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Abstract
A software product line encodes a potentially large variety
of software products as variants of some common code base,
e.g., through the use of #ifdef statements or other forms of
conditional compilation. Traditional information-flow anal-
yses cannot cope with such constructs. Hence, to check for
possibly insecure information flow in a product line, one cur-
rently has to analyze each resulting product separately, of
which there may be thousands, making this task intractable.

We report about ongoing work that will instead enable
users to check the security of information flows in entire
software product lines in one single pass, without having to
generate individual products from the product line. Execut-
ing the analysis on the product line promises to be orders of
magnitude more faster than analyzing products individually.

We discuss the design of our information-flow analysis
and our ongoing implementation using the IFDS/IDE frame-
work by Reps, Horwitz and Sagiv.

Categories and Subject Descriptors D.2.0 [Software En-
gineering]: Protection Mechanisms

General Terms Design, Languages, Security, Verification

Keywords Information flow control, static analysis, soft-
ware product lines, IFDS, IDE
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1. Introduction
A Software Product Line (SPL) describes a set of software
products as variations of a common code base. Variations,
so-called features, are typically expressed through compiler
directives such as the well-known #ifdef from the C pre-
processor or other means of conditional compilation. SPLs
have become quite popular in certain application domains,
for instance the development of games and other applica-
tions for mobile devices: depending on the hardware capa-
bilities of a certain mobile device, it may be advisable or
not to include certain features in a software product for that
device, or to include a variety of a given feature.

In the area of software security, a more common problem
is probably that programmers use #ifdef directives when
programming security primitives in languages such as C.
While not being product lines in the strict sense, such pro-
grams with conditional compilation can also be seen as prod-
uct lines for the purpose of this paper. Our approach applies
to such programs in the same way as it applies to software
that was specifically designed as an SPL.

The major problem with product lines is that due to their
built-in variety, SPLs can induce a large number of result-
ing products: a product line with n optional features can
generally induce up to p = 2n different products, as each
feature may be enabled or not.1 When performing static
analyses such as an information-flow analysis on SPLs, this
is problematic. Existing information-flow analyses cannot
cope with the conditional-compilation constructs in the SPL
definition, and hence can only be applied to the resulting
product after the pre-processor has been applied. For p dif-
ferent products this would imply p different analysis runs,
even though typically all products have much in common
and do not vary significantly.

In this paper we present ongoing work on designing an
information-flow analysis that will allow users to instead

1 Some combinations may be illegal, and hence SPLs usually come with a
so-called feature model that describes the allowed combinations.



analyze an entire software product line at once, including
all the possible products. In all cases where a traditional
information-flow analysis would report that for some prod-
uct p a property violation exists at a given statement s, our
SPL-based analysis will not only report that such a violation
may exists but also for which feature combinations. A result
(F ∧G)∨¬H , for instance, signifies that the violation may
exists if feature F is enabled as well as feature G or if fea-
ture H is disabled. Since our approach analyzes the entire
product line at once, it promises cost savings of up to several
orders of magnitude compared to the traditional approach,
which comes at a cost exponential in the number of features.

Our approach is based on the IFDS framework for inter-
procedural, finite, distributive subset problems by Reps, Hor-
witz and Sagiv [9]. In IFDS, inter-procedural data-flow anal-
ysis problems are reduced to a graph reachability problem.
Many program analyses can be expressed using IFDS, and
information-flow analysis is particularly amenable to the
IFDS framework. In this work we show how an information-
flow analysis expressed in the IFDS framework can be lifted
to entire software product lines by treating the analysis as
an instance of the more general IDE framework [10]. IDE is
an extension of IFDS that allows distributive functions to be
computed along the graph edges that IFDS operates on. In
our setting, those functions compute feature constraints.

We are currently implementing our information-flow
analysis on top of an IDE solver that we wrote ourselves,
as an extension to the Soot program analysis toolkit [8]. Our
implementation can treat all software product lines devel-
oped in the Java-based Color IDE (CIDE) [5].

To summarize, this paper presents the following original
contributions:

• A mechanism for static information-flow analysis on
software product lines and other applications that use
conditional compilation.

• The sketch of an implementation based on Soot and
CIDE.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces a small running example. In Section 3, we
discuss the design of our information-flow analysis for soft-
ware product lines. Section 4 discusses our implementation
and Section 5 related work. We discuss our conclusions in
Section 6.

2. Example
We show a simplified running example in Figure 1. In this
example there are multiple different value assignments, de-
pending on whether or not the features F , G or H are en-
abled when a product is generated from the product line.
We assume that the task of our information-flow analysis
is to report a property violation whenever a value returned
from secret() is passed to the function print. As the ob-
servant reader will notice, in the example product line from

1 v o i d main() {

2 i n t x = secret ();

3 i n t y = 0;

4 #ifdef F

5 x = 0;

6 #endif

7 #ifdef G

8 y = foo(x);

9 #endif

10 print(y);

11 }

12
13 i n t foo( i n t p) {

14 #ifdef H

15 p = 0;

16 #endif

17 r e t u r n p;

18 }

(a) Example SPL

1 v o i d main() {

2 i n t x = secret ();

3 i n t y = 0;

4 y = foo(x);

5 print(y);

6 }

7
8 i n t foo( i n t p) {

9 r e t u r n p;

10 }

(b) Product for ¬F ∧G ∧ ¬H

Figure 1: Example: secret is printed if F and H are disabled
but G is enabled

Figure 1a this is the case only if features F and H are dis-
abled but feature G is enabled.

Traditionally, one would perform information-flow anal-
ysis on a software product line by first generating all possible
products from this product line, typically through the use of
a pre-processor. In the next step, one would then apply a tra-
ditional information-flow analysis to the resulting (regular)
program code. In Figure 1b we show the product for the vi-
olating feature configuration ¬F ∧ G ∧ ¬H . Any existing
inter-procedural information-flow analysis would determine
that a violating information flow exists in this product.

The problem is, however, that this traditional approach
becomes prohibitively slow in the case where many features
are present, and thus many different resulting products ex-
ists. Product lines with several hundreds or thousands of pos-
sible products are not uncommon [6]. Even the small exam-
ple from Figure 1a induces 23 = 8 possible products, only
one of which actually violates our information-flow policy.

In this work we discuss a feature-sensitive information-
flow analysis that instead allows users to analyze entire prod-
uct lines, such as the one in Figure 1a, at once. When ap-
plied to this example, our analysis reports an information-
flow violation at line 10, and that this violation can happen
for the single configuration satisfying the feature constraint
¬F ∧ G ∧ ¬H . This not only obviates the analysis of indi-
vidual products, it also yields the useful information which
features are responsible for a violation. Depending on the
concrete configuration, the violation may actually be benign,
for instance if the resulting products are guaranteed to be run
in a trusted environment. In this case the violation could be
ignored.



id: λS.S a: λS.{a} f: λS.(S − {a}) ∪ {b}
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Figure 2: Function representation in IFDS, reproduced
from [9]

3. Information-flow Analysis for Software
Product Lines

In the following section, we explain our approach to information-
flow analysis of software product lines. We first explain the
IFDS framework, and how it can be used to formulate tra-
ditional information-flow analyses. In Section 3.3, we then
explain how such analyses can be lifted to Software Product
Lines.

3.1 The IFDS framework
Our approach is limited to information-flow analyses formu-
lated in the so-called IFDS framework by Reps, Horwitz and
Sagiv [9]. This framework defines a general solution strategy
for inter-procedural, flow-sensitive, context-sensitive analy-
sis of finite distributive subset problems. The algorithm has
complexityO(ED3), whereE is the number of control-flow
edges (or statements) of the analyzed program and D is the
size of the analysis domain. For simple analyses that only
consider two possible values, high for secret and low for
public values, D will typically be quite low, as it is bounded
by the maximal number of variables (or access paths) within
any given method.

The major idea of the IFDS framework is to reduce any
program-analysis problem formulated in this framework to
a simple graph-reachability problem. The IFDS algorithm
builds, based on the program’s inter-procedural control-flow
graph, a so-called “exploded super graph” in which a node
(s, d) is reachable from a selected start node (s0, 0) if and
only if the data-flow fact d holds at s. (By “fact” we mean
any logical statement, such as “variable v carries a high
value.”) To achieve this goal, the framework has to encode
data-flow functions as nodes and edges. Figure 2, reproduced
from [9], shows how to represent compositions of typical
gen and kill functions, as they are used in information-flow
analysis. The function id is the identity function, mapping
each data-flow fact before a statement onto itself. In IFDS,
the value 0 represents an empty fact that is always valid,
i.e., two nodes representing 0 will always be connected. This
0 value is used to generate data-flow facts unconditionally.
The flow function a generates the data-flow fact a , and at
the same time kills the data-flow fact b . Function f, on the
other hand kills a , generates b and leaves all other values

(such as c) untouched. This could denote, for example, sum-
mary information for the following code snippet a = 3; b

= secret(). Here, b would be generated, e.g., to denote that
b is assigned a high value, and a would be killed to denote
that a is assigned a low value.
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In addition, information-flow analysis
must often consider functions whose out-
put actually depends on the input value,
so-called non-separable data-flow func-
tions. For instance, the function repre-
sentation to the right could be chosen to
model an assignment b=a. Here, a has
the same value as before the assignment,
modeled by the arrow from a to a , and b obtains a’s value,
modeled by the arrow from a to b . If b was previously high,
then it will only remain high if a was high as well. This is
modeled by a missing arrow from b to b .

3.2 Information-flow analysis in IFDS
Figure 3 shows the exploded super graph for our information-
flow analysis applied to the product from the running ex-
ample (Figure 1b). We assume an information-flow policy
stating that the return value of the method secret() is a
source of high (secret) values and that the parameter to the
method print(..) is a sink, i.e., must not be reached by
high values. Our analysis generates high values at sources,
as can be seen by the edge from 0 to x at the statement x
= secret(). The analysis then tracks simple assignments.
For the purpose of this position paper we ignore field as-
signments and aliasing. Those would be modeled by using
a larger set of data-flow facts, incorporating not only local
variable but alias sets and/or access paths. Our idea of lifting
information-flow analysis to product lines is orthogonal to
the question of how to model and resolve aliasing, which
is why we omit those details here. We currently also ignore
sanitizers and other forms of safe declassification of high
values, but plan to add support by using appropriate kill
functions.

In our example, the violation of the information-flow
policy is detected by observing the data flow marked in red:
the node for y just before the print statement is reachable in
the graph, hence an information-flow violation is detected.

3.3 Information-flow analysis for Software Product
Lines

In the following we explain how we can lift our IFDS-based
information-flow analysis to software product lines. IFDS is
actually a specific instance of a more generalized framework
called inter-procedural distributive environment transform-
ers (IDE) [10], also developed by Sagiv, Reps and Horwitz.
As in IFDS, the IDE frameworks models data flow through
edges in an exploded super graph. In addition to IFDS, how-
ever, IDE allows for the computation of distributive func-
tions along those edges. We use this functionality to com-
pute, along the edges representing the violating information



int x = secret();

int y = 0;

y = foo(x);

print(y);

return p;
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Figure 3: Exploded super graph for our running example; main method shown on left-hand side, method foo shown to the right
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Figure 4: Flow function before and after conversion

flow, a feature constraint that tells us which features must or
must not be enabled for the potential flow to occur. Effec-
tively, we convert IFDS function representations into IDE
function representations, as shown in Figure 4.

In Figure 4a, we show an example IFDS flow function.
In Figure 4b, we show the converted IDE version, applica-
ble to software product lines. We assume that by parsing the
product line’s code we are able to see which conditional-
compilation directives guard each statement. (In Section 4
we discuss how our implementation achieves this.) In Fig-
ure 4b, we consider a statement that is annotated with the
feature F . Because the statement is guarded by F , if F is
disabled it will not cause any data-flow changes, effectively
degrading to the identity function. We therefore guard any
data-flow edges that generate data-flow facts with F : the
facts are only generated when the feature is active. In the fig-
ure, this is shown by the edge from b to c . We also generate
edges for the inverse case: values that are killed by the orig-
inal data-flow function (by missing an edge) are not killed
if the feature is enabled. Hence, we introduce new “identity
edges”, labeled with ¬F , in the figure from b to b and from
c to c .

Although in Figure 4b we labeled the edges only with
feature constraints, in actuality the edges are associated with
functions that compute a conjunction with this feature con-
straint. For instance, when moving from b to c in the figure,
along the edge labeled with F , this will transform the origi-
nal constraint, say c at the b-node, to the constraint c∧F . In
other words, function composition is modeled by the “and”
operator. This is because a violating information flow is only
possible if all the feature constraints along this flow hold for
the product in question.

At control-flow merge points we merge constraints using
“or”. In Figure 4b, when merging the constraints F and ¬F
for the two edges entering the c node, those constraints are
merged to F ∨ ¬F = true. As the neutral element for this
operation we naturally use false.

In Figure 5, we show how our inter-procedural information-
flow analysis operates on our example product line. The
initial constraint at the start node (s0, 0) is true, the neu-
tral element of our function composition operator “and”. As
the possible information flows are computed, constraints are
conjoined, and disjoined at merge points. In the figure, the
violating information flow leads to the following constraint:

(true ∧ ¬F ∧G ∧ ¬H ∧G) ∨ false = ¬F ∧G ∧ ¬H

In our actual implementation, we first stored feature con-
straints in a canonical minimized Disjunctive Normal Form,
but found that this representation was quite inefficient for
frequent operations such as conjunction. We now uses Bi-
nary Decision Diagrams which can be conjoined much more
efficiently in the most common cases. We wish to emphasize
that the idea of using IDE to extend IFDS-based analyses to
product lines is a novel, original contribution of this paper.



int x = secret();

int y = 0;

[F ] x = 0;

[G] y = foo(x);

print(y);

[H] p = 0;

return p;
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Figure 5: Example from Figure 3, lifted to SPLs; an edge labeled with feature constraint C represents the function λx. x ∧ C

4. Implementation
We have almost finished an implementation based on the
Soot program analysis and transformation framework [8]
and CIDE, the Colored Integrated Development Environ-
ment [5]. We have implemented an IDE solver [10] in Soot
that works directly on Soot’s intermediate Java-code repre-
sentation “Jimple”. Jimple is a three-address code represen-
tation of Java programs that is particularly simple to analyze.
Jimple statements are never nested, and all control-flow con-
structs are reduced to simple conditional and unconditional
branches. Soot can produce Jimple code from Java source
code or bytecode, and compile Jimple back into bytecode or
into other intermediate representations.

To be able to actually parse software product lines, we
decided to use CIDE, an extension of the Eclipse IDE [1]. In
CIDE, software produce lines are expressed as plain Java
programs. This makes them comparatively easy to parse:
there are no explicit compiler directives such as #ifdef that
would need to be handled. Instead, code varieties are ex-
pressed by marking code fragments with different colors.
Each color is associated with a feature name. CIDE for-
bids so-called “undisciplined” annotations, i.e., forbids users
from marking code regions that do not span entire nodes in
the abstract syntax tree. As a result, this means that users can
only color entire expressions, statements, methods, classes,
etc. but cannot color arbitrary code fragments. Previous re-
search has shown that this is typically not a practical limita-

tion [6]. Figure 6 shows our running example program with
the appropriately marked features in CIDE.

Figure 6: Example program in the Colored IDE (CIDE)

Current Limitations
Due to our tool chain, our implementation is currently lim-
ited to software product lines expressed with CIDE, which
therefore have to use Java as the underlying base language.
Having said that, there is nothing that precludes our ap-
proach from being applied to other programming languages.
In particular, it could be applied to C, C++ and C# if similar
tool support were present.

Another limitation of our implementation is that, due to
a bug in CIDE, we are currently unable to make use of the



product line’s feature model. A feature model defines, usu-
ally in a graphical way, a Boolean constraint that describes
the set of all valid feature combinations. Feature models are
typically defined manually by a user. Exploiting the feature
model is useful both to improve analysis efficiency, and to
avoid false positives. For example, assume a feature model
inducing the constraint F ↔ G for our example product
line. This constraint would allow us to deduce that the con-
figuration that we determined as violating, ¬F ∧G∧¬H is
not compatible with the feature-model constraint:

(¬F ∧G ∧ ¬H) ∧ (F ↔ G) = false

Hence, by making use of the model we could identify the
detected violation as a false positive and refrain from report-
ing it to the user. But even better: by considering the fea-
ture model in every step of the computation of the feature
constraint, we could identify and abort unnecessary compu-
tations. In Figure 5, when reaching the node labeled with
p, we would recognize that the constraint computed so far,
¬F ∧ G, is already incompatible with the feature model.
Thereby, one could abort computation of this information
flow at this point, potentially saving a significant amount of
analysis time. At the time of writing we are in contact with
the developers of CIDE to find a fix or workaround for our
problems with accessing the feature model.

Last but not least, our current presentation as well as
prototype implementation ignores the problem of aliasing.
Aliasing is important to resolve to be able to track informa-
tion flow through heap-allocated variables such as fields or
arrays. Guarnieri et al. have recently shown how to treat
aliasing in an IFDS-based information-flow analysis for
JavaScript [4]. Effectively, variable names are replaces by
sets of access paths. We plan to integrate the handling of
aliasing in the near future.

5. Related Work
Brabrand et al. present a mechanism to lift intra-procedural
data-flow analyses to software product lines by extending
the analysis abstraction with feature constraints [2]. Our
approach, on the other hand, lifts information-flow anal-
yses to SPLs on a whole-program level. In addition, our
approach requires no extension of the analysis abstraction.
The implementation of the IFDS flow functions can liter-
ally remain unchanged. Classen et al. describe how to apply
model-checking techniques for temporal properties to Soft-
ware Product Lines [3].

6. Conclusion
We have presented an inter-procedural, context-sensitive
data-flow analysis for applications that are assembled using
conditional-compilation constructs, particularly in the con-
text of software product lines. Our current implementation,
based on Soot and the Colored IDE (CIDE), is applicable
to product lines based on Java. In future work, we plan to

integrate the handling of aliasing. We are also interesting
in conditional-compilation scenarios that go beyond product
lines, such as code generated by web services.

Further, our current implementation does not capture im-
plicit information flow through control-flow dependencies.
Capturing such dependencies is generally possible by ex-
tending the program’s super graph [7]. We plan to investi-
gate whether such extensions can be lifted to product lines
in a similar manner.
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