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Abstract. In runtime monitoring, a programmer specifies code to ex-
ecute whenever a sequence of events occurs during program execution.
Previous and related work has shown that runtime monitoring techniques
can be useful in order to validate or guarantee the safety and security
of running programs. Those techniques have however not been incor-
porated in everyday software development processes. One problem that
hinders industry adoption is that the required specifications use a cum-
bersome, textual notation. As a consequence, only verification experts,
not programmers, can understand what a given specification means and
in particular, whether it is correct. In 2001, researchers at Bell Labs pro-
posed the Timeline formalism. This formalism was designed with ease
of use in mind, for the purpose of static verification (and not, as in our
work, for runtime monitoring).

In this article, we describe how software safety specifications can be
described visually in the Timeline formalism and subsequently trans-
formed into finite automata suitable for runtime monitoring, using our
meta-modelling and model transformation tool AToM?. The synthesized
automata are subsequently fed into an existing monitoring back-end that
generates efficient runtime monitors for them. Those monitors can then
automatically be applied to Java programs.

Our work shows that the transformation of Timeline models to au-
tomata is not only feasible in an efficient and sound way but also helps
programmers identify correspondences between the original specification
and the generated monitors. We argue that visual specification of safety
criteria and subsequent automatic synthesis of runtime monitors will help
users reason about the correctness of their specifications on the one hand
and effectively deploy them in industrial settings on the other hand.

1 Introduction

Static program verification in the form of model checking and theorem proving
has in the past been very successful, however mostly when applied to small em-
bedded systems. The intrinsic exponential complexity of the involved algorithms
makes it hard to apply them to large-scale applications. Runtime monitoring or
runtime verification tries to find new ways to support automated verification
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of such applications. This is done by combining declarative safety specifications
with automated tools that allow verification of these properties, not statically
but dynamically, when the program under test is executed. Research has pro-
duced a variety of such tools over the last years, many of which have helped
find real errors in large-scale applications. Yet, those techniques have not yet
been able to make the transition to everyday use in regular software develop-
ment processes. This is due to two reasons. Firstly, many of the existing runtime
monitoring tools cause a significant runtime overhead, lengthening test runs un-
duly. Secondly, the kind of specifications that can be verified by such tools often
use a quite cumbersome notation. This leads to the fact that only verification
experts, not programmers, can understand what a given specification means and
in particular, whether it is correct.

The first problem of generating efficient runtime monitors has been addressed
extensively in previous [3[4l[5] and related [6l[7] work. In particular, our research
group maintains an efficient implementation of tracematches [8], an implemen-
tation of runtime monitoring that allows specifications to match on the dynamic
execution trace, using regular expressions with free variables than can bind ob-
jects. For instance, a pattern of the form File f: open(f) dispose(f) over
the alphabet X = {open,dispose} could denote disposing a file that is cur-
rently open. Such a specification might seem easy to read, but sometimes subtle
problems can arise. For example, the aforementioned pattern would also match
the event sequence open(f1) close(f1) dispose(f1), where a file £1 is prop-
erly closed before it is disposed. In order to fix the pattern, one would have to
change the alphabet of the regular expression to X' = {open, close,dispose}.
We strongly believe that such subtle difficulties with existing specification for-
malisms are among the main reasons why formal verification techniques such as
runtime monitoring have, despite their effectiveness and efficiency, not yet found
widespread industry adoption.

In 2001, Smith et al. from Bell Labs proposed the Timeline formalism as
a way to ease the specification of temporal properties [9]. They presented a vi-
sual tool to design Timeline specifications. The tool converts those specifications
into Biichi automata, suitable for static verification. However, this translation is
done in code, and hence it is hidden from the user. We believe that the Time-
line formalism is indeed much more comprehensible than many other temporal
specification formalisms. However, we also believe that a tool can and should
benefit from explicit visual graph rewriting techniques. Implementing formalism
(such as Timeline) semantics via visual graph transformations allows (1) to eas-
ily experiment with different semantics by altering transformation rules and (2)
once the semantics is fixed, to easily reason about its correctness. Hence, in the
following, we propose an explicit visual graph transformation using the AToM?
tool [10], that rewrites specifications in the Timeline formalism to corresponding
finite state machines suitable for runtime monitoring. Those state machines can
then be fed into our tracematch-based back-end, which generates an equivalent
and efficient runtime monitor. This monitor can be applied to arbitrary Java
programs through compilation.
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It is also noted that Smith et al. did not take into account per-object specifi-
cations such as the per-file specification mentioned above. In this work we show
how the Timeline formalism can be used for such specifications as well. The
generated Java monitors automatically take into account the necessary object
bindings, exploiting our performance optimizations from previous work.

The remainder of this paper is organized as follows. In Section 2l we introduce
the Timeline formalism, its visual concrete syntax, and its semantics. The visual
specification of transformation into finite automata is described in Section[3Bl In
Section @ we sketch how the resulting automata can be used in our runtime
monitoring back-end. Finally, we conclude and state future work in Section

2 The Timeline Formalism

Each Timeline specification consists of a single time line, which is independent
of all the others. This is important, as it enabled modular reasoning. A time line
makes sense in its own right and its truth value does not depend on the presence
of other time lines.

Each time line represents an ordered sequence of events. The first event is a
distinguished start event, representing the time of start-up of the application. All
events but this start event are associated with a label and one of the following
three event types.

regular event. Such an event may or may not occur. It imposes no requirement
and is only used to build up context for a complete pattern match. Regular
events are denoted with the letter e.

required event. A required event must occur, whenever its left-context on the
time line was matched. Required events are denoted with the letter r.

fail events. A fail event must not occur after its left context has matched. Such
an event is denoted with the letter X.

Along with those events, a time line can be augmented with constraints, re-
stricting the matching process. A constraint holds a Boolean combination of
propositions and may include or exclude the start and/or end event it is at-
tached to.

While Smith et al. used a motivating example [9] specifying a dial-tone feature
used at Bell labs, we here use a running example motivated by our own work.
Fig. [l shows an extension of the aforementioned file/dispose example. We wish
to specify that a file must not be disposed as long as it is open. Furthermore, we
would like to make sure that any open file is closed at some point in time, before
the program exits. The Timeline specification directly states both requirements
together: After seeing a regular event open, we require an event close (in the
end of the time line) and in between we state that no dispose event may occur
(excluded event, marked with an X). A constraint between the open and dispose
events is used to state that those requirements only apply if the file has not been
closed already prior to disposal. A second constraint on the left states that we are
only interested in the last open event, as our translation will assure that former
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Stage:

open dispose close

start e X r

| | lopen |—| excl |

Fig. 1. Timeline specification stating that any opened file should be closed and should
not be disposed before closing it

events were already handled once we get to this stage of evaluation. Fig. [l shows
the Timeline specification as it is denoted in a modelling environment built
using AToM? [10]. This environment uses the following abstract syntax in order
to represent such specifications.

2.1 Timeline Abstract Syntax in AToM3

We model an event as an object with a string label and one of five types: start,
reqular, required, fail and end. The “end” event is artificial. It cannot be specified
by the user and is only used within the translation to finite automata.

A time line consists of a sequence of events. The sequence is established via
an ordering relation. A further relation between events describes the constraints
among them. Each constraint is modelled as an edge between two events. It can
include or exclude the event at its start and/or end. Furthermore it is labelled
with a string label, stating the actual constraint expression.

Fig. @lshows the class diagram for the abstract syntax of Timeline in AToM?3.
In addition to the aforementioned entities, it shows a Stage class. As we will
explain in Section [3 we use a singleton object of this class for each Timeline
specification to be able to implement its translation in a stateful way. This is a
workaround because the version of AToM? used did not yet support programmed
graph rewriting.

The static semantics of the Timeline formalism imposes the following type
checks on correct Timeline specifications. (see [9] for details)

1. Each time line must be fully connected by the Order relationship. In partic-
ular, this order is anti-symmetric, transitive and total.

2. In each time line, the smallest event in this relationship must be of type
“start”.

3. Each event must have at most one immediate predecessor and successor in
this relationship.
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Event

Constraint
IAttributesT
- label ::
- start ::

Attributes:
- type :: Enum

String - label :: String

Enum Cardinalities:

- end :: Enum ~ From Order: 0 to N

Cardinalities: - T Gtozs O to I

- To Ev: 0 to

Ev: 0 to N

N - From Constraint: 0 to

— From - To Constraint: 0 to N

Stage
Attributes:

- stage :: String

- stageNum :: Integer

Fig. 2. Abstract syntax of the Timeline formalism in AToM3

4. When a constraint relation starts at an event e; and ends at es, then e;
must be smaller than es in the Order.

5. There must not exist any two subsequent fail events.

6. A constraint may not begin or end at a fail event, unless the fail event is the
first event or last event of the time line.

The translation we give in Section [Jis based on the above assumptions. They
can relatively easily be verified in the AToM? modelling tool, at design time.

2.2 Timeline Concrete Syntax in AToM?3

Each abstract syntax entity is given a concrete visual representation. Events are
represented by vertical lines, while the temporal order relation between them is
drawn as a directed edge. Constraints are undirected edges with labels. As Fig.[I]
shows, AToM? has built-in support for displaying attribute values of entities in
a text box as of its visual representation.

3 Transformation into Finite Automata

We assume a given time line ¢ which fulfils the constraints mentioned in Sec-
tion 271l Further, we formally denote t by t = (E, O, C) with:

— F, a finite set of events;
— O C F x E, a total order, the temporal order relationship;
— (', a finite set of constraints.

Each event e € E is of the form e = (., t.) with [, a string label and
te € {start, reqular, required, fail, end}.

We then transform each Timeline specification into a finite state machine,
using eight transformation stages that are executed in sequential order. In our
model-driven approach, each of those stages is explicitly modelled by one or
more graph grammar rules. In the following, we explain each stage in detail.



254 E. Bodden and H. Vangheluwe

Stage 1 - Add an end event. For the subsequent transformation stages it will be
useful to have an additional end event, which marks the last event in the time
line. Hence, our first rule adds such an event to the one and only event of the
time line which has no outgoing edge in the temporal order relation. Note that
there can only be one such event because the temporal order, being a total order
on a finite number of elements, has a unique largest element. The graph rewriting
rule stating this transformation is depicted in Fig. [Bl The left-hand side of this
rule is annotated with an additional matching condition, stating that there may
be no outgoing edge in the Order relation:

matchcond(e) := -3¢’ € E . (e,e’) € O

Note how number labels on left-hand side (LHS) and right-hand side (RHS) of
rules allow one to relate nodes on both sides. Labels present on both sides denote
retained nodes, labels present only on the LHS denote deleted nodes, and labels
present only on the RHS denote created nodes. On the LHS, <ANY> matches any
attribute value. On the RHS, the notation <COPIED> denotes attribute copying
from the LHS, <SPECIFIED> denotes an explicitly computed attribute.

<ANY> <COPIED> end

<ANY> <COPIED> end

o>

Fig. 3. Adding the artificial end event

Stage 2 - Add states. For each event we then generate a state which reflects the
point in time immediately before the associated event occurs. We do so by using
four different transformation rules, one each for regular, required and fail events
plus one for the end event. We use multiple rules here, because the kind of state
we generate depends on the event type.

The rules are shown in Fig. @l For a regular event (marked with an e), we
simply generate a non-final state. We add a generic edge between the event and
the state to be able to relate them to each other in later transformation stages.
AToM? allows generic edges to connect any kind of nodes. Other connections are
constrained by the formalism’s meta-model. For a required event we generate a
final state accordingly. This is because the generated state machine is meant
to accept an input stream of events if and only if it violates the specification.
Hence, in case the monitor has not seen a required event yet, it has to be in an
accepting state. Similarly, for a fail event we actually add two states. The first
one is non-final and reflects the point in time before the event occurs. The second
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<COPIED>

<COPIED>

initial: False

final: False

255

<COPIED>

<COPIED>

: 4@
initial: False
final:

True

<BNY>
end

initial: False

final: False

<ANY>

o>

Fig. 4. Adding states

one is final and contains a true loop. This “sink” state has special semantics in
the sense that it allows for early error detection: once it is visited, we know
that the property is violated no matter what suffix of the trace will follow. The
incoming transition to this state is labelled with [., the label of the matched
event. We copy the value from the event label. Finally, the end event is treated
as a regular event.

Stage 3 - Marking the initial state. In order to construct a valid finite automaton,
we have to mark its initial state as initial. We identify this initial state as the
unique state that is associated with the unique successor of the start event in
the temporal order relation. The corresponding rule is shown in Fig. Bl

<ANY>

start

<ANY>
<ANY>

O

<ANY>
<ANY>

initial:
final:

oc, >

<COPIED>

<COPIED>

<COPIED>

<COPIED>

SO

initia¥SPECIFIED>
fin

al:

<COPIED>

Fig. 5. Marking the initial state
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<any> <any>

Fig. 6. Creating transitions

Stage 4 - Adding transitions. This step adds the necessary transitions between
the states. For any two states belonging to two events e;, ;4.1 where e; 1 follows
e; in the temporal order, we add a transition between those states, labelled with
le;, simply because we want to move from the state representing “before e;” to
its successor, when [., occurs. We also add a loop to the state associated with
e;, holding the label ., (read “not l.,”), so that we do not discard a partial
match only because [, has not been seen yet. Fig. [l shows our rule for creating
transitions.

Stage 5 - Folding constraints. The automaton we now have associated with the
original time line is already a valid finite automaton, equivalent to the time line,
not taking constraints into account. Hence, the constraints are handled next.
The idea is to copy constraints over from the time line onto the transitions of
the resulting automaton. However, one problem still exists: a constraint may be
linked to two states which are not immediate successors in the temporal order,
i.e., between events e;, e; with j —7 > 1. In such a case, the constraint also takes
effect at all events e;11,...,€e;_1, even though those are not directly connected to
the constraint. In [9], Smith et al. propose a tableau based approach in order to
calculate the constraints which apply to each single transition. We rather opted
for a visual approach, which we find easier to understand and implement.

The rule we describe here resolves the transitive notion of a constraint by
connecting all the intermediate events ezplicitly to an equivalent constraint. This
is depicted in Fig. 7 and makes the above observation explicit: whenever we see
two events e;, e; with a constraint between them and there exists an event e;_;
preceding e; in the temporal order, then we split the constraint into two, one
covering the region between e; and e;_; and one covering the step from e;_; to
e;. Note that the first of those two constraints might still reach over multiple
events. In the general case, where § := j—i, we hence have to apply this rule 6 — 1
times until the fixed point is reached. This is automatically performed by virtue
of AToM?’s graph transformation semantics. When folding the constraints in this
way, we also have to make sure that the first constraint includes its starting event
only when the original constraint did so. Similarly, the second constraint must
include its end event only if the original constraint did so. We hence copy over
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<any>

<aNY> <ANY> <ANY>

Fig. 7. Folding constraints

those properties. Fig. [[ reflects this by showing <SPECIFIED> at the appropriate
labels. For the intermediate events it is clear that those have to be included.
Hence, we set this property explicitly to that value.

Stage 6 - Applying the constraints. After having folded the constraints, we can
safely assume that constraints only exist between immediate successor events
ei,e;+1. This assumption provides us with a direct and local mapping between
any two events, their associated constraints and states. In the following, we
explain three different rules which are used to propagate the constraints onto
the related transitions of the finite automaton.

Applying a constraint at its start point. The first rule is shown in Fig. [8(a)| (we
only show the left-hand side here, as the right-hand side has the same struc-
ture). Its purpose is to propagate a constraint from an included start event of
a constraint to the corresponding transition. If a starting event e is included in
a constraint ¢ this means that we only accept this event (i.e., make progress in
the automaton) if ¢ holds when e occurs. Consequently, we propagate ¢ from the
left event onto the transition connecting the two associated states — the label
of that transition changes from [ to (I and ¢). We remind the reader that the left
state of the two reflects the point in time before e was read and the right one
the point in time after e was read. Also, we should mention that we made the
rule match only if the constraint does not already exist at the target transition.
This prevents AToM? from applying the same rule repeatedly.

Applying a constraint at its end point. Similarly, we have to handle cases where
the end point of a constraint is included. The rule in Fig. shows how we
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(a) Applying at start points (b) Applying at end points

Fig. 8. Applying constraint start and end points (left-hand sides)

Fig. 9. Applying constraint bodies to the loops (left-hand side)

propagate the constraint label onto any transition moving out of the end state
of the constraint, in case the right event is included in the constraint.

Applying a constraint to an interval. The “body” of the constraint, i.e., the part
between its start point and end point finally has to be applied to the corre-
sponding loop, since the loop — as is the case with the constraint — describes
what behaviour is allowed before the next event occurs. The left-hand side of
the equivalent transformation rule is shown in Fig. [@ For each such match we
add the negation of the label of the constraint onto the label of the loop, which
means that whenever the constraint is violated, we may not return to this state,
i.e., in the absence of other matching transitions, the partial match is discarded.

Stage 7 - Implement semantics of fail events. The way we generated states for
fail events does not yet exactly reflect the semantics given in [9]. In the current
state machine, the scope of a fail event would extend until the end of the input
instead of only until the event following the fail event. This means that we would
falsely detect a violation if the fail event occurs anywhere on the remaining path.
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However the semantics state that it only must not occur until the next regular
(or required) event occurs. The rule shown in Fig. depicts the appropriate
change to implement the correct fail event semantics.

initials <any> ["]
final:  True

Fig. 10. Correcting the semantics of fail events

Assume that e is a fail event. We eliminate the state g., changing its incoming
transition to have g.41 as target state. The transition from g, to the failure state
q, is changed to start at ge1.

We wish to remind the reader that each state ¢. in the automaton models the
point in time right before event e was seen. Taking this into account, we can now
see that after the transformation, the semantics are implemented correctly: when
reading the event preceding e, we move to the state associated with the event fol-
lowing e directly, because this is the next event on our “progress path”. Should in
the meantime however, the fail event occur, then we move to the failure state.

Stage 8 - Removing the events. After all the previous steps we now have a finite
automaton model which encodes the semantics of the original Timeline model.
Hence, we can remove all event information. Here, it suffices to remove the events
alone, because AToM? automatically removes all (dangling) associated relations
automatically. Consequently, we can simply implement this step by means of a
rule with an unspecified event on the left-hand side and an empty right-hand
side. Fig. [[1l shows the result of the complete translation (steps 1 through 8) of
our example from Fig. [l

Stateful transformations, termination and correctness. In order to prevent un-
wanted recursive application of the different transformations, we had to make
parts of the graph transformation model stateful, which means that we carry
around an explicit state, giving information about what rule was last applied.
This prevents for instance the rule for “adding transitions” being applied again
after transitions have been removed by the correction step for the fail event se-
mantics. We store the state in a visual label called “stage” as shown in Fig. [[1]
Future versions of AToM? will support programmed graph rewriting, allowing
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Fig. 11. Example - resulting automaton

for the elegant and explicit description of transformation stages. Each stage
terminates due to implicit or explicit termination conditions. The folding of
constraints, for instance, automatically reaches a fixed point when there is no
constraint any more that spans more than two events. The propagation of con-
straint values, however, uses a hand-coded check as described above. With re-
spect to correctness it is noted that a formal proof of transformation properties
such as termination is out of the scope of this paper. Nevertheless, such a proof
by structural induction over the different Timeline language constructs is quite
straightforward.

4 Applicability to Runtime Monitoring

As mentioned earlier, the generated finite state machines can be used for the
purpose of runtime verification. While Biichi automata, which are used for static
verification, read an input of infinite length, the automata we use here accept a
finite input. This is because in runtime verification a program is indeed executed
and hence, every event sequence is terminated as the program shuts down.

As described in [§], our current implementation of tracematches generates
finite-state monitors from regular expressions with free variables, where each
variable is bound to matching objects at runtime. Hence, it is relatively easy
to modify the back-end in such a way that it does not generate the finite state
monitor from a given regular expression but instead reads it in directly. In trace-
matches, abstract events are mapped onto concrete events in the code via point-
cuts in the aspect-oriented programming language AspectJ [II]. A pointcut in
this setting is a predicate over runtime events.

Fig. shows what such a state-based tracematch syntax could look like for
our file example (automatic generation of this textual representation is future
work). In its header in line 1, the tracematch declares to reason about a single
file £. Lines 2-4 hold two user-defined symbols based on AspectJ pointcuts. The
transition table for the tracematch automaton follows in lines 6-7. This part of
the specification can be directly generated from the visual state machine model.
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tracematch(File f) {
sym close after returning: call(x File.close()) && target(f);
sym write before: call(x File.write (..)) && target(f);
sym dispose before: call(x File.delete ()) && target(f);

initial state 0; final state 1; final state 2; //define states
(0,0pen,1); (1,dispose,2); //define transitions
{ System.err.println (”State violation on file "+f+7.7); }

1
2
3
4
5
6
7
8
9

}

Fig. 12. Automaton-based tracematch checking for writes to closed files

Note that unreachable states do not show up. This is because we remove un-
productive states from the automaton, still in the visual model. We refer to our
technical report [I] for further details. Also, certain negated labels on transi-
tions do not need to be copied due to the event-based semantics of tracematch
automata. Line 8 finally holds the body of code that is to be executed on each
single match. Note that this body has access to the bound variable of f, an
important feature of tracematches.

5 User Experience with AToM?® Suggested Improvements
of the Tool

In this section we briefly summarize our experience with using AToM? as a tool
for visual specification of modelling languages and model transformations. We
highlight what worked for us but also needs for further improvements.

5.1 What Worked Well

The following worked very well.

Modelling with concrete syntax. The ability to describe both models and trans-
formations, in concrete syntax is useful for domain experts. Indeed, we identified
this as the number one reason for using visual graph transformations opposed to
hand written code. With concrete syntax, the transformation becomes visually
explicit to the modeller. It is straightforward to picture the effects of a transfor-
mation in one’s mind, because this transformation can directly be seen already
in the transformation rules themselves.

Large productivity increase. In [9] the original creators of the Timeline formal-
ism reported that they spent about one month on implementing a modelling
environment for Timeline. Using AToM? we were able to achieve the same task
in less than three days. A more experienced user of AToM? would probably
have been able to finish the implementation in an even smaller amount of time.
Furthermore, because in AToM? the semantics are implemented via visual graph
transformation rules, this implementation will easily allow us to experiment with
different semantics, by just modifying the rewrite rules accordingly.
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5.2 Suggestions for Improvements

We believe that although our overall user experience with AToM? was highly
satisfying, the following issues remain.

Negative application conditions. In many instances negative application condi-
tions (NACs) would have been very useful to prevent a rule from applying in
certain situations. The Montréal version of AToM? we used allowed such condi-
tions only in hand coded form, via inserting Python code. Note that the Madrid
version of AToM? does have support for NACs.

Programmed graph rewriting was lacking. In addition, we had to insert the afore-
mentioned “Stage” label into each of our visual specifications. This label was
then used to keep track of the current rewriting phase in order to schedule the
rewriting correctly. The actual scheduling was again written in Python code.
Programmed graph rewriting is a solution to this problem as put forward by the
PROGRES [12] model transformation tool. Recent AToM? developments [L3]
presented at AGTIVE do support programmed graph rewriting.

Copying/computation of labels not visually explicit. We further found that the
way in which labels are copied from one model object to another should be more
visually explicit. As our figures show, AToM? currently only shows <SPECIFIED>
at labels where values are explicitly specified. In our opinion it would help if the
labels that are specified to be copied there were displayed. A color-coding scheme
could enhance user experience further.

Static semantics were hard to specify. Often the programmer of a graph trans-
formation might wish to specify rules that check the static semantics of a given
visual model. For instance in our case we wanted to make sure that the “Order”
relationship is a total ordering, without cycles. In AToM? we had to program
this check manually in Python code. However for future versions we envision a
more explicit mechanism in the form of negative application conditions that are
evaluated not at transformation time but rather when the model is saved. In
our particular case, the user could draw a circular dependency with the “Order”
relation. The semantics would then demand that this pattern may not match
when the validity of a given model is evaluated. Note that PROGRES [12] has
some limited support for static checks of that kind.

Layouting not yet optimal. We found the layout algorithms in AToM? to be
suboptimal. Although in general best effort is made by the AToM? modelling
environment, it still happens that nodes or edges overlap. Even in cases where
no overlapping occurs, objects might be arranged in a way that to the tool user
hardly makes sense. For instance in the case of Timeline, the time line should
really be a line, with arrows starting on the left and ending to the right. There
should be layout algorithms available which take such constraints into account.
Maier and Minas have devised a generic layout algorithm for meta-model based
editors [I4] which promises to mitigate some of those problems.
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6 Conclusion and Future Work

In this work we have shown that it is feasible to visually specify the transfor-
mation from the Timeline temporal specification formalism to finite automata
suitable for runtime monitoring. The resulting automata can directly be used
to generate efficient finite-state monitors for Java programs using an existing
back-end for tracematches [g].

We believe that this explicit way of transforming specifications to monitors
facilitates reasoning about and debugging of specifications. In particular, our
translation is completely visual and provides a one-to-one mapping between
entities in the Timeline specification and the resulting finite automaton. We
plan to express this bi-directional relationship (i.e., backward trace-ability) be-
tween Timeline and finite automata in the form of Triple Graph Grammars [I5].
These allow for the declarative specification of consistency relationships between
graphs. This will enable us to easily relate errors at execution level to constraints
in the original Timeline specification. We believe that our approach is yet an-
other stepping stone on our path to bringing temporal specifications and runtime
monitoring closer to widespread industry adoption.

In future work, we also plan to give a formal description of the actual trace-
match code and how it is generated from the obtained finite state machines.
We also wish to study the scalability of temporal specification formalisms with
respect to the size of the pattern that needs to be specified. Last but not least,
we want to apply our approach to real-world applications, for instance parts of
the DaCapo benchmark suite [16].
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