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ABSTRACT

In previous work we and others have studied the applica-
bility of various trace based matching approaches such as
tracematches [2], tracecuts [15] and tracechecks [6, 14, 5]
(through our prototype tool J-LO, the Java Logical Ob-
server). Such formalisms provide users with an expressive
matching language that gives explicit and well-defined access
to an application’s execution history. In some approaches,
even free variables in expressions can dynamically be bound
to objects on the execution trace. This avoids having to
use data structures such as hash maps or sets in oder to
implement such object-related properties.

In this work we demonstrate that besides the aforemen-
tioned issues of more convenient programming, such tempo-
ral pointcuts yield a large potential for possible optimiza-
tions through runtime deployment of aspects, due to their
well-defined structure. Functionally equivalent code in pure
AspectJ would not necessarily yield such a potential. This
feature of trace languages adds well to static optimizations
such as control flow and dataflow analysis as it has been
proposed in [2]. We do not want to give a fully fledged end-
to-end solution here, which may restrict us to a certain spec-
ification formalism or runtime weaving approach. Instead,
we show up general potential for optimizations through dy-
namic deployment as a pointer to future research on the
field.
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In the previous two years, a lot of effort has been put into
trace based matching languages, which allow users to match
not only based on a current joinpoint but also based on infor-
mation of the ezecution history. Most of those mechanisms
are language extensions of AspectJ and here we want to
concentrate on those. However, we believe that most other
applications which use a formalism for temporal reasoning
at runtime could benefit from the insights we provide. In
particular, previous workshops in the field of Runtime Ver-
ification [1] have shown a growing interest by people of the
verification community in aspect-oriented techniques. This
is is due to the fact that, despite the enormous contributions
which have been made to static verification approaches as
Model Checking, some properties can still only be checked
during runtime of an application under test. Any hybrid
technique making use of such checker components at runtime
must of course induce some computational burden. The
contribution of this work is to point into directions which
promise potential for keeping this computational burden as
low as possible.

In section 2 we give examples for trace based matching in
different formalisms and compare to manual trace match-
ing in native AspectJ. We then briefly describe how trace
matching formalisms are usually implemented and section 3
summarizes the implementation properties they share. This
enables us to identify common potential for optimizations
through runtime matching (section 4). Then we show that
the explicit history access the formalisms provide is crucial
to this optimization potential: As we show in section 5, an
equivalent aspect in native AspectJ could not easily be op-
timized in the same way - the optimizations only become
possible trough the explicit model provided by those for-
malism. We conclude this work in section 6.

2. TRACE MATCHING APPROACHES

In the following we briefly introduce three approaches to
trace matching, based on different formalisms namely regu-
lar expressions, linear temporal logic and context free gram-
mars.

2.1 Tracematches

In 2005, Allan et al. introduced tracematches [2], an As-
pectJ language extension for history based matching based
on regular expressions. The input to a tracematch is a strict
sequence (i.e. multiple symbols holding at the same time are
virtually sequentialized) of named symbols, each such sym-
bol essentially being a pointcut and a before/after specifica-
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tracematch(Vector ¢, Enumeration e) {
sym create after returning(e):
sym next before:
sym update after:

create nextx update+ next

{

call (Enumeration+.new (..)) && args(c
call(Object Enumeration.nextElement ()
vector_update () && target(c);

);
) && target(e);

throw new ConcurrentModificationException ();

}

Figure 1: Safe enumeration tracematch

tion. The tracematch is then formed as a regular expression
over an alphabet defined by those symbols.

The listing in figure 1 shows a tracematch detecting un-
safe use of enumerations: An enumeration should not be
used any more as soon as the underlying collection is mod-
ified, since in this case the enumeration could skip certain
elements or could enumerate elements which are not con-
tained in the collection any more. The tracematch in figure
1 implements a check for this by stating: Whenever an enu-
merator e is claimed for a vector ¢ (event create), the vector
is not to be updated (event update) as long as this enumer-
ation is in use (i.e. nextElement is being called). Line 1
declares free variables ¢ and e, which each possible match-
ing instance will be bound to. Lines 2-4 declare the symbol
alphabet, while line 6 holds the regular expression in ques-
tion: Enumeration creation (possibly followed by some calls
to next) followed by an update of the vector and some call
to next should trigger an error message.

As one would guess, there might be properties, which
may be cumbersome to express with regular expressions,
especially safety properties, which state that something bad
should never happen. Such a statement makes use of some
implicit negation, which in regular expressions can only be
implemented by converting the property to a regular expres-
sion enumerating the language of all possible path violating
this property.

2.2 Tracechecks

Our own previous work was inspired by static and dy-
namic verification tools and was first developed as an inde-
pendent effort. We explicitly provide negation and conjunc-
tion, introducing another specification formalism over point-
cuts based on linear temporal logic (LTL), called tracechecks.
As tracematches, it features dynamic bindings of free vari-
ables. Besides, it is equal to usual LTL [12] with temporal
operators X (next), F (finally), G (globally), U (until) and
R (release). This logic can then be used to specify tempo-
ral assertions, which have to hold during each execution of
the given application. Any violation of such a trace condi-
tion is reported at runtime. Our research prototype J-LO
implements tracechecks, currently in a purely dynamic way.

Figure 2 gives an example specification stating that always
(G) after a collection c has been added to a hash set s, this
collection should not be modified on the subsequent path,
unless (R) it was removed from the hast set again.

2.3 Context-free patterns

There are other approaches around (e.g. tracecuts [15],

PQL [11]) which allow for even more expressiveness, in par-
ticular for context-free patterns. We do not want to explain
those in depth here, because handling of such features would
lead us out of the scope of this paper. Section 4.5 however
explains the rough idea of how our observations could pos-
sibly be of similar use to such formalism.

3. COMMON ASPECTS OF TRACE
MATCHING

The aforementioned approaches, despite providing rela-
tively different specification formalisms, share quite some
implementation details. The available implementations of
tracematches and tracechecks for example both use finite
automata to propagate state over time. An implementa-
tion allowing for the specification of context-free expres-
sions however might need to employ a pushdown automaton
(stack machine) depending on the kind of pattern. Yet, all
those automata, irrespective the fact of being finite or infi-
nite are triggered in the same way - through declared sym-
bols (pointcuts) in AspectJ: A transition is only triggered
at well-defined join points, which need to be exposed by the
AOP runtime that is employed.

This fact yields optimization potential through dynamic
aspect deployment: Maybe the mindful reader has noticed in
our examples already that not all such symbols may actually
trigger a state transition at any time.

Take for example the tracematch about “safe enumera-
tion”: Here, between create and update, it does not matter
whether there are zero, one or multiple occurrences of next
— the pattern would match either way. We say that next
is irrelevant in this state.

Or take the tracecheck checking for safe use of hash sets:
It does not matter to us whether a collection is actually
modified or removed from a hash set unless it was added to
a hash set before. Hence, our conclusion is that not every
declared symbol is of interest at any time. Consequently, in
those states the associated joinpoints should not even trigger
an event in order to achieve an improved performance. This
can and should be achieved by dynamic advice enablement.

But how can we algorithmically determine the set of rel-
evant or irrelevant symbols? We give initial pointers to an-
swering this question in the next section.

4. DETERMINING THE SYMBOLS OF
INTEREST

Symbols of interest are those symbols which are able to
change the internal state of a trace matching automaton —
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tracecheck(Collection ¢, HashSet s) {
sym add after:
sym remove before:
sym modify before: (
call
call

(%
(*

call (x HashSet+.add (..)) && target(s) && args(c)
call(x HashSet+.remove(..)) && target(s) && args

7(6);

Collection+.add*(..)) ||
Collection +.removex*(..)) ||

call (% Collection+.clear ())

) && target(c);

G( add —> (remove R !modify) )
{

throw new ModifiedHashCodeException ();

}

Figure 2: Tracecheck ensuring safe use of hash sets

whatever this automaton might look like. By state we here
refer to the full configuration of the automaton, i.e. in the
case of stack-based automata, the stack content has to be
taken into account for those considerations.

In the following we will however first explain the easier
case where finite automata are involved. This covers the
implementations of tracematches and tracechecks and might
also apply to special cases of more expressive implementa-
tions. We will cover such systems further in section 4.5.

4.1 Regular expressions

The use of regular expressions leads naturally to finite
automata, which are usually deterministic but sometimes
also determinized on-the-fly for enhanced efficiency. Here
the notion of an irrelevant transition is easy as we can see
in our example tracematch.

next update

( : )create update 9 next @

Figure 3: Finite automaton for safe enumeration
tracematch of figure 1

Figure 3 shows the (nondeterministic) finite automaton
for the “safe enumeration” tracematch. (We abstract from
skip transitions as they are mentioned in [2] because they do
not contribute to, nor interfere with, the analysis we describe
here.) Taking into account that loops in an automaton do
not change state, all those (here shown in grey) can safely
be dropped, still yielding the same semantics. For example,
in state 1, it would make no difference if there occurred a
call to the next method of the associated enumeration.

Consequently, the associated joinpoints can be dynami-
cally deactivated when such a state is reached. This leaves
us for this example with the following relevant symbols for
each state:

[ state | relevant symbols |

0 {create}
1 {update}
2 {next}

3 )

In the following, we will denote this relationship by the
function rel : Q — 2% which returns for each state the set
of relevant input symbols. Formally, for an alphabet X, a
state set @ and a transition relation A, we define

rel(q):={s€¥ 3¢ €Q.q#qd N(gsq)eA}.
4.2 Dynamic deployment

Based on this information, we can now augment our orig-
inal automaton with dynamic deployment commands:

e deploy(s) - Deploy advice associated to s € X so that
symbol s can be triggered.

e undeploy(s) - Undeploy advice for s respectively.

We define the set of all such commands as:
Cs. := {deploy(s),undeploy(s) | s € ¥}

Note that when using the term deployment we refer to
both, dynamic (un)weaving of code and dynamic aspect dis-
ablement (e.g. by the means of Boolean flags). In general,
both approaches can be used interchangeably. What method
is suitable for a given application depends on the application
that is instrumented and on the weaver infrastructure. Here
we do not discuss the impact of such tradeoffs. We live this
to future work.

This yields an enriched finite automaton with a labeling
function comm : Q — 2°=, which associates each state ¢ €
Q@ with the set of necessary deployment commands: Let g,
be the previous state observed, then in each state we deploy
advice for those symbols which are relevant but have not
been relevant before and we undeploy those symbols which
have been relevant in g, but are now not relevant any more.

{deploy(s)|s € rel(q) A s & rel(qp)}
U  {undeploy(s)|s & rel(q) A s € rel(gp)}

comm(q) =

Note that this function can be statically precalculated. Yet
this procedure may lead to relatively frequent (un)deployment.
This might not be a problem, especially in environments,
where such (un)deployment can be performed reasonably
fast. However, depending on the overhead this (un)deployment
may induce, one might want to use a larger window instead,
i.e. one would undeploy a symbol only if it is irrelevant and
has been so for the last n states. The exact parameters will



of course heavily depend on the infrastructure in operation.
Hence we leave it as open work for other researchers to find
suitable parameters for how long such a history should be
kept for best performance of the targeted system. For our
example from above, the command function would look at
follows:

[ state ¢ | deployment command comm(q) |

0 {deploy(create)}

1 {undeploy(create),deploy(update) }
2 {undeploy(update),deploy(next) }

3 {undeploy(next)}

Those commands are obviously to be applied immediately
upon arrival at q.

4.3 The case of temporal logic

In temporal logic, it is more often desired that certain
events are ignored (as e.g. noted in [2, 5]). LTL semantics
take this into account. For instance the abstract LTL for-
mula G(p — Fgq) requires one event ¢ to follow whenever p
is seen — it specifies nothing at all about events that could
happen in between. Consequently, any path where always p
is followed by ¢ would satisfy the formula. But let us now
consider the concrete example from before.

—modify A —remove

add

—modify A remove

Figure 4: Finite automaton for hash set tracecheck
of figure 2

Figure 4 shows a finite automaton implementing the check
for our hash set example formula (cf. figure 2). In con-
trast to regular expressions as they are used in tracematches,
LTL is propositional, i.e. it can distinguish between different
propositions holding at the same time. (This is not impor-
tant in this example, but it is, when symbols overlap, i.e.
share a common subset of matched joinpoints, which gen-
erally can well be the case.) Hence, the input to an LTL
formula (or the equivalent automaton) is usually a sequence
of sets of symbols, i.e. an element of (2%)*. This is reflected
by transitions with conditions as —modify A remove: This
transition is taken when remove matches the current join-
point, but modify does not.

As we can easily see, this change in the automaton model
does not really affect our previous observations. Still we
can determine the set of relevant symbols for any state of
the automaton, just as before, now joining over all symbols
contributing to a transition. (As for regular expressions, we
assume that self-loops have already been eliminated.) Also
the command function remains unaffected.

In our hash set example, this would yield the following
result:

[ state g | rel(q) | comm(q) |

0 {add} {undeploy(modify),
undeploy (remove),
deploy(add) }

1 {modify, | {undeploy(add),

remove} deploy(modify),

deploy(remove) }

2 0 {undeploy(modify),
undeploy (remove) }

4.4 Per-object deployment

What we did not consider so far is one hidden peculiar-
ity which is common to all the aforementioned formalisms:
They all allow to dynamically bind objects in their specifica-
tion. In other words, taking our LTL formula into account,
the structure of the formula is not just

G(add — (remove R —modify))
but rather:
VhVe : G(add(h,c) — (remove(h,c) R —modify(c)))

So in order to apply the above deployment correctly, one
would have to modify the command function accordingly:

[ state ¢ | rel(q) | comm(q) |

0 {add(h,c)} {undeploy (modify, (c)),
undeploy(remove, (h,c)),
deploy(add, (h,c))}

1 {modify(c), {undeploy(add, (h,c)),

remove(h,c)} deploy (modify, (c)),
deploy(remove, (h,c))}
{undeploy (modify, (c)),

undeploy (remove, (h,c))}

2 0

Such instance based deployment has been around for a
long time, for instance in the Common Lisp Object Sys-
tem (CLOS) [3]. We are currently aware of one application,
namely Steamloom [10, 4], which provides such instance-
based advice deployment for Java. Certainly such support
would most sensibly have to be integrated into the virtual
machine in use.

4.5 More expressiveness: Stacks and counters

When moving from regular expressions to more expres-
siveness, the natural step is usually the one to context free
grammars (CFGs), which might lead to the necessity of
bookkeeping state on a stack during runtime. Tracecuts
for example is one system with this property.

Again, we don’t want to go into detail here, but instead
we want to point to the important fact that reachability is
decidable for CFGs: See [8] for an algorithm that describes
how reachability can decided for those in polynomial time.

4.6 Applicability to non-AOP approaches

As mentioned above, several tools exist, especially in the
Runtime Verification community, which are not directly re-
lated to the use of aspects or to aspect-oriented program-
ming at all. Instead they seek to verify certain program
properties at runtime. Yet, such tools could naturally ben-
efit from our observations as those might be able to gain
speedup by dynamic (un)weaving of employed instrumenta-
tion in the very same way. PQL [11], PTQL [13], HAWK
[7], and EAGLE [9] are for instance some candidates which
could benefit from such efforts.
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5. THE CASE OF PURE ASPECTJ

The purpose of this section is to show that formalisms as
the one above, which explicitly match on the execution his-
tory of an application, is essential to the analyses we provide
in this work.

Assume again the example of assuring safe enumeration,
as it was conducted using tracematches. Assume further,
one would have tried to implement the same functionality
in pure AspectJ. One would have had no other option than
generating an aspect containing at least three pieces of ad-
vice (one each for create, update and next) and then using
those pieces of advice to conduct state transitions within the
aspect. Figure 5 shows an excerpt of some pseudo imple-
mentation as it would be necessary. As one would guess, an
analysis of such an aspect for any temporal properties is in
the general case impossible. Since the temporal structure is
now “flattened” into independent pieces of advice, every po-
tential for analysis of the temporal behavior is gone. Hence
we argue that the abovementioned approaches for a formal,
explicit specification of temporal properties are indeed nec-
essary to allow for such analyses in the first place.

aspect SafeEnum {
after (Vector c¢) returning(Enumeration e):
call (Enumeration+.new (..)) && args(c) {
if(in state 0) {
take transition to state 1,
storing c¢ and e

}

before(Vector c¢):
vector_update () && target(c) {
if (in state 2 for object c¢) {
take transition to state 3 for c
}
}

//advice for 3rd symbol "next” here

Figure 5: Safe enumeration tracematch

6. CONCLUSION

In this work we have shown an overview of how properties
of temporal specification languages can be exploited for the
purpose of efficiency gains through dynamic advice deploy-
ment. Such history based matching languages, opposed to
pure AspectJ, expose an explicit temporal structure in their
matching constructs in order to match event patterns in the
execution history of a running application. This temporal
structure could successfully be shown to be rich enough to
allow for an improved runtime performance by temporarily,
dynamically unweaving parts of the matching machinery.

We have shown that this approach is applicable to regular
expressions and linear temporal logic (LTL) and to the tools
implementing pointcuts based on those formalisms, namely
tracematches and tracechecks / J-LO. Furtheron, we de-
scribed how the mechanism could possibly be extended to
more expressive formalisms making use of stacks and coun-
ters.

7. REFERENCES

[1] 1st, 2nd, 8rd, 4th and 5th CAV Workshops on
Runtime Verification (RV’01 - RV’05), volume 55(2),
70(4), 89(2), 113, (7). Elsevier Science, 2001, 2002,
2003, 2004, 2005.

[2] C. Allan, P. Avgustinov, A. Simon, L. Hendren,

S. Kuzins, O. Lhotdk, O. de Moor, D. Sereni,

G. Sittamplan, and J. Tibble. Adding Trace Matching
with Free Variables to AspectJ. In OOPSLA 05, San
Diego, California, USA, October 2005.

[3] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E.
Keene, G. Kiczales, and D. A. Moon. Common lisp
object system specification. SIGPLAN Not.,
23(SI):1-142, 1988.

[4] C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann.
Virtual machine support for dynamic join points. In
AOSD ’04: Proceedings of the 3rd international
conference on Aspect-oriented software development,
pages 83-92, New York, NY, USA, 2004. ACM Press.

[5] E. Bodden. J-LO - A tool for runtime-checking
temporal assertions. Master’s thesis, RWTH Aachen
University, Germany, Nov 2005.

[6] E. Bodden and V. Stolz. Tracechecks: Defining
semantic interfaces with temporal logic. In Proceedings
of the 5th International Symposium on Software
Composition, Vienna. Springer, March 2006.

[7] M. d’Amorim and K. Havelund. Event-based runtime
verification of java programs. In WODA ’05:
Proceedings of the third international workshop on
Dynamic analysis, pages 1-7, New York, NY, USA,
2005. ACM Press.

[8] J. Esparza, D. Hansel, P. Rossmanith, and
S. Schwoon. Efficient algorithms for model checking
pushdown systems. In Proceedings of CAV’2000,
number 1855 in Lecture Notes in Computer Science,
pages 232-247. Springer-Verlag, 2000.

[9] K. H. H. Barringer, A. Goldberg and K. Sen. Program
Monitoring with LTL in EAGLE. In 18th
International Parallel and Distributed Processing
Symposium, Parallel and Distributed Systems: Testing
and Debugging - PADTAD’04. IEEE Computer
Society Press, Apr. 2004. ISBN 0769521320.

[10] Personal communication with Michael Haupt,
Darmstadt University, Germany, Nov. 2005.

[11] M. Martin, B. Livshits, and M. S. Lam. Finding
application errors and security flaws using PQL: a
program query language. SIGPLAN Not.,
40(10):365—-383, 2005.

[12] A. Pnueli. The Temporal Logics of Programs. In
Proceedings of the 18th IEEE Symposium on
Foundations of Computer Science, 1977.

[13] R. O. Simon Goldsmith and A. Aiken. Light-Weight
Instrumentation From Relational Queries Over
Program Traces. Technical Report
UCB/CSD-04-1315, EECS Department, University of
California, Berkeley, 2004.

[14] V. Stolz and E. Bodden. Temporal Assertions using
Aspect]. In Fifth Workshop on Runtime Verification
(RV’05). To be published in ENTCS, Elsevier, 2005.

[15] R. J. Walker and K. Viggers. Implementing protocols
via Declarative Event Patterns. In SIGSOFT FSE,
pages 159-169, 2004.



