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ABSTRACT

Static program analyses and transformations for Java face
many problems when analyzing programs that use reflection
or custom class loaders: How can a static analysis know
which reflective calls the program will execute? How can
it get hold of classes that the program loads from remote
locations or even generates on the fly? And if the analysis
transforms classes, how can these classes be re-inserted into
a program that uses custom class loaders?

In this paper, we present TAMIFLEX, a tool chain that
offers a partial but often effective solution to these prob-
lems. With TAMIFLEX, programmers can use existing static-
analysis tools to produce results that are sound at least with
respect to a set of recorded program runs. TAMIFLEX inserts
runtime checks into the program that warn the user in case
the program executes reflective calls that the analysis did
not take into account. TAMIFLEX further allows program-
mers to re-insert offline-transformed classes into a program.

We evaluate TAMIFLEX in two scenarios: benchmarking
with the DaCapo benchmark suite and analysing large-scale
interactive applications. For the latter, TAMIFLEX signifi-
cantly improves code coverage of the static analyses, while
for the former our approach even appears complete: the in-
serted runtime checks issue no warning. Hence, for the first
time, TAMIFLEX enables sound static whole-program anal-
yses on DaCapo. During this process, TAMIFLEX usually
incurs less than 10% runtime overhead.
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F.3.2 [Semantics of Programming Languages|: Pro-
gram Analysis
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1. INTRODUCTION

Researchers have developed many useful static program
analyses, ranging from analyses that compute call graphs [23,
25] and relevant program slices [28] to analyses that de-
termine the shape of custom data structures [18,29], prove
parameter immutability [3], track an object’s typestate [7,
15,16, 26], or support model checking in program verifica-
tion [10]. Some of these are also coupled with program trans-
formations, i.e., they optimize or instrument the analyzed
program. As one example, in previous work [7,15,26] we
and others have used static typestate-analysis information
to optimize runtime monitors for typestate properties [30].

Virtually all of these analyses are whole-program analy-
ses; the analyses must consider the entire program to deliver
sound results. This is because most analyses operate under
a closed-world assumption: for instance, the analyses fre-
quently assume that a call graph is complete in the sense
that if a call graph contains no edge from a method m to a
method n then it can never be the case that m calls n.

Obtaining information about the “whole program” yields
many problems when analyzing Java programs that use re-
flection or load or generate classes using custom class load-
ers. In Figure 1, we give an example program that, although
simplified, highlights many of these problems. In the ex-
ample, the Generator in line 4 runtime-generates and re-
turns the class object for Foo$42 (lines 10-14). The invoke
statement at line 6 therefore calls Foo$42.foo(c), closing
the Connection object referenced by c. Unfortunately, line 7
writes to the closed connection, leading to a runtime error.

Static typestate analyses [30] allow programmers to obtain
compile-time warnings for such situations. In the past, we
ourselves have developed such an analysis. [6] It should warn

class Main {
public static void main(String[] args) throws Exception {
Connection ¢ = new Connection();
Class clazz = Generator.makeClass(); // returns Foo$42
Method m = clazz.getMethod("foo", Connection.class);
m.invoke(null, c); // calls Foo$42.foo(..)
c.write("what a risky method call: c is closed!");
}
}
class Foo$42 {
public static void foo(Connection c) {
c.close();
}
}

Figure 1: Example program using dynamic class generation



the programmer of this program that the write at line 7 may
go to a closed connection. However, current static analyses
have no way of being aware of runtime-generated classes
such as Foo0$42 and frequently make the unsound assump-
tion that such classes execute no code. In our example, this
would cause virtually any state-of-the-art typestate analy-
sis to conclude that the above program is error-free, i.e.,
cannot write to closed connections—clearly an undesirable
result. Even worse, the problem is not restricted to gener-
ated classes; when programs use custom class loaders, e.g.,
to load classes from nested JAR files or from remote lo-
cations, then static analyses will usually be unable to find
these classes and yield equally unsound results.

And even if static analyses were made aware of reflective
calls and reflectively loaded classes, further problems would
remain. For instance, our earlier static typestate analysis [6]
contains a runtime component: if the analysis detects that
the program may write to a closed connection, then the anal-
ysis instruments the program with runtime checks that will
issue a runtime error message in case the program really does
write to a closed connection at this point. But in our exam-
ple, the analysis would have to add checks to the generated
class Foo$42 because it is this class that closes the connec-
tion. Even if the static analysis has access to this class and
can analyze and transform it, one needs to re-insert the in-
strumented version of Foo$42 back into the program.

Current static analyses and transformations do not deal
with these problems and thus virtually all existing static
whole-program analyses are inherently unsound for the ma-
jority of Java programs. While one cannot solve this prob-
lem in full generality, we present TAMIFLEX, a tool chain
for “taming reflection” as a pragmatic partial solution that
works surprisingly well for a wide range of real-world Java
programs. TAMIFLEX consists of two novel runtime com-
ponents, the Play-out Agent and the Play-in Agent, which
execute alongside the running program, and an offline com-
ponent, called the Booster.

The Play-out Agent logs reflective calls into a reflection
log, and gathers the classes that the program loads, be it
through custom class loaders or on-the-fly code generation.
This offers a partial solution to the first problem we men-
tioned: the Play-out Agent collects all loaded classes and all
information about reflective calls for every recorded run.

But simply logging reflective calls is not enough as most
static-analysis tools would be unable to interpret these logs.
To avoid having to extend these tools, we therefore devel-
oped the Booster. Given the recorded log and class files,
the Booster produces an enriched version of the program by
“materializing” recorded reflective method calls into regu-
lar Java method calls. This enriched program version, while
guaranteed to be behaviorally equivalent to the original pro-
gram, aids static analyses: the analyses will usually take the
materialized method calls into account whereas they would
have unsoundly ignored reflective method calls.

The Booster fulfils a second important task. As men-
tioned, static analyses based on TAMIFLEX logs are sound
only with respect to a set of recorded program runs. Thus,
what happens if a later program run diverges from the runs
previously recorded? The Booster inserts runtime checks
into the program that will automatically warn the user in
these cases; as long as no warnings are issued, the program
is known to operate under sound assumptions.

If users of TAMIFLEX simply wish to analyze a program

statically, without transforming the program, they only need
to use the Play-out Agent and the Booster, not the Play-
in Agent. Users can simply feed the enriched class files to
any static-analysis tool. In many cases, however, users may
want to use static-analysis results to transform classes, e.g.,
to optimize or instrument them. In these cases, one faces
the problem of re-packaging the transformed classes in such
a way that the original program finds the classes where it
expects them. Without special tool support, this can be
either hard, for instance if the program loads the classes
from a remote location, or even impossible, if the program
generates the classes on the fly. The Play-in Agent solves
this problem by re-inserting offline-transformed classes into
a running program. The agent even replaces classes that an
application generates at runtime.

We study two applications of TAMIFLEX: evaluating static
optimizations using the DaCapo benchmark suite [5] and
statically analyzing nine different interactive real-world ap-
plications. Static analysis without considering reflection pro-
duces inherently unsound results in both cases. As our re-
sults show, with TAMIFLEX our approach appears complete
for DaCapo: the runtime checks in the enriched program
code never triggered for any run that we observed. Hence,
for the first time, our tool chain enables researchers to con-
duct static whole-program analysis on this version of Da-
Capo. We further show that TAMIFLEX induces a runtime
overhead of usually below 10%. The Play-in Agent in partic-
ular induces no overhead after all classes have been loaded.
Because of this, researchers can effectively use TAMIFLEX to
run statically optimized versions of DaCapo: when iterating
a benchmark, the Play-in Agent will only cause a runtime
overhead during the initial (warm-up) iteration.

For the other nine Java programs TAMIFLEX may need to
record multiple program runs to cover a sufficient amount
of reflective calls. However, as we show, often just a few
recorded runs can significantly improve code coverage of the
static analysis. Therefore, while TAMIFLEX does have its
limitations, it greatly improves over the state of the art even
for programs that highly depend on user input.

To summarize, this paper presents the following original
contributions:

e The design and implementation of two Java instrumen-
tation agents that can emit all loaded classes into a lo-
cal class repository, log reflective method calls, and re-
insert offline-transformed classes into a program, even
if the program uses custom class loaders. The agents
use the java.lang.instrument interface, making them
compatible with every modern Java virtual machine.

e A Booster component that enriches a program’s class
files by “materializing” reflective method calls, and at
the same time inserts runtime checks that will warn
the user when a program executes reflective calls that
the Play-out Agent had not recorded.

e In combination, the first solution to allow researchers
to conduct static whole-program analysis and transfor-
mation on the current 9.12-bach release of DaCapo.

e A set of experiments that prove that our tool chain is
efficient, yields call graphs for all DaCapo benchmarks
that are sound for all benchmark runs, and largely
improves analysis coverage for nine other, interactive
Java applications.



TAMIFLEX, all our experimental data, and all tools to re-
produce this data are available to the public at:

http://tamiflex.googlecode.com/

The remainder of this paper is organized as follows. We
explain TAMIFLEX in Section 2. We report on our experi-
ments in Section 3, discuss related work in Section 4, and
conclude in Section 5. A Technical Report [8] gives addi-
tional information on the implementation and experiments.

2. TAMIFLEX

We first describe the overall architecture of TAMIFLEX
and then detail its individual components.

2.1 Architecture of TamiFlex

Figure 2 on the next page gives an overview of TAMI-
FLEX’s architecture. On the top left, we show a program
that potentially uses custom class loaders to load classes
from arbitrary locations (the cloud), or even to generate
classes on the fly. The program may further call methods
such as Constructor.newInstance() or Method.invoke() to
construct objects or invoke methods through reflection.

Let us now assume that the program executes with our
first instrumentation agent installed, the Play-out Agent,
which Figure 2 shows below the program. In this agent, the
Tracer transforms the classes Class, Method and Constructor
so that calls to methods such as Method.invoke() generate
entries in a log file (shown on the bottom left). The agent
further comprises a Dumper component, which writes into a
local repository, i.e., a flat directory, all classes that the pro-
gram loads. This includes classes that the program’s class
loaders have generated on the fly. Some runtime-generated
classes bear randomized names. To allow re-identification of
such classes across multiple runs, the Dumper assigns nor-
malized names to these classes. To this effect, the Dumper
communicates with a Hasher component (see Section 2.2).

Executing a program with the Play-out Agent will result
in a repository that contains a reflection log file and all
classes that the program loaded during the observed run.
To obtain a reasonably complete log file and set of classes,
users can run the program multiple times. The agent will
update the log, appending information about reflective calls
that had not previously been observed, and dump classes
that had not been loaded on previous runs. The idea is to
repeat this process until no changes are observed any longer.

There are now two options to enable static analyses based
on the recorded information. First, shown dotted, one can
derive a specialized static analysis that is TAMIFLEX-aware.
In our Technical Report [8] we describe such a solution,
tied to Soot [33] and Spark [23]. Extending the analysis
is non-trivial, however, and would have to be repeated for
every static-analysis tool. Therefore, we propose another
approach: to use the Booster to convert the original pro-
gram (as defined by the collected class files) into an enriched
program version. The Booster inserts reflective method calls
as additional regular method calls, based on the information
from the reflection log. Simultaneously, the Booster inserts
runtime checks that will issue a warning in case the program
executes a reflective call that the log does not contain.

Next, users can feed the enriched program to any static-
analysis tool to conduct static analyses, and to transform,
e.g., optimize or instrument, the program code. Because the
recorded reflective calls now appear as normal method calls

in the program’s code, typical static analyses will correctly
pick up the respective calls during call-graph construction.

The right-hand side of Figure 2 shows what happens when
the user runs the program with the second agent, the Play-
in Agent, installed. Whenever the original program is about
to load a class clazz, a Replacer within the agent tries to
retrieve the offline-transformed version of clazz from the
local repository. For classes that bear a randomly gener-
ated class name, the agent asks the Hasher component to
compute its normalized name. This causes the Replacer to
look for the offline-transformed class under the same nor-
malized name that the Dumper used to store the class. If
the Replacer finds a class in the repository, it replaces the
originally-loaded (or generated) class with the found class
on the fly. Otherwise, i.e., if the Replacer cannot find an
appropriate class file, for instance because no such class was
loaded on previous runs, the Replacer executes no replace-
ment: In this case the program will instantiate the class
that the class loader originally generated or loaded from “the
cloud”. Optionally, users receive a warning message in such
situations.

Note the flexibility of this design; TAMIFLEX works with
any Java virtual machine that supports transforming classes
through the java.lang.instrument application programming
interface. Through this interface, our agents are able to
write out and replace classes that the program loads. With
the aid of our Hasher component, this even works in cases
where the program generates classes with randomized names.
The Booster makes TAMIFLEX compatible with virtually ev-
ery static-analysis tool able to process Java bytecode.

The current implementation of the Play-out Agent has
some limitations that can be lifted in future work. There
may be other native methods calling back into Java byte-
code, not just reflective calls. As our experiments show,
such calls are usually limited to finalizers and shutdown
hooks (Sec. 3.1). Support for such call edges could easily be
added. Further, programmers may use reflection to change
the values stored in fields. Such store operations may make
field-sensitive program analyses unsound. In future work,
one could extend the Play-out Agent to record such stores
and the Booster to materialize such stores similar to how we
do now for other reflective calls.

2.2 Play-out Agent

Figure 2 shows the Play-out Agent on the left-hand side.
Before the program starts up, the Play-out Agent registers
two class-file transformers, the Tracer and the Dumper, with
the virtual machine (VM). The VM notifies such transform-
ers about every class that the program loads, no matter
which class loader is used, including such classes that the
program generates on the fly. When the program executes,
the Dumper records the byte arrays of all loaded classes and
writes them as .class files to disk. At the same time, the
Tracer waits for the classes Class, Constructor or Method
to be loaded. When encountering one of these classes, it
instruments the methods forName, newInstance and invoke
(modifying their bytecode) so that they will create a log
entry whenever they execute. We make sure to insert the
logging code at the end of these methods, just before every
return statement. This ensures that we do not log erroneous
executions of these methods, which throw an exception, e.g.,
because a certain class or method could not be found.
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Figure 2: Overview of TAMIFLEX

Normalizing randomized class names. When programs
generate classes at runtime, they sometimes assign these
classes randomized names. Consider again the example from
Figure 1. In the figure, the generated class bears the name
Foo$42. On the next run, however, the Generator may gener-
ate the same class under another name, for instance Fo0$23.

Randomized names complicate our approach. First, we
may not easily reach a fixed point when recording program
runs with the Play-out Agent. More importantly, however, it
would likely happen that the Play-in Agent would search for
a class using a name different from the name that the Play-
out Agent used to store the same class. This would break
the play-out/transform/play-in sequence for such classes.

We therefore decided to extend TAMIFLEX with a Hasher
component that detects classes with a randomized name
(using an extensible list of class-name patterns) and then
creates a stable SHA1 [27] hash over the classes’ contents
to assign normalized names to these classes. SHA1 hashes
are very unlikely to clash. Both the Play-out Agent and
the Play-in Agent use the Hasher component consistently,
which allows both agents to re-identify classes across mul-
tiple runs. To maintain consistency among classes, we not
only change the name of class files but also rename class ref-
erences within the dumped bytecode, both in class constants
and string constants. On purpose, we designed the hashing
algorithm to be maximally sensitive: even small changes to
a class will result in a new hash code.

Hashing is less trivial than it may seem: because classes
with randomized names can refer to each other, their hash
codes can be interdependent. We hence cannot simply hash
over every class in isolation but need to hash over entire
interdependent groups of classes. Fortunately, all the classes
with randomized names that we observed in our experiments
only had a tree-like reference structure; there were no cycles.
Our agents can therefore compute a dependency tree and
compute hash codes starting at leaf nodes. Our Technical
Report [8] gives additional information on hashing.

While a program may conversely load different classes
with the same name, we did not find this to be a prob-
lem in practice: the Play-out Agent issues a warning in such
cases but the warning never triggered for our benchmarks.

2.3 Booster

The Booster takes as input a repository of class files and
a reflection log file, and produces as output an enriched
program version by “materializing” reflective method calls
into standard Java method calls. Figure 3 shows the main
method of the enriched version of our example program.
The Hasher has replaced the name Foo$42 by the normal-
ized name Foo$H1l. The Booster has added lines 5 and 7
and modified line 6. Line 5 contains the “materialized” call.
Because this (previously hidden) call is now present in the
bytecode, static-analysis tools can pick up the call when con-
structing their call graph. Line 7 contains the runtime check
that warns the programmer when executing reflective calls
that the Booster did not materialize because these calls were
not previously recorded. The check only amounts to a hash-
set look-up in the Booster-generated class BoosterRuntime
(bottom of figure). The Booster distinguishes calls by their
caller method: a call to a target method may be known and
allowed when called from one caller but not from another.
The check method therefore uses a static caller id to look
up the information for the right caller. To issue a warning,
the check-method calls a user-definable warning listener.

Observant readers will have noticed that the material-
ized call in line 5 is guarded by a conditional. The expres-
sion Opaque.false() resembles an “opaque” predicate, i.e., a
Boolean value that is always false, but which no static anal-
ysis can evaluate to “always false.” Due to this predicate, the
materialized call will never actually execute, although any
sound static analysis will safely assume that the call may
execute. Because the program still executes the original re-
flective call in line 6, its behavior is unchanged.

The reader may wonder why the need for opaque predi-
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public static void main(String[] args) throws Exception {
Connection ¢ = new Connection();
Class clazz = Generator.makeClass(); // returns Foo$H1
Method m = clazz.getMethod("foo", Connection.class);
if (Opaque.false()) Foo$H1l.foo(c); // materialized call
else m.invoke(null, c); // calls Foo$H1l.foo()
BoosterRuntime.check(0, m); // check if m is known
c.write("what a risky method call: c is closed!");

}

public class BoosterRuntime {
private static Set knownTargets = ... // {"0-Foo$Hl.foo()" }
public static void check(int caller, Method m) {

if ('knownTargets.contains(caller+"-"+m.signature())) {
Listener.warnMethodInvoke(m); // issue warning
}
P}

Figure 3: Enriched version of the program from Figure 1

cates arises and why we do not execute the materialized call
directly. Unfortunately, such direct calls may not work if
multiple class loaders are involved. Consider this code:
Class ¢ = myLoader.loadClass("C");

Method m = c.getMethod("m");

m.invoke(null, null);
C.m(); // does not use <myLoader, C> but C in current scope

The call at line 3 calls C.m() using reflection, where C is a
class loaded by the class loader myLoader. The call at line 4
attempts to perform the same method call directly. Direct
method calls, such as in this line, however, will always use
the class loader of the class containing the method call. But
if this class loader has no access to C then the call C.m() will
result in an exception. Executing the original reflective call
instead of the materialized call prevents this problem.

The Booster is an extension of the Soot [33] bytecode anal-
ysis and transformation framework. Nevertheless, the pro-
grams that the Booster produces can be processed by a wide
range of program-analysis tools, not just by Soot.

2.4 Play-in Agent

The Play-in Agent uses another class-file transformer to
re-insert offline-transformed classes into a running program,
irrespective of the program’s class loaders. At runtime, the
agent uses the Replacer to replace all classes as they are
loaded into the virtual machine with the contents of the
respective .class files from the repository on disk. Consider
Figure 2: For every class, the original class loader will first
load the original class from “the cloud,” and then pass the
byte array of this class to the Replacer. The Replacer will
then deliberately ignore this array, however, and return the
contents of the respective .class file instead. The Replacer
consults the Hasher to compute normalized names for classes
with randomized names. When loading a .class file with
a normalized name, the Replacer renames the normalized
class again, this time to the name that the class loader of
the currently running program originally requested. In our
example, the name Foo$H1 may, for example, be replaced by
Fo0$23. This renaming adopts the offline-transformed class
to the current class-loading context.

3. EXPERIMENTS

In this section, we present experimental evidence show-
ing that programmers can effectively use TAMIFLEX to con-

duct static whole-program analysis on a wide range of pro-
grams that use reflection, custom class loaders, and runtime-
generated classes. But our experiments also highlight some
limitations: for highly interactive or extensible applications
it may be hard to obtain a reasonably complete log, as dif-
ferent features often trigger different reflective calls.

With our experiments, we aim to answer the following
research questions.

RQ1 Correctness: The transformations that our Booster
applies are non-trivial. Therefore, when given an en-
riched program as input, will existing static-analysis
tools indeed produce call graphs that are sound with
respect to all runs that the Play-out Agent recorded?

RQ2 Effectiveness: How do input size and code coverage
affect the quality of the logs?

RQ3 Efficiency: Does TAMIFLEX induce a runtime over-
head low enough for practical use?

The next three sections will answer these questions. Sec-
tion 3.4 discusses threats to the validity of our experiments.

3.1 RQI1: Relative soundness of call graphs

The main reason for using a TAMIFLEX-generated log in
a static analysis is that the analysis can use the log to ob-
tain a complete picture of the program’s calling structure,
i.e., a complete call graph. Because TAMIFLEX enriches the
program based on data collected from recorded runs, the in-
formation encoded in the enriched program can only be as
complete as the coverage of reflective calls on these runs. In
the following, we will refer to call graphs that are complete
with respect to the recorded runs as call graphs that are
“representative” (for these runs).

The Booster aids the construction of representative call
graphs by materializing reflective calls in the form of nor-
mal Java method calls. This materialization is non-trivial.
Because call-graph construction is inter-dependent with the
computation of points-to sets [23], one not only has to add
calls to the right methods but also needs to supply these
methods with their arguments, un-boxing these arguments
from the arrays that are normally passed to reflective calls,
and to correctly capture the return value. We hence con-
ducted the following experiments to rule out mistakes in the
Booster’s implementation and omissions in the instrumen-
tation performed by the Play-out Agent.

We gave TAMIFLEX-enriched versions of all programs from
version 9.12-bach of the DaCapo [5] benchmark suite as in-
put to the Soot program analysis framework [33]. We con-
figured Soot to use Spark [23] to construct a static call graph
for each enriched program. For such a call graph to be rep-
resentative in the above sense, the graph must contain an
edge m — n for every call from a method m to a method n
that occurred on a run that the programmer recorded with
TAMIFLEX when producing the reflection log file that the
programmer then provided as input to the Booster.

To test whether the Booster’s transformations are correct
and sufficient, we compared the static call graphs that we
obtain through our combination of TAMIFLEX and Spark
with dynamic call graphs for the same benchmark config-
urations. If the static graphs contain the dynamic ones,
this confirms that the static call graphs are representative.
But obtaining dynamic call graphs is a non-trivial task in
itself. For the purpose of this evaluation, we wrote a native



JVMTI [21] agent that produces highly accurate dynamic
call graphs. The agent is able to record even method calls
in the very early stages of the VM’s start-up sequence, long
before main is called; in particular, the agent can record calls
from native code back into Java bytecode. We believe that
the call graphs recorded that way are as complete as possible
without modifications to the underlying virtual machine.
After recording dynamic call graphs, we used Lhotdk’s
call-graph differencing tool PROBE [22] to compare these
graphs to the static call graphs computed with Spark and
TaMIFLEX. Without TAMIFLEX, the call graphs that Spark
produces for the DaCapo benchmarks are hopelessly un-
sound: DaCapo uses a call to Method.invoke to bootstrap
every benchmark, and without applying the Booster, Spark
would miss this call and its entire transitive closure, i.e., the
entire benchmark. In combination with TAMIFLEX, how-
ever, our results confirm that Spark does indeed produce
call graphs that are representative for all program runs that
the DaCapo benchmarks can produce on their pre-defined
inputs. The only missing edges were native calls to shutdown
hooks and finalizers. Static analyses traditionally ignore
such edges. However, one could treat those edges soundly by
extending the Play-out Agent and Booster appropriately.

3.2 RQ2: Effect of code coverage

We next sought to determine how much the quality of a
reflection log depends on the size of the input yielding the
program run that produces this log. The current DaCapo
release “bach” offers up to four input sizes for each bench-
mark: small, default, large, and huge. Because “huge” only
exists for a small subset of benchmarks (4 out of 14), we
restrict ourselves to the other three input sizes.

3.2.1 Input size and coverage of reflective call sites

A simple metric for the quality of a reflection log is the
number of reflective call sites that it covers. The more call
sites it covers, the more call sites Spark can model using the
information in the log. In Figure 4 we show the number of
reflective call sites covered by the log for every benchmark
configuration. We were pleasantly surprised to see that the
number of covered reflective call sites is not heavily corre-
lated with the input size of the respective benchmark run.
For nine benchmarks, the number of covered sites does not
increase at all for larger inputs, and for all others except for
jython and eclipse the number increased only slightly.

Some benchmarks, like avrora, appear to cover more re-
flective call sites on their small and/or default configuration
than on the large input. To explain this effect, we decided
to further measure the correlation between input size and
code coverage. We used PROBE to create intersections of all
possible combinations of the dynamic call graphs that we
obtained by running DaCapo with each of the input sizes
and with our call-graph generating JVMTI agent enabled.

Input size and code coverage. Figure 5 shows the result
of this process for avrora, batik, and eclipse as a set of three
Venn diagrams. (Our Technical Report [8] contains dia-
grams for all benchmarks.) In the figure, “no_bm” denotes
the run where we start the DaCapo suite without stating the
required command-line parameter that selects the bench-
mark to run. We found this to be an interesting “input” too,
because it can be regarded as an erroneous benchmark run
that diverges from the benchmark’s normal execution.

Input size

Eerchnek small default large
avrora 18 18 12
batik 41 44 44
eclipse 212 351 351
fop 142 130  n/a
h2 31 31 31
jython 41 50 50
luindex 66 41 n/a
lusearch 40 42 42
pmd 32 32 32
sunflow 30 30 30
tomcat 165 165 165
tradebeans 624 620 618
tradesoap 638 634 640
xalan 54 54 54

Figure 4: Number of reflective call sites in log

The Venn diagrams clearly explain the reduced coverage of
reflective call sites in some of the runs, such as avrora/large:
considering Figure 5a, the reduced coverage is not surpris-
ing, as the small and default inputs cover 271 methods that
the large input misses and the large input covers only 169
methods that the other input sizes miss.

3.2.2  Input size and number of reflective call edges

Even when a larger input does not cover more reflective
call sites, the larger input could yield a larger variety of re-
flective calls (to more targets) at these call sites, producing
more reflective “call edges” in the associated call graph. Fig-
ure 6 plots the number of call edges for each benchmark and
input. We can see that the increase in the number of call
edges is moderate as well: In all cases except eclipse and
jython the larger inputs do not yield more than 20% addi-
tional call edges, or in other words, in all but two cases do
the small configurations already yield a call-edge coverage
of more than 1/1.2 =~ 83% compared to the configuration
that yields most coverage. As we show through annotations
in the figure, the many additional calls in eclipse and jython
arise from the fact that larger inputs exercised more differ-
ent program parts than smaller inputs. For instance, eclipse
uses the Java Development Tools (JDT) in “default” and
“large” but not in “small.”

For the scenario of benchmarking with DaCapo, this is un-
problematic. Without much effort, one can collect different
reflection logs for the up to four different input sizes. In-
put dependencies could, however, be a problem when more
varied inputs occur, such as in interactive, user-driven pro-
grams. We therefore additionally experimented with nine
well-known open-source Java applications to determine how
input-dependent their logs are. How practical is our ap-
proach in combination with such applications?

We summarize our findings in Figure 7, similar in style
to Figure 6 but with a different baseline: in this case, we
obtained the baseline by a trivial program execution, i.e.,
by starting and immediately closing the program. Then we
executed up to 40 different program runs, each time try-
ing out new features, e.g., new user-interface elements. Our
project website contains descriptions of all user inputs. The
figure clearly shows that if the input is more varied than
in the case of the DaCapo benchmarks, then more iter-
ations may be required until a plateau with a reasonably



(c) eclipse

Figure 5: Venn diagrams showing the number of reachable
methods shared by the dynamic call graphs at different input
sizes (small / default / large) and with a run of the DaCapo
suite without selecting a benchmark (no_bm)

complete log is reached; only PDFsam and SweetHome3D
appear largely input-independent. Like in DaCapo, large
jumps in the number of recorded calls occurred when we
used certain reflection-intensive features for the first time,
e.g., the Java or AspectJ Development Tools (JDT/AJDT)
in Eclipse or a Swing-based application in Jython or JRuby.

We conclude that, in general, the quality of reflection logs
does depend on the quality of the input to the recorded runs,
in particular on the coverage that these runs produce. How-
ever, it appears often sufficient to execute program runs that
just “touch” the program’s reflection-using features; these
features, such as Swing, usually incur many reflective calls
when they are loaded, but not many different calls during
subsequent use. This suggests that few recorded program
runs may already yield static call graphs that show much
better code coverage than call graphs that would have been
produced without TAMIFLEX. For certain applications, like
benchmarking with DaCapo, our approach is even complete:

because there only exist a few possible inputs, users can pro-
duce logs for all inputs that exist, and based on each log,
static-analysis tools can produce a call graph that is repre-
sentative for the respective run.

3.3 RQ3: Performance overhead of TamiFlex

Users may need to apply the Play-out Agent across multi-
ple runs. In addition, researchers may want to use the Play-
in Agent to measure the performance impact of static opti-
mizations applied to Booster-enriched versions of benchmark
suites like DaCapo. It is therefore important to consider the
runtime overhead that both agents and the Booster’s trans-
formations incur. To quantify this runtime overhead, we
used the DaCapo benchmark suite for what it was designed
for: runtime-performance evaluation. We used a 2.33 GHz
Intel E6500 Core 2 Duo processor running Ubuntu Linux
9.10 (kernel 2.6.31) in single-user mode. The entire main
memory of 2GB was available as heap to the Sun HotSpot
Server VM (build 14.2-b01), running in mixed mode.

We recorded the runtime of ten invocations each for all
benchmarks under three configurations: (1) without any
agents (acting as a baseline), (2) with the Play-out Agent
enabled, and (3) with the Play-in Agent enabled, running
the enriched program version. During each invocation, the
benchmark performed two iterations of its default workload
and we report the runtime of both iterations. Technical
problems (see [8]) prevented us from determining runtime
overheads for tomcat. Figure 8 shows both the arithmetic
mean and standard deviation of the recorded runtimes. As
we can see, in all three configurations the first iteration takes
noticeably longer than the second one. First, the VM’s just-
in-time compiler successively optimizes the generated code;
thus, not only has more code already been optimized during
the second iteration, the optimizing compiler will also spend
less time compiling new code. There is another reason, how-
ever, which has more impact on the workings of TAMIFLEX:
the VM loads most (if not all) classes during the first itera-
tion; not only has the VM less work to do during the second
iteration, but so do the Play-out Agent and Play-in Agent
because they are triggered at class load time. As we found,
the Booster’s transformations have no measurable effect. As
opaque predicate we used a simple static boolean field set
to false. This allows the virtual machine to perform effi-
cient evaluation and prediction; materialized calls cause zero
overhead. The error-checking code inserted by the Booster
amounts to a single inclusion test in a hash set.

Figure 8 shows that TAMIFLEX incurs little overhead dur-
ing either iteration. The one notable exception is the trade-
soap benchmark, for which the Play-out Agent causes a
85.5% overhead during the first iteration and a 160.2% over-
head during the second iteration. This is due to the large
number of reflective calls that tradesoap makes—more than
10 times as many as made by tradebeans, the close cousin
of tradesoap and second on the list. (We report the total
number of reflective calls per benchmark in our Technical
Report [8].) The main performance bottleneck in the Play-
out Agent is the repeated creation of stack traces that it
creates to determine the method in which a reflective call is
issued. When using a “dummy” stack trace instead of con-
structing stack traces anew upon every reflective call, the
Play-out Agent’s overhead on tradesoap drops to a mere
10.0%. Optimized implementations, e.g. using probabilistic
calling context [9], could therefore implement the Play-out
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Figure 6: Number of reflective call edges discovered when running the DaCapo benchmarks at different input sizes (normalized

w.r.t. least number of call edges)
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Figure 7: Number of reflective call edges discovered during manual usage (normalized w.r.t. least number of call edges); large
jumps are annotated with the program feature whose first-time usage introduced new edges

Agent with low overhead, however, would likely require some
support by the underlying virtual machine.

In contrast to the Play-out Agent, the overhead incurred
by the Play-in Agent is mainly limited to the first iter-
ation, during which it replaces newly-loaded classes. Once
all classes have been loaded, the agent does not slow down
the running application any more. This is important, as it
means that researchers can indeed use the Play-in Agent to
evaluate statically optimized versions of DaCapo.

3.4 Threats to validity

The internal validity of our experiments is high. Show-
ing that our static call graphs entirely contain the dynamic
call graph for the same run allows us to conclude that the
static call graphs are sound with respect to those runs. We
compared call graphs using PROBE, a state-of-the-art tool
developed and successfully tested by others [22].

The external validity of our experiments may be threat-
ened by our choice of programs, and the program inputs
we selected. However, we took care to select a wide variety
of programs, 23 different programs from different sources
and domains. Therefore the chances are high that the same
approach applied to different programs would yield results
allowing for the same conclusions that we make in this pa-
per. For reproducibility, we used for DaCapo the inputs

provided with the suite, and documented our manual inputs
to the other nine programs on the project website.

4. RELATED WORK

TAMIFLEX addresses three major problems: (1) custom
class loaders, (2) reflection, and (3) re-inserting transformed
classes. While related work rarely makes a concerted effort
to address all three problems, various solutions have been
proposed to (1) and (2). Our ideas of a Booster and a Play-
in Agent, however, appear entirely novel.

In an effort to reduce application size, Tip et al. [31,32] de-
veloped Jax, an application extractor, which removes from a
program methods, fields, and even entire classes that are not
used in the user’s application scenario. To make call-graph
construction sound with respect to this application scenario,
the authors proposed MEL, a modular extraction language
to specify assumptions about the environment. To assist
the users with this task, Jax includes a tool that identifies
reflective calls, similar to TAMIFLEX’s Play-out Agent.

In a recent article [4], the developers of Coverity [13] ex-
plain some of the difficulties they encountered when making
their research tool for bug finding ready for the market, an
important one being that “You can’t check code you don’t
see.” The authors solved this problem (in a C-based setting)
by intercepting system calls during the program’s build pro-
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Figure 8: Runtime of the first (m) and second (O) iteration of 13 different DaCapo benchmarks using the default input

size (arithmetic mean + standard deviation, normalized w.r.t. the first iteration without agents)

cess. In a Java-based setting, TAMIFLEX’s Play-out Agent
solves the same problem by dumping all loaded classes.

To enable static analysis in the presence of reflection,
Livshits, Whaley and Lam [24] present a static-analysis ap-
proach that attempts to infer additional information about
reflective call sites directly from program code. The anal-
ysis attempts to use information stored in string constants
to resolve reflective calls statically. For call sites for which
this information is insufficient, their approach allows pro-
grammers to provide additional information through man-
ual hints. Christensen et al. present a general-purpose string
analysis [12]. As we observed, many reflective calls are re-
solved not using string constants but using information from
the environment or configuration files. TAMIFLEX covers all
these cases. Further, TAMIFLEX does not require researchers
to make their static analyses reflection-aware.

Similar to Livshits et al., Braux and Noyé [11] propose a
static approach to handling reflection at compile-time. The
author’s solution, aimed at increasing runtime performance,
propagates type information through the program’s abstract
syntax tree. In some cases this information is sufficient to
substitute dynamically loaded classes by concrete types and
calls to the reflection API by concrete method calls.

Hirzel et al. [19,20] present an online version of Andersen’s
points-to analysis [2] that executes alongside the program,
as an extension to the Jikes RVM [1], an open-source Java
Research Virtual Machine. As an online algorithm, the ap-
proach can exploit runtime information; for instance, it can
observe reflective calls as they execute. The authors do not
present how programmers can effectively use the points-to
sets and the call graph that their approach computes at run-
time. While for any given point in time both the points-to
sets and the call graph correctly model the part of the pro-
gram that has already executed, they cannot soundly model
program parts that have not yet executed. Most existing
analyses that use call graphs and points-to sets operate un-
der a closed-world assumption, i.e., they assume that call
graphs and points-to sets soundly model all possible execu-
tions. It appears non-trivial to adopt such algorithms such
that they could use the incomplete, online-generated points-
to sets and call graphs instead. TAMIFLEX aims at support-
ing programmers in obtaining call graphs that are at least
almost complete for the entire program, by collecting re-
flection information and class files across multiple program

runs, e.g., using test cases. That way, assuming sufficient
test coverage, one can obtain a call graph that is mostly
complete for all possible executions.

Dufour [14] uses dynamically-recorded calling structure
data as input to a static method-escape analysis. In the pro-
cess, termed blended analysis, a runtime component feeds
information to a static component. The purpose of this ap-
proach is a detailed static analysis of parts of a large pro-
gram that have been identified as a performance bottleneck.
A dynamic component records information about reflective
calls and about the classes that are loaded at runtime, and
then feeds this information, along with information about
the performance bottlenecks, to a static-analysis component.
While being similar in intent to our Play-out Agent, using
TAMIFLEX has the advantage that the static analysis can
remain unmodified, and that one can use the Play-in Agent
to re-insert offline-transformed classes.

With PRuby [17], Furr et al. propose a static-type in-
ference system for the Ruby programming language. Using
runtime profiles PRuby is able to cope with most uses of
send, require, and eval, three language features which are
akin to reflection, dynamic class loading, and on-the-fly code
generation in the Java language. PRuby can furthermore
deal with one feature with does not have a Java analog:
method_missing methods. Like TAMIFLEX, PRuby adds in-
strumentation to catch cases not covered by the previously
recorded profiles. Unlike TAMIFLEX, PRuby requires two
separate profiling runs: a first run has to gathers all source
files, which are then instrumented offline, so that a second
run can then records the runtime profile.

S. CONCLUSION

We have presented TAMIFLEX. This flexible tool chain
allows users to significantly enhance their static analyses’
coverage and soundness when applied to Java programs that
invoke methods and load classes using reflection, or even
generate classes at runtime. Moreover, TAMIFLEX allows
researchers to transform, e.g., optimize or instrument, these
classes and re-insert the offline-transformed classes into the
original application. TAMIFLEX is compatible with most
static analyses for Java.

We have shown the feasibility of our approach by applying
it to version 9.12-bach of the DaCapo benchmark suite and



nine other interactive open-source Java programs, a realistic
cross-section of the current state of the art in Java program-
ming. The results show that researchers can effectively use
TAMIFLEX to create call graphs for all DaCapo benchmarks
that are sound with respect to all runs that these bench-
marks can produce, despite their use of reflection, custom
class loaders, and dynamic class generation. For the inter-
active Java programs, the approach, while incomplete, can
significantly improve static-analysis quality.
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