
Tracechecks: Defining Semantic Interfaces with
Temporal Logic

Eric Bodden and Volker Stolz

Software Modeling and Verification (MOVES)
RWTH Aachen University, 52056 Aachen, Germany
{bodden, stolz}@i2.informatik.rwth-aachen.de

Abstract. Tracechecks are a formalism based on linear temporal logic
(LTL) with variable bindings and pointcuts of the aspect-oriented lan-
guage AspectJ for the purpose of verification. We demonstrate how trace-
checks can be used to model temporal assertions. These assertions reason
about the dynamic control flow of an application. They can be used to
formally define the semantic interface of classes. We explain in detail how
we make use of AspectJ pointcuts to derive a formal model of an existing
application and use LTL to express temporal assertions over this model.

We developed a reference implementation with the abc compiler show-
ing that the tool can be applied in practice and is memory-efficient.

In addition we show how tracechecks can be deployed as Java5 annota-
tions, yielding a system which is fully compliant with any Java compiler
and hiding any peculiarities of aspect-oriented programming from the
user. Through annotations, the tracecheck specifications become a se-
mantic part of an interface. Consumers of such a component can then
take advantage of the contained annotations by applying our tool and
have their use of this component automatically checked at runtime for
compliance with the intent of the component provider.

1 Introduction

Existing programs, especially large-scale applications, do not only consist of
their code base and documentation. In object-oriented programs, often there
exist implicit constraints e.g. in library APIs on how methods or fields may be
used. Apart from simple constraints like that certain parameters must never
be null, there are more complex limitations that e.g. some methods may only
be invoked in special circumstances, like in a specific order. Sometimes these
constraints are already checked through assertions. But the unwary developer
may be tripped up by many more patterns which are only informally documented
and not enforced. For example in the Java5 libraries, if a collection is added to
a hash set, the set does not notice changes to the elements themselves and may
hence return unsound results.

In this work we present tracechecks, a formalism which we consider well suited
to specify such temporal relations. The proposed semantic framework is based
on linear temporal logic (LTL) [17], which is widely known in the field of formal
verification, and is often used for static Model Checking [7].
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The first step in Model Checking is usually to derive a formal semantic model
from an existing application. This model is then checked for correctness with
respect to some temporal specification (e.g. in LTL). Quite often it happens
that the semantic model is unsound or incomplete with respect to the actual
behaviour of the implementation.

Our approach is novel in the sense that we restrict ourselves to a partial
model (the one induced by a run) and use AspectJ to derive this partial model.
The primitives of our temporal logic are AspectJ pointcuts, picking out join-
points in the dynamic control flow of a Java application. That way the model
is known to match the implementation because they actually coincide at well-
defined points—the joinpoints. Section 2 gives two motivating examples where
tracechecks enforce temporal constraints on Java interfaces. In Section 3 we ex-
plain how we derive a semantic model of an existing application using AspectJ
and how LTL can be used to state temporal assertions over this model. We show
that the model is a system where transitions are triggered by pointcuts. In Sec-
tion 4 we present the syntax of tracechecks and give their semantics by example.
In particular, tracechecks can access and bind objects as the application runs,
hence providing a means of instance-based reasoning. Section 5 discusses details
about our reference implementation as well as performance and deployment is-
sues important to component-based software development. We also comment on
possible usage scenarios and conclude with a discussion of related work.

2 Motivation

Component based software has much evolved during the last years. Where some
decades ago a piece of software often existed of few large chunks of code with
little recognizable structure, today we have programming languages and tool
support for properly maintaining independent components—modules—on their
own. This modular reasoning has lead to safer software which is easier to main-
tain and easier to evolve.

Yet, we find that modules as they are today lack important specification
features to be fully reusable, as they are frequently only syntactically defined
through their programming language interfaces. This induces a purely static
view. A feature f can be accessed through a module m if and only if f is in
the signature of m and if it can be accessed, one can usually do so at any time.
(Sometimes exceptions are used to forbid certain access patterns but we see this
as quite a cumbersome low-level solution to the problem.)

We found that this static view can lead to trouble when software is actually
run. Frequently it can happen that certain functionality is only available at
certain points in time when an application executes, or in other words: at certain
times at runtime, certain features should not be allowed to be accessed for the
sake of a safe and stable application.

For example, nothing should be written to an output stream, if the stream
has been closed before. Such errors may be documented in APIs in the form of
comments, but still the user of the output stream component has to remember
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1 tracecheck(Collection c, Iterator i ) {
2

3 sym iterator(Collection c, Iterator i ) after returning (i):
4 call(Collection+.iterator ()) && target(c)
5 sym modify(Collection c) after returning:
6 (call(Collection+.add(..)) || call(Collection+.remove(..))) && target(c)
7 sym next(Iterator i) before:
8 call( Iterator .next()) && target(i)
9

10 G( iterator(c, i ) −> G(modify(c) −> G(!next(i))) ) {
11 throw new ConcurrentModificationException (”Collection ”+c+” modified!”);
12 }
13 }

Fig. 1. Safe iterator tracecheck

to obey this rule in order to get a safely working application. With tracechecks,
such temporal assertions can be specified right in place and can automatically
be checked at runtime. To further emphasize this dynamic view we would like to
give a code example.

2.1 Safe Iterators

As a motivation, let us start with the safe iterator -pattern, which states that:

For each Iterator i obtained from a Collection c, there must never be an
invocation of i.next() after the collection has been modified.

This pattern is actually enforced in the Java5 library as follows. The Iterator
implementation contains a mechanism to track modifications of the underlying
collection by means of a modification counter. If the collection c is updated, the
modification-count obtained by the iterator i on instantiation time and the cur-
rent counter of the collection disagree and lead to an exception on the next access
to the iterator. In this case, the specification has crept into the implementation
of both the iterator and the collection.

With this work we introduce tracechecks, a formalism and tool to formulate
such trace conditions and automatically check their violation at runtime. Java
interfaces and classes (as well as AspectJ aspects) can be annotated with trace-
checks to define their behaviour with respect to the execution timeline.

In our formalism the requirement from above can be specified in a modular
way through the tracecheck in Figure 1. Line 1 declares the free variables c and i
that each collection and iterator in question will be bound to. Lines 3–9 declare
three symbols iterator, modify and next, which match the relevant joinpoints
through pointcuts. The actual formula (expressed in LTL, see below) is stated
in line 10, specifying through the outer “Globally” that this assertion should
be checked on the whole execution path (and hence for all created iterators).
For each iterator (left-hand side of the outer implication), we require of the
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1 tracecheck(HashSet s, Collection c) {
2

3 sym add(HashSet s, Collection c) after returning:
4 call(HashSet+.add(..)) && target(s) && args(c))
5 sym modify(Collection c) after returning:
6 (call(Collection+.add(..)) || call(Collection+.remove(..))) && target(c)
7 sym remove(HashSet s, Collection c) after returning:
8 call(HashSet+.remove(..)) && target(s) && args(c))
9 sym contains(HashSet s, Collection c) before:

10 HashSet+.contains(..)) && target(s) && args(c))
11

12 G( add(s,c) −> G( modify(c) −> remove(s,c) R (!contains(s,c))) ) {
13 throw new ConcurrentModificationException (c+” modified while in ”+s);
14 }
15 }

Fig. 2. Tracecheck detecting inconsistent use of collections and hash sets

remainder of the execution that after a call to add or remove no call to i.next()
must occur. The body is executed for any instance that violates the formula. We
have successfully validated this formula in practice. All examples are available
on our project web-page http://www-i2.informatik.rwth-aachen.de/JLO/.

2.2 Unsafe Use of HashSets

Another practical application of our framework is based on an actual bug pat-
tern observed by colleagues. When a collection is inserted into a HashSet, mod-
ifications to the contained collections influence the result of HashSet.contains-
queries. This behaviour was not anticipated and led to unexpected results. While
this is only arguably a bug but rather a mistake, the source code had to be
screened for possible uses under the wrong assumptions. In this case, the JDK
does not provide any builtin mechanism to detect such behaviour. We captured
it in the following way:

For each HashSet s that contains a Collection c, there must be no invocation
of s.contains(c) if the collection has been modified, unless the collection has

been removed from the set in between.

With tracechecks, specifying this property is done by a translation into linear
temporal logic (see Figure 2). Again, we define symbols matching the events of
interest and then specify that globally (G) adding a collection to a set implies
that from there on always the modification of this collection implies that the
removal of the collection from the set releases (R) the property “not check if c
is contained in s” from holding. The ϕ R ψ indicates that either ψ should hold
on the whole path or at some point ϕ holds and in this case releases ψ from the
obligation to hold any longer.

http://www-i2.informatik.rwth-aachen.de/JLO/
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Unlike the tracechecks in those two examples, there may be application-
specific tracechecks that require understanding and analysis of the application.
The examples here shall demonstrate that in many cases tracechecks can be seen
as a formalism to extend the interface of an aspect or class (which is currently
mainly structure based) with semantic properties. Moreover those properties can
automatically be checked, leading to higher confidence in the code in question.

In the next section we explain how we use AspectJ pointcuts to obtain a trace
of the running application and present the underlying foundations for checking
LTL formulae on a finite path. In particular we clarify the relation between the
execution trace and the model of the program. We show how the pointcuts used
as propositions in our formula influence the degree of abstraction of the model
and thus the trace.

3 Introducing LTL

Linear temporal logic reasons about an infinite path in a model (usually a Kripke
structure) [7]. It is thus an extension of propositional logic. A path is a sequence
of states π = π[0]π[1] . . . such that each edge (π[i], π[i+1]) is contained in the
transition relation of the model. Each state π[i] is labelled with a set of atomic
predicates (the propositions). Although this section focuses on concrete exam-
ples, we briefly wish to point the reader to Figure 3, which gives the grammars
for tracechecks and LTL formulae.
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Fig. 3. Tracecheck and LTL grammar

They consist of the set of Boolean operators as well as the temporal operators
Next, Finally, Globally, Until and Release, which can be used to temporally
combine propositions or sub-formulae.
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x:=1; y:=1;
while (p1) {
f(x,y);
if (p2) then

{ x:=1; y:=1; }
else

{ x:=2; y:=2; }
} /* while */

(a) Pseudo-source

2,11,1 1,1

1,2 2,2 2,2

(b) General model

1,1

2,2

(c) Abstracted model

Fig. 4. Simple while-loop with branching

For the verification of programs, these atomic propositions could be abstracted
from each program state, i.e. the complete program state with heap, program
counter, local variables, and call stack. Usually the program counter and a pro-
jection of parts of the state would be used to limit the model to the relevant
propositions for the task at hand (cf. for example the specification language
Promela [15]). The model of a program is defined by the generally undecidable
set of all computation paths. We limit ourselves to reasoning about an actual
execution trace of the program to overcome the inherent limitation of Model
Checking on obtaining an appropriate model to existing source code.

Throughout the paper, the atomic propositions of our framework are point-
cut expressions that select the matching joinpoints as the states of our abstract
model. Each state is labelled with the set of active propositions, i.e. the propo-
sitions which match the current joinpoint. For example in the case of Figure
1, each state where an iterator i is created for a collection c would be labelled
with a superset of {iterator(c, i)}. Although our examples only use call and
if-pointcuts, any other pointcut, e.g. cflow, may be used.

3.1 Temporal Assertions

Reasoning about one such state is closely related to assertions. An assertion is
the check of a predicate over the current state of a system (identified through the
position in the source code). We can further abstract this to a model where we
retain only those states in which assertions are actually checked by a tracecheck.

As an example, consider the program in Figure 4(a). It contains two predicates
p1, p2 that decide (possibly non-deterministically if for example I/O is involved)
the number of iterations and which branch to take. Figure 4(b) shows the model
we obtain if we are interested in the variables x, y. (We do not show the edges
leading out of the loop.) Note that it contains two states labelled (1, 1) or (2, 2),
but all are distinguishable from each other since they have different predecessors
and successors. Figure 4(c) shows the abstracted model obtained if we are only
interested in the values of the arguments of the method invocation f .

Temporal assertions use LTL path formulae as a means of reasoning about a
sequence of states. They allow us to specify that states have to occur in a special
order, e.g. that a call to a method f must eventually be followed by a method
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call to g, expressed by the LTL formula F(f → Fg). The operator F is often
pronounced “Finally” because of its meaning.

Another important LTL operator is called “Globally”. It specifies that a prop-
erty should hold on every state of the model. E.g. it might be desirable to confirm
that in each state the values of the variables x, y are equal: G (x = y).

We observe some differences between the models above (where LTL formulae
have to hold on all paths) and a specific path. For the aforementioned program,
F(x = y) holds on any infinite path in both models. G(x = y) does not hold in
the general model because of the states (2, 1) and (1, 2). If we are evaluating a
formula at runtime, we might observe a path where these states are not visited
and the formula might hold on this run. Consequently we use a finite path
semantics, i.e. over a single finite unwinding of a model.

We conclude that the level of abstraction the model provides is essential to
its validity. By the appropriate use of pointcuts as propositions in our LTL for-
mulae unimportant intermediate states can be filtered away, hence leading to an
abstracted model as in Figure 4(c), where we filtered for method calls. Specif-
ically, the abstract model is defined through the propositions in the formula.
Hence we can now formulate the query “On all invocations of f, do x and y have
the same value?”: G (f → (x = y)). In our implementation, we would use a
call -pointcut to select the method invocation and an if -pointcut to evaluate the
predicate over the variables.

In the following, we discuss the remaining temporal operators which reason
about intervals and need a more thorough discussion.

Until, Release and Next. The binary operators “Until” and “Release” can be
considered the low-level operators of our temporal logic. The aforementioned op-
erators “Finally” and “Globally” can be expressed using “Until” and “Release”:

F ϕ ≡ tt U ϕ G ϕ ≡ ff R ϕ
¬(ϕ U ψ) ≡ ¬ϕ R ¬ψ ¬(ϕ R ψ) ≡ ¬ϕ U ¬ψ

ϕ U ψ ≡ ψ ∨ (ϕ ∧ X(ϕ U ψ)) ϕ R ψ ≡ ψ ∧ (ϕ ∨ X(ϕ R ψ))

The “Until”-operator U states that a formula ϕ U ψ holds in a state if the
sub-formula ϕ holds from this state on until a state is reached where ψ holds. ψ
is required to hold eventually, that is before the end of the program.

The dual operator “Release”, ϕ R ψ, specifies that either ψ should hold in-
definitely or that ψ holds up to and including the state where ϕ holds. We
already used this operator in the HashSet -example in the previous section:
G(modify(c) → remove(s , c) R ¬contains(s , c)).

A detailed discussion of the application of these specific operators is out of
the scope of this paper and we point the interested reader to [18].

The last temporal operator is X, the “Next”-operator. A formula X ϕ holds
if ϕ holds in the next state, e.g. we might require that after pushing the start-
button the engine should turn on through start → X running.
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While LTL is only arguably an appropriate specification language, we consider
it appropriate for a prototype. In the static verification community, several other
specification languages like Sugar [4] and ForSpec [3] exist, which also contain
additional syntactic sugar hiding the temporal logics in the semantic layer to
make the input languages more user-friendly.

A comprehensive survey of existing verification patterns and how to express
them in various specification formalism including LTL can be found in [11]. It can
serve as a starting-point into specifying properties. The HashSet -requirement for
example can be identified as a combination of the “Universality After”-pattern
and a variant of the “Absence of P after Q until R”-pattern, where P is the
contains, Q the modify and R the remove-action.

4 Tracechecks

The introductory examples show that tracechecks use an LTL formula with free
variable bindings in order to specify conditions over the dynamic execution trace.
Figure 3(a) gives the formal syntax of tracechecks. A tracecheck consists of a
declaration of free variables which can be bound during evaluation, a nonempty
list of symbol (proposition) declarations, an LTL formula declaration (cf. Figure
3(b)) and a body. The keyword perthread causes a thread-local instantiation of
the formula, if a property should be checked for each thread separately.

A definition of the formal declarative semantics of tracechecks is out of the
scope of this work and can be found in [5] where we also prove them equivalent
to our operational semantics. In the following we want to explore the semantics
by example, recalling the initial specification of the iterator requirement.

4.1 Quantification

The formula (with free variables c, i) can be written as:

G(iterator(c, i) → G(modify(c) → G(¬next(i))))

The informal requirement specification states that the condition G(modify(c) →
G(¬next(i))) should hold for each pair (i, c) of iterator and collection. With
tracechecks, quantification over objects can be expressed by quantifying over
events. Global quantification over a variable x can be modelled by wrapping
a formula ϕ(x) with a “Globally”-formula of the form G(create(x) → ϕ(x)).
Likewise, existential quantification can be modelled by “Finally”-formulae of
the form F(create(x) ∧ ϕ(x)).

Tracechecks always specify a language of valid traces. That means that we are
naturally interested in traces which violate the LTL formula of a tracecheck. A
tracecheck body is executed whenever a formula is falsified. In cases where this
falsification took place under a certain binding, this binding can be referred to
by the variables declared in the tracecheck body (cf. Figure 6, line 9).

It may happen that no such binding is available. For instance the formula
F(create(x)), which states that at some point in time, some object x is created,
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can only be falsified at application shutdown time. If it is falsified, this means
that create(x) did not occur. Consequently, x cannot be bound. In such cases, x
will be null in the tracecheck body. Future versions of our implementation will
use static analysis in order to avoid accidental unchecked use of such variables.

4.2 Annotation Style Syntax

In addition to the tracecheck syntax, our implementation offers an inlined “anno-
tation” style that can be used to deploy specifications as annotations in interfaces
of ordinary classes (cf. Section 5). For the iterator example, this allows to di-
rectly attach the formula to the iterator() method of the Collection interface as
shown in Figure 5. Note how the keywords thisMethod and thisType can be used
to refer to the member respectively type the annotation is attached to. That
way, formulae can be directly attached to the components they reason about in
a reusable way. (Like in the AspectJ semantics, pointcuts over interfaces specify
behaviour over all classes implementing that interface.)

1 interface Collection {
2

3 @LTL(”thisType c, Iterator i:
4 G( exit(call(thisMethod) && target(c)) returning(i) −>
5 G( exit( (call(thisType+.add(..)) || call(thisType+.remove(..))) && target(c))
6 −> G(! entry(call(Iterator.next()) && target(i)) ) ) )
7 ”)
8 Iterator iterator ();
9

10 //remaining interface code
11 }

Fig. 5. Annotation style definitions in our prototype tool J-LO

Since tracechecks in annotation style have no body, if an error is detected,
the implementation issues a message to a set of user definable observers. These
may simply output an error message or apply some more sensible error handling,
depending on the property. Also, such annotations are currently not automat-
ically documented by Sun’s javadoc API documentation tool. Future versions
will likely support such a feature.

Using annotations as a means of deployment, the specification literally forms
a (semantic) part of the public interface of a class. This can be useful for several
purposes, comprising documentation, runtime checking (through our tool) but
also static verification by third party tools. In particular, the designer of an
interface, class or component can attach such semantic annotations to its code
and have them compiled into Java bytecode. People using this class or component
or implementing this interface respectively can then in a second, independent
step simply apply our tool to have their implementation instrumented to be
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checked for compliance with this semantic interface. We believe that this is a
unique feature which has not been provided before in practice and that it is a
major contribition to the modular deployment of components.

4.3 History Access Through if-Pointcuts

This syntax imposes one problem: Since there is no body available, one cannot
perform any further computation on the bound values. In particular, one cannot
filter for unwanted valuations. As a solution, tracechecks implement an extended
semantics for if -pointcuts, giving them access not only to valuations at the
current joinpoint but also to variables which have been bound earlier on the
path. Figure 6 shows a tracecheck enforcing the Singleton design pattern [14].

1 tracecheck(Singleton s1, Singleton s2) {
2

3 sym create(Singleton s) after returning (s):
4 call(static Singleton Singleton+.inst ());
5 sym createAnother(Singleton s, Singleton t) after returning (s):
6 call(static Singleton Singleton+.inst()) && if(s!=t);
7

8 G(create(s1) −> XG !createAnother(s2,s1) ) {
9 throw new SpecViolationException (”Two singletons detected:”+s1+”,”+s2);

10 }
11 }

Fig. 6. Tracecheck enforcing Singleton pattern

Note that the symbol createAnother gets a parameter t passed in (lines 5–6),
which is not provided by the symbol itself. This raises the question what happens
when one must decide if a condition such as s �= t actually holds at the current
joinpoint, but one of the variables has not yet been bound. Indeed such formulae
are forbidden. In [5] we explain a static analysis based on abstract interpretation
which assures the validity of given formulae at compile time.

5 Reference Implementation

In this section we discuss some implementation details and how well tracechecks
can be used in practice. We comment on the runtime overhead and explain pos-
sible deployment outside of aspects by using annotations. Our reference imple-
mentation is based on an adaption of alternating automata [13] with free variable
bindings. It allows to implement the LTL semantics quite directly. Details are
given in [5], so we only briefly outline important details.

Generally, for each tracecheck with n symbols we generate n+1 pieces of advice
where the first n construct the set of propositions holding at a joinpoint and the
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last advice triggers the automaton transition function. In addition, we generate
a method containing the tracecheck body, which is called by the backend with
the appropriate binding whenever the tracecheck fails. (The interested reader
might want to have a look at the output of our tool during instrumentation as
the prototype prints the generated aspects to the commandline.)

On startup of the instrumented application, the initial automaton configura-
tion is installed in the runtime environment and then updated every time the
aspect triggers a transition.

As mentioned, if -pointcuts in symbol declarations of a tracecheck can refer
to variables which were bound earlier on in the trace. In order to evaluate an
if -pointcut within the execution history, the compiler extracts the Boolean ex-
pression and constructs a closure which is attached to the defining proposition.
The proposition is then passed in the correct variable binding at runtime through
the evaluation of the transition function.

We have successfully tested our implementation with various assertions over
data structures as well as on an instance of the lock order reversal pattern [18],
where threads obtain locks in a way which may lead to a deadlock.

The work of Allan et al. [2] discusses an instance of the safe iterator pattern in
JHotDraw (a Java drawing package, available at http://www.jhotdraw.org/)
as use case. We were able to reproduce their results by executing a sequence
of events violating the pattern in the graphical user interface. The error was
properly picked up. If no instrumentation had been present, the error would
probably have gone unnoticed. Step-by-step instructions along with all related
code are available on our website.

5.1 Memory Overhead

With respect to memory leaks we made sure that our implementation uses strong
references only where necessary, that is when variables are used within a trace-
check body (e.g. Figure 6, line 9). In those cases, strong references need to be
kept in order to make sure that the object is still available when the tracecheck
body is executed. For variables which are not referenced in such a way, each
object bound to this variable can be garbage collected as if no tracechecks were
present. All related propositions (weakly) referencing such objects are then au-
tomatically removed in the next application of the transition function. Their
semantics is equal to those of false, because a proposition referencing an object
that was garbage collected can never hold again.

As a result, when variables are not used within a tracecheck body (i.e. they
are collectable), we observe only a constant memory overhead, since any bound
object can be freed as usual. In particular this is always the case when using the
annotation style syntax, because those specifications consist only of a formula
and have no body which would require strong references to bound objects.

Figure 7 shows the memory consumption for our iterator example in JHot-
Draw. The left graph shows memory consumption for the version without in-
strumentation, when animating an object. Consumption is constantly around
1.3 MB. (Note that this is code compiled with the abc compiler. Code generated
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Fig. 7. Memory usage for the iterator example in JHotDraw; left: uninstrumented pro-
gram (memory consumption in KB over time in minutes), right: instrumented version
of the program; dots indicate garbage collection

by javac takes up about 2 MB.) The instrumented version shown on the right
hand side shows the same constant memory consumption, however, it is trigger-
ing much more garbage collections than the original one. This is due to the fact
that we have not yet optimised our application for speed. As a result, we still
observe a considerable runtime overhead. Future versions will try to mitigate
this problem by standard techniques such as caching. Yet the graph shall give
proof of the fact that there are no memory leaks caused by our implementation.

When variables are used within a tracecheck body, Allan et al. [2] suggested
a static pointer analysis which is able to identify such cases and hence may
warn the user at instrumentation time. That way the user has the possibility
to decide for himself whether he wants to pay for this debug information with
the unavoidable memory overhead. This analysis is implemented in abc and can
thus be reused for tracechecks.

If an application is instrumented with expensive tracechecks, they should only
be active in internal debugging builds of the software, and disabled on deploy-
ment due to their performance-penalty at runtime. Test-case generation and
path-coverage are essential to effectively use tracechecks. Despite the perceived
overhead, with growing computer performance there is a trend to continuously
monitor applications and eventually combine results of different runs to obtain
asymptotic verification of analysed programs [6].

6 Related Work

Specifying aspects based on the execution history of a program has been recog-
nized as a desirable feature for aspect oriented programming under the name of
Event-based AOP (EAOP) [10]. The AOP approach which is closest to the one
of tracechecks are tracematches introduced by Allan et al. [2].
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6.1 Tracematches

They propose a matching language based on regular expressions. Those are quite
different compared to LTL formulae in a way that regular expressions are well
suited for existential patterns, i.e. patterns which anticipate certain behaviour
to exist and then match this behaviour. While this is useful for the purpose of
tracematches, which is using them as an implementation language where addi-
tional behaviour is attached to existing paths, the absence of faulty behaviour
can consequently often only be expressed in a cumbersome way—by enumerating
the language of all possible paths leading to an error state.

The use of LTL as a specification formalism allows here to translate safety
conditions (“something bad never happens”) in a more direct way. Such patterns
are essential to checking and verifications as [11] shows.

Table 8 shows a comparison of tracematches and tracechecks: While trace-
checks can be deployed in an AspectJ-like syntax, they can also be deployed as
Java annotations, forming a real part of a Java interface.

Also, while tracechecks (i.e. LTL) allow the user to express negation and
conjunction, this is not possible with tracematches (i.e. regular expressions).
Even if the respective operations “intersection” and “complement” were added,
tracematches would still not be equally expressive: For example, a∗ ∩ b∗ is only
satisfied by the empty trace, while the property G(a) ∧ G(b) = G(a ∧ b) is
also satisfied by the trace [{a, b}{a, b}]. This is due to the fact that regular
expressions always have to be interpreted over strict sequences of events. That
means that the aforementioned trace would be interpreted as a trace [a b a b] or
similar, which is not matched by a∗∩b∗. Since LTL is a propositional logic, it can
distinguish such overlapping events. Pure LTL in turn cannot detect patterns
which require modulo counting (e.g. (aa)∗ ). We believe that such patterns are
seldom useful in the context of verification.

Table 8. Comparing tracematches and tracechecks

Tracematches Tracechecks
Formalism regular expressions linear temporal logic

Deployment AspectJ language ext. AspectJ language ext. or Java annotations
Input symbol p ∈ Σ {p1, . . . , pn} ∈ 2Σ

Semantics sequential interleaving
Negation implicit, through def. of Σ explicit

Conjunction no yes
Concatenation yes no
Quantification ∃x, implicit ∃x, ∀x, through LTL

Shutdown explicit implicit

Also, the “Globally” operator, as we use it here, provides a means to uni-
versally quantify over variables (cf. Section 4). With tracematches this is not
possible, since regular expressions are implicitly existentially quantified.
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Last but not least, the shutdown event of an application needs to be explicitly
modelled in tracematches, while our tool installs a shutdown hook, automatically
notifying the verification runtime, when the application shuts down.

We conclude that tracematches and tracechecks show indeed some similarities,
but in the end are both each better suited for their particular purpose.

6.2 Other Approaches

Temporal logics have already been used together with AOP: In [1], rules based
on temporal logics are used to describe sequences of instructions where events
should be inserted. The instrumentation happens on a static level and does not
consider free variables.

Douence, Fradet and Südholt [8] developed an aspect calculus where advice
can be triggered not only via a single joinpoint but via sequences. Although
their work is targeted towards a formal model of joinpoint matching and ad-
vice execution and less on an actual implementation, there are clear similarities
to our work. Their formalism describes regular sequences of joinpoints, so it
can rather be compared to the sequential model of tracematches than to our’s.
Consequently, they cannot express overlapping events. It is implemented in the
Arachne system [9], a dynamic weaver for C applications.

Other work by Südholt and Farias [12] discusses the use of explicit protocols
in the interfaces of components in order to satisfy a certain notion of correctness.
Hence the goal of their work is certainly similar to ours. Yet, they use another
specification formalism (finite state machines) and do not employ and aspect-
oriented programming. Consequently, they are unable to exploit the crosscutting
nature of pointcuts, an essential stength of the formalism presented hete. Also,
they provide no implementation.

Vanderperren et al. [19] propose the stateful pointcut language JAsCo also
based on the above model. Pointcuts trigger transitions in a deterministic finite
automaton and advice can be attached to each pointcut. JAsCo does not provide
a means of quantification or bindings. These have to be implemented in the
declaring aspect by hand.

In their work [20], Walkers and Viggers proposed the tracecuts formalism. As
tracechecks and tracematches, tracecuts provide an AspectJ and pointcut based
formalism for temporal reasoning. The authors describe an implementation by
an AspectJ compiler extension, which gave of course some insights for our work.
With respect to the formal model, the obvious difference to our approach is that
tracecuts use context-free grammars for the specification of trace languages.

Additionally to context free languages, the set of languages recognisable by
tracecuts is however even larger, since the implementation allows for the attach-
ment of custom action blocks to each matching symbol. Such an action block
has access to the whole execution history observed so far and can based on this
decision reject the current symbol using a fail keyword, resuming as if the sym-
bol had not just been read. A stack based implementation imposes additional
overhead, although this might be optimised for regular traces.
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Klose and Ostermann [16] discuss how temporal relations can be expressed in
Gamma, an aspect-oriented language on top of an object-oriented core language.
Pointcuts are specified in a Prolog-like language and include timestamps that can
be compared using the predicates isbefore or isafter. Their prototype requires a
stored trace to analyse and is not applicable to an existing language.

In the field of annotation-based property checking, there are many tools
around, such as Contract4J, JML, etc. but actually all of them support pure
“Design by Contract”, i.e. only pre- and postconditions and invariants. Each
can be expressed through tracechecks, but tracechecks are more powerful as
they allow to reason about the whole execution trace and not just a single point
in the execution flow.

7 Conclusion

We have presented a specification framework for formal reasoning about object-
oriented programs. The implementation is based on the abc compiler. Formulae
in a temporal logic can be used to reason about the dynamic execution trace of
a running application. The application is observed by an automaton where tran-
sitions are triggered by an aspect. Formulae can bind free variables to exposed
objects on the execution path and can refer to those objects through a redefined
scope of if -pointcuts during matching. They can be deployed using a language
extension to AspectJ or by the means of Java5 annotations, yielding a fully Java
compliant solution.

Through such annotations, the tasks of specification and verification is split
into two parts: The designer of a component or interface adds annotations to his
code representing the dynamic semantics of how the component is to be used.
The annotations can then be compiled into bytecode and shipped to the user.

The user can then take advantage of the annotations for the purpose of doc-
umentation or automated runtime checking—by applying our tool. That way
the user can make sure that his access to a component or implementation of an
interface is compliant with the original intent of the component provider.

Our prototype, the Java Logical Observer J-LO, together with all presented
examples is available from http://www-i2.informatik.rwth-aachen.de/JLO/.

Acknowledgements. We thank the whole abc group for their useful comments
on this work and on extending the AspectBench compiler in general.
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