
Investigating Users’ Reaction to Fine-Grained Data Requests:

A Market Experiment

Nicole Eling

TU Darmstadt

eling@is.tu-darmstadt.de

Siegfried Rasthofer

TU Darmstadt

siegfried.rasthofer@cased.de

Max Kolhagen

TU Darmstadt

max.kolhagen@stud.tu-

darmstadt.de

Eric Bodden

Fraunhofer SIT & TU Darmstadt

eric.bodden@sit.fraunhofer.de

Peter Buxmann

TU Darmstadt

buxmann@is.tu-darmstadt.de

Abstract
The market for smartphone applications is

steadily growing. Unfortunately, along with this

growth, the number of malicious applications is

increasing as well. To identify this malware, various

automatic code-analysis tools have been developed.

These tools are able to assess the risk associated with

a specific app. However, informing users about these

findings is often difficult. Currently, on Android,

users decide about applications based on coarse-

grained permission dialogs during installation. As

these dialogs are quite abstract, many users do not

read or understand them. Thus, to make the more

detailed findings from security research accessible,

new mechanisms for privacy communication need to

be assessed. In our market experiment, we investigate

how fine-grained data requests during runtime affect

users’ information disclosure. We find that many

users reverse their decision when prompted with a

fine-grained request. Additionally, an effect of

security awareness and level of detail on disclosure

was found.

1. Introduction

The market for smartphone applications is

steadily growing with a total number of more than

1.5 Mio apps in Google Play [1]. These applications

provide users with various features facilitating their

daily lives, ranging from banking applications over

weather apps to fun applications. While these

applications provide various benefits, there are also

serious risks associated with their usage. When an

app is installed on a smartphone, depending on the

operating system the application obtains various

permissions allowing it to access all kinds of user

information. Further, there is a vast amount of

malware utilizing security gaps to harm users [2, 3].

Previous research has shown that users have often

difficulties assessing the impact of information

disclosure. Especially in the mobile app context,

many users do not understand the permissions and

potential risks associated with app installation [4, 5].

Due to this lack of knowledge, users might

underestimate the risks, and therefore grant

permissions they otherwise would not have given. In

addition, research has found that users discount

potential future risks and put higher emphasis on the

short-term benefits of information disclosure [6, 7].

As privacy and security are greatly threatened, we

want to explore if this assessment changes, when

information is made more explicit. Especially for

users with little security awareness and knowledge a

more detailed, easier to understand, imminent

information request might reduce their likelihood to

reveal their information. This work thus explores the

following research questions using a self-developed

mobile application:

1) How does the precision of an information

request influence users’ disclosure of

personal information?

2) Is this effect different for users with

different security backgrounds?

These research questions are investigated using

data obtained through a smartphone app offered in

Google Play. By doing so, we meet the call for

measuring real behavior instead of stated willingness

to disclose [8]. This is important as users’ intentions

often differ from user behavior in the context of

privacy [9, 10].

Our paper is structured as follows. First, we give

a short overview of relevant literature. Then, we

derive our hypotheses which are later tested within

our study. When presenting our methodological

approach, we discuss the advantages and

mailto:eling@is.tu-darmstadt.de
mailto:siegfried.rasthofer@cased.de
mailto:max.kolhagen@stud.tu-darmstadt.demax.kolhagen@stud.tu-darmstadt.de
mailto:max.kolhagen@stud.tu-darmstadt.demax.kolhagen@stud.tu-darmstadt.de
mailto:eric.bodden@sit.fraunhofer.de

disadvantages of using a real application and

introduce our research design. In chapter five, we

present the results. Finally, we discuss our findings

and conclude with limitations and avenues for future

research.

2. Related work

In this section, we describe related work in the

context of Android malware analysis that addresses

threats and mitigation mechanisms. Furthermore, we

present findings in the field of information privacy

focusing on user risk perceptions and privacy

behavior.

There are different kinds of malicious

applications in circulation [2], such as apps that send

SMS messages to premium-rate numbers or steal

banking data or location information. While the

engineering effort for Android malware was very low

in the beginning, recently, it is getting more and more

sophisticated [3]. The Android OS itself provides

different security protection mechanisms such as the

internal permission model which shows the user what

resources are accessed by the application, for

instance, contact data or text messages. However,

research has shown that users often do not understand

the permissions [4, 5]. One reason is that the

permission system is too coarse-grained and provides

too little security information about what data are

sent where and why. To address this issue, CRePE by

Conti et al. [11], Apex by Nauman et al. [12] or

DroidForce by Rasthofer et al. [13] have proposed a

fine-grained permission model to replace Android’s

permission model. In these approaches, a user or a

trusted entity is able to define fine-grained policies

such as Application X is not allowed to send my

girlfriend’s contact data to server S before 6pm,

which get enforced during runtime. While these

approaches are very promising due to their fine-

grained nature, it is still an open research question if

non-security experts are able to define such precise

policies in a correct way or whether it overtaxes the

user.

The techniques underlying these approaches are

static and dynamic code analysis approaches, or a

combination of both. In addition to applying them to

the permission problem, they are also essential in

automatically detecting malicious applications [3].

Static analysis is a code-analysis approach that can

analyze all paths in the application’s code (bytecode

or source code) without executing it, while dynamic

analysis executes the application in order to get

concrete runtime information about the execution.

Both have their pros and cons, but are heavily used in

a security context [3]. For instance, if an analyst

needs to know whether an application leaks some

sensitive data to a specific server, one can use static

or dynamic code analysis approaches to answer this

question in a fully-automatic way. In the context of

Android, FlowDroid by Arzt et al. [14] is a static

data-flow tracking tool that scans an Android

application for identifying data leaks before it gets

installed on the device. A dynamic analysis approach

for identifying data leaks is TaindDroid [15], which

requires the execution of the application and informs

the user about a potential data leak during runtime.

Another important field where static and dynamic

code analysis approaches are heavily used is the

detection of vulnerabilities in applications. CHEX

[16] and Mallodroid [17] are static analysis tools that

try to identify specific vulnerabilities in Android

applications. In comparison, Sounthiraraj et al. [18]

combines both static- and dynamic analysis

approaches (hybrid code analysis) in order to identify

SSL vulnerabilities.

When considering security and privacy, to

identify risks it is very important not only to consider

the approaches presented above but also to be aware

of users’ risk perceptions and the resulting user

behavior [19]. There is various research on risk in

general investigating risk’s role in an individual’s

decision making [20]. Transferring this general

perspective to privacy, research has found that users

often weigh benefits against perceived risks in a so

called privacy calculus when deciding about

information disclosure [21]. When benefits exceed

risks, the permission request is accepted. Research

investigating risk perceptions in this context have

among others analyzed how these perceptions are

formed [22], and how risk perceptions and consent

dialogs influence users’ willingness to accept

information requests [23-25]. For instance, research

in the context of mobile apps has found that users

undervalue the probability of risk [22].

The research community behind code-analysis

techniques has engineered very sophisticated

techniques to identify data leaks or similar threats,

whereas the privacy community has very good

experience in users’ risk perceptions. This work

seeks to take a first step to close the gap between

these two communities and to measure how sensitive

data leaks can be reported in a way that the user

understands the privacy and security impact.

3. Hypotheses

Research on privacy policies and app-permission

dialogs has shown that users often do not read or

understand them [4, 5]. This lowers the users’ ability

to make an educated judgement about potential

privacy risks. Further, associated risks are often not

transparent and lie very far in the future. Due to this,

they are discounted and valued less than the short

term benefits of disclosure [6, 10]. This behavior is

further encouraged by the permission dialogs used in

Android operating systems. Users have to decide

about permissions before installation. As it is very

hard to assess the relevance of the permissions and

potential benefits and risks of disclosure beforehand,

this procedure makes it very hard to make a decision

corresponding with users’ privacy attitude.

The main research hypothesis of this paper is that

risks would be more imminent if information access

was made more explicit by presenting fine-grained

permission requests. Fine-grained permissions can

have a much higher degree of accuracy than coarse-

grained permissions. For instance, Android’s

permission model provides coarse-grained

permissions such as “Internet Access”, where a fine-

grained permission would be “Access to

www.malicious.com”.

Further, we pose that it would be easier for

individuals to weigh benefits and risks when the

concrete benefits associated with disclosure were

more transparent. This can be achieved by displaying

the data request at the time of data access. This way

the abstract and unnoticed data transfer would

become more obvious and contextual. Disclosure

would not be an abstract risk or some unknown

process anymore, but would instead happen directly

in front of the user’s eyes. When users become aware

of the data that is transferred, they may therefore be

less willing to share the information and reject the

data request. We therefore hypothesize that:

H1: A fine-grained permission request during

runtime is less likely to be accepted than a generic

permission request before installation.

While users might understand fine-grained

permission requests more easily, the risk might still

be abstract to some extent. Displaying concrete user

information instead of the abstract name of the data

type might increase the users’ attention and increase

their risk perception resulting in a decreased

willingness to disclose their data:

H2: A data request containing concrete user

information reduces the user’s likelihood to accept it.

Previous research has shown that knowledge and

experience can have a great influence on privacy

concern and on risk perceptions [8, 26]. We therefore

hypothesize that users that are more security aware

and who have dedicated measures in place to protect

their smartphones are also more likely to reject

information requests.

H3: Security aware users are less likely to accept

data requests.

Further, as security-aware users are more likely to

understand permission requests and their

consequences during installation, we expect that

security-aware users are influenced less by the level

of detail of the request than security unaware users:

H4: Security awareness moderates the effect of

the level of detail of the information requests on

information disclosure.

4. Methodology

To test the hypotheses, we conducted a market

experiment. In the context of privacy, intention to

disclose as often measured in surveys and actual

disclosure often do not match [9, 27]. Therefore,

privacy researchers increasingly demand new

methods that focus on real user behavior [8]. We

attempted to meet this request by developing a

smartphone app. We aimed at creating a situation as

close to real life as possible. This is why instead of

conducting a laboratory experiment, we uploaded our

self-developed app to Google Play and measured user

behavior within the app. This had the great advantage

that users treated and assessed the app in the same

way as any app downloaded from the app store.

However, this procedure has the disadvantage that

only little additional information about the users can

be obtained without raising ethical concerns. Further,

we did not have any influence on the selection of

participants. But even considering these drawbacks,

we believe that this realistic setting compensates for

these disadvantages, and provides us with a unique

opportunity to study information disclosure in the

mobile app context.

The app was designed based on three criteria:

Previous research has found that users perceive

permissions differently when they might potentially

be needed for the functionality of the app [28]. As we

were not able to control for these perceptions through

a survey, one criterion was to ensure that the

functionality of the app was clearly independent of

the permissions and information items requested.

Another criterion was the potential relevance or

interest to a wide variety of people. We did not want

to target one specific group of users. An additional

criterion was to keep the app simple and easy to use.

Trying to meet these criteria, we decided to

implement a fun app, which belongs to the

entertainment category. According to a recent study

[29], entertainment apps resemble the second-most

downloaded app category. These apps have the

potential to spread very fast and to attract all kinds of

users. In addition, there is not much functionality to

which the need for different information items could

be attributed. In contrast, if we had developed an app

similar to Spotify, Facebook or a gaming application

(most downloaded applications) which are used by a

wide variety of users, there would have been a huge

amount of potential influences on the users when

assessing the necessity of different information items.

While a fun app is not as serious as an app increasing

usefulness, we think that especially these apps are

critical in respect to permissions.

The functionality of our app was quite simple. It

played all kinds of funny noises. Thus, it was a pure

fun-app and its usefulness was very low. However,

these kinds of apps have the potential to attract an

extensive user base very fast. Apps offering similar

functionality achieve up to five million users in the

Google Play Store. As these kinds of apps can

contain harmful malware [30, 31] user behavior when

handling these apps is of special interest. While we

acknowledge that the functionality is not very

educated, we still believe that due to these reasons it

has been a good choice to select this functionality.

When downloading the app, the user is first

displayed a short tutorial, illustrating the functionality

of the app. Then, the user is presented with the main

screen displaying buttons with pictures. When a

button is pressed, the app plays the corresponding

sound. The main screen of our app is illustrated in

Figure 1.

Figure 1. Screenshot of the main-screen of

the app

Critically, to obtain new sounds, a user can push

on a button called “More Sounds”. After pressing the

button, the user is prompted to disclose some kind of

personal information to get a new sound. This part

represents the core of the experiment. Users were

asked to trade their personal data for a very low

benefit, namely a single new sound. While for ethical

reasons user data was not transmitted to our server,

users were made to believe that the information was

in fact transferred. Information requests were

assigned randomly to the users. In case users rejected

this request, they were redirected to the main screen

and did not receive the sound. If they accepted the

request, it looked as if their information was

transferred to our server, and a new sound-button

appeared. For more sounds, users had to click the

button again and to decide about a new information

request. Figure 2 illustrates an exemplary request.

Figure 2. Exemplary information request

Each statement presented to the user consisted of

four parts: The first part contained the reason why the

provider claimed to collect the information. The

second part displayed the information type, e.g.

location data. The third part of the statement

contained information about the target of the

transmitted data, either the app provider or unknown

third parties. Finally, we varied the granularity of the

information request, i.e., an abstract statement stating

that personal data is transmitted or a statement with

concrete personal information displayed to the user.

In respect to the reasons for data request, we

varied among financing, app improvement, app

provision, and personalization. Regarding the data

sink, we varied between data transfer to the provider

and data transfer to third parties. We differentiated

among five different data types: 1) location

represents a data type often discussed in literature

[32, 33]. Smartphones enable providers to collect

real-time location information about their users. This

information can be used to provide additional value

by customizing the service to the user’s location [34].

However, there is also a great potential for misuse

[35]. As a result, the privacy threats associated with

the usage of location-based services are one of the

biggest factors inhibiting their adoption [36]. 2) The

phone number was used to model identifiable

information. A phone number is unique and can be

matched to a specific person. Therefore, revealing

one’s phone number can be compared to revealing

one’s identity. 3) We selected photos as third data

type because they represent very sensitive

information. In contrast to photos uploaded on social-

networking sites, photos on a smartphone have not

been pre-selected by the user and thus, might be

especially sensitive. 4) Data about contacts was

selected as it is especially interesting to see how users

would decide about data of their friends, a research

field hardly investigated so far [37]. 5) Finally, we

made the users believe that we transmit their personal

SMS. This is a very common type of malware where

incoming SMS are intercepted and silently

transmitted to the attacker, i.e., the user does not

recognize the theft [2]. However, in our case, we

displayed a message to the user saying that SMS

messages were transmitted to our server.

The main focus of our experiment lay on the

effect of the level of detail of the request on the

users’ acceptance (H2). We hypothesized that a

statement involving the real information to be

transferred would increase users’ likelihood to reject

the request. In the abstract message, we used the

generic name of the data type, i.e., the statement

would say that it requested the user’s phone number.

For more explicit messages, we used the information

available on the smartphone. Thus, the user would

not be presented with the generic name of the data

type but with his true phone number. For instance the

statement would say: “In order to be able to offer the

application we have to transmit your phone number:

0123456 to us.”

To do so, during installation of the app we had to

obtain all permissions for accessing the information.

Thus, users had actually agreed to everything

beforehand and should be willing to accept every

request. However, previous research has shown that

users often do not pay close attention to permissions

or do not understand them [38, 39]. Therefore, we

expected that users would change their mind when

prompted with more explicit statements as modelled

by our app (see H1).

The different types of information were made

more explicit as follows: To make location

information more explicit and personal, in one

variation we displayed the user’s current address and

location on a map. For the phone number, we

displayed the user’s real phone number. To illustrate

that we were really going to transfer photos, contacts,

and SMS, we randomly chose three

photos/contacts/SMS saved on the phone and

displayed them to the user.

The four different components were randomly

combined to create the requests presented to the

users. However, one restriction was that each user

always received the same reason, as it would not

have been logical if reasoning had varied across

requests. Further, a user was never asked for the

exact same request twice. Table 1 shows the different

sentence fragments used to form the data requests.

Depending on the final manipulation, only the

sentence as shown in the table was displayed or we

additionally displayed the personal information of the

users directly extracted from their phone.

Table 1. Sentence fragments
Reasoning

+

Data type

+

Internal

/external

In order to finance

our application…

…we have to transmit

your location…

…to us.

In order to be able

to offer the

application…

…we have to transmit

your phone number…

…to our

partners.

In order to

improve our app

for you further…

…we have to transmit

your photos…

In order to be able

to offer you

personalized

sounds…

…we have to transmit

your contacts…

…we have to transmit

your text messages…

When implementing the app, we took great care

that the app would have an appealing design and that

it made a serious impression. Our app was offered in

three languages, English, Spanish, and German, so

that it could be offered in many countries. This way,

we also increased the likelihood that the request for

information was understood by the participants.

We took great care to meet ethical standards. In

the app store, we provided a link to a privacy policy,

informing users about the data accessed as well as the

use of the data. Users who did not want to participate

could refrain from installing the app. Users were able

to uninstall the application at any time. As we did not

want to infringe users’ privacy, we refrained from

collecting any personal user information. While the

app pretended that user data was transferred, no

personal user data ever left the users’ phones.

Before we uploaded the app, we conducted a pre-test

with privacy and security researchers. In this pre-test,

we asked participants to install and test the app.

Feedback was integrated and the app was uploaded to

the Play store at the end of May 2014. New apps are

ranked very low by Google Play. Therefore, we

asked our colleagues and friends to download and

promote the app. As some of them knew about the

experiment and we were not able to identify unique

users, all users downloading the app during this

initial phase were excluded from the consecutive

analysis. Overall, the app remained in Google Play

for a year. In this time, in total, 338 users

downloaded the app. As described before, of these,

all 75 users downloading the app in the initial phase

(before July 2014) were excluded. Of the 263

remaining users, 73.38 % tried to add at least one

new sound resulting in 193 valid first decisions.

When users added several sounds, they had to make

more than one decision, which is why our complete

dataset comprises 596 user decisions.

5. Results

5.1. Measures

When a user started the app for the first time, we

obtained data about his smartphone settings.

However, to avoid invading the users’ privacy, we

refrained from collecting any information that could

identify the user. The thus obtained data was used, to

derive a proxy for determining users’ security

awareness. We extracted five different kinds of

settings from the users’ smartphone: Android OS

version, device encryption mode, screen lock,

installed apps that are security-related, and security

flags. We assigned a value between zero and one to

each of these indicators and then calculated the user’s

security awareness based on different weights

assigned to those indicators.

Information about the Android OS is an important

indicator since if the latest version is installed the

user is protected against any vulnerability that has

been discovered in previous versions. However, older

smartphone generations might not be updated

because they are no longer actively supported.

Therefore, we decided to rate the security level three-

folded (newer version available for user’s

smartphone: 0; most recent Android version for

user’s smartphone: .5; most recent Android version

available: 1).

Encrypting the local storage of a device is a good

indicator for a higher security awareness level. Since

Android 3.0, users can manually activate device

encryption. However, all versions higher than

Android 5.0 support encryption by default. Versions

lower than 3.0 do not support disk encryption at all.

We applied three security-levels (encryption not

activated: 0; encryption turned on by default: .5;

encryption manually activated: 1).

The next indicator was the user’s screen lock.

This can be set to none, slide, face unlock, pattern,

pin, or password. These modes vary in respect to

their level of security [40, 41]. The indicator is rated

according to this security level (none: 0; slide: 0;

pattern: .33; face unlock: .66; pin: 1; password: 1).

Another important factor for measuring a user’s

security awareness is the installed applications. We

extracted all information about the installed

applications from the phone and matched them with

security-related applications. (A list of applications

can be requested from the authors.) The list contained

at least all top ten applications from every security

category and can be considered as representative.

Security levels are set depending on the number of

security-relevant apps installed (none: 0; one: .25;

two: .5; three: .75; four and more: 1)

The last factor for security awareness was the

activation of Android’s internal security flags:

“unknown sources” which allows the installation of

apps from any source instead of just the official

Google Play store (activated: 0; deactivated: 1) and

“verify apps” which causes Android to analyze

installed applications for well-known malware

(deactivated: 0; activated: 1).

Overall, we rated the Android OS version, device

encryption, screen lock and installed apps equally

with 22.5 %. Security flags were rated only with 5 %

each, as they are less reliable because also security-

unrelated reasons for enabling/disabling them exist.

For an exemplary user with the following settings,

security awareness would be determined as follows:

Version Android 4 where Android 5 is the latest

version (.5 * 22.5 %) + device encryption is on per

default (.5 * 22.5 %) + pin lock (1 * 22.5 %) + three

security-related applications installed (.75 * 22.5%) +

unknown sources flag enabled (0 * 5 %), + verify app

flag enabled (1 * 5 %) = .67.

In addition to security awareness, every time a

user was shown one of the data requests (see Figure

2), we noted and measured what data request was

displayed, how long the user looked at the screen and

if the user accepted or rejected the request.

5.2. Analysis

The user information requested in our

experimental setting was information for which we

had already obtained sufficient Android permissions

during installation. Thus, we actually would not have

had to ask the users for their consent again, and could

have just transferred the data to our server. Therefore,

any user rejecting the permission request reversed his

or her original decision, providing evidence for H1.

Table 2 displays the total number of rejects and

accepts in our sample. As mentioned earlier, each

time users wanted to add a new sound, they had to

give their consent for one specific data request. Only

if they accepted this request, did they receive a new

sound. The next time they wanted to add a new sound

again, a different data request was displayed. For

instance, when trying to add a new sound the first

time, user A might be asked to allow the app to

transfer her phone number. If she accepted, the next

time she wanted to download a new sound, we might

ask her for her SMS messages.

As the first decision might influence consecutive

ones, Table 2 contains separate statistics for the first

decision users have made (first row) and the later

data requests (second row). The column Reject shows

how many users rejected a data request, Accept

shows how many users accepted a request and Shift

of opinion shows how many users shifted their

opinion to accept after first rejecting a certain data

request. When looking at the numbers, it is

interesting to note that 59.6 % of all users trying to

add a new sound finally rejected the data request.

Thus, more than half of all respondents did not stick

with the coarse-grained permissions they granted

during installation, but reversed their decision. Only

51 users directly accepted data transfer when

prompted during run-time. This provides first

evidence that fine-grained data requests at the time of

data access might better reflect a user’s intention than

coarse-grained permission requests during

application installation. By displaying fine-grained

information during runtime, users’ likelihood to

disclose their information seems to be substantially

lowered (H1).

Table 2. Descriptive statistics

Decisions

included

Reject Accept Shift of

opinion

First data

request

115

(59.6 %)

51

(26.4 %)

27

(14.0 %)

Later data

requests

34

(11.0 %)

260

(84.1 %)

15

(4.9 %)

Interestingly, the 78 users (51 + 27) who had

accepted the first data request, finally accepted

further data requests in 89 % (84,1% + 4,9%) of the

cases as well. As a result, the ratio of rejects to

accepts was reversed for consecutive decisions

(second row of Table 2). Only 34 data requests were

rejected, while 275 (260 + 15) data requests were

confirmed.

We tested for the effect of the level of detail on

the users’ acceptance using contingency analysis. No

significant effect of the level of detail on user

acceptance could be found when only considering the

users’ first decision (
2
(1, N = 193) = . 1, p > .1).

However, when considering consecutive decisions of

the users who had already accepted one of the

requests, a significant effect of the level of detail

could be shown. The corresponding contingency

table is displayed in Table 3. For data requests which

displayed fine-grained user-related information, the

percentage of rejects was significantly higher than for

abstract data requests (
2
(1, N = 309) = 4.75,

p < .05). Thus, for users who had already accepted a

data request, H2 could be confirmed for consecutive

decisions.

Table 3. Contingency table for later data
requests

 Reject Accept Total

Abstract data requests 20

(11.8 %)

150

(88.2 %)

170

Fine-grained data

requests

29

(20.9 %)

110

(79.1 %)

139

The second research question focuses on how

users’ security background would influence user

decisions. To investigate this influence, we

developed the operationalization of users’ security

awareness described above and tested its effect on

information disclosure. Users’ security awareness

ranged from .05 to .56 (mean = .25; SD = .11). Thus,

all users downloading the app displayed a low or

medium level of security awareness. To test for the

effect of security awareness on information

disclosure, we conducted binary logistic regressions

for the first decisions users’ made as well as for

consecutive decisions. Separate regressions were

necessary as the first decision might have influenced

later ones. In the regression we included security

awareness and level of detail as independent

variables and acceptance as dependent variable. In

addition, we controlled for information type, data

transfer to third parties and reasoning.

Interestingly, only considering the users’ first

decisions in the regression, the model was not

significant (
2
(3, N = 193) = .11, p > .1) and security

awareness had no effect on users (p > .1). Thus,

looking at the overall sample, H3 could not be

confirmed. However, investigating consecutive

decisions of the remaining users, the regression

model was significant (
2
(3, N = 309) = 17.83,

p < .0005). An increase in security awareness

significantly reduced a user’s likelihood to accept a

request (p < .05). Thus, H3 could be partially

confirmed. Further, we found a significant interaction

effect of detail and security awareness on acceptance

(p < .1) partially confirming H4 as well.

6. Discussion

The presented study provides several theoretical

and practical contributions. For one, the study tested

how fine-grained permissions influence information

disclosure. As illustrated in the results section, many

users rejected the data requests within the app even

though they had granted the corresponding

permissions already during installation. This may be

due to the fact that they did not understand the

permission requests in the first place, as suggested by

previous research on permission dialogs that show

that these dialogs are not effective in transmitting

privacy information [4]. The more fine-grained data

requests presented at the time of information access

appear to better enable users to decide about

information disclosure. Indeed, more than half of all

users rejected the first data request displayed to them.

This finding supports previous research that has

shown that the explicitness of a permission request

could influence perceived risks [42].

In contrast to Android, in iOS users do not have

to grant permissions before installing the application.

Instead, they are asked to confirm the permission

when the app accesses (sensitive) resource

information during runtime. For instance, when a

restaurant finder application wants to access location

data of the user, the user is shown a prompt right

before location data is accessed and can grant or deny

the request. This is an approach similar to our design,

except for the fact that the user is shown only coarse-

grained, abstract information, for instance on where

the data is sent to.

In the next major Android release, Android M,

Android will roll-out a permission system similar to

Apple’s iOS, where the user gets prompted right

before the app tries to access (sensitive) resource data

[43]. Our results have confirmed that from a usability

point of view Apple’s and Android M’s permission

model is a better way to design a proper permission

model. However, we have further shown that more

fine-grained permission messages do influence the

users’ decision because it gives them a better

understanding of what the app does with their

personal data. Such fine-grained information about

data flows can positively improve the protection of

the users.

Surprisingly, displaying concrete user-related

information and thus, further increasing the level of

detail, did not have any influence on users during

their first decision about disclosure within our

experiment. It seems that the sole existence of the

privacy alert pointing out specific data types to be

transferred at a specific point in time was enough to

make nearly 60 % of users reject the request. The

display of user-related information could only be

shown to significantly influence users who had

accepted a request before. In consecutive decisions,

the display of user-related information made more

users reject requests than an abstract statement. Even

though H2 could be confirmed only partially we

believe that our findings represent an important first

step in identifying the role of direct, user-related data

requests.

The effect of the level of detail on information

disclosure was shown to be moderated by the users’

security awareness. Only users with a medium

security awareness accepted more detailed

information requests. (Users with a high awareness

had not installed the app in the first place.) Users

with low security awareness and who had consented

once generally accepted future decisions as well. This

indicates that user-related, clear information

communication only helps when the user at least has

some awareness of privacy and security issues, but at

the same time, is generally open to revealing at least

some kind of data.

7. Limitations and Outlook

As any study, our research underlies several

limitations which provide potential for future work.

For one, we offered our app in Google Play and

embedded our experiment into the app. This allowed

us to measure real behavior. However, at the same

time this procedure deprived us of the opportunity to

obtain additional information about the users, as

would have been possible in an online survey. For

instance, it would have been interesting to learn more

about the users’ perceived risk and benefits, or

privacy concerns, and to test their impact on real

behavior. Future work might combine a real life

experiment with laboratory experiments in order to

be able to compare the results and thus, gain further

understanding of information disclosure.

In our experiment, we focused on one specific

type of app, namely a fun application. As argued in

the paper, this was appropriate as it allowed us to

ensure that permissions were not associated to

functionality and as this app category is especially

prone to fraud apps. However, it would be interesting

to explore our findings in other contexts as well. For

instance, it might be possible that users would assess

the requests differently if they would obtain huge

perceived benefits from information disclosure, or if

they had more trust in the provider.

To generate information requests utilizing users’

information, we had to request all permissions

necessary to access all the information that might be

requested during app usage. This resulted in a list of

twelve total permissions. As we offered a fun app and

as it was clear that all these permissions were not

necessary for the application to work, privacy

sensitive users might not have installed the

application. Thus, our sample is comprised of users

who either do not pay close attention to permission

requests or do not understand the requests or do not

value privacy very much. Future studies might

consider this limitation and try to find other

configurations in which also privacy sensitive users

might participate.

8. Conclusion

In our study, we combined the expertise from the

fields of security and Information Systems research

to determine appropriate means for communicating

information access. We find that fine-grained

permission requests during run-time better inform

users than coarse-grained ones before installation.

Further, we could show that users’ security

awareness and the level of detail of the data request

can influence users’ disclosure behavior.

9. Acknowledgements

This work was supported by the BMBF within EC

SPRIDE and ZertApps, by the Hessian LOEWE

excellence initiative within CASED, by the DFG

within RUNSECURE, the Collaborative Research

Center CROSSING and the Priority Programme 1496

“Reliably Secure Software Systems – RS3”.

10. References

[1] http://www.appbrain.com/stats/number-of-

android-apps, accessed 2015-06-12.

[2] Zhou, Y., and Jiang, X., "Dissecting Android

Malware: Characterization and Evolution",

Proceedings of the 2012 IEEE Symposium on

Security and Privacy, 2012, pp. 951-909.

[3] Rasthofer, S., Asrar, I., Huber, S., and Bodden,

E., "How Current Android Malware Seeks to Evade

Automated Code Analysis ", Proceedings of the 9th

International Conference on Information Security

Theory and Practice 2015.

[4] Felt, A.P., Ha, E., Egelman, S., Haney, A., Chin,

E., and Wagner, D., "Android Permissions: User

Attention, Comprehension, and Behavior",

Proceedings of the Eighth Symposium on Usable

Privacy and Security, 2012.

[5] Felt, A.P., Egelman, S., and Wagner, D., "I've Got

99 Problems, but Vibration Ain't One: A Survey of

Smartphone Users' Concerns", Proceedings of the

second ACM workshop on Security and privacy in

smartphones and mobile devices, 2012, pp. 33-44.

[6] Acquisti, A., "Privacy in Electronic Commerce

and the Economics of Immediate Gratification",

Proceedings of the 5th ACM conference on

Electronic commerce, 2004, pp. 21-29.

[7] Acquisti, A., and Grossklags, J., "Losses, Gains,

and Hyperbolic Discounting: An Experimental

Approach to Information Security Attitudes and

Behavior", in (Camp, L.J., and Lewis, S.): The

Economics of Information Security, Kluwer, 2004,

pp. 165-178.

[8] Smith, H.J., Dinev, T., and Xu, H., "Information

Privacy Research: An Interdisciplinary Review", MIS

Quarterly, 35(4), 2011, pp. 989-1016.

[9] Norberg, P.A., Horne, D.R., and Horne, D.A.,

"The Privacy Paradox: Personal Information

Disclosure Intentions Versus Behaviors", Journal of

Consumer Affairs, 41(1), 2007, pp. 100-126.

[10] Acquisti, A., and Grossklags, J., "Privacy and

Rationality in Individual Decision Making", IEEE

Security and Privacy, 3(1), 2005, pp. 26-33.

[11] Conti, M., Nguyen, V.T.N., and Crispo, B.,

"Crepe: Context-Related Policy Enforcement for

Android", Proceedings of the 13th International

Conference on Information Security, 2011.

[12] Nauman, M., Khan, S., and Zhang, X., "Apex:

Extending Android Permission Model and

Enforcement with User-Defined Runtime

Constraints", Proceedings of the 5th ACM

Symposium on Information, Computer and

Communications Security, 2010, pp. 328-332.

[13] Rasthofer, S., Arzt, S., Lovat, E., and Bodden,

E., "Droidforce: Enforcing Complex, Data-Centric,

System-Wide Policies in Android", Proceedings of

the 9th International Conference on Availability,

Reliability and Security, 2014.

[14] Arzt, S., Rasthofer, S., Fritz, C., Bodden, E.,

Bartel, A., Klein, J., Le Traon, Y., and Octeau, D.,

"Flowdroid: Precise Context, Flow, Field, Object-

Sensitive and Lifecycle-Aware Taint Analysis for

Android Apps ", Proceedings of the 35th ACM

SIGPLAN Conference on Programming Language

Design and Implementation 2014.

[15] Enck, W., Gilbert, P., Chun, B.-G., P., L., Jung,

J., Mcdaniel, P., and Sheth, A.N., "Taintdroid: An

Information-Flow Tracking System for Realtime

Privacy Monitoring on Smartphones", Proceedings of

the 9th USENIX Conference on Operating Systems

Design and Implementation, 2010.

[16] Lu, L., Li, Z., Wu, Z., Lee, W., and Jiang, G.,

"Chex: Statically Vetting Android Apps for

Component Hijacking Vulnerabilities", Proceedings

of the 2012 ACM Conference on Computer and

Communications Security, 2012.

[17] Fahl, S., Harbach, M., Muders, T., Baumgärtner,

L., Freisleben, B., and Smith, M., "Why Eve and

Mallory Love Android: An Analysis of Android Ssl

(in)Security", Proceedings of the 2012 ACM

conference on Computer and communications, 2012

http://www.appbrain.com/stats/number-of-android-apps
http://www.appbrain.com/stats/number-of-android-apps

[18] Sounthiraraj, D., Sahs, J., Greenwood, G., Lin,

Z., and Khan, L., "Smv-Hunter: Large Scale,

Automated Detection of SSL/Tls Man-in-the-Middle

Vulnerabilities in Android Apps", Proceedings of the

21st Annual Network and Distributed System

Security Symposium 2014.

[19] Vance, A., Anderson, B.B., Kirwan, C.B., and

Eargle, D., "Using Measures of Risk Perception to

Predict Information Security Behavior: Insights from

Electroenecphalography", Journal of the Association

for Information Systems, 15, 2014, pp. 679-722.

[20] Kahneman, D., and Tversky, A., "Prospect

Theory: An Analysis of Decision under Risk",

Econometrica, 47(2), 1979, pp. 263-291.

[21] Dinev, T., and Hart, P., "An Extended Privacy

Calculus Model for E-Commerce Transactions",

Information Systems Research, 17(1), 2006, pp. 61-

80.

[22] Keith, M.J., Thompson, S.C., Hale, J., E. Hale,

and Greer, C., "Examining the Rationality of

Information Disclosure through Mobile Devices",

Proceedings of the 33rd International Conference on

Information Systems, 2012.

[23] Anderson, C., Free - the Future of a Radical

Price, Hyperion, New York, 2009.

[24] Eling, N., Krasnova, H., Widjaja, T., and

Buxmann, P., "Will You Accept an App? Empirical

Investigation of the Decisional Calculus Behind the

Adoption of Applications on Facebook", 34th

International Conference on Information Systems,

2013.

[25] Krasnova, H., Eling, N., Abramova, O., and

Buxmann, P., "Dangers of ‘Facebook Login’ for

Mobile Apps: Is There a Price Tag for Social

Information?", Proceedings of the 35th International

Conference on Information Systems, 2014.

[26] Li, Y., "Empirical Studies on Online Information

Privacy Concerns: Literature Review and an

Integrative Framework", Communications of the

Association for Information Systems, 28(2011, pp.

453-496.

[27] Jensen, C., Potts, C., and Jensen, C., "Privacy

Practices of Internet Users: Self-Reports Versus

Observed Behavior", International Journal of Human-

Computer Studies, 63(1-2), 2005, pp. 203-227.

[28] Wang, N., Wisniewski, P., Xu, H., and

Grossklags, J., "Designing the Default Privacy

Settings for Facebook Applications", 17th ACM

Conference on Computer Supported Cooperative

Work & Social Computing, 2014, pp. 249-252.

[29] http://www.statisticbrain.com/mobile-phone-

app-store-statistics/, accessed 2015-06-12.

[30] https://blog.avast.com/2015/02/03/apps-on-

google-play-pose-as-games-and-infect-millions-of-

users-with-adware/, accessed 2015-06-12.

[31] Mcafee Labs, "Mcafee Threats Report: Second

Quarter 2013", McAfee,, 2013.

[32] Zhou, T., "An Empirical Examination of User

Adoption of Location-Based Services", Electronic

Commerce Research, 13(1), 2013, pp. 25-39.

[33] Xu, H., Teo, H.-H., and Tan, B.C.Y., "Predicting

the Adoption of Location-Based Services: The Role

of Trust and Perceived Privacy Risk", 26th

International Conference on Information Systems,

2005.

[34] Petrova, K., and Wang, B., "Location-Based

Services Deployment and Demand: A Roadmap

Model", Electronic Commerce Research, 11(1), 2011,

pp. 5-29.

[35] Keith, M.J., Babb, J.S., Furner, C.P., and

Abdullat, A., "Privacy Assurance and Network

Effects in the Adoption of Location-Based Services:

An Iphone Experiment", Proceedings of the 31st

International Conference on Information Systems,

2010.

[36] Xu, H., Teo, H.-H., Tan, B.C.Y., and Agarwal,

R., "The Role of Push-Pull Technology in Privacy

Calculus: The Case of Location-Based Services",

Journal of Management Information Systems, 26(3),

2009, pp. 135-173.

[37] Krasnova, H., Eling, N., Schneider, O.,

Wenninger, H., Widjaja, T., and Buxmann, P., "Does

This App Ask for Too Much Data? The Role of

Privacy Perceptions in User Behavior Towards

Facebook Applications and Permission Dialogs.",

21st European Conference on Information Systems,

2013.

[38] Svajcer, V., "Sophos Mobile Security Threat

Report", SOPHOS, 2014.

[39] Kelley, P.G., Consolvo, S., Cranor, L.F., Jung,

J., Sadeh, N., and Wetherall, D., "A Conundrum of

Permissions: Installing Applications on an Android

Smartphone", in (Blyth, J., Dietrich, S., and Camp,

L.J.): Financial Cryptography and Data Security,

Springer Berlin Heidelberg, 2012, pp. 68-79.

[40] Aviv, A.J., Gibson, K., Mossop, E., Blaze, M.,

and Smith, J.M., "Smudge Attacks on Smartphone

Touch Screens", Proceedings of the 4th USENIX

Conference on Offensive Technologies, 2010.

[41] http://www.androidauthority.com/android-jelly-

bean-face-unlock-blink-hacking-105556/, accessed

2015-06-12.

[42] Bal, G., "Explicitness of Consequence

Information in Privacy Warnings: Experimentally

Investigating the Effects on Perceived Risk, Trust,

and Privacy Information Quality", Proceedings of the

35th International Conference on Information

Systems, 2014.

[43] https://developer.android.com/preview/features/

runtime-permissions.html, accessed 2015-06-12.

http://www.statisticbrain.com/mobile-phone-app-store-statistics/
http://www.statisticbrain.com/mobile-phone-app-store-statistics/
https://blog.avast.com/2015/02/03/apps-on-google-play-pose-as-games-and-infect-millions-of-users-with-adware/
https://blog.avast.com/2015/02/03/apps-on-google-play-pose-as-games-and-infect-millions-of-users-with-adware/
https://blog.avast.com/2015/02/03/apps-on-google-play-pose-as-games-and-infect-millions-of-users-with-adware/
http://www.androidauthority.com/android-jelly-bean-face-unlock-blink-hacking-105556/
http://www.androidauthority.com/android-jelly-bean-face-unlock-blink-hacking-105556/

