering some questions on MethodType attributes. Patrick
Lam provided useful feedback on an initial draft of this pa-
per. Thanks!

References
[1] ASM bytecode modification library. http://asm.ow2.org/.

[2] JSR 292: Supporting Dynamically Typed Languages on the
JavaTM Platform. http://jcp.org/en/jsr/detail?id=292.

[3] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and
Mira Mezini. Taming reflection: Aiding static analysis in the
presence of reflection and custom class loaders. In ICSE ’11:
International Conference on Software Engineering, pages 241–
250. ACM, May 2011.

[4] D. Flanagan and Y. Matsumoto. The ruby programming lan-
guage. O’Reilly Media, 2008.

[5] D. Koenig, A. Glover, P. King, G. Laforge, and J. Skeet. Groovy
in action. Manning Publications Co., 2007.

[6] Patrick Lam, Eric Bodden, Ondřej Lhoták, and Laurie Hendren.
The Soot framework for Java program analysis: a retrospective.
In Cetus Users and Compiler Infastructure Workshop (CETUS
2011), October 2011.

[7] Tim Lindholm and Frank Yellin. Java Virtual Machine Spec-
ification. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2nd edition, 1999.

[8] Vijay Sundaresan Patrick Lam Etienne Gagnon Raja Vallée-
Rai, Laurie Hendren and Phong Co. Soot - a Java optimization
framework. In Proceedings of CASCON 1999, pages 125–135,
1999.

