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a serious threat to system security for over fifteen years. Researchers have answered the
threat with various mitigation techniques; but nevertheless, new exploits that success-
fully bypass these technologies still appear on a regular basis.

In this paper, we propose ROPocop, a novel approach for detecting and preventing the
execution of injected code and for mitigating code-reuse attacks such as return-oriented
programming (RoP). ROPocop uses dynamic binary instrumentation, requiring neither access
to source code nor debug symbols or changes to the operating system. It mitigates attacks
both by monitoring the program counter at potentially dangerous points and by detecting
suspicious program flows.

We have implemented ROPocop for Windows x86 using PIN, a dynamic program instru-
mentation framework from Intel. Benchmarks using the SPEC CPU2006 suite show an average
overhead of 2.4x, which is comparable to similar approaches, which give weaker guaran-
tees. Real-world applications show only an initially noticeable input lag and no stutter. In
our evaluation our tool successfully detected all 11 of the latest real-world code-reuse ex-
ploits, with no false alarms. Therefore, despite the overhead, it is a viable, temporary solution
to secure critical systems against exploits if a vendor patch is not yet available.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

techniques are added on a regular basis; however, while they
make successful and reliable exploitation much more diffi-
cult, they can be bypassed.

Attacks that aim at manipulating a program’s control flow, often
through a buffer overflow vulnerability, are still one of the
biggest threats to software written in unsafe languages like C
or C++ (Bubinas, 2013). If successfully exploited, control-flow
attacks can allow an adversary to execute arbitrary code. In
the early 2000s, operating-system developers started adding
mitigation techniques into their software. To this day, new

Contests like, e.g., pwn2own (Gunn, 2014) continuously show
that current mitigation techniques are insufficient when it
comes to protecting applications, and that more comprehen-
sive methods are required. Currently, the most widely used
attack technique, and an essential part of virtually every exploit,
is RoP (Roemer et al., 2012), where instead of injecting new code,
an attacker pieces together short code fragments, which already
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exist in memory. Recently proposed solutions against such
attacks mostly built on CFI (Pappas et al., 2013; Zhang et al.,
2013; Zhang and Sekar, 2013) seemed effective, but have been
shown to be bypassable (Davi et al., 2014; GOktas et al., 2014).
Section 2 elaborates on these issues in detail.

To battle current exploitation mechanisms we propose
ROPocop, a novel tool that mitigates control-flow attacks for
x86 Windows binaries using two novel techniques: AntiCRA and
DEP+. AntiCRA greatly reduces the risk of successful code-
reuse attacks by detecting an unusually high rate of successive
indirect branches during the execution of unusually short basic
blocks. As different programs can exhibit very different be-
havior with regard to that aspect, using the same threshold
for every program is suboptimal. Therefore, ROPocop comes with
a learning mode, which runs ahead of time and determines
appropriate thresholds, which can be adopted by the user.
However, we do also provide default thresholds which work
very well in practice and for a large selection of programs, as
our evaluation shows.

Our second contribution, DEP+, implements a variant of a
non-executable stack through dynamic binary instrumenta-
tion. DEP+ assumes that all code has to reside within a program
image, i.e., the .text section of any PE file. This is very similar
to DEP (Andersen and Abella, 2004); however, DEP+ cannot be
disabled through API calls, thereby eliminating a large class
of exploits that are based on such calls. DEP+ enforces all
memory to be non-executable, except for the parts to which
images are loaded. To this end, DEP+ monitors the loading
and unloading of images, checking after each indirect
branch whether the program counterpoints outside the known
images.

We have implemented ROPocop for Windows x86 using PIN
(Luk et al., 2005), a freely-available dynamic program instru-
mentation framework from Intel. ROPocop requires no access
to source code or root privileges, nor debug symbols or changes
to the operating system. Measurements using the artificial SPEC
CPU2006 suite show an average overhead of 2.4x. More impor-
tantly, experiments on real-world applications show only an
initially noticeable input lag (caused by the initial dynamic in-
strumentation) and no stutter. Our evaluation using 11 of the
latest code-reuse exploits shows that our tool successfully pre-
vents all code-injection attacks and code-reuse attacks from
succeeding, even a highly sophisticated attack that relies solely
on code reuse (Li and Szor, 2013). Our envisioned usage of
ROPocop is to use it as a last line of defense against exploi-
tation of critical systems, e.g., when a severe vulnerability has
been discovered but no patch is available.

To summarize, this work makes the following original
contributions:

e AntiCRA, a tunable heuristic detection of code-reuse-
attacks like RoP and JoP,

e DEP+, a comparatively fast and very robust implementa-
tion of a non-executable stack,

e ROPocop, a dynamic instrumentation tool based on PIN
which detects various kinds of control-flow attacks using
the above techniques, and

e an empirical evaluation showing that ROPocop ‘s mitiga-
tion approach is highly effective and shows tolerable runtime
overheads.

We make ROPocop available online as open source, along
with all our experimental data (https://sites.google.com/site/
ropocopresearch/).

2. Current situation

Exploiting vulnerabilities with the goal to manipulate the
program flow was relatively trivial on Windows until the early
2000s, when Microsoft began adapting mitigation techniques.
In the simplest cases, an attack widely known as stack smash-
ing (One, 1996) could be used. Such an attack would leverage
unbounded functions, such as strcpy, to write beyond the al-
located memory of a buffer. Attackers could thus overwrite the
function’s stored return address on the stack with an address
that points to injected code, which the program will execute
after the next return.

To defend against such code injection attacks, Microsoft
implemented Data Execution Prevention (DEP) (Microsoft), which
makes use of a processor’s NX (no execute) bit. DEP marks pages
which contain data as non-executable, causing a hardware-
level exception if execution from within such a page is
attempted. This successfully prevents attacks that attempt to
execute injected code.

Nevertheless, attackers can bypass DEP in various ways. At
present, the most widely used technique is called return-
oriented programming (Shacham, 2007). When utilizing RoP,
an attacker does not inject any code but instead uses exist-
ing code fragments (gadgets), which all end with a return
instruction. In other words, instead of injecting code, the at-
tacker injects the addresses of the gadgets he wants to execute.
On x86, return works by popping an address off the stack into
the register EIP and then jumping to that address. By crafting
a stack filled with a sequence of gadget addresses, the at-
tacker can execute sequences of gadgets, with the return
instruction at the end of each gadget transferring the program
flow to the next gadget. Jump-oriented programming (JoP)
(Bletsch et al., 2011; Checkoway et al., 2010; Min et al., 2012)
is based on the same basic concept as RoP, but uses jmp in-
structions to transfer control flow to the next gadget. In the
following, we refer to both RoP and JoP attacks as code-reuse
attacks.

The success of code-reuse attacks depends on the avail-
ability of useful gadgets on the target platform and the
complexity of the code the attacker wants to run. In practice,
however, most systems are vulnerable to such code-reuse
attacks. Furthermore, RoP attacks are relatively complex to stage,
which is why most attacks of this kind do not resort to pure
RoP, but rather implement a two-staged approach. The first stage
uses RoP to call a Windows API function like VirtualProtect
(see below) which marks a certain memory region as execut-
able, effectively bypassing DEP. This is followed by the second
stage, running code previously injected into that memory region,
which can then be executed as normal. Code-reuse attacks work
reliably if the memory layout of an application is highly de-
terministic because an attacker can hard-code the addresses
of gadgets directly into the exploit. To mitigate this, Microsoft
introduced randomness in the form of ASLR (Howard et al.,
2010). ASLR randomizes the order in which images are loaded
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into the virtual address space and adds pseudo-random offsets
to their base addresses. This makes it very difficult for an at-
tacker to predict the memory locations of the required gadgets
on the target system.

2.1. DEP weaknesses

Whether or not a program is protected by DEP depends on the
compiler setting the Nx_coMPAT flag in the header of the pro-
gram’s main executable. This flag may be left unset due to a
number of reasons, including unsafe compiler defaults and
program incompatibility. Thus, the opt-in nature of DEP may
render its benefits void. If it is enabled, an attacker can only
bypass it through previously discussed code-reuse attacks. Such
attacks succeed without ever running code from non-executable
pages, which is why DEP cannot protect against them. The pre-
viously mentioned two-staged attack, however, is worth
explaining in more detail, since it allows injected code to be
run, effectively bypassing DEP. Such attacks work because
Windows exposes certain functions to change the permis-
sions of a page (e.g. VirtualProtect) or allocate new pages
with specific permissions (e.g. Virtualalloc), which are passed
as parameters. These APIs are necessary so programs that gen-
erate and execute code at runtime (e.g., browsers) can still be
compatible with DEP. Such programs set the Nx_coMPAT flag,
hence are protected by DEP; however, when they need to use
JIT compilation, they can use the previously mentioned APIs
to allocate executable memory. Which leads to the issue, that
an attacker can also invoke those APIs with parameters of their
choice, i.e., even if the original program does not invoke, e.g.,
VirtualProtect with read/write/execute priviliges, an at-
tacker can.

2.2. ASLR weaknesses

Like DEP, ASLR is not necessarily enabled, which depends on
a flag called DyNaMIC_BASE. However, unlike DEP, it is not either
on or off for the whole process. The operating system is able
to handle processes composed of a mixture of ASLR-enabled
and disabled images, which simply means that some images
will get rebased and others will not. Apart from legacy librar-
ies which were compiled before ASLR existed, a library might
not support ASLR because parts of a program use hard-coded
jump addresses within that library. Bypassing ASLR appears
to be difficult in practice, with no currently-known generic
attack. The work by Shacham et al. (2004) relies on brute force,
which only works if the vulnerable application does not crash
when an access violation occurs. Partial overwrites (Durden, 2002)
overwrite only the last two bytes of an address on the stack.
Because only the first two bytes get randomized, this attack
does not require knowledge of the randomness introduced by
ASLR. This gives an attacker a range of at most 4096 bytes of
instructions. Durden presents information leaks as a way of
gathering information about the memory layout of an ASLR-
protected application (Durden). Hund et al. (2013) propose a
timing-based side channel attack that can break kernel space
ASLR within minutes, given that an attacker knows the hard-
ware of the attacked system. However, most current exploits
do not have to use such techniques, and instead can rely on
the presence of some non-ASLR images on the target plat-

form. Such images, however, are still very common on current
systems, which is why many attacks still succeed.

2.3. Attacker model

We assume a relatively strong attacker, who is able to bypass
DEP, ASLR, and other mitigation techniques which are cur-
rently part of Windows. This is, for a determined attacker, a
realistic assumption. We even go one step further and allow
for pure RoP and JoP attacks, which do not have to call
VirtualProtect Or VirtualaAlloc but instead rely solely on
code reuse by chaining gadgets and existing API calls to-
gether in such a way, that the attacker can achieve her goal
without injecting any code. Such pure code-reuse attacks are
still rarely found in the wild, but we expect them to increase
due to the work that is being done on detecting two-staged
attacks. One known example is a pure RoP attack on Adobe
Reader (Li and Szor, 2013).

3. AntiCRA

When designing AntiCRA, we manually analyzed RoP and JoP
exploits by looking at the gadgets they use and their proper-
ties. We found that the exploits share properties which are
unusual and typically not present in a normal program’s ex-
ecution. Based on these observations, we built a heuristic which
monitors the following two properties:

Indirect branches

Code-reuse attacks consist of gadgets which all end in an
indirect branch. We analyzed benchmarks as well as real-
world applications like Adobe Reader, VLC, Microsoft Office,
Open Office (the complete list can be found in Table 1) and
found that executing a very high number of consecutive in-
direct branches is rather unusual. The highest number of
subsequent indirect branches we found during our experi-
ments was 47 (in Microsoft Word), but only 8 of the 35 programs
execute 15 or more subsequent indirect branches.

Average length of basic blocks

To reduce side-effects on other registers, the stack, or flags,
exploit developers try to use gadgets that are as short as pos-
sible. Therefore, at least for contemporary approaches, gadgets
can be considered basic blocks with very few instructions. As
with indirect branches, we analyzed program behavior of le-
gitimate programs and found that the average number of
instructions over a sliding window of 10 basic blocks did not
drop below 2.33. Our experiments showed that making the
window smaller resulted in an increase of false positives, while
increasing the window resulted in missed attacks. We also found
an interesting correlation between this and the previous prop-
erty: the more consecutive indirect branches, the longer the
corresponding basic blocks. We make use of this knowledge
in the next paragraph, when we try to find default param-
eters which work for a wide set of applications.

As previously mentioned, since programs can exhibit varying
characteristics regarding these two properties, ROPocop first
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Table 1 - Analysis of exploits and programs. We assigned a unique ID to every exploit and program we investigated. The
last two columns show our metrics for AntiCRA, i.e., the highest number of indirect branches taken and the average

basic block length. Bold numbers show that AntiCRA was triggered, due to an exceeded threshold. ["Not computed by
AntiCRA due to low number of indirect branches (<15). **Data are based on the analysis by -

ID Name Indirect branches,  Average BB-Length,
threshold: 35 threshold: 2.25
EO1  ASX to MP3 Converter v3.1.2.1 SEH Exploit (Multiple OS, DEP and ASLR Bypass) >50 >2.25
E02  BlazeDVD 5.1 Stack Buffer Overflow With ASLR/DEP Bypass 20 1.9
E03  BlazeDVD 6.1 PLF Exploit DEP/ASLR Bypass 16 2
E04  DVD X Player 5.5.0 Pro/Standard version Universal Exploit, DEP + ASLR Bypass 17 2
EO5 DVD X Player 5.5 Pro (SEH DEP + ASLR Bypass) Exploit 13 (2.2
E0O6  ProSSHD 1.2 remote post-auth exploit (w/ ASLR and DEP bypass) 43 2
EO7 RM Downloader 3.1.3 Local SEH Exploit (Win7 ASLR and DEP Bypass) 49 >2.25
EO8  The KMPlayer 3.0.0.1440 .mp3 Buffer Overflow Exploit (Win7 + ASLR bypass mod) 46 >2.25
E0O9  UFO: Alien Invasion v2.2.1 BoF Exploit (Win7 ASLR and DEP Bypass) >50 >2.25
E10  Winamp v5.572 Local BoF Exploit (Win7 ASLR and DEP Bypass) >50 2
E11  Adobe Reader 11.0.01 “Number of the Beast” (ASLR, DEP, Sandbox bypass, pure RoP)** >50 —
E12 QQ PLAYER PICT PnSize Buffer Overflow WIN7 DEP ASLR BYPASS 11 2
A01  Daemon Tools v. 4.47.1.0333 40 4.97
A02  Microsoft Word 2010 v. 14.0.07140.5002 47 4.14
A03  Microsoft Excel 2010 v. 14.0.07140.5002 28 4.1
A04  Microsoft PowerPoint v. 14.0.07140.5002 25 4.14
A05  Adobe Acrobat Pro v. 9.0 29 2.33
A06  Windows Media Player v. 12.0.7601.18150 11 na*
A07  cmd.exe (on Windows 7 Pro SP1 64 bit v. 6.1.7601) 5 na*
A08  calc.exe (on Windows 7 Pro SP1 64 bit v. 6.1.7601) 6 na*
A09  mspaint.exe (on Windows 7 Pro SP1 64 bit v. 6.1.7601) 13 na*
A10  taskmgr.exe (on Windows 7 Pro SP1 64 bit v. 6.1.7601) 9 na
All VLCv.2.0.8 na*
A12  Irfanview v. 4.3.3 12 na*
Al13  Notepad++v. 6.1.4 11 na*
Al14  Filezillav. 3.5.3 7 na*
A15  Open Office Writer v. 4.0.1 7 na*
A16  Open Office Impress v. 4.0.1 7 na*
A17  Open Office Calcv. 4.0.1 8 na
BO1 SPEC CPU 2006 — 400 4 na*
BO2 SPEC CPU 2006 — 401 3 na*
BO3 SPEC CPU 2006 — 403 6 na*
B0O4 SPEC CPU 2006 — 429 3 na*
BO5  SPEC CPU 2006 — 433 3 na*
BO6 SPEC CPU 2006 — 444 4 na*
BO7 SPEC CPU 2006 — 445 5 na
BO8 SPEC CPU 2006 — 447 7 na*
BO9 SPEC CPU 2006 — 450 8 na*
B10 SPEC CPU 2006 — 453 6 na*
B11 SPEC CPU 2006 — 456 3 na*
B12  SPEC CPU 2006 — 458 3 na*
B13 SPEC CPU 2006 — 464 31 4
B14 SPEC CPU 2006 — 470 4 na
B15 SPEC CPU 2006 — 471 15 3.91
B16 SPEC CPU 2006 — 473 3 na*
B17 SPEC CPU 2006 — 482 9 na*
B18 SPEC CPU 2006 — 483 17 4

runs in learning mode. This requires nothing from the user but
simply using the program she wants to protect as usual, while
in the background, ROPocop observes the program flow and
determines appropriate thresholds for these two properties.
This, of course, leads only to limited coverage; however, for our
approach high coverage is not required. Exploiting a buffer over-
flow requires some sort of input, generally provided by the
attacker as a file that has to be opened by the victim and is
then processed by the vulnerable program. Thus, a user working
with the program might not cover all possible paths, but it
covers the important paths which lead to exploitation.

As expressed earlier, we recommend setting individual
thresholds for different programs, but at the same time we
evaluated whether it is possible to provide default values which
cover as many programs as possible. After analyzing our test
set of benign applications, by running the learning mode and
using the programs in our sample set (e.g., opening various
media files using VLC, opening various PDF files with Adobe
Reader, working with Microsoft Word, etc.), we set the follow-
ing thresholds: 35 subsequent indirect branches and an average
basic block length of 2.25 or lower; as described earlier, we found
a correlation that larger numbers of subsequent basic blocks
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Fig. 1 - Analysis of the number of indirect branches in a
row and the lowest average basic block length of our test
set.

also means longer basic blocks. Therefore we added another
threshold; 36-50 subsequent indirect branches and an average
basic block length of 4 or lower. AntiCRA signals an exploita-
tion attempt if one of the two bounds is violated or if, at any
point, more than 50 subsequent indirect branches are ex-
ecuted. While our sample set of benign applications may not
be large enough to make a claim, that these suggested thresh-
olds hold for all programs, they do hold for all programs in our
set, which includes some of the most exploited applications.
Therefore, they serve as an excellent starting point for fine-
tuning, should it be required. Since we included many programs
that are often found and exploited in business environments
(e.g., Word, Excel, Adobe Reader), ROPocop can be deployed im-
mediately without the need to fine-tune thresholds.

To increase performance and make the algorithm less prone
to false positives, calculating averages starts only after we have
collected 15 basic-block lengths, i.e., the first computed average
is available only after 15 subsequent indirect branches. This
prevents false alarms based on short sequences of short basic
blocks, whose sample size is otherwise not significant enough.
While this allows for attacks requiring less than 15 gadgets to
go undetected by AntiCRA, it decreases false positives because
in our experiments we discovered sequences of three to seven
consecutive indirect branches with small basic block lengths
which would trigger a false alarm. However, these param-
eters may be changed by the user. Attacks that use less than
15 gadgets are very likely non-pure RoP attacks and will there-
fore be detected by DEP+ (Section 4). Algorithm 3 summarizes
AntiCRA in a formal way. Fig. 1 (in Section 5) shows how the
two thresholds form a (shaded) area in a two-dimensional plain.
If an execution falls into the shaded area, then AntiCRA will
signal it as malicious. The figure also summarizes the results
of our empirical evaluation and will be explained in more detail
later.

Input: bbl: a basic block, delivered automatically by PIN,
thrStartAvgCalc: the number of consecutive indirect branches

after which the calculation of average basic block length
starts (default: 15), thrAlarm: the threshold for the average
basic block length (default: 2.33)

Output: state: a flag that indicates that a RoP attack is prob-
ably in progress

Input: bbl: a basic block, delivered automatically by PIN,
thrStartAvgCale: the number of consecutive indirect branches
after which the calculation of average basic block length starts
(default: 15), thrAlarm: the threshold for the average basic
block length (default: 2.33

Output: state: a flag that indicates that a RoP attack is probably in

progress

state <— noAlarm

centIndBranch < 0

avg <0

if bbl was reached through indirect branch then

cntIndBranch < entIndBranch + 1;
log size of bbl;
if entIndBranch >thrStartAvgCalc then
avg < average length of the last 10 bbl;
if avg >thrAlarm then
‘ state < alarm;
end
end
else
| entIndBranch < 0;
end
Algorithm 1: Algorithm for AntiCRA. We use PIN to continuously monitor
basic blocks at runtime and use them as input for our algorithm. Once enough
basic block lengths have been collected, i.e., thrStartAvgCalc is exceeded,
calculation of average basic block length starts. If this average falls below
thr Alarm, an alarm is raised.

3.1. Impact on current and future exploits

For a code-reuse attack to circumvent AntiCRA, it must not use
more than 34/49 consecutive indirect branches. If this is pos-
sible at all depends on the availability of gadgets, which varies
between programs based on what libraries are loaded and
whether or not ASLR is being employed. Furthermore, the
average number of instructions in the gadgets used must never
fall below 2.25/3.5. Combined, these restrictions make it very
difficult for an attacker to create a pure RoP or JoP payload. At-
tackers could attempt to raise the average number of
instructions per gadget by inserting longer gadgets. But longer
gadgets usually have unwanted side-effects, like manipulat-
ing other registers that hold important data, or the stack, or
modifying flags. Furthermore, since the total number of gadgets
is limited to 34/49, inserting long gadgets whose side effects
are irrelevant just for the sake of increasing the average wastes
precious slots for useful gadgets. To bypass AntiCRA, an at-
tacker would have to try and insert direct branches, but, due
to limited availability and side-effects, e.g., potentially losing
control over the program counter, this is anything but trivial.
Furthermore, we know of no gadget compiler that would
support direct branches at this point and have not found ex-
ploits that use gadgets that incorporate direct branches.
Depending on the program it might still be possible, but, as
previously mentioned, our goal is to break current exploits and
make the development of new code-reuse exploits signifi-
cantly more difficult, which AntiCRA certainly achieves. Long
NOP gadgets, as proposed by Davi et al. (2014), could poten-
tially be used to artificially increase the average basic block
length hence bypass AntiCRA; however, it takes five gadgets
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to restore the stack and registers to their original form. There-
fore, precious space has to be wasted and such an attempt will
most likely exceed any sensible threshold. Furthermore, the
authors state that finding such a gadget was “a non-trivial task
that required painstaking analyses and a stroke of luck”, so for
some programs this technique might not be possible at all.

3.2. Limitations

Due to its heuristic nature, false positives as well as false nega-
tives are possible. As we show in this work, however, in practice
the heuristic seems effective enough to go without any false
decisions, at least in our benchmark set. Furthermore, under
circumstances very favorable to an attacker it might be pos-
sible to create a two-staged exploit that disables DEP using fewer
than 15 gadgets and then runs a regular payload. This would
not be detected by AntiCRA and motivates the need for reli-
ably non-executable data sections, which we enforce using DEP+
(Section 4).

4. DEP+

DEP+ is based on the same concept as DEP, i.e., the premise
that data should not be executable. DEP+ thus monitors the
loading and unloading of images and creates a virtual memory
map based on this information. All virtual memory space where
no image is mapped is considered to hold potentially mali-
cious data, since Windows can allocate stacks or heaps in these
areas. To enforce that the instruction pointer EIP never points
outside an image, DEP+ checks the register’s value after each
indirect branch, i.e., after each return, indirect call, and indi-
rect jump. Opposed to DEP, DEP+ cannot be bypassed through
API calls such as virtualProtect.

4.1. Implementation details

PIN’s IMG_AddInstrumentFunction as well as
IMG_AddUnloadFunction are used to monitor the loading
and unloading of images. When an image is loaded, DEP+
stores its start and end address; if the same image is un-
loaded at runtime, this information is removed. This approach
results in a virtual-memory map that distinguishes only
between images and non-images, i.e., code regions and data
regions. DEP+ treats these data regions as space for poten-
tially malicious data, hence does not allow EIP to point into
it. To do so, DEP+ checks after any indirect branch is taken,
but before it is executed, if the instruction pointer points
inside any of the data regions. Algorithm 2 summarizes DEP+
in a formal way.

Input: p: a program, mmap: a map of virtual memory that
contains start and end addresses of loaded images and
allows calculating start and end addresses of data regions
Output: state: a flag that indicates that code is executed from
outside an image

Input: p: a program, mmap: a map of virtual memory that contains
start and end addresses of loaded images and allows calculating
start and end addresses of data regions
Output: state: a flag that indicates that code is executed from outside
an image
state < noAlarm
if instruction pointer points inside a data region in mmap then
| state < alarm
end
Algorithm 2: Algorithm for DEP+ (without performance optimizations).
We use PIN to instrument the target program so the algorithm is called after
an indirect branch is taken, but before the instruction is executed. It checks
whether the instruction pointer points into a data region, i.e., outside all
loaded images.

The reason DEP+ checks if EIP points inside data regions
instead of checking if EIP points inside a loaded image is due
to performance: some programs load 30 or more libraries, which
means that there can be an equally high number of code regions
that need to be checked. As we found, checking each of those
regions after each indirect branch can incur a significant per-
formance penalty. To increase performance, we thus make use
of the fact that Windows’ memory management is relatively
deterministic. Images, in general, tend to be loaded at very high
addresses, around 0x60000000 and higher, while stacks and
heaps reside at low addresses and new ones are allocated
towards increasingly higher addresses. Depending on the
memory usage of a process, it is generally valid to assume that
stacks and heaps, where an attacker would inject his payload,
reside below most images.

DEP+ makes use of this knowledge by not checking if EIP
points inside any of the loaded images but instead checking
if EIP points inside data regions, where heaps and stacks are
located, which results in a much lower number of necessary
checks. To this end, DEP+ monitors a program’s heap and stack
sizes to dynamically increase or decrease the number of data
regions that need to be taken into account. We implement this
by probing memory usage every 10th time a function that al-
locates or de-allocates memory is called and multiply the
reported usage by 1.3 to have a large enough safety margin.
Only data regions within that memory area will be checked.

This is, of course, a heuristic, which trades security for per-
formance, but as our evaluation in Section 5 shows, the heuristic
helps DEP+ to bring the checks down to a minimum while still
recognizing all tested attacks. Furthermore, our experiments
using benchmarks and real-world programs have shown that
memory allocations are done in many small steps, hence
probing memory usage in short intervals and adding a safety
margin of 30% has never failed to correctly detect the neces-
sary number of regions which have to be checked. For the
heuristic to fail and be exploitable, it would take one single
memory allocation the size of about 30% of the current memory
usage, a vulnerable function which uses this memory and an
instruction which redirects program flow into this memory
before our algorithm checks memory usage again. Since an at-
tacker has limited influence on these preconditions, we accept
the risk that our heuristic might fail under rare conditions, e.g.,
depending on the underlying vulnerability and the environ-
ment, a heap spray in a browser might enable an attacker to
bypass DEP+. Reliably exploiting such circumstances in a multi-
threaded program, however, would be even more difficult due
to their highly non-deterministic nature and the fact that the
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attacker does not know when the next memory usage calcu-
lation will be triggered by DEP+.

4.2. Comparison to DEP

The original shortcomings of DEP are that it may not be enabled
at all, or that it can be bypassed by both pure code-reuse attacks
and by code-reuse attacks that invoke virtualProtect, etc.,
to disable DEP. DEP+ improves over DEP in that it prevents the
execution of injected code by enforcing non-executable data
regions even for processes that run with regular DEP dis-
abled. In particular, DEP+ cannot bypassed by calls to
VirtualProtect and its siblings, as such calls have no effect
on DEP+. A similar result could be achieved by hooking said
functions and simply not executing them. However, userland
hooks can be bypassed easily (Butler, 2004) and kernel hooks
require administrator privileges, hence make deploying our so-
lution more complicated. Furthermore, as Section 5 shows, the
overhead introduced by DEP+ is negligible.

4.3, Limitations

Processes which rely on the ability to execute code from outside
images, e.g., processes which generate code at runtime or in-
corporate self-modifying code, are not compatible with DEP+.
Such a process is not compatible with DEP either, unless it uses
the virtualProtect API, etc., to disable DEP for memory
regions with generated code. Since it is difficult to detect
whether a call to the API usually abused to bypass DEP by an
attacker is legitimate, i.e., originating from the program itself,
we decided against supporting such calls. This results in a strong
increase in security, at the drawback of slightly reduced com-
patibility with mostly older software.

Like DEP, DEP+ cannot detect and thus not prevent the ex-
ploitation of the vulnerability itself, e.g., the overwriting of data
on the stack due to a buffer overflow. Therefore, non-control
data attacks (Chen et al., 2005) or information leakages are still
possible. Furthermore, DEP+ does not prevent pure code-
reuse attacks, motivating the need for AntiCRA (Section 3).

5. Evaluation

Our implementation is highly modular, so that one may deploy
AntiCRA or DEP+ independently as well as in combination.
Running both of them, however, strongly increases security, in
a similar fashion as running with DEP and ASLR.

In this chapter we evaluate AntiCRA and DEP+ by address-
ing the following research questions:

RQ1: How effectively does AntiCRA detect pure code-
reuse payloads?

RQ2: How effectively does AntiCRA detect two-staged RoP
payloads?

RQ3: How effectively does DEP+ detect code-injection
attacks?

RQ4: What is the performance overhead of AntiCRA and
DEP+?

5.1. Evaluation of AntiCRA (RQ1/RQ2)

For evaluating RQ1 we looked at pure code-reuse attacks;
however, at this point such payloads are only rarely found in
the wild and are mostly used in academia as proof of concept.
The only real-world pure code-reuse exploit we found is a RoP
exploit for Adobe Reader. Since neither the exploit’s source code
nor an infected file is publicly available, our conclusion is based
on an analysis by Li and Szor (2013). Analyzing the exploit’s
source code reveals that the address 0x6acc1049 is repeated
9344 times; the instruction at that address is a simple ret. This
equals to over 9000 indirect branches in a row, which would,
of course, be detected by AntiCRA.

The likely reason for why pure RoP and JoP payloads still
seem to be rare in practice is that two-staged payloads (which
aim to disable DEP through RoP/JoP) are simpler to construct
and are sufficient in many cases. Such payloads can be miti-
gated by DEP+; but nevertheless, we were interested in
evaluating RQ2, i.e., to what extent AntiCRA alone, without DEP+,
can be used to mitigate such attacks as well.

We analyzed 11 real-world exploits in total. To operate on
an unbiased test set, we analyzed the 10 most recent ex-
ploits from http://www.toexploit.com/* which claim to bypass
ASLR and also added the previously mentioned pure RoP exploit.
Fig. 1 and Table 1 show the results of our analysis, i.e., the
number of consecutive indirect branches and the average basic
block length for each exploit and also for legitimate pro-
grams. As the numbers indicate, legitimate programs rarely have
more than 15 consecutive indirect branches and their average
basic block length is higher than that of exploits. This con-
firms that our generalized threshholds, which work for a wide
variety of programs, are well-suited to detect attacks.

AntiCRA detects 10 out of the 11 exploits in our sample set.
In five cases this is due to the number of indirect branches in
a row. Three exploits are detected because they use very short
gadgets, which mostly only execute one instruction and then
transfer program execution to the next gadget. Two exploits
trigger both mechanisms, since they use more than 35 indi-
rect branches in a row and also very short gadgets.

One exploit cannot be detected by AntiCRA. This is because
it requires only 13 gadgets to prepare the stack for calling
VirtualProtect. This is not enough to trigger the indirect-
branch check. The average length of the basic blocks is 2.2,
which would trigger an alarm. However, as explained in Section
3, we only trigger inspections after a total of 15 indirect branches
in a row.

It is important to point out that the two-staged exploit
AntiCRA misses (E11) is detected by DEP+. AntiCRA is primar-
ily designed to catch pure RoP and JoP attacks, not necessarily
the two-staged attacks like the ones examined in the evalu-
ation. It is also important to keep in mind that the thresholds
can and should be adjusted for each program and that this
section evaluates how well our generalized thresholds work.
Despite this, it still detects 10 out of 11 exploits. Because of
these results and our analysis of the pure RoP exploit for Adobe

! Unfortunately, the website is not available anymore, but the ex-
ploits can be requested from the authors of this paper or found
online using any search engine and the full name of the exploit,
as shown in Table 1.
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Reader, we are very confident that exploits which rely solely
on RoP or JoP can be detected by AntiCRA.

5.2.  Evaluation of DEP+ (RQ3)

To test DEP+, we wrote a small vulnerable application, which
uses an unbounded strcpy and was compiled with the
NX_COMPAT, and a simple exploit. Since all code injection attacks
store the injected code inside a buffer which, by definition,
cannot be in an image, the program that contains the vulner-
ability is of little consequence. The only differences between
our vulnerable application and a real application are mitiga-
tion techniques which might be in place, but which are
irrelevant to us, since we assume an attacker is able to bypass
them, and how program flow is transferred to the injected code,
which is irrelevant for our evaluation as well. Ultimately, all
code injection attacks end up calling their injected code, and
this is where DEP + detects them. Therefore, evaluating DEP+
with this self-written program poses no real threat to the va-
lidity of this experiment. As expected, DEP+ correctly detects
that the target address of the ret instruction at the end of our
vulnerable function is not in an image, before the instruction
is actually executed. Therefore, it can terminate the program
and mitigate an attack, which would have led to arbitrary code
execution. As for the real world exploits, DEP+ detects each one
except for the pure RoP exploit for Adobe Reader, as all the
others eventually do execute code from memory outside of
images.

5.3.  Performance (RQ4)

We evaluated the performance of ROPocop using the C and C++
benchmarks in the SPEC CPU2006 benchmark suite. Note that
those are really worst-case benchmarks that exercise the
dynamic analysis heavily. Any interactive or network-based ap-
plication would show a significantly lower overhead. We
measured five different runtimes for each benchmark:

e The native runtime, i.e., without PIN.

e The runtime with PIN attached, but without instrumenta-
tion, to get the basic overhead PIN introduces.

e The runtime with AntiCRA.

e The runtime with DEP+.

e The runtime with AntiCRA and DEP+.

Benchmarks were run on Windows 7 SP1 with an Intel Core
2 Duo T9400 clocked at 2.53 GHz and 4 GB RAM using the ref-
erence workload.

Fig. 2 summarizes the results of our performance bench-
marks. Running a program under PIN but without any
instrumentation introduces an average overhead? of 1.36x, i.e.,
programs take, on average, 36% more time to finish, ranging
from 1.002x (470.1bm) to 2.24x (464.h264ref). Programs pro-
tected by AntiCRA run, on average, with a total overhead 2.2x.
With DEP+ enabled as well, ROPocop introduces an average over-

2 Average overheads were computed using the geometric mean,
which is considered best practice for reporting normalized values
such as percentages of overhead (Fleming and Wallace, 1986).
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Fig. 2 - Performance of ROPocop. (For interpretation of the
references to color in this figure legend, the reader is
referred to the web version of this article.)

head of 2.39x, which is comparable to similar tools such as
ROPdefender (Davi et al., 2011), which gives weaker guaran-
tees. Compared to CFI approaches (Pappas et al., 2013; Zhang
et al,, 2013; Zhang and Sekar, 2013) ROPocop has a consider-
ably higher overhead; however, it monitors a process throughout
its whole lifetime and not just at potentially dangerous points.
Thus, it can determine more accurate if a RoP attack is being
carried out.

While overheads on the order of two-fold might sound un-
acceptable, those overheads should really only be expected in
worst-case situations. Thus, while performance benchmarks
such as SPEC CPU2006 are advantageous in producing
reproducable results, the results that they do produce do not
reflect reality very much. What ultimately counts is the per-
formance on real-world applications. Their performance can,
however, often hardly be measured systematically, which is why
we only report qualitative results on some of the applica-
tions in our sample set. As a general observation we can say
that in all cases the GUI had some slight input lag < 1 second
when opening a menu for the first time; however, afterwards
they opened in an instant. File transfers with Filezilla were no
slower than without our tool. VLC plays h.264 encoded HD
videos without any jitter. Adobe Reader renders pages without
any noticeable lag. Typing in Microsoft Word has no input lag.
We want to emphasize that ROPocop is not intended to be used
with all applications at all times. Instead, our recommended
usage is to enable it only for either very critical systems, or
for an application which has a vulnerability that is being ac-
tively exploited and no vendor patch has been released yet.
Under such circumstances the overhead is, in our opinion,
acceptable.

6. Related work

TRUSS (Sinnadurai et al., 2008) and ROPdefender (Davi et al.,
2011) store copies of return addresses using a runtime shadow
stack. When a function is called, a copy of the pushed return
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address is stored on the shadow stack. Upon returning from
a procedure, the return address on the stack is compared to
the one on the shadow stack. TRUSS is implemented using
DynamoRIO, ROPdefender using PIN. DynamoRIO is a runtime
instrumentation tool which works similarly to PIN. TRUSS and
ROPdefender rely on an attacker overwriting the return address
on the stack, which is not strictly required. Therefore, they can
miss some classes of attacks like JoP. Furthermore, they assume
that function calls are always made through call and exited
via ret. ROPdefender can handle exceptions, but neither can
handle hand-crafted assembly code, which does not neces-
sarily follow these conventions. The overhead of both tools is
similar to ours.

EMET (Microsoft, 2015) includes, among others, several RoP
detection mechanisms, e.g., caller checks, which make sure that
critical funtions are invoked via call and not ret, or a routine
that detects stack pivoting. However, there is no guarantee that
EMET is compatible with the program that should be pro-
tected. Furthermore, previous versions of EMET have been
bypassed rather quickly after their release.®*

kBouncer (Pappas et al., 2013) makes use of the last branch
record (LBR) feature some modern CPUs have. kBouncer
assumes that at some point shellcode has to invoke a system
call. When this occurs, the LBR repository is checked for dis-
tinctive properties of RoP-like behavior, e.g. consecutive indirect
jumps and short basic blocks. The tool has an average over-
head of only 1%; however, the implementation for Windows
7 is not fully functional, since Windows 7 does not allow to
intercept system calls which is a requirement of kBouncer. Fur-
thermore, it cannot be deployed on systems whose CPU does
not have LBR.

ROPecker (Cheng et al., 2014) also uses the LBR feature of
some modern CPUs. Like ROPocop it checks for consecutive
short indirect branches and raises an alert when a certain
threshold is undercut. To increase performance the detection
heuristic is only invoked if the branch target is outside the so-
called “sliding window” (a collection of pages, usually 2 or 4,
i.e. 8 or 16 kB). Due to these two circumstances, ROPecker has
a very low overhead of only 2.6% for the SPEC CPU2006 bench-
mark suite. It does, however, miss ROP gadgets which are within
the sliding window and requires a CPU which supports the LBR
feature.

BinArmor (Slowinska et al., 2012) completely prevents buffer
overflows, and therefore stops code redirection and non-
control data attacks if they require a buffer overflow. It extracts
information about buffers that need protection, either from the
debugging symbols or, in the case of stripped binaries, using
Howard (Slowinska et al., 2011). In a second step, it discovers
accesses to those buffers and rewrites the binary to ensure they
stay within the bounds of the buffer. BinArmor’s overhead lies
typically between 2 and 3x.

Control Flow Integrity (Abadi et al., 2009) uses static analy-
sis of a binary to create a control-flow graph and rewrites the
binary to enforce it does not deviate from the pre-computed
paths. The implementation is based on Vulcan, a commercial

3 <https://www.offensive-security.com/vulndev/disarming-and-
bypassing-emet-5-1/>.
* <http://casual-scrutiny.blogspot.de/2015/03/defeating-emet-52.html>.

dynamic instrumentation tool for x86 binaries. The average over-
head is about 16%.

CCFIR (Zhang et al., 2013) enforces control-flow integrity by
ensuring that targets of indirect jumps are legal. Valid targets
are identified ahead of time by statically analysing a given
binary. For their analysis to work properly, they require the
binary to use ASLR and DEP. CCFIR has a runtime overhead of
about 4%.

Goktas et al. (2014) have recently shown that the above men-
tioned CFI approaches can be bypassed. The inherent problems
of these approaches is that there are too few checks and/or
they are to coarse-grained, allowing attackers to access too
many gadgets. They are further limited by the number of slots
in the LBR, which is at most 16. To improve the security of ap-
proaches which attempt to detect RoP exploits by measuring
similar properties as we do, they suggest making the thresh-
olds dynamic.

7. Conclusion

In this work we have presented ROPocop, a novel tool for the
automated dynamic recognition of buffer-overflow attacks.
ROPocop is designed to recognize different classes of code-
reuse attacks based on two novel techniques AntiCRA and
DEP+. AntiCRA is a configurable heuristic based on the number
of indirect branches executed in a row as well as on the
average basic block length of executed code. In our experi-
ments using default thresholds which work for a variety of
programs, AntiCRA detects 10 out of 11 of the latest real-
world code-reuse exploits and yields no false alarms on SPEC
CPU2006 and all tested real-world applications, a total of 35
programs. DEP+ executes a non-executable stack through
binary instrumentation and can thus be used to detect
exploits based on two-staged payloads that use a code-reuse
attack to disable DEP using the Windows API. DEP+ success-
fully detects all two-staged payloads we examined, again
with no false alarms. By combining both techniques, ROPocop
thus successfully detects all tested exploits, without false
warnings, showing an average performance overhead of 2.4x
for SPEC CPU2006 and real-world applications showing only
an initially noticeable input lag and no stutter. ROPocop runs
in user mode, requiring no access to source code, nor debug
symbols or changes to the operating system. It supports
multi-threaded applications. Due to its heuristic nature, ROPocop
cannot give an absolute security guarantee. However, the
parameters the heuristic is based on should make it very
hard to circumvent the approach in practice. ROPocop is thus
raising the bar significantly, without any added cost com-
pared to previous related approaches.
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