
Gamifying Static Analysis
Lisa Nguyen Quang Do

Paderborn University
Germany

lisa.nguyen@upb.de

Eric Bodden
Paderborn University & Fraunhofer IEM

Germany
eric.bodden@uni-paderborn.de

ABSTRACT
In the past decades, static code analysis has become a prevalent
means to detect bugs and security vulnerabilities in software sys-
tems. As software becomes more complex, analysis tools also report
lists of increasingly complex warnings that developers need to ad-
dress on a daily basis. The novel insight we present in this work is
that static analysis tools and video games both require users to take
on repetitive and challenging tasks. Importantly, though, while
good video games manage to keep players engaged, static anal-
ysis tools are notorious for their lacking user experience, which
prevents developers from using them to their full potential, fre-
quently resulting in dissatisfaction and even tool abandonment. We
show parallels between gaming and using static analysis tools, and
advocate that the user-experience issues of analysis tools can be
addressed by looking at the analysis tooling system as a whole,
and by integrating gaming elements that keep users engaged, such
as providing immediate and clear feedback, collaborative problem
solving, or motivators such as points and badges.

CCS CONCEPTS
• Human-centered computing → Empirical studies in inter-
action design; •Theory of computation→ Program analysis;
• Applied computing→ Computer games;

KEYWORDS
Program analysis, Gamification, Integrated Environments
ACM Reference Format:
Lisa Nguyen Quang Do and Eric Bodden. 2018. Gamifying Static Analysis. In
Proceedings of the 26th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’18),
November 4–9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3236024.3264830

1 INTRODUCTION
To efficiently fix a warning yielded by a static analysis tool, develop-
ers have to achieve three main goals: (1) understand the code base,
(2) understand the warning in the context of the code base, and
(3) determine the most efficient way of fixing it. Similarly, video
gamers need to (1) understand the game’s universe, (2) the quest

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3264830

they are trying to solve, (3) and to elaborate a strategy to solve it. In
both cases, players and developers engage in solving task after task
over the span of hours. The difference between analysis tools and
successful games is that the latter provide well-thought, engaging
features to support the player (quests are well explained, incentives
are made clear, etc.), which the former typically do not offer.

Past research in static analysis has explored how tomake analysis
tools more usable by, for example, making them faster [20, 28,
36], classifying warning lists [18, 22, 31], or improving their user
interfaces (UI) [11, 32]. We advocate that building a good analysis
tool should include such improvements only if they are helpful and
engaging to the developer. This also includes less researched areas
(e.g., collaborative problem-solving [35]). An important point is
that the analysis tool should be coherent as a system, i.e., it should
be much more than using an out-of-the-box analysis algorithm and
reporting its results to the developer after post-processing them.
Useful features should be integrated into the design of the system,
even into the analysis algorithm, if needed.

We envision a static analysis tool which not only reports bugs,
but also helps developers understand the code base, and helps them
fix warnings in an engaging, motivating way. In that sense, the tool
is really an intelligent code assistant. To achieve this, we propose to
leverage the knowledge of game designers, and to integrate gaming
elements into analysis tools to improve their user experience. Static
analysis is very powerful, but the tooling is unusable, it cannot be
used to its full potential. With this paper, we wish to motivate the
need for creating useful, complete analysis tools.

In Section 2, we explain how user-expercience issues of tradi-
tional static analysis tools can impede self-motivation. Then, we
initiate a discussion on how to apply gaming elements to static
analysis in Section 3. We report initial results on the acceptance of
gamified static analysis features in Section 4. Section 5 details the
related work and Section 6 concludes.

2 SELF-MOTIVATION IN STATIC ANALYSIS
The Self-Determination Theory (SDT) defines three innate psycho-
logical needs which influence self-motivation: competence, relat-
edness and autonomy [26]. In the context of video games, those
needs have been found to be good predictors of enjoyment and
satisfaction [27]. Competence refers to a need for a challenge and
its subsequent sense of achievement (e.g., having learnt new skills).
Autonomy is about the control of the player on their own actions
(i.e., the degree of choice offered at each step of the game). Related-
ness refers to the sense that the player’s actions have consequences
on the universe of the game.

A static analysis models all possible runtime scenarios from the
source code only. Such complex operations can take a long time to
complete [17]. Used as such, analyses cannot recompute updates
in a short time, so until the entire analysis is re-run, developers do

https://doi.org/10.1145/3236024.3264830
https://doi.org/10.1145/3236024.3264830

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Lisa NguyenQuang Do and Eric Bodden

12 3
4

AnalysisReporting tool

Figure 1:Workflow of a traditional use of static analysis. 1–4
show where gamification can be applied.

not know if their fix worked, if it didn’t, or if it introduced a new
bug. This impedes relatedness and competence. Static analysis is a
case where too much autonomy is given to the developer: to build
its own model, an analysis makes assumptions that may differ from
the developer’s understanding of the code. This makes it harder for
developers to understand why the analysis reports a warning and
if it is relevant to them, leaving them on their own as to how to fix
it [6, 17]. This traditional way of using static analysis can thus be
detrimental to the developer’s experience.

3 CHALLENGES
When thinking of games, concepts such as points, badges, or profiles
immediately come to mind. However, it is important to remember
that the goal of gamifying a system is not aboutmaking it a game but
making the tool more engaging to the users, and also considering
when not to gamify [5, 14]. All features of a good analysis tool
should be engaging, useful (i.e., directly assist the developer in fixing
bugs), and be minimally disruptive of the developer’s work [12,
16, 24]. This last point is all the more important as static analysis
already requires the developer to learn about the code base, warning
information, and fixing techniques. Adding gaming abstractions on
top of this (e.g., quests) could be distracting or confusing.

Figure 1 presents a traditional use of a static analysis tool: the
analysis is run on a separate server —typically as part of nightly
builds, and the warnings are reported to developers who address
them on the next morning. In the following, we focus on 1 – 4
and detail the challenges raised by gamifying static analysis.
1 Responsiveness: Because static analysis can take a long time
to terminate, analysis tools seldom provide support for providing
immediate feedback in response to a developer modification of
source code. To improve this, we raise two challenges.
(a) Making the analysis responsive. Past approaches to make analy-

ses faster such as incremental [28] or just-in-time analyses [20]
can handle code updates quick enough to provide immediate
feedback. However, worst cases can still run for longer than the
original analysis would. This must be avoided when designing a
gamified tool: a responsive interface cannot wait for the analysis
to complete, even for a fraction of the code changes. Research in
this direction needs to guarantee a maximum re-computation
time of one second in all cases (Nielsen’s threshold for interac-
tive UIs [25]). This could be done by avoiding or pre-computing
known worst cases, translating them in easily verifiable heuris-
tics, or by reporting different types of warnings at different
points of the software development lifecycle for example.

(b) Making the UI responsive. A key component of good games is
their short response time. This is typically ensured through

visual or sound effects on a game event or a player’s action.
Gamified tools should also follow this principle, for relatedness.
For example, when a developer fixes a bug, warning lists should
be immediately updated, and present warnings in a way that
makes it easy to identify which ones are newly created or fixed,
which is difficult for a large number of warnings. Gamified
analysis tools need UIs that supports such mechanisms.

2 Solution-oriented communication: Analysis tools typically
display information in terms of bugs (e.g., vulnerability types, sever-
ity etc.). Instead, we propose to shift the focus towards fixes, which
revolves around the following three challenges.
(a) Presenting warnings using fix information. In video games, play-

ers typically choose quests they can handle at their current
level. In most analysis tools, fix information is rarely available
and requires from the developer to first look into the bug and es-
timate the effort of fixing it. Better analysis tools could provide
an estimate of this effort, or even propose quick fixes (incurring
the danger of introducing other bugs). Displaying fixes instead
of bugs can also eliminate the need to triage through lists of
bugs, and give developers direct information they could act on
(e.g., prioritize fixes which have the most impact). This would
spare developer effort, and give them more visibility.

(b) Learning from the developer. In some cases, the developer knows
or can calculate information the analysis is not able to compute,
in particular constraints on runtime values. Tools could query
users for missing information and integrate it back into the
analysis. The process of guiding the developer to obtain such
information based on what the analysis knows, and how to
communicate with them in a human-readable, engaging way is
almost like a mini-game inside of the gamified tool.

(c) Pacing the difficulty. The levels of games such as Tetris typically
increase in difficulty. Sometimes, a particularly difficult level
can appear, and solving it motivates the player to continue play-
ing. Ordering lists of static analysis warnings by fix difficulty
would help developers learn about the tool, bugs, and code base
with a gentler learning curve. Another important concept is
minimizing external influences. For example, Tetris tiles are
always the same, and the goal and rules never change, so play-
ers can just concentrate on their task: aligning tiles. Grouping
warnings with similar fixes would have a similar effect, allow-
ing developers to concentrate on the fixing task without having
to switch from one code base (or warning type) to another.

3 Clear working status: Video game UIs strive to give users a
large autonomy by: (1) clearly presenting the player’s current status
to help them choose their next action, and (2) providing them with
intuitive actionable controls to take those actions. The UI of static
analysis tools should also address those challenges.
(a) Showing the developer’s current status. Just like video games,

there are two main phases to using a static analysis tool: se-
lecting which warnings (quests) to work on, and fixing those
warnings. In the first phase, developers need an overview of
all warnings, of the warnings they want to fix, and clear infor-
mation that helps them select warnings to fix (e.g., incentives
or impact of the fix). In the second phase, developers focus on
one warning in particular, so they need detailed information
about that one warning. In all cases, transparency over how the

Gamifying Static Analysis ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

analysis works is key. For example, if the tool cannot determine
if the warning has been fixed without re-running the analysis,
it should make it clear in the interface, and perhaps put the
warning in a waiting list for the next day.

(b) Showing available actions. Another important element is to al-
ways provide developers with the actions they can take (e.g.,
cancel a fix, assign themselves a warning, etc.) without clutter-
ing the view with actionable items, and providing support for
those actions (e.g., a quick rollback system for a cancel action).
Designing such a UI is key to good usability.

4 Teamwork:An aspect of static analysis that is often overlooked
by analysis writers is that, code can be developed collaboratively.
Leveraging a group’s knowledge and experience of the tool and the
code base can be very efficient, and raises two challenges:

(a) Collaborative problem-solving. Creating a collaborative debug-
ging environment where the strengths of different team mem-
bers are capitalized on without working against each other can
be tricky. For example, suggesting colleagues that might have
fixed similar issues without flooding said colleagues with too
many requests. Whether interactions between developers are
limited to questions and answers or the tool integrates real-
time interactions (similar to Google Docs), it is important for
a gamified tool to create an environment where the developer
can ask for help without being penalized, or leave the warning
for later, when they have more experience.

(b) Motivating elements for collaborative work. With the collabo-
ration of different individuals comes incentives and reward
systems such as points, badges, levels, achievements, rankings,
etc. Such elements can also be applied to a single user, to help
them have a clearer overview of what they are doing on a par-
ticular day. Such a system could be counter-productive since
it sets goals (e.g., earning points) that are different from the
original goal of fixing bugs. Researching which elements to use
and how to carefully balance them is a challenging task.

4 EARLY RESULTS
We have built an initial UI prototype of a gamified static analysis
tool addressing the challenges from Section 3. Figures 2 and 3 show
the selection screen and a close-up of the debug screen mentioned
in 3 (a). The tool features A – Q are described in Table 1. While
designing the features, we have focused on two aspects: customizing
the information based on the developer’s current work (e.g., their
currently assigned bugs) and experience (H and P), and providing
them with as focused feedback and actionable actions (e.g., K
presents information embedded in the code where it is relevant:
explanations on why the tool reports a bug, its relationship to other
bugs, and access to possible actions: "This is wrong", "I fixed it",
etc. Q appears when the developer fixes a bug. It shows them
their status (new points, achievements...) and gives them access to
possible actions: "Get more bugs to fix").

We ran a 45-minutes cognitive walkthrough of the prototype
with eight researchers who have knowledge of how static analysis
tools function. Five of them had worked with analysis tools as de-
velopers in the past. Participants performed 23 tasks grouped in five
themes: navigate the selection screen, (un-)assign bugs, navigate

Table 1: List of the gamified features in Figures 2–3, the per-
centage of participants having found them useful (U) / en-
gaging (E) to achieve their tasks, and having mentionned
them among their preferred ones (P).

Feature description %U %E %P
A Developer profile. 50 75 25
B Point system. 12.5 37.5 25
C Badges. 37.5 62.5 12.5
D Overview of yesterday’s achievements. 62.5 75 37.5
E Map/overview of the warnings. 75 37.5 0
F Filtering functionalities for the map. 100 50 50
G Warnings assigned to the user. 100 33.3 25
H Suggestions of bugs to fix. 100 16.7 0
I Assignment system. 100 25 0
J Warning history. 62.5 37.5 0
K Warning information in the code. 100 62.5 87.5
L Gutter icons. 85.7 0 12.5
M Mark false positives ("This is wrong"). 100 62.5 12.5
N Mark as fixed ("I fixed it"). 100 80 12.5
O Cancel M or N with one click. 100 0 0
P Fix suggestions. 100 50 50
Q Notification popup. 87.5 87.5 37.5

the debug screen, fix a bug, mark a bug as a false positive. In an in-
terview, we asked participants whether they found the tool features
(1) useful to complete their tasks and (2) engaging (i.e., they enjoyed
using it). Finally, we asked them to list the top features of the tool.
The study protocol and results are made available online [1].

Table 1 presents the results of the interview. We see that features
D – P were perceived as useful by a strong majority of the partic-
ipants. In particular, the information embedded in the code K was
mentioned by 87.5% of the participants as part of their top useful
features, confirming the need for answers to challenges 3 (a) and
3 (b). Next come the filtering functionalities F (50%, 3 (a) and
1 (b)) and fix suggestions P (50%, 2 (a)).
Features A – C , which correspond to typical gaming features

(badges, profile, points), have a lower usefulness score, and have
been perceived as more engaging than useful by the participants.
Many participants overlooked them, as they “are unrelated to what I

am doing”. In contrast, feature Q (notifications) is also a typical
gaming feature, but received a much higher usefulness and en-
gagement score (87.5%), and was also mentioned as one of the top
functionalities by 37.2% of the participants. This feature matches
challenges 1 (b), 3 (a), and 3 (b). This suggests that for static
analysis, useful gamification features should remain as discrete as
possible, and only be used when they provide useful information,
which confirms observations made by other researchers on the
more general field of gamifying software engineering [24].

5 RELATEDWORK
In this section, we present work related to the gamification chal-
lenges from Section 3, and their applications to static analysis.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Lisa NguyenQuang Do and Eric Bodden

A

B

C

D

E F

G H

I

JP

Figure 2: Selection screen. A–J and P are detailed in Table 1 and Section 4.

K

L

Q

Figure 3: Close-up of the debug screen. K–Q are detailed in
Table 1 and Section 4. M–O are included in the grey box (K).

Gamification: Many approaches to gamifying software engineer-
ing have been researched in the past decade [5, 10, 13, 16, 34], mostly
using points and badges. Recent literature proposes frameworks for
gamification of general software systems [3, 24, 30]. In this paper,
we motivate the need for a more concrete approach of gamifying
static analysis tools. To our best knowledge, the only such attempt
was limited to assigning points to the warnings [2]. We advocate
for a more complete gamification of the entire analysis system.
Responsiveness of static analysis: Past and current approaches
strive to make static analysis faster. Incremental analysis re-runs
only on incremental change sets [28, 36]. The just-in-time approach
prioritizes certain analysis directions [20]. Frameworks such as
Tricorder [29] or Parfait [9] run quick and imprecise analyses first,
and then refine the results with longer-running analyses.

Solution-oriented static analysis:Many analysis tools run post-
processing modules that compute hints to guide the developer fix
warnings. This ranges from showing pages of the vulnerability de-
scription [23] to computing vulnerability graphs [7, 21] to querying
developers for generating quick fixes [4].
Usability of static analysis: Usability issues in static analysis
tools have been documented over decades of use [6, 8, 17, 19, 33].
Approaches for improving particular UI components are explored in
academia and industry: navigating program flows [32], integration
of analysis tools in the workflow [8], graph visualisations [15], etc.
Collaboration in static analysis: From real-time collaboration
(Google Docs), to management software (GitHub) to crowdsourc-
ing [35], using knowledge from multiple individuals has brought
better user experience. To our best knowledge, this has not yet been
researched for static analysis.

6 CONCLUSION
We have presented the novel idea of following gaming principles
to improve the usability and engagement capabilities of static anal-
ysis tools. We propose going beyond simply including points and
badges, and look at the analysis system as a whole to define gami-
fied features. Our preliminary study shows that such features are
well-received, andmotivates the need for creating developer-centric
static analysis tools. Building such a system may require changes
to the way current analysis tools and analysis algorithms typically
work, by making them responsive, computing fix-centered warn-
ings instead of bug-centered ones, improving the UI of the tools
and adding collaborative features, challenges that are —for some—
not been widely researched in the context of static analysis.

ACKNOWLEDGMENTS
This research has been funded by the Heinz Nixdorf Foundation.

Gamifying Static Analysis ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

REFERENCES
[1] 2018. Cognitive walkthrough artifacts. https://blogs.uni-paderborn.de/sse/tools/

gamifying-static-analysis.
[2] S. Arai, K. Sakamoto, H. Washizaki, and Y. Fukazawa. 2014. A Gamified Tool

for Motivating Developers to Remove Warnings of Bug Pattern Tools. In 2014
6th International Workshop on Empirical Software Engineering in Practice. 37–42.
https://doi.org/10.1109/IWESEP.2014.17

[3] T. Barik, E. Murphy-Hill, and T. Zimmermann. 2016. A perspective on blending
programming environments and games: Beyond points, badges, and leaderboards.
In 2016 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). 134–142. https://doi.org/10.1109/VLHCC.2016.7739676

[4] T. Barik, Y. Song, B. Johnson, and E. Murphy-Hill. 2016. From Quick Fixes to
Slow Fixes: Reimagining Static Analysis Resolutions to Enable Design Space
Exploration. In 2016 IEEE International Conference on Software Maintenance and
Evolution (ICSME). 211–221. https://doi.org/10.1109/ICSME.2016.63

[5] K. Berkling and C. Thomas. 2013. Gamification of a Software Engineering course
and a detailed analysis of the factors that lead to it’s failure. In 2013 International
Conference on Interactive Collaborative Learning (ICL). 525–530. https://doi.org/
10.1109/ICL.2013.6644642

[6] Al Bessey, Ken Block, Benjamin Chelf, Andy Chou, Bryan Fulton, Seth Hallem,
Charles-Henri Gros, Asya Kamsky, Scott McPeak, and Dawson R. Engler. 2010. A
few billion lines of code later: using static analysis to find bugs in the real world.
Communications of the ACM 53, 2 (2010), 66–75. https://doi.org/10.1145/1646353.
1646374

[7] Checkmarx. 2018. Checkmarx home page. https://www.checkmarx.com/.
[8] Maria Christakis and Christian Bird. 2016. What developers want and need from

program analysis: an empirical study. In International Conference on Automated
Software Engineering (ASE). 332–343.

[9] Cristina Cifuentes, Nathan Keynes, Lian Li, Nathan Hawes, and Manuel Val-
diviezo. 2012. Transitioning Parfait into a Development Tool. IEEE Security &
Privacy 10, 3 (2012), 16–23. https://doi.org/10.1109/MSP.2012.30

[10] M. R. d. A. Souza, K. F. Constantino, L. F. Veado, and E. M. L. Figueiredo. 2017.
Gamification in Software Engineering Education: An Empirical Study. In 2017
IEEE 30th Conference on Software Engineering Education and Training (CSEE T).
276–284. https://doi.org/10.1109/CSEET.2017.51

[11] L. N. Q. Do, K. Ali, B. Livshits, E. Bodden, J. Smith, and E. Murphy-Hill. 2017.
Cheetah: just-in-time taint analysis for android apps. In 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-C). 39–42.
https://doi.org/10.1109/ICSE-C.2017.20

[12] Matthieu Foucault, Xavier Blanc, Margaret-Anne D. Storey, Jean-Rémy Falleri,
and Cédric Teyton. 2018. Gamification: a Game Changer for Managing Technical
Debt? A Design Study. CoRR abs/1802.02693 (2018). arXiv:1802.02693 http:
//arxiv.org/abs/1802.02693

[13] Flix Garca, Oscar Pedreira, Mario Piattini, Ana Cerdeira-Pena, and Miguel Pen-
abad. 2017. A Framework for Gamification in Software Engineering. J. Syst.
Softw. 132, C (Oct. 2017), 21–40. https://doi.org/10.1016/j.jss.2017.06.021

[14] Gartner. 2018. Gartner Says by 2014, 80 Percent of Current Gamified Appli-
cations Will Fail to Meet Business Objectives Primarily Due to Poor Design.
https://www.gartner.com/newsroom/id/2251015.

[15] Grammatech. 2018. CodeSonar home page. https://www.grammatech.com/
products/codesonar.

[16] Scott Grant and Buddy Betts. 2013. Encouraging User Behaviour with Achieve-
ments: An Empirical Study. In Proceedings of the 10th Working Conference on
Mining Software Repositories (MSR ’13). IEEE Press, Piscataway, NJ, USA, 65–68.
http://dl.acm.org/citation.cfm?id=2487085.2487101

[17] Brittany Johnson, Yoonki Song, Emerson R. Murphy-Hill, and Robert W. Bow-
didge. 2013. Why don’t software developers use static analysis tools to find
bugs?. In International Conference on Software Engineering (ICSE). 672–681.
http://dl.acm.org/citation.cfm?id=2486877

[18] Woosuk Lee, Wonchan Lee, Dongok Kang, Kihong Heo, Hakjoo Oh, and
Kwangkeun Yi. 2017. Sound Non-Statistical Clustering of Static Analysis
Alarms. ACM Trans. Program. Lang. Syst. 39, 4, Article 16 (Aug. 2017), 35 pages.
https://doi.org/10.1145/3095021

[19] Chris Lewis, Zhongpeng Lin, Caitlin Sadowski, Xiaoyan Zhu, Rong Ou, and
E. James Whitehead Jr. 2013. Does bug prediction support human developers?
Findings from a Google case study. In International Conference on Software Engi-
neering (ICSE). 372–381. http://dl.acm.org/citation.cfm?id=2486838

[20] Nguyen Quang Do Lisa, Ali Karim, Livshits Benjamin, Bodden Eric, Smith Justin,
and Murphy-Hill Emerson. 2017. Just-in-time Static Analysis. In Proceedings of
the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2017). ACM,NewYork, NY, USA, 307–317. https://doi.org/10.1145/3092703.
3092705

[21] Benjamin Livshits and Stephen Chong. 2013. Towards Fully Automatic Placement
of Security Sanitizers and Declassifiers. SIGPLAN Not. 48, 1 (Jan. 2013), 385–398.
https://doi.org/10.1145/2480359.2429115

[22] Ravi Mangal, Xin Zhang, Aditya V. Nori, and Mayur Naik. 2015. A User-guided
Approach to Program Analysis. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2015). ACM, New York, NY, USA,
462–473. https://doi.org/10.1145/2786805.2786851

[23] MITRE. 2018. Common Weakness Enumeration. https://cwe.mitre.org/.
[24] Scott Nicholson. 2012. A User-Centered Theoretical Framework for Meaningful

Gamification. In Games+Learning+Society 8.0.
[25] Jakob Nielsen. 1994. Usability Engineering. Elsevier.
[26] Richard M. Ryan and Edward L. Deci. 2000. Self-Determination Theory and

the Facilitation of Intrinsic Motivation, Social Development, and Well-Being.
American Psychologist (2000). https://doi.org/10.1037/0003-066X.55.1.68

[27] Richard M. Ryan, C. Scott Rigby, and Andrew Przybylski. 2006. The Motivational
Pull of Video Games: A Self-Determination Theory Approach. Motivation and
Emotion 40, 4 (2006), 344–360. https://doi.org/0.1007/s11031-006-9051-8

[28] Barbara G. Ryder. 1983. Incremental Data Flow Analysis. In Proceedings of the
10th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(POPL ’83). ACM, New York, NY, USA, 167–176. https://doi.org/10.1145/567067.
567084

[29] Caitlin Sadowski, Jeffrey Van Gogh, Ciera Jaspan, Emma Söderberg, and Collin
Winter. 2015. Tricorder: Building a Program Analysis Ecosystem. In International
Conference on Software Engineering (ICSE). 598–608.

[30] T. Dal Sasso, A. Mocci, M. Lanza, and E. Mastrodicasa. 2017. How to gamify
software engineering. In 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER). 261–271. https://doi.org/10.1109/
SANER.2017.7884627

[31] Mark S. Sherriff, Sarah Smith Heckman, J. Michael Lake, and Laurie A. Williams.
2007. Using Groupings of Static Analysis Alerts to Identify Files Likely to Contain
Field Failures. In Proceedings of the the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The Foundations
of Software Engineering (ESEC-FSE ’07). ACM, New York, NY, USA, 565–568.
https://doi.org/10.1145/1287624.1287711

[32] J. Smith, C. Brown, and E. Murphy-Hill. 2017. Flower: Navigating program flow
in the IDE. In 2017 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). 19–23. https://doi.org/10.1109/VLHCC.2017.8103445

[33] Justin Smith, Brittany Johnson, Emerson R. Murphy-Hill, Bill Chu, and
Heather Richter Lipford. 2015. Questions developers ask while diagnosing po-
tential security vulnerabilities with static analysis. In Foundations of Software
Engineering (FSE). 248–259.

[34] Nikolai Tillmann, Jonathan De Halleux, Tao Xie, Sumit Gulwani, and Judith
Bishop. 2013. Teaching and Learning Programming and Software Engineering
via Interactive Gaming. In Proceedings of the 2013 International Conference on
Software Engineering (ICSE ’13). IEEE Press, Piscataway, NJ, USA, 1117–1126.
http://dl.acm.org/citation.cfm?id=2486788.2486941

[35] M. C. Yuen, I. King, and K. S. Leung. 2011. A Survey of Crowdsourcing Systems.
In 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and
2011 IEEE Third International Conference on Social Computing. 766–773. https:
//doi.org/10.1109/PASSAT/SocialCom.2011.203

[36] Sheng Zhan and Jeff Huang. 2016. ECHO: Instantaneous in Situ Race Detection
in the IDE. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE 2016). ACM, New York, NY, USA,
775–786. https://doi.org/10.1145/2950290.2950332

https://blogs.uni-paderborn.de/sse/tools/gamifying-static-analysis
https://blogs.uni-paderborn.de/sse/tools/gamifying-static-analysis
https://doi.org/10.1109/IWESEP.2014.17
https://doi.org/10.1109/VLHCC.2016.7739676
https://doi.org/10.1109/ICSME.2016.63
https://doi.org/10.1109/ICL.2013.6644642
https://doi.org/10.1109/ICL.2013.6644642
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/1646353.1646374
https://www.checkmarx.com/
https://doi.org/10.1109/MSP.2012.30
https://doi.org/10.1109/CSEET.2017.51
https://doi.org/10.1109/ICSE-C.2017.20
http://arxiv.org/abs/1802.02693
http://arxiv.org/abs/1802.02693
http://arxiv.org/abs/1802.02693
https://doi.org/10.1016/j.jss.2017.06.021
https://www.grammatech.com/products/codesonar
https://www.grammatech.com/products/codesonar
http://dl.acm.org/citation.cfm?id=2487085.2487101
http://dl.acm.org/citation.cfm?id=2486877
https://doi.org/10.1145/3095021
http://dl.acm.org/citation.cfm?id=2486838
https://doi.org/10.1145/3092703.3092705
https://doi.org/10.1145/3092703.3092705
https://doi.org/10.1145/2480359.2429115
https://doi.org/10.1145/2786805.2786851
https://doi.org/10.1037/0003-066X.55.1.68
https://doi.org/0.1007/s11031-006-9051-8
https://doi.org/10.1145/567067.567084
https://doi.org/10.1145/567067.567084
https://doi.org/10.1109/SANER.2017.7884627
https://doi.org/10.1109/SANER.2017.7884627
https://doi.org/10.1145/1287624.1287711
https://doi.org/10.1109/VLHCC.2017.8103445
http://dl.acm.org/citation.cfm?id=2486788.2486941
https://doi.org/10.1109/PASSAT/SocialCom.2011.203
https://doi.org/10.1109/PASSAT/SocialCom.2011.203
https://doi.org/10.1145/2950290.2950332

	Abstract
	1 Introduction
	2 Self-Motivation in Static Analysis
	3 Challenges
	4 Early Results
	5 Related Work
	6 Conclusion
	References

