
A Brief Tour of Join Point Interfaces

Eric Bodden
Secure Software Engineering

EC SPRIDE, TU Darmstadt, Germany
bodden@acm.org

Éric Tanter Milton Inostroza
PLEIAD Lab

Computer Science Dept (DCC)
University of Chile

{etanter,minostro}@dcc.uchile.cl

ABSTRACT
In standard AspectJ, aspects and base code are often in-
sufficiently decoupled, as aspects hold pointcuts, which can
contain explicit textual references to base code. This hin-
ders aspect evolution and reuse, and may hinder reasoning
about aspects on the base-code side.

In this demo we present join point interfaces as an ex-
tension to the aspect-oriented programming language As-
pectJ. Opposed to AspectJ, with join point interfaces as-
pects and base code communicate only through a shared
interface abstraction. Aspects themselves go without point-
cuts and only reference the interface. Pointcuts are typically
defined on the base-code side, or not at all, as join point
interfaces also support pure explicit invocation as known
from publish-subscribe systems. As a result, users obtain
a language which decouples aspects from base code using a
modular type-checking algorithm, and which they can use
to adopt aspects gradually as they desire.

One major undertaking in the design of join point inter-
faces was to make the language as flexible to use as standard
AspectJ, while nevertheless providing interfaces supported
by strong type checks that can completely avoid type er-
rors at composition time. In this demo we will discuss this
inherent trade-off, we will present JPIs as an extension to
the AspectBench Compiler, and will show how the language
eases the maintenance of existing AspectJ applications.

Categories and Subject Descriptors: D.3.3 [Program-
ming Languages]: Language Constructs

General Terms: Design, Languages

Keywords: Modularity, maintainability, aspect-oriented pro-
gramming, event-driven programming

1. OUTLINE
This demo paper gives a brief overview of Join Point In-

terfaces (JPIs), based on elements from the complete de-
scription of JPIs [2].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

As we show in Figure 1a, aspects with pointcuts and ad-
vice as in AspectJ cause implicit dependencies between as-
pects and base code. This is because an aspect contains
direct textual references to the base code via its pointcuts.
These implicit dependencies, denoted by the dashed arrows
in the figure, make programs fragile, hinder aspect evolution
and reuse, and compromise separate development. Changes
in the base code can unwittingly render aspects ineffective
or cause spurious advice applications. Conversely, a change
in a pointcut definition may cause parts of the base pro-
gram to be advised without notice, breaking some implicit
assumptions. This problem is known as the fragile pointcut
problem [4, 7]. Effectively this means that both developers
that maintain aspects and developers that maintain base
code must usually have some global knowledge about the
software system, e.g. knowing the aspects that are defined
in order to determine if they affect a given module. The
fact that independent development is compromised this way
is particularly worrying considering that programming as-
pects requires a high level of expertise, and is hence likely
to be done by specialized programmers, leading to different
development roles. Therefore, to be widely adopted, AOP
is in need of mechanisms to support separate development
in a well-defined manner.

In this work, we combine important ideas of existing ear-
lier work [3, 5, 6] with novel insights obtained through our
own research, to arrive at a language design that enables safe
modular type checking for aspects. Our solution, called join
point interfaces (JPIs), consists of type-based contracts that
decouple aspects from advised code (Figure 1b). JPIs sup-
port a programming methodology where aspects only spec-
ify the types of join points they advise, but do not comprise
any pointcuts. It is the responsibility of the programmer
maintaining the advised code to specify which join points
are exposed, and of which type. Quantification is now local,
restricted to a given class. In addition to implicit announce-
ment through pointcuts, JPIs are integrated with Closure
Join Points [1], a mechanism for explicit event announce-
ment. With closure join points the dependencies become
explicit, and therefore simplify reasoning.

Figure 1b gives an overview of our design. The figure only
contains solid arrows: both aspects and base code explicitly
refer to JPIs, without implicit dependencies between them.
This supports a form of modular reasoning: since JPIs serve
as a type safe contract, at least as far as the type system is
concerned, the base-code developer can reason about base
code by just inspecting base code and the JPIs that it explic-
itly references; similarly, the aspect programmer can reason

Base

Aspect 1

Aspect 2

(a) Pointcut/advice

Base JPI

Aspect 1

Aspect 2

(b) Join point interfaces

Dependencies
implicit
explicit

Aspect

Development roles

Base

Figure 1: Dependencies with traditional pointcut/advice AOP (a) and with join point interfaces (b).

locally about aspects and the referenced JPIs, without hav-
ing to worry about base code.

Our language design integrates join point interfaces with
a number of language features that, in combination, allow
developers to introduce aspect-oriented in a gradual manner,
while at the same time supporting separate development of
aspects and base code through strong type checks.

2. A TOUR OF JOIN POINT INTERFACES
In the following we will explain in more detail the differ-

ent constructs of our AspectJ implementation of join point
interfaces.

The interface description.
Since in AspectJ, join points resemble control flows, syn-

tactically, JPIs resemble method signatures. A typical JPI
description look as follows:

jpi void CheckingOut(double price, Customer cus);

Implicit and explicit announcement.
Join point interfaces can be used both with implicit an-

nouncement through pointcuts, and with explicit announce-
ment, using closure join points [1]. The following code shows
how a class announces join points of type CheckingOut implic-
itly at all call to checkOut lexically contained with that class:

class ShoppingSession {
exhibits void CheckingOut(double price, Customer c):
execution(* checkOut(..)) && args(*, price, *, c);

...
}

Programmers will typically use such exhibits clauses in
connection with pointcuts if they desire to expose a number
of different join points within the same class. As an alterna-
tive, closure join points can mark explicitly regions of code
to be exposed to aspects:

In Listing 1, the exhibit keyword marks a so-called Closure
join point [1], an instantly-called closure that exhibits its en-
capsulated code to advising aspects. Closure join points al-
low programmers to exhibit pieces of code as “to be advised”
even if they could not normally be captured by pointcuts.
In addition, closure join points are less fragile with respect
to refactorings, as code annotations will typically move to-
gether with the refactored code.

Generic JPIs and advice.
One of the main contributions of JPIs is the ability to

modularize the type checking of both aspects and base code

jpi double CheckingOutR(double price, Customer cus);
class ShoppingSession {

void checkOut(final Item item, double price,
final int amount, final Customer

cus) {
totalValue =

exhibit CheckingOutR(double alteredPrice) {
cart.add(item, amount);
cus.charge(alteredPrice);
return totalValue + alteredPrice;

}(price);
}

}

Listing 1: Closure Join Point

in such a way that one can guarantee the absence of type
errors at composition time. To support flexible join point
matching despite strong type checks, we incorporate into our
language an earlier proposal for generic advice [5].

<R,F extends Foo> jpi R JP(F f);

The use of generic types allows a JPI to binds context values
such as f to any subtype of Foo, but at the same type forbids
pieces of around advice to replace those values by values of
other types, thereby guaranteeing type safety. In the follow-
ing, the advice cannot replace f by a Foo object because f

may be bound to any subtype of F, i.e., also to a sibling type
of Foo:

<R,F extends Foo> R around JP(F f) {
//type error: Foo is not subtype of F
return proceed(new Foo());

}

Controlled Global Quantification.
The ability to abstract over concrete types using gener-

ics is particularly important in combination with another
language feature: controlled global quantification.

In some cases it may be awkward, and may hinder main-
tainability, if exhibits-clauses need to be spread out into too
many base-code classes. This is particularly the case with
widely-quantifying tracing and debugging aspects. JPIs there-
fore allow programmers to define global pointcuts, which are
matched against any possible class in the system:

<R,F extends Foo> jpi R JP(F f):
call(R *(Foo)) && args(f);

Interestingly, generics are a necessary requirement for global
quantification to work properly. Assume for a moment that
in the above code R and F were not variables but concrete
types. To nevertheless assure type safety, this means that
our type system would need to prevent the JPI to be matched
against any join point signature with return types different
from R and argument types different from F. Such specific
pointcuts are often too fine-grained, as they would need to
be extended for every other concrete type to be matched.

Opposed to AspectJ, global quantification in join point
interfaces is controlled. The following syntax, for instance,
allows the class Secret to explicitly prohibit calls to secret

from being exposed:

sealed class Secret {
exhibits Object JP() :

global() && !call(* secret(..))
}

Join Point Polymorphism.
Join point interfaces further offer polymorphic dispatch on

join points, with an advice-dispatch semantics akin to multi-
methods. In the following example, Renting is a subtype
of CheckingOut, which typically means that it will expose a
more restricted class of join point, about which it can expose
additional context information (here int amt).

jpi void Renting(double price, int amount, Customer c)
extends CheckingOut(price, c);

aspect Discount {
void around CheckingOut(double price, Customer

cus) { ... }
void around Renting(double price, int amt,

Customer cus) { ... }
}

3. CONCLUSION
Join point interfaces (JPIs) support flexible and safe de-

coupling of aspect-oriented programs through modular type
checking. Like interfaces in statically-typed object-oriented
languages, JPIs are a machine-checked type-based contract
that supports separate development in a robust and safe
manner. Key to this support is the specification of JPIs as
method-like signatures with return types and checked excep-
tion types. JPIs can be organized in hierarchies to structure
the space of join points in a flexible manner, enabling join
point polymorphism and dynamic advice dispatch. The use
of parametric polymorphism in JPI definitions, along with
support for controlled global quantification, makes it possi-
ble for JPIs to preserve most of the flexibility that AspectJ
offers, without sacrificing type safety.

Acknowledgements. This work was supported by the
Deutsche Forschungsgemeinschaft within the project RUN-
SECURE, by the German Federal Ministry of Education and
Research (BMBF) within EC SPRIDE and by the Hessian
LOEWE excellence initiative within CASED, and by CONI-
CYT through Inostroza’s MSc grant, as well as FONDECYT
project 1110051.

4. REFERENCES
[1] Eric Bodden. Closure joinpoints: block joinpoints

without surprises. In Proceedings of the 10th ACM
International Conference on Aspect-Oriented Software
Development (AOSD 2011), pages 117–128, Porto de
Galinhas, Brazil, March 2011. ACM.

[2] Eric Bodden, Éric Tanter, and Milton Inostroza. Join
point interfaces for safe and flexible decoupling of
aspects. ACM Transactions on Software Engineering
and Methodology (TOSEM), 2013. To appear.

[3] Bruno De Fraine, Mario Südholt, and Viviane Jonckers.
StrongAspectJ: flexible and safe pointcut/advice
bindings. In Proceedings of the 7th ACM International
Conference on Aspect-Oriented Software Development
(AOSD 2008), pages 60–71, Brussels, Belgium, April
2008. ACM.

[4] Kris Gybels and Johan Brichau. Arranging language
features for more robust pattern-based crosscuts. In
Mehmet Akşit, editor, Proceedings of the 2nd ACM
International Conference on Aspect-Oriented Software
Development (AOSD 2003), pages 60–69, Boston, MA,
USA, March 2003. ACM Press.

[5] Radha Jagadeesan, Alan Jeffrey, and James Riely.
Typed parametric polymorphism for aspects. Science of
Computer Programming, 63:267–296, 2006.

[6] Friedrich Steimann, Thomas Pawlitzki, Sven Apel, and
Christian Kästner. Types and modularity for implicit
invocation with implicit announcement. ACM
Transactions on Software Engineering and
Methodology, 20(1):1–43, 2010.

[7] Maximilian Stoerzer and Juergen Graf. Using pointcut
delta analysis to support evolution of aspect-oriented
software. In Proceedings of the 21st IEEE International
Conference on Software Maintenance, pages 653–656,
September 2005.

	Outline
	A tour of Join Point Interfaces
	Conclusion
	References

