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Encrypting data before sending it to the cloud ensures data confidentiality but requires the cloud to com-
pute on encrypted data. Trusted execution environments, such as Intel SGX enclaves, promise to provide a
secure environment in which data can be decrypted and then processed. However, vulnerabilities in the exe-
cuted program give attackers ample opportunities to execute arbitrary code inside the enclave. This code can
modify the dataflow of the program and leak secrets via SGX side channels. Fully homomorphic encryption
would be an alternative to compute on encrypted data without data leaks. However, due to its high compu-
tational complexity, its applicability to general-purpose computing remains limited. Researchers have made
several proposals for transforming programs to perform encrypted computations on less powerful encryption
schemes. Yet current approaches do not support programs making control-flow decisions based on encrypted
data.

We introduce the concept of dataflow authentication (DFAuth) to enable such programs. DFAuth prevents
an adversary from arbitrarily deviating from the dataflow of a program. Our technique hence offers protec-
tions against the side-channel attacks described previously. We implemented two flavors of DFAuth, a Java
bytecode-to-bytecode compiler, and an SGX enclave running a small and program-independent trusted code
base. We applied DFAuth to a neural network performing machine learning on sensitive medical data and a
smart charging scheduler for electric vehicles. Our transformation yields a neural network with encrypted
weights, which can be evaluated on encrypted inputs in 12.55 ms. Our protected scheduler is capable of up-
dating the encrypted charging plan in approximately 1.06 seconds.
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1 INTRODUCTION

Many critical computations are being outsourced to the cloud. However, attackers might gain
control of the cloud servers and steal the data they hold. End-to-end encryption is a viable security
countermeasure but requires the cloud to perform computations on encrypted data.

Trusted execution environments such as Intel SGX enclaves [5, 28, 38] offer a potential solution
to this problem. An SGX enclave can very efficiently run an entire program in encrypted memory,
shielding it from the administrator’s view. However, it already has been demonstrated that soft-
ware vulnerabilities give attackers ample opportunities to execute arbitrary code in the enclave
[35]. These attacks are called return-oriented programming and piece together programs from code
snippets preceding return statements in the actual program. They can modify the control and data
flow of the program and leak any secret in the program to an observer in the cloud via SGX side
channels [13, 36, 45]. Since the number of software vulnerabilities grows with the size of the code
base, it is advisable to keep the trusted code base (TCB) as small as possible. Hence, it is not
recommended to outsource entire programs to an SGX enclave.

Consider the following dataflow modification attack that efficiently leaks a secret x in its en-
tirety. Assume an encrypted variable Enc(x) in the domain [0, N — 1] is compared to N/2 — 1. The
“then” branch is taken if it is lower or equal and the “else” branch otherwise. This can be observed,
for example, by the branch shadowing attack presented by Lee et al. [36]. The observation of this
behavior leaks whether x < N/2 — 1. This becomes quite problematic when assuming a strong, ac-
tive adversary that can modify the control and data flow. The adversary may then create constants
Enc(x) for x € {N/4,N/8,N/16,...,1} in the program code, add those to the variable Enc(x), and
re-run the control-flow branch. This way, by consecutively adding or subtracting the constants,
the adversary can conduct a binary search for the encrypted value.

As a defense for this attack of modifying the dataflow, we introduce the concept of dataflow
authentication (DFAuth). We instrument each control-flow decision variable with a label (broadly
speaking, a message authentication code (MAC)) such that only variables with a preapproved
dataflow can be used in the decision. Variables carry unique identifiers that are preserved and
checked during the encrypted operations. This prevents an adversary from deviating from the
dataflow in ways that would allow attacks such as the one mentioned earlier. Note that a program
may still have intentional leaks introduced by the programmer. However, DFAuth restricts the
leakage of any program to these intended leaks by the programmer that the programmer could
avoid (e.g., by using appropriate algorithms such as data-oblivious ones). In essence, the technique
restricts the information flows to those that are equivalent to the original program’s information
flows.

Fully homomorphic encryption (FHE) [23] would be another alternative to compute on
encrypted data without the drawback of data leaks. Due to its high computational complexity
[24], however, researchers are seeking efficient alternatives that offer similar security. Fortunately,
we know how to efficiently perform additively and multiplicatively homomorphic operations on
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Table 1. Comparison of DFAuth to the Most Relevant Alternative Approaches
Computing on Encrypted Data

Support for  Low Computational Program-Independent

Approach  Control Flow Overhead TCB
FHE O O (
SGX only ( [ @)
AutoCrypt © [ ] (]
DFAuth [ ) (J L

encrypted data. Furthermore, if we reveal the control flow of a program (instead of computing a
circuit), efficient computation seems feasible. Note that any control-flow decision on an encrypted
variable is an intentional leak by the programmer. Several proposals for program transformation
into such encrypted computations have been made. MrCrypt [49], JCrypt [15], and AutoCrypt
[50] each offer an increasing set of programs that can be computed on encrypted data. To
support encrypted computation on all programs, however, one needs to convert between different
homomorphic encryption schemes. These conversions are very small routines such that we can
scrutinize their code and implement them safely in a trusted module likely without any software
vulnerabilities.

In this way, we combine the benefits of partially homomorphic encryption with a small TCB
and the efficiency of unprotected program execution. Our re-encryption routines are small and
program independent and are run protected in the trusted module, whereas the program runs ef-
ficiently on homomorphic encrypted values in unprotected memory. Hence, our approach signifi-
cantly reduces the surface for attacks such as the return-oriented programming attacks described
earlier. We take care not to destroy the benefits of outsourcing. The verification of labels is con-
stant time and does not depend on the homomorphic computation. To this end, we introduce our
own homomorphic authenticated symmetric encryption (HASE) scheme.

We complement DFAuth and HASE with an alternative concept for operating on ciphertexts.
Our trusted authenticated ciphertext operations (TACO) scheme makes use of a common
authenticated symmetric encryption scheme that does not support homomorphic evaluation on
ciphertexts. As a result, ciphertext evaluations have to be performed in the trusted module, which
hence needs to be invoked more often. However, our experiments show that the higher number
of invocations is easily compensated by the use of a more efficient encryption scheme.

We implemented the program transformation in a bytecode-to-bytecode compiler such that the
resulting programs are executable. We evaluated DFAuth based on two applications: a neural net-
work performing machine learning on sensitive medical data and a smart charging scheduler for
electric vehicles (EVs). Our transformation yields a neural network with encrypted weights,
which can be evaluated on encrypted inputs in 12.55ms. Our protected scheduler is capable of
updating the encrypted charging plan in approximately 1.06 seconds. This shows that DFAuth is
practically deployable, while also providing extensive security guarantees.

For a summary of key properties provided by DFAuth and a comparison to the most relevant
alternative approaches for computation on encrypted data, refer to Table 1. Note that FHE does not
require any trusted code to be executed by the untrusted evaluator. Also note that AutoCrypt only
supports control-flow decisions on encrypted input variables. DFAuth extends the state of the art
to those programs performing control-flow decisions based on encrypted intermediate variables.

In summary, our contributions are the following:

e We define the concept of dataflow authentication (DFAuth) and show its interference equiv-
alence property in a program dependence graph (PDG).
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Fig. 1. System overview.

e We present two constant time implementations of dataflow authentication: HASE and TACO.

e We implemented and evaluated a bytecode-to-bytecode program transformation for computa-
tion on encrypted data using dataflow authentication.

e We implemented and evaluated transformed programs using an Intel SGX enclave as the
trusted module.

Structure of this work. In Section 2, we provide our adversary model and define the syntax, cor-
rectness, and security of our HASE scheme. Based on HASE, we introduce DFAuth and the security
it provides in Section 3. Section 4 presents our HASE constructions and discusses their security. We
complement DFAuth and HASE with TACO in Section 5. Details about our implementation in Java
are given in Section 6. Section 7 shows the results of our experiments using this implementation.
Section 8 presents related work before Section 9 concludes our work.

2 DEFINITIONS

To understand the security of dataflow authentication, we first introduce the overall scenario, the
adversary model, the algorithms that HASE offers, and the security it guarantees.

2.1 System Overview

We consider a scenario between a trusted client and an untrusted cloud server, which has a trusted
(hardware) module (e.g., an Intel SGX enclave). The client wishes to execute a program at the
cloud server with sensitive input data. An overview of the process and system trust boundaries
are provided in Figure 1. We distinguish two phases of the outsourced computation: setup and
runtime.

First, the client chooses the keys for the encryption of its inputs (A). Then, the client transforms
the intended program using a specialized DFAuth-enabled compiler (B) and uploads it to the cloud.
The server deploys some parts of the program into the trusted module that the client verifies by
remote attestation (C). This concludes the setup phase.

In the runtime phase, the client can execute—multiple times if it wishes—the program on inputs
of its choice. It encrypts the inputs using the information from the compiled program and sends
the ciphertexts to the cloud server (1-2). The cloud server now executes the program (3). After the
execution of the program the server returns an encrypted result to the client (4). The client can
then verify the result of the computation (5).
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2.2 Adversary Model

Our security objective is to leak only the information about the inputs to the cloud server that can
be inferred from the program’s executed control flow.
We assume an active adversary controlling the server who can do the following:

o Read the contents of all variables and the program text, except in the trusted module.

o Modify the contents of all variables and the program, except in the trusted module.

o Continuously observe and modify the control flow, such as by breaking the program, execut-
ing instructions step-by-step, and modifying the instruction pointer, except in the trusted
module.

o Perform the preceding steps arbitrarily interleaved.

We require the following security goal: the server learns nothing beyond the intended information
flow of the program to unclassified memory locations (interference equivalence as presented in
Section 3).

Note that the remaining adversarial information flow can be minimized or eliminated by using
appropriate algorithms such as data-oblivious ones or by combining DFAuth with control-flow
obfuscation techniques. For example, code containing conditional instructions can be transformed
into straight-line code [39] or both branches of a conditional can be executed and the result com-
bined using an oblivious store operation [44]. We present a thorough analysis of the security and
performance implications of control flow in related work [19].

2.3 Notation

We use the dot notation to access object members—for example, O.A() refers to an invocation of
algorithm A on object O. We use := for deterministic variable assignments and = for comparisons.
To indicate that an output of some algorithm may not be deterministic, we use « instead of := in
assignments. We write x «<—s X to sample x uniformly at random from a set X. For m,n € N, m < n,
we use [m, n] to refer to the set of integers {m, . .., n}. For a k-tuple x = (x1, x2, . .., xx), we refer to
the projection of x onto its i-th (i € [1, k]) component as r;(x) := x;. Similarly, for a set of k-tuples
S, we define 7;(S) := {m;(x) | x € S}.

We follow the established convention of writing the group operation of an abstract group mul-
tiplicatively. Consequently, exponentiation refers to a repetition of the group operation. We may
refer to a group (G, -) simply as G if the group operation is clear from the context. With s;||s;, we
denote the concatenation of bit strings s; and s,.

Throughout the document, A denotes a security parameter and 1* refers to the unary encoding
of A. The abbreviation PPT stands for probabilistic polynomial time. A function f : N — R* is
called negligible in n if for every positive polynomial p there is an ny such that for all n > ny it
holds that f(n) < 1/p(n). To indicate that some algorithm A is given black-box access to some
function F, we write A Each parameter to F is either fixed to some variable or marked using a
dot denoting that A may freely choose this parameter.

2.4 Game-Based Security

We provide security definitions as games (security experiments) played between a PPT challenger
and a PPT adversary A [9]. The result of the game is 1 if A wins the game (i.e., breaks security)
and 0 otherwise. A’s advantage is defined as the probability of A winning the game minus the
probability of trivially winning the game (e.g., by guessing blindly). Security holds if all adversaries
have only a negligible advantage. The security proof is achieved by reducing the winning of the
game to some problem that is assumed to be hard.
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Fig. 2. HASE overview.

2.5 Homomorphic Authenticated Symmetric Encryption

In this section, we discuss the syntax, correctness, and security of a HASE scheme. For security,
we define confidentiality in terms of indistinguishability and authenticity in terms of unforge-
ability. Indistinguishability of HASE schemes (HASE-IND-CPA) is defined as an adaptation of
the commonly used IND-CPA security definition for symmetric encryption schemes [32, p. 74].
Unforgeability of HASE schemes (HASE-UF-CPA) is based on the common unforgeable encryption
definition [32, p. 131].

Definition 1 (HASE Syntax). A HASE scheme is a tuple of PPT algorithms (Gen, Enc, Eval, Der,
Dec) such that

e The key-generation algorithm Gen takes the security parameter 1* as input and outputs a key
pair (ek, sk) consisting of a public evaluation key ek and a secret key sk. The evaluation key
implicitly defines a commutative plaintext group (M, @), a commutative ciphertext group
(C,®), and a commutative label group (L, ¢).

e The encryption algorithm Enc takes a secret key sk, a plaintext message m € M, and an
identifier i € I as input and outputs a ciphertext ¢ € C.

e The evaluation algorithm Eval takes an evaluation key ek and a set of ciphertexts C C C as
input and outputs a ciphertext ¢ € C.

e The deterministic label derivation algorithm Der takes a secret key sk and a set of identifiers
I C T as input and outputs a secret label [ € L.

e The deterministic decryption algorithm Dec takes a secret key sk, a ciphertext ¢ € C and a
secret label I € £ as input and outputs a plaintext message m € M or L on decryption error.

An overview of all operations involved in our HASE scheme is provided in Figure 2.

Definition 2 (HASE Correctness). Let IT = (Gen, Enc, Eval, Der, Dec) be a HASE scheme, M the
plaintext group, and I the set of identifiers. We say that IT is correct if for all (my, ..., m,) € M"
with associated unique identifiers (iy, . . .,i,) € " there exists a negligible function negl (1) such

that
(ek, sk) « Gen(1%)
Vj e [1,n] : ¢; « Enc(sk, mj, ij)
Pr|rm = @ m;| 1:= Der(sk, {i1. .. ..in}) > 1 - negl(1)
jeln] ¢ « Eval(ek, {ci,...,cn})
m := Dec(sk, ¢, 1)
where the probability is taken over the randomness of all algorithms.
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EpoASEI;{%CPA(A) EpoASEg{'r?PA(/l) E(sk,m, i)
(ek,sk) « H.Gen(l’l) S:={} if i € m2(S) then
(mo. my, io, i1, st) = ATECER) (14 ek)  (ek, sk) e TLGen(1%) return 1
b «—s{0,1} (1) — ﬂE(Sk"")(l’l, k) else
¢ « ILEnc(sk, my, ip) | := T1.Der(sk, I) S:=SuU{(m,i)}
b’ — ALEnc(sk,--) (1,1’ ¢, st) m = TLDec(sk,c, 1) ¢ « IL.Enc(sk, m, i)
return b = b’ if I ¢ 75(S) then return ¢

returnm # L

else
m:= EB m’

(m',i)eS,iel

returnm # L Am+#m

Fig. 3. HASE security experiments.

Definition 3 (HASE-IND-CPA). A HASE scheme II has indistinguishable encryptions under a
chosen-plaintext attack, or is CPA secure, if for all PPT adversaries (A there is a negligible function

negl(A) such that
AdVNRPA(2) = [Pr [ExpHASERR A (1) = 1] - 1] < negl (1)
with the experiment defined as in Figure 3.

Definition 4 (HASE-UF-CPA). A HASE scheme II is unforgeable under a chosen-plaintext attack,
or just unforgeable, if for all PPT adversaries A there is a negligible function negl(A) such that

AdvFSPA(A) = Pr[ExpHASEY $*4 (1) = 1] < negl(1)
with the experiment defined as in Figure 3.

The adversary returns a ciphertext ¢ and a set of identifiers I. The adversary can be successful
in two ways depending whether I C 7,(S). If at least one i € I was not used in the encryption
oracle, the adversary wins the game if ¢ decrypts successfully under the label derived from I. If
all i € I have been used in oracle queries, the adversary wins the game if ¢ is correctly decrypted
under the label derived from I and if the resulting plaintext m is different from the plaintext m
resulting from the application of the plaintext operation to the set of plaintexts corresponding to I.
Note that by controlling I, the adversary controls which elements of S are used for the evaluation
resulting in m.

3 DATAFLOW AUTHENTICATION (DFAUTH)

We introduce dataflow authentication (DFAuth) using the following example. Consider the excerpt
from a program in Listing 1. First, DFAuth performs a conversion to single static assignment
(SSA) form [4]: assign each variable at exactly one code location; create atomic expressions;
introduce fresh variables if required. The resulting code is shown in Listing 2. As usual in SSA, phi
is a specially interpreted merge function that combines the values of both assignments to f, here
denoted by f1 and f2. DFAuth then performs a type inference similar to JCrypt [15] and AutoCrypt
[50]. As a result of this inference, each variable and constant is assigned an encryption type of
{add, mul, cmp}. At runtime, each constant and variable value will be encrypted according to the
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1 a=b+ c;
2 d=a~x*xe;
1 a=b+ c; 3 dl =d > 42;
2 d=a~xe; 4 if (d1)
3 if (d > 42) 5 f1 = 1;
4 f =1, 6 else
5 else 7 f2 = 9o;
6 f =0; 8 f = phi(f1,f2);
Listing 1. Example Code. Listing 2. Example with SSA.
1 a=b+ c;
2 al = convertToMul(a, "al");
3 gl = al x e; // changed
4 for(i =n..1) { // inserted
5 g = phi(gl, g3); // inserted
6 d =g + 2*i; // inserted
7 d1 = convertToCmpGT42(d, "d1");
8 if (d1) |
1 a=b+ c; 9 f1 = 1;
2 al = convertToMul(a, "al"); 10 g2 = g3 - 2"i; // inserted
3 d=al * e; 11 } else {
4 d1 = convertToCmpGT42(d, "d1"); 12 f2 = 0;
5 if (d1) 13 g3 = phi(g, g2); // inserted
6 f1=1; 14 f = phi(f1,f2);
7 else 15 leak (f); // inserted
8 f2 = 0; 16 }
9 f = phi(f1,f2); 17 3}

Listing 3. Example as Executed on the Server. Listing 4. Example Modified by the Attacker.

appropriate type. HASE implements multiplicative homomorphic encryption mul and its opera-
tions directly, whereas it implements additive homomorphic encryption add using exponentiation.
Comparisons cmp are implemented in the trusted module. Our experiments show that this is more
efficient than performing the comparison in the program space using conversion to searchable or
functional encryption. An attacker observing user space will hence only see encrypted variables
and constants, but can observe the control flow. Actual data values are hidden from the attacker.

Combinations of multiple operations, however, require additional work. Every time a variable
is encrypted in one encryption type (e.g., additive) but is later used in a different one (e.g., multi-
plicative), DFAuth must insert a conversion. The resulting program in our running example looks
as follows.

The first conversion is necessary because the variable a must be converted from additive to mul-
tiplicative homomorphic encryption. The resulting re-encrypted value is stored in a1. For security
reasons, the decryption performed by the conversion routine must be sensitive to the variable iden-
tifier it is assigned to. A unique label must be introduced to make the decryption routine aware of
the code location. DFAuth can use the left-hand-side variable’s identifier ("a1" in this example),
because it introduced unique names during SSA conversion. Using this variable identifier, the con-
version routine can retrieve the corresponding label of the HASE encryption stored in the memory
protected by the trusted module.

Any branch condition is also treated as a conversion that leaks the result of the condition check.
In the example, DFAuth introduces the variable d1 to reflect this result:

4 d1 = convertToCmpGT42(d, "d1");
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To simplify the exposition, we assume that our compiler inlines this comparison into a special
routine convertToCmpGT42. In the general case, a binary comparison on two variables x and y
would result in a call to a routine convertToCmp(x,y, "z"). We show the full algorithm in Listing 6
in Section 6, which is generic for all comparisons and in case of comparison to a constant looks this
constant up in an internal table protected by the trusted module. We need to protect constants in
comparisons because if they were part of the program text, they could be modified by the adversary.
As mentioned before, the security challenge of such conversions to ¢cmp is that they leak in-
formation about the encrypted variables, and particularly that active adversaries that can modify
the control and data flow can exploit those leaks to restore the variables’ plaintext. In this arti-
cle, we thus propose to restrict the dataflow using DFAuth. Secure conversions are enforced by
allowing encrypted variables to only be decrypted along the program’s original dataflow. The
approach comprises two steps. First, happening at compile time, for each conversion DFAuth pre-
computes the Der algorithm (cf. Definition 1) on the operations in the code. In the conversion
convertToMul(a, "al") (atline 2 in our example), DFAuth computes the label

12 = Der(sk, {"b","c"})

and in the conversion at line 4

14 = Der(sk,{"a1","e"}).
Here the second argument to Der is the multi-set of variable identifiers involved in the unique
computation preceding the conversion. We use a multi-set and not a vector because all of our en-
crypted operations are commutative. The compiler computes labels for all variables and constants
in the program.

At runtime, the computed labels as well as the secret key sk are kept secret from the attacker,
which is why both are securely transferred to, and stored in, the trusted module during the setup
phase. The trusted module registers the secret labels under the respective identifier, for example,
associating label /4 with identifier "d1".

All conversion routines run within the trusted module. They retrieve a secret label for an iden-
tifier with the help of a 1abellookup(id) function. In particular, when the program runs and a
conversion routine is invoked, the trusted module looks up and uses the required labels for de-
cryption. In the example at line 4, the call to convertToCmpGT42 internally invokes the decryption
operation Dec(sk, d, 14) using secret label 14 retrieved for variable identifier "d1":

return (x > 42);
}

1 convertToCmpGT42(d, "d1") {
2 14 = labellLookup("d1");

3 x = Dec(sk, d, 14);

4 if (x == fail)

5 stop;

6

7

Note that in this scheme, the trusted module returns the result of the comparison in the clear.
In this case, however, leaking the branch decision is secure, as HASE guarantees that any active
attack that would yield the adversary a significant advantage will be reliably detected.

Let us assume an attacker that attempts to modify the program’s data or control flow to leak
information about the encrypted plaintexts, for instance, using a binary search as described in
the introduction. The attacker is not restricted to the compiled instructions in the program and
can also try to “guess” the result of cryptographic operations as the adversary in experiment
EpoASE{g%'CPA. This modification to the binary search algorithm can only succeed if the decryp-
tion operatibns Dec in convertToCmpGT42 (or other conversion routines) succeed. The adversary
can minimize the Dec operations, for example, by not introducing new calls to conversion rou-
tines, but given the scheme defined previously, any attempt to alter the dataflow on encrypted
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variables will cause Dec to fail: assume that an attacker inserts code in Listing 3 to search for the
secret value d (resulting code shown in Listing 4). We only use this code to illustrate potential
attacks and ignore the fact that the attacker would need access to the encrypted constants (2*1)
and therefore needs to guess the result of the homomorphic addition operation on the ciphertexts.
However, given these capabilities, the attacker could try to observe the control flow—simulated by
our statement leak (f)—which then would in turn leak the value of d.

This code will only execute if each variable decryption succeeds, but decryption for instance of
d1 will succeed only if it was encrypted with the same label 14 that was associated with d1 at load
time. Since the trusted module keeps the labels and the key sk secret, the attacker cannot possibly
forge the required label at runtime. Moreover, in the attacker-modified program, the encryption
must fail due to the altered data dependencies: in the example, the input d to convertToCmpGT42
has now been derived from g3 and i instead of a1 and e, which leads to a non-matching label for d.
In result, the decryption in the conversion routine convertToCmpGt42 will fail and stop program
execution before any unintended leakage can occur.

General security argument. The way in which we derive labels from dataflow relationships en-
forces a notion of interference equivalence. A program P is said to be non-interferent [47] if applied
to two different memory configurations M;, M, that are equal w.r.t. their low (i.e., unclassified (un-
encrypted)) memory locations, M; = M, for short, then also the resulting memory locations after
program execution must show such low-equivalency: P(M;) =1 P(M;). Non-interference holds if
and only if there is no information flow from high (i.e., classified (encrypted)) values to low mem-
ory locations. Although this is a semantic property, previous research has shown that one can
decide non-interference also through a structural analysis of programs, through so-called PDGs
that capture the program’s control and data flow [51]. In this view, a program is non-interferent if
the PDG is free of paths from high to low memory locations.

In the setting considered in this article, one must assume that the executed program before en-
cryption already shows interference for some memory locations, for example, because the program
is, in fact, intended to declassify some limited information (notably control-flow information). Let
M | C denote a projection of memory configuration M onto all (classified) memory locations C
that are not declassified that way. Therefore, even in this setting, it holds for any program P and
any memory configurations My, M, that P(M; | C) =1 P(M, | C).

The main point of the construction proposed in this article is that any program that an attacker
can produce, and that would lead to the same computation of labels (and hence decryptable data) as
the original program, cannot produce any more information flows than the original program. Let us
denote by ¢r a program transformation conducted by the attacker—for example, the transformation
explained earlier, which inserted a binary search. Then the property we would like to obtain is that

VYMy, My, tr: P(My | C) = P(M, | C) = (tr(P))(M; | C) =1 (tr(P))(M; | C).

In other words, disregarding the explicitly declassified information within C, the transformed pro-
gram does not leak any additional information—that is, the adversary cannot learn any additional
information about the encrypted data. Let us assume for a moment that the preceding equation
did not hold. If that were true, then there would exist a transformation tr that would cause the
transformed program tr(P) to compute values in at least one low memory location despite low-
equivalent inputs. But this is impossible, as any such transformation would necessarily have to
insert additional PDG-edges, destroying at least one label computation, and hence invalidating
our HASE-UF-CPA security proof.

Result verification. Note that the client can verify the result of the computation using a simple
check on the variable’s label—just as the conversion routine does. The result is just another variable
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that, as it is not converted, can be checked for correct dataflow computation. That way, a client
can ensure that it receives a valid output of the program.

4 HASE CONSTRUCTIONS

In this section, we provide two constructions of HASE schemes: one homomorphic with respect to
multiplication and another with respect to addition, on integers. We define the assumptions and
show the security of our schemes under these assumptions. Security reductions are deferred to
Appendix A.

Our first construction is based on the renowned public-key encryption scheme of Elgamal [17].
We do not make use of the public-key property of the scheme, but extend ciphertexts with a third
group element working as a homomorphic authenticator.

Definition 5 (Group Generation Algorithm [32, p. 321]). A group generation algorithm is a PPT
algorithm that takes 1% as input and outputs (G, g, g), where G is (a description of) a cyclic group,
q is the order of G, and g is a generator of G.

CoNSTRUCTION 1 (MuLTIPLICATIVE HASE). Let G be a group generation algorithm. Define a
HASE scheme using the following PPT algorithms:

e Gen: On input 1* obtain (G, q, g) < G(1%). For a pseudorandom function (PRF) family H :
K xI — G, choosek «s K. Choosea, x,y «sZ4 and compute h := g*, j := g¥. The evaluation
key is G, and the secret key is (G, q, g, a, x, y, h, j, k). The plaintext group is (M, ®) = (G, ),
where - is the group operation in G. The ciphertext group is (G*, ®), where we define ® to denote
the component-wise application of - in G. The label space is (G, -).

e Enc: On input a secret key sk = (G, q,9g,a,x,y,h,j, k), a message m € G, and an identifier
i € I. Chooser «sZq and obtain the label | = H(k,i). Compute u := g", v := h" - m and
w:=j" - m® - L. Output the ciphertext (u, v, w).

e Eval: On input an evaluation key G and a set of ciphertexts C C C compute the ciphertext
¢:= Qe and outputc.

e Der: On input a secret key (G, q,g,a,x,y, h,j, k) and a set of identifiers ] C I compute the
label | := [];c; H(k, i) and output I. Note that here I1 denotes the repeated application of the
group operation - in G.

e Dec: On input a secret key (G, q,g, a, x,y, h, j, k), a ciphertext c = (u, v, w), and a secret label
I € G. First, compute m := u™ - v, thent := u¥ - m® - I. If t equals w, output m; otherwise,
output L.

It is well known that the Elgamal encryption scheme is homomorphic with regard to the group
operation in G. Trivially, this property is inherited by our construction. For the original Elgamal
scheme, G is most commonly instantiated either as G, the g-order subgroup of quadratic residues
of Z;, for some prime p = 2q + 1 (with g also prime), or as an elliptic curve over some g-order
finite field. In the latter case, the group operation is elliptic curve point addition and the ability to
perform point addition in a homomorphism serves no useful purpose in our context. Instantiating
G as G4 however enables homomorphic multiplication on the integers.

Our second construction supports homomorphic integer addition and is obtained by applying a
technique proposed by Hu et al. [29] to Construction 1. The idea of this construction is to consider
plaintexts to be element of Z, instead of G and to encrypt a given plaintext m by first raising the
generator g to the power of m and then encrypting the resulting group element in the usual way.
In detail, this means computing ciphertexts of the form (g", h"g™) rather than (g", h"m). To see
that the resulting scheme is homomorphic with regard to addition on Z,, consider what happens
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when the group operation is applied component-wise to two ciphertexts:
(grl . grz’hrlgml . hrzgmz) — (gr1+r2’hr1+r2 A gmﬁmz).

Unfortunately, decryption now involves computing discrete logarithms with respect to base g,
which must be difficult for sufficiently large exponents in order for the DDH problem (cf. Defini-
tion 7) to be hard relative to G. Hu et al. [29] keep exponents small enough for discrete logarithm
algorithms to terminate within reasonable time despite their exponential asymptotic running
time. They do so by unambiguously decomposing plaintexts m into ¢ smaller plaintexts m,
(e € [1,t]) via means of the Chinese remainder theorem (CRT) and then encrypting each m,
separately. Although doing so increases the ciphertext size roughly by a factor of ¢ in comparison
to Construction 1, this drawback can be compensated by instantiating G as an elliptic curve group
since the homomorphic operation is on Z, rather than G. At a comparable security level, group
elements of elliptic curves can be represented using a fraction of bits [46].

We now provide the full details of our Additive HASE construction. Note how the authenticator
only requires constant (i.e., independent of t) ciphertext space and can be verified without discrete
logarithm computation. Although we consider instantiating G as an elliptic curve group, we keep
writing the group operation multiplicatively.

CoNSTRUCTION 2 (ADDITIVE HASE). Let G be a group generation algorithm as before. Define a
HASE scheme using the following PPT algorithms and the Eval algorithm from Construction 1:

e Gen: On input 1* obtain (G,q,q) «— G(1"). Fora PRFH : K x I — Zg, choose k «s K.
Choose {d,, ...,d;} € Z* such thatd := 2:1 de < qandVe # j : ged(de,d;) = 1. Define
D := (dy,...,d;,d). Choose a,x,y «sZ4 and compute h := g*, j := g¥. The evaluation key
is G, and the secret key is (G, q, g, a,x,y, h, j, k, D). The plaintext group is (M, ®) := (Z4, +).
The ciphertext group is (G***V), ®), where ® denotes the component-wise application of - in G.
The label space is (G, -).

e Enc: On input a secret key sk = (G, q,9, a,x,y, h, j, k, D), a message m € Z4, and an identifier
i € 1. Obtain the labell := H(k,i). Fore :=1,...,t:

- Compute m, := m mod d,.

Choose r, «$Zq.

Compute u, := g
— Computev, := h' - g
Choose r <sZq. Compute s := ¢" and w = j - g™ - 1. Output the ciphertext
(U1, 01, ..., U, Vg, S, W).

e Der: On input a secret key (G, q,g,a,x,y, h, j, k,D) and a set of identifiers ] C I compute the
label | := [1;e; g% D and output 1.

e Dec: On input a secret key (G, q,9, a, x,y, h, j, k, D), a ciphertext (uy, vy, . . ., Uy, Vs, S, w), and a
secret labell € G. Parse D = (dy, . .., d;, d). First, compute m, := logg(veue_x)fore =1,...,t,

Me.

-1 a
then recover m := Y!_, med%(d% mod d.) mod d. If sY - g™ -1 = w, then output m; else,
output L. Note thatlog, denotes the discrete logarithm with respect to base g.

Definition 6 (Pseudorandom Function). Let X and Y be two finite sets and denote the set of all
functions from X to Y as . We say that an efficiently computable keyed function F : K xX — Y
with keyspace K is a PRF if for all PPT algorithms (A there is a negligible function negl(4) such
that

[pr[A"&) (%) = 1] = Pr[A/O(1%) = 1]| < negl(A)

where the first probability is taken over k <= K and the second probability is taken over f «s 7.
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Definition 7 (DDH Problem [32, p. 321]). Let G be a group generation algorithm. We say that the
Decisional Diffie-Hellman (DDH) problem is hard relative to G if for all PPT algorithms A there
is a negligible function negl (A1) such that

Pr [5‘1(@, 2.9.9%9".9") = 1] —Pr [ﬂ(G, 4.9.9%.9".9°F) = 1] | < negl(1)

where in each case the probabilities are taken over the experiment in which G(1%) outputs (G, g, 9),
and then a, B,y «sZj.

THEOREM 1 (MULTIPLICATIVE HASE-IND-CPA). Let IT be Construction 1. If the DDH problem is
hard relative to G and H is a PRF as described in I1.Gen, then II is CPA secure.

THEOREM 2 (MULTIPLICATIVE HASE-UF-CPA). LetII be Construction 1. IfH is a PRF as described
in I1.Gen, then I1 is unforgeable.

THEOREM 3 (ADDITIVE HASE-IND-CPA). Let IT be Construction 2. If the DDH problem is hard
relative to G and H is a PRF as described in I1.Gen, then I1 is CPA secure.

THEOREM 4 (ADDITIVE HASE-UF-CPA). Let I1 be Construction 2. If H is a PRF as described in
I1.Gen, then I1 is unforgeable.

5 TRUSTED AUTHENTICATED CIPHERTEXT OPERATIONS

In this section, we complement DFAuth and HASE with TACO, an alternative concept for operating
on ciphertexts.

TACO is similar to HASE, but evaluations in TACO are defined as secret key operations, which
offers some advantages. First, constructions do not have to rely on homomorphic encryption but
can make use of more efficient symmetric encryption schemes. Second, the TACO syntax is more
powerful and allows to perform multiplication, addition, and other operations such as division
using the same generic construction. However, these properties are a trade-off: since the evaluation
algorithm depends on the secret key, it must be run by a trusted party—that is, the client or the
trusted module in our setting (cf. Section 2.2).

We define the syntax and correctness of a TACO scheme in Section 5.1. Section 5.2 provides our
TACO security definitions. Section 5.3 presents a construction of a TACO scheme and its security
properties. We again defer security reductions to Appendix A.

5.1 Syntax and Correctness

The syntax is similar to that of HASE. An important difference is that evaluation can be performed
for multiple operations that do not necessarily have to be commutative. In addition, labels are
public and their computation does not depend on the secret key.

Definition 8 (TACO Syntax). Let M be the message space, C the space of ciphertexts, £ the space
of labels, K the space of keys, and I the space of identifiers. Furthermore, let ® be a set of plaintext
operations. Each ¢ € ® has a fixed number of parameters p,, such that ¢ maps a p,-dimensional
tuple (my,...,my,) with m; € M to one message i € M. A TACO scheme is a tuple of PPT
algorithms (Gen, Enc, Eval, Der, Dec) such that

e The key-generation algorithm Gen takes the security parameter 1% as input and outputs a
secret key sk € K.

e The encryption algorithm Enc takes a secret key sk, a plaintext message m € M, and an
identifier i € 1 as input and outputs a ciphertext ¢ € C.
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e The evaluation algorithm Eval takes a secret key sk, a function ¢ € ®, and a p,,-dimensional
tuple (ci, . . ., ¢p,) With ¢; € C asinput and outputs a ciphertext ¢ € C or L on authentication
error.

e The deterministic label derivation algorithm Der takes either
— an identifier i € 7 or
- afunction ¢ € ® and a p,-dimensional tuple (L. .., lpq)) with [; € L
as input and outputs a label leL.

e The deterministic decryption algorithm Dec takes a secret key sk, a ciphertext ¢ € C, and a
label I € L as input and outputs a plaintext message m € M or L on decryption error.

For a TACO scheme to be correct, the decryption must be successful and also yield the expected
value even after multiple evaluations. For this purpose, we introduce the following definitions.

Definition 9 (TACO Partial Correctness). Let I1 = (Gen, Enc, Eval, Der, Dec) be a TACO scheme.
We say that I1 is partially correct if for all m € M and all i € I it holds that

Dec(sk, Enc(sk, m, i), Der(i)) = m.

Definition 10 (TACO Ciphertext Validity). Let ¢ € C be a ciphertext. We say c is valid if and only
if Al € L : Dec(sk,c,l) # L. The corresponding [ € L, for which Dec(sk,c,l) # L is denoted as a
valid label for c.

Definition 11 (TACO Correctness). LetII = (Gen, Enc, Eval, Der, Dec) be a partially correct TACO
scheme. We say that II is correct if for any secret key sk < Gen(1%), any function ¢ € ®, any
pp-dimensional tuple of ciphertexts C := (cy,...,cp,) With ¢; € Candc; valid, and any p,-
dimensional tuple of labels L := (I, . . ., le) with [; € £ and I; valid for c;, for the p,-dimensional
tuple of plaintexts M := (my, ..., szp) with m; = II.Dec(sk, cj, [;) it holds that

Dec(sk, Eval(sk, ¢, C), Der(p,L)) = ¢(M).

5.2 Security Definitions

Indistinguishability of a TACO scheme is defined in a similar way to HASE-IND-CPA except the
adversary is provided access to an evaluation oracle instead of the evaluation key. Like HASE-UF-
CPA, unforgeability of a TACO scheme is based on the definition of unforgeable encryption [32,
p. 131]. Essentially, the unforgeability adversary wins by producing two ciphertexts that decrypt
to different messages under the same label.

Definition 12 (TACO-IND-CPA). A TACO scheme II has indistinguishable encryptions under a
chosen-plaintext attack, or is CPA secure, if for all PPT adversaries A there is a negligible function

negl(A) such that

AdviETA) =

1
Pr [ExpTACORN, A (1) = 1] - 5‘ < negl(1).
The experiment is defined as follows:

ExpTACORD P4 (1)
sk « H.Gen(l’l)

(ml’ my, i1, iz, St) - ﬂH.Enc(sk, -, ), IL.Eval(sk, -, -)(1/1)

b «s{0,1}
¢ « IL.Enc(sk, my, ip)
b — ﬂH.Enc(sk, -, -),I1.Eval(sk, -,»)(1/1 c St)

return b = b’
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Definition 13 (TACO-UF-CPA). A TACO scheme II is unforgeable under a chosen-plaintext attack,
or just unforgeable, if for all PPT adversaries A and all functions ¢ € &y there is a negligible
function negl(A) such that

AV SPA(D) = Pr [ExpTACO‘;{ﬁ}:f(A) = 1] < negl(4)

with the experiment defined as follows:

ExpTAco‘;{ﬁPj(A) E(sk,m, i)

I:=1{} if i € I then

sk « H.Gen(l’l) return L

(c1.cp.1)  AEGK - LILEvaI(sk, ) (1) else

my := I1.Dec(sk, c1,1) [=1uii)

my = IL.Dec(sk. c3.1) ¢ « I1.Enc(sk, m, i)
return ¢

returnmi # L Amy # L Amy # my

5.3 Construction

Definition 14 (Symmetric Encryption Scheme [32, p. 6]). A symmetric encryption scheme for key
space K, message space M. and ciphertext space C is a triple of PPT algorithms (Gen, Enc, Dec)
such that

e Gen takes as input the security parameter 1* and outputs a key k € K.

e Enc takes as input a key k € K and a plaintext message m € M and outputs a ciphertext
ceC.

e Dec takes as input a key k € K and a ciphertext ¢ € C and outputs a message m € M.

Correctness requires for any key k < Gen(1*) and every m € M to hold: Dec(k, Enc(k, m)) = m.

Definition 15 (Hash Function [32, p. 154]). A hash function (with output length [) is a pair of PPT
algorithms (Gen, H) such that

e Gen takes as input the security parameter 1* and outputs a key s.
e H takes as input a key s and a string x € {0, 1}* and outputs a string y € {0, 1}'), where A
corresponds to the security parameter used by Gen to generate s.

CoNSTRUCTION 3 (TACO). Define the message space M := {0,1}", the ciphertext space C :=
{0, 1}, the label space L := {0, 1}/1, and the space of identifiers I := {0,1}". Let SE = (Gen, Enc,
Dec) be a symmetric encryption scheme with message space M and ciphertext space C. Define the
key space K as the space of keys output by SE.Gen. For a hash function Q = (Gen, H), obtain
k < Q.Gen(1%). Furthermore, let ® be a set of plaintext operations and let id : ® > {0,1}* be an
injective function. Construct a TACO scheme using the following PPT algorithms:

e Gen: On input 1* obtain and output a symmetric encryption secret key sk « SE.Gen(1%).
o Enc: On input a secret key sk and a message m € M output the ciphertext

¢ « SE.Enc(sk, m||Der(i)).

e Eval: On input a secret key sk, an operation ¢ € ®, and a p,-dimensional tuple of ciphertexts
(c1,.. .,cp(P). Forj € [1,p,], computed; := SE.Dec(sk, c;) and parsed; = m;||l;. Ifany d; = 1,
then return L. Otherwise, compute

m =g ((ml, .. ’me)) andl’ := Der (q), (L, ... ,lp(p)).
Output the ciphertext ¢ « SE.Enc (sk, m’||l’).
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Fig. 4. Application transformation during the setup phase. See Section 6.1 for a full description.

e Der:
— On input a secret key sk and an identifieri € I output the label

[ := H(k, i||0).

— On input a secret key sk, a function ¢ € ®, and a p,,-dimensional tuple of labels (L, . . ., 1)
output the label

[:=H (k. id(@ILIl... I, 111).

e Dec: On input a secret key sk, a ciphertext ¢ € C, and labell € L compute d := SE.Dec(sk, c)
and parsed = m’||lI". Ifd = L orl # I’, then output L. Otherwise, output m’.

THEOREM 5 (TACO-IND-CPA). LetII be Construction 3 and SE its symmetric encryption scheme.
If SE is CCA-secure [32, p. 96], then I1 is TACO-IND-CPA secure.

THEOREM 6 (TACO-UF-CPA). Let II be Construction 3, SE its symmetric encryption scheme, and
Q = (Gen, H) its hash function. If SE is unforgeable [32, p. 131] and Q is collision resistant [32, p. 155],
then IT is TACO-UF-CPA secure.

6 IMPLEMENTATION

In this section, we present details of an implementation in Java used in our experiments. Recall
from Section 2.1 that we consider a scenario between a trusted client and an untrusted cloud server
that has a trusted module. Also recall that we distinguish two phases of the outsourced computation:
setup and runtime.

6.1 Setup Phase

The setup phase is divided into two parts, compilation and deployment, as described in the following.
An overview is provided in Figure 4.

Compilation. First, the client translates any Java bytecode program to a bytecode program run-
ning on encrypted data. To start, the client generates a set of cryptographic keys. It then uses our
bytecode-to-bytecode compiler to transform an application (in the form of Java bytecode) using
the generated keys (1). Our compiler is based on Soot, a framework for analyzing and transforming
Java applications [34]. It uses our DFAuth crypto library to encrypt program constants and choose
variable labels (2-3).

The DFAuth crypto library contains implementations of all required cryptographic algorithms,
including our own from Sections 4 and 5. It implements the PRF used for authentication labels as
HMAC-SHA256 [16]. For the group operations in Multiplicative HASE, we use MPIR [1] for large
integer arithmetic. Additive HASE operates on the elliptic curve group provided by libsodium [3].
The Gen method of Additive HASE has as parameters the number of ciphertext components and
the number of bits per component. From these, it deterministically derives a set of t primes. The
Additive HASE Dec method computes the discrete logarithms via exhaustive search with a fixed
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Fig. 5. Application execution during the runtime phase. See Section 6.2 for a full description.

set of precomputed values. To ensure the efficiency of Additive HASE decryption, the compiler
inserts trusted module invocations into the program that decrypt and re-encrypt ciphertexts.
These re-encryptions result in modulo reductions in the exponents (cf. Construction 2), thus pre-
venting excessive exponent growth and ensuring an efficient decryption. The frequency of these
invocations can be defined by the application. We demonstrate the efficacy of these re-encryptions
in Appendix B. For HASE, our compiler converts floating-point plaintexts to a fixed-point rep-
resentation using an application-defined scaling factor. It also transforms the calculations to
integer values, whereby the scaling factors are considered when appropriate. The resulting value
is transformed back to floating-point after decryption. For the symmetric encryption scheme in
TACO we use the Advanced Encryption Standard in Galois/Counter Mode (AES-GCM). AES-GCM
is an authenticated encryption scheme and as such is both CCA secure and unforgeable.

Finally, the compiler performs the transformation described in Section 3 and outputs a main
class containing the program start code, multiple app classes containing the remaining code, and
conversion data (e.g., labels and comparison data) (4).

Deployment. Second, the client deploys the app classes at the cloud server and securely loads
the generated cryptographic keys and conversion data into the trusted module. We implemented
the trusted module using an Intel SGX enclave [5, 28, 38]. SGX is well suited for our implemen-
tation because it provides isolated program execution (including strong memory encryption) and
remote attestation (including a secure communication channel). The client uses remote attestation
to prepare the enclave. It verifies the correct creation of the DFAuth trusted module enclave in the
remote system and the correct setup of the crypto library. At the same time, the client establishes a
secure communication channel with the remote enclave, over which the sensitive conversion data
is loaded. The secure channel provides confidentiality and authenticity. It protects the communica-
tion between the trusted client and the trusted enclave against the untrusted part of the server as
well as any other attackers on the network. We also emphasize that SGX’s hardware protections
protect cryptographic keys and conversion data on the server from access by any software except
our DFAuth enclave.

6.2 Runtime Phase

To run the program, the client executes the main class that triggers the remote program execu-
tion at the cloud server (Figure 5). The main class encrypts the program input (for this run of the
program) with the generated keys (for the entire setup of the program) using the crypto library
(1-4). The main class passes the encrypted input to the app classes on the cloud server (5). The
app classes operate on encrypted data and do not have any additional protection. They invoke the
DFAuth wrapper for operations on homomorphic ciphertexts and re-encryption or comparison re-
quests (6). The wrapper hides the specific homomorphic encryption schemes and trusted module
implementation details from the app classes such that it is feasible to run the same program us-
ing different encryption schemes or trusted modules. It forwards re-encryption and comparison
requests to the trusted module and passes the answers back to the application (7-9). Once the
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1 convertToCmp(x, y, "x") {
2 label = labellLookup("x");
3 x1 = Dec(K, x, label);
4 if (x1 == fail)
5 stop;
6 if (y == null) {
7 param = paramLookup ("x");
8 switch (param.type) {
9 case EQ:
10 return (x1 == param.const);
11 case GT:
12 return (x1 > param.const);
13 case GTE:
14
1  convertToMul(x, "x") { 15 } else {
2 label = labellLookup("x"); 16 label = labelLookup("y");
3 y = Dec(K, x, label); 17 y1 = Dec(K, y, label);
4 if (y == fail) 18 if (y1 == fail)
5 stop; 19 stop;
6 id = idLookup("x"); 20
7 return Enc(K, y, id); 21 }
8 3} 22 3
Listing 5. Conversion to Multiplicative HASE. Listing 6. Conversion to Comparison.

app classes finish their computation, they send an encrypted result (including an authentication
label) back to the client (10). The client verifies the authentication label to the one computed by
our compiler.

The task of the trusted module during runtime is to receive re-encryption and comparison re-
quests, determine whether they are legitimate, and answer them if they are. It bundles crypto-
graphic keys, authentication labels, and required parts of the crypto library inside a trusted area,
shielding it from unauthorized access. The DFAuth wrapper enables to potentially select different
trusted modules based on the client’s requirements and their availability at the cloud server. Be-
sides Intel SGX enclaves, one can implement a trusted module using a hypervisor or calling back
to the client for sensitive operations. However, alternative implementations would involve making
slightly different trust assumptions.

SGX’s secure random number generator provides the randomness required during encryption.
A restriction of the current generation of Intel SGX is the limited size of its isolated memory. It
only provides about 96 MB for code and data and thus enforces an upper bound on the number
of precomputed discrete logarithm values used to speedup Additive HASE. The available memory
can be used optimally with a careful selection of CRT parameters.

TACO evaluation, HASE re-encryption, and comparison requests have to be implemented inside
the trusted module. We display the conversion routines (implemented in an SGX enclave in our
case) for conversion to Multiplicative HASE and comparison in Listings 5 and 6. The conversion
routine to Additive HASE is similar to the one for Multiplicative HASE in Listing 5 with the roles
of the encryption schemes switched. The comparison of two encrypted values is similar to the
comparison of one to a constant in Listing 6. Similar to the call 1labelLookup, which retrieves
labels from conversion data stored inside the trusted module, idLookup and paramLookup retrieve
identifiers for encryption and parameters for comparison from the conversion data.

7 EVALUATION

In this section, we present the evaluation results collected in two experiments. In the first exper-
iment, we apply DFAuth to an existing neural network program enabling secure neural network
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evaluation in the cloud. In the second experiment, we use DFAuth to protect sensitive data pro-
cessed by a smart charging scheduler for EVs. In each experiment, we separately evaluate DFAuth
with HASE and DFAuth with TACO. We collect the running time inside and outside the trusted
module as well as the number of operations performed inside and outside the trusted module.

All experiments were performed in the Microsoft Azure Cloud using Azure Confidential Com-
puting. We used VM instances of type Standard_DC4s, which run Ubuntu Linux 18.04 and have
access to four cores of an SGX-capable Intel Xeon E-2176G CPU and 16 GiB of RAM. We aimed
for a security-level equivalent to 80 bits of symmetric encryption security. We used the 1, 536-bit
MODP Group from RFC3526 [33] as the underlying group in Multiplicative HASE. The 1ibsodium
[3] elliptic curve group used by Additive HASE even provides a security level of 128 bits [10]. A
key length of 128 bits was used for the AES-GCM symmetric encryption scheme in TACO.

7.1 Secure Neural Networks in the Cloud

In this experiment, we consider the use case of evaluating neural networks in the cloud. Due
to their computational complexity, it is desirable to outsource neural network computations to
powerful computing resources located at a cloud service provider.

We aim to protect the network model and the instance classified—that is, the weights of the
connections and the inputs and outputs of the neurons. The weights do not change between clas-
sifications and often represent intellectual property of the client. In addition, the privacy of a user
classified by the network is at risk, since his classification may be revealed. DFAuth overcomes
these concerns by encrypting the weights in the network and the client’s input and performing
only encrypted calculations. As well, since the transformed program does not perform any control-
flow decisions based on network weights or client input, the attacker cannot learn sensitive data
by observing the control flow. Note that even the classification result does not leak, since the result
returned is the output values for each of the classification neurons (i.e., a chance of classification
y, e.g., breast cancer in our subsequent example, of x%).

Experimental setup. We apply our transformation to the BrestCancerSample [sic] neural
network provided by Neuroph [2]. This network is a fully connected multi-layer perceptron with
30 input neurons, 16 hidden neurons, and two output neurons. It uses the sigmoid function as its
activation function. Given a set of features extracted from an image of a breast tumor, the network
predicts whether the tumor is malignant or benign. As such, it operates on highly sensitive medical
data. The properties of the network (e.g., layer and neuron configuration) are encoded program-
matically in the main class of this network. This class also reads the dataset associated with the
network and divides it into a 70% training set and a 30% test set. The training set is used to learn
the network, and the test set is used to evaluate whether the network delivers correct predictions.

We start by applying DFAuth to the main class of the network and the classes of the framework
(app classes). Result of the transformation is a new main class and a set of app classes operating
on ciphertexts rather than floating-point double values. Floating-point numbers are converted to
fixed-point numbers by scaling by a factor of 10°. We use the facilities provided by Neuroph to
serialize the trained network weights into a double array and encrypt each weight. The encrypted
weights and the network configuration form the encrypted neural network. We use Neuroph to
write the encrypted neural network to disk just like the original one operating on plaintext.

For both the plaintext and encrypted neural network, we test different network evaluation sizes
({1,10,20,...,100}) and perform 20 runs each. For every run, a new random segmentation of
training and test data is performed and the network is trained again. Network inputs are sampled
uniformly at random (without replacement) from the test dataset. We measure the total running
time of code executing at the untrusted server, the time spent invoking and inside the trusted
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module, and the number of operations performed on encrypted data inside and outside of the
trusted module. The total running time includes reading the network configuration (i.e., layers
and neuron), loading the weights, and executing the evaluation.

Evaluation results. Figure 6 presents the mean running time of the encrypted neural network
using DFAuth with HASE. The mean is computed over all 20 runs for each evaluation size and
is divided into time spent inside the trusted module and time spent outside the trusted module.
Figure 7 shows the results for DFAuth with TACO. Figure 8 compares the running times of HASE
and TACO. We do not include the plaintext measurements in the graphs because they are too small
to be visible. Table 2 reports the number of untrusted and trusted module (SGX) operations.

Using HASE, the total running time of one network evaluation is 951 ms, whereby 895 ms (94.1%)
are spent in the trusted module (SGX) and 56 ms (5.9%) outside of the trusted module. Even for 100
evaluations, a run completes in 92.15 seconds on average. In this case, the processing time in the
trusted module is 89.54 seconds (97.2%) and 2.60 second (2.8%) outside. The relative running time
of an evaluation (total running time / number of network evaluations) is 921 ms. Compared to one
plaintext network evaluation, the running time increased by a factor of about 1,417. A waiting
time of less than 1 second demonstrates the practical deployment of neural network evaluation on
encrypted data and should already be acceptable for most use cases.

In Figure 6, we can see that using HASE a significant portion of the total runtime is spent
inside (or invoking) the trusted module. On the one hand, this shows that a more efficient trusted
module implementation would significantly decrease the total runtime of the application. On the
other hand, it suggests that we execute more instructions inside the trusted module than outside,
contradicting our basic idea of a reduced execution inside the trusted module. However, Table 2
shows that this is not the case. For a single neural network evaluation, 1, 096 untrusted operations
and 620 trusted operations on encrypted data are performed. This means that 64% of all operations
can be performed without the trusted module.

It is important to note that for each run and every input, the prediction of the encrypted net-
work was consistent with the prediction of the plaintext network—that is, DFAuth introduced no
additional error due to the encrypted computation.

Using TACO, the total running time of one network evaluation is 23 ms, of which 8 ms (35.7%)
are spent in the trusted module (SGX) and 15 ms (64.3%) outside of the trusted module. For 100
evaluations, the relative running time of an evaluation is 12.55 ms. In Figure 7, we can see that in
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contrast to HASE, a smaller fraction of the total running time is spent in the trusted module. Al-
though TACO requires 1, 132 trusted module invocations while HASE only requires 620, it appears
that the higher number of invocations is easily compensated by TACO’s use of a more efficient
encryption scheme. For one network evaluation, TACO is faster than HASE by a factor of 41 and
slower than plaintext evaluation by a factor of 35. See Figure 8 for a more detailed comparison of
HASE and TACO running times.

Comparison to alternative solutions. Recently, implementations of machine learning on en-
crypted data have been presented for somewhat homomorphic encryption [25] and Intel SGX [41].
Compared to the implementation on somewhat homomorphic encryption, our approach offers the
following advantages. First, our approach has a latency of 12.55 ms compared to 570 seconds for
somewhat homomorphic encryption. The implementation in the work of Gilad-Bachrach et al. [25]
exploits the inherent parallelism of somewhat homomorphic encryption to achieve a high through-
put. However, when evaluating only one sample on the neural network, the latency is large. Our
approach is capable of evaluating only a single sample with low latency as well. Second, our ap-
proach scales to different machine learning techniques with minimal developer effort. Whereas the
algorithms in the work of Gilad-Bachrach et al. [25] were developed for a specific type of neural
network, our implementation on encrypted data was derived from an existing implementation of
neural networks on plaintext data by compilation. This also implies that the error introduced by
Gilad-Bachrach et al. [25] due to computation on integers does not apply in our case. However,
we have not evaluated this aspect of accuracy in comparison to the work of Gilad-Bachrach et
al. [25]. Finally, our approach is capable of outsourcing a neural network evaluation, whereas the
approach in the work of Gilad-Bachrach et al. [25] is a two-party protocol (i.e., the weights of the
neural network are known to the server). Our approach encrypts the weights of the neural net-
work and hence a client can outsource the computation of neural network. Note that our approach
includes the functionality of evaluating on plaintext weights as well and hence offers the larger
functionality.

Although their running time overhead is smaller than ours, our approach offers the following
advantage compared to the implementation on SGX [41]. In our approach, the code in the SGX en-
clave is independent of the functionality (e.g., machine learning). The implementation in the work
of Ohrimenko et al. [41] provides a new, specific algorithm for each additional machine learning
function (neural networks, decision trees, etc.). Each implementation has been specifically opti-
mized to avoid side channels on SGX and hopefully scrutinized for software vulnerabilities. The

ACM Transactions on Privacy and Security, Vol. 25, No. 3, Article 21. Publication date: May 2022.



21:22 A. Fischer et al.

st

Is EV scheduled?

(O}
Z
g Assign EV to charging station
o ’ Assign EV to free charging station ‘ according to precomputed schedule
5 '
;’ Fill schedule to min SoC, Is EV early and
w ordering timeslots by time has expected SoC?
Yes
Fill schedule to full SoC ’ EV receives precomputed schedule ‘
according to timeslot ordering |
v
’ Set timeslot k = 0 ‘
T<
v
’ Block timeslot k ‘ Is there a violation at k?
‘ No
= ’ Calculate priority for each EV ‘ m
5 ¢
E Order EVs scheduled to charge at k
?_3: by priority
T
Unblock all timeslots
o Deallocate schedule at k ’
for EV with lowest priority
Fill schedule of EV with lowest priority
— according to timeslot ordering,
taking into account blocked timeslots
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same development effort has been applied once to our conversion routines and crypto library run-
ning in the trusted module. However, when adding a new functionality our approach only requires
compiling the source program and not applying the same effort again on the new implementation.

7.2 Secure EV Charging Scheduling

In this experiment, we use DFAuth to protect sensitive data processed by a smart charging
scheduler for EVs. Smart charging is a technique to schedule EV fleets making the most of existing
infrastructure—for example, undersized connection lines and a limited number of charging
stations.

Frendo et al. [20] present a novel approach combining day-ahead and real-time planning. Their
schedule-guided heuristic takes as input a precomputed day-ahead schedule and adjusts it in real
time as new information arrives. Events providing new information, for example, include EV ar-
rival, EV departure, and price changes at energy markets. Event processing must be fast, for exam-
ple, such that drivers can be assigned a charging station as they enter a parking garage. The event
handling process is divided into two parts—EV scheduling and EV prioritization—as depicted in
Figure 9.

ACM Transactions on Privacy and Security, Vol. 25, No. 3, Article 21. Publication date: May 2022.



Computation on Encrypted Data Using Dataflow Authentication 21:23

To provide event responses in real time, it is convenient to utilize the cloud’s powerful comput-
ing resources, high availability, and central data storage. However, sensitive data such as planned
EV arrival and departure times as well as technical car properties, which could be used to identify
the driver, are at risk of being revealed to the cloud service provider. We apply DFAuth such that
all operations involving sensitive data are performed on encrypted data.

Experimental setup. Overall, we apply DFAuth to the schedule-guided heuristic by Frendo
et al. [20] and reproduce their real-time charging simulation using our encrypted schedule-guided
heuristic. Provided a precomputed encrypted day-ahead schedule as input, we simulate 1 day of
events during which the current schedule has to be updated.

In particular, we apply our transformation to all classes handling sensitive data. For each car,
the information protected in this way includes its minimum state of charge (min SoC), its current
state of charge, and its current charging schedule. We do not protect prices at energy markets, the
structure of the charging schedule (e.g., timeslot size), and the car type (i.e., whether it is a battery-
electric or a plug-in hybrid electric vehicle). Results of the transformation are new classes operating
on ciphertexts rather than floating-point double values. For HASE, floating-point numbers are
converted to fixed-point numbers by scaling by a factor of 108.

The charging simulation is parameterized by the number of EVs. We consider the same param-
eters {10, 20, 30, ...,400} as in the original experiment [20]. The number of charging stations is
constant at 25. Possible events are EV arrival, EV departure, update of expected EV arrival, up-
date of expected EV departure, and price changes at energy markets. Each EV event occurs ap-
proximately once per EV, and new energy prices are updated every 15 minutes (i.e., 96 times per
simulation).

We execute the simulation for each parameter for HASE and TACO using the same underlying
data set. In each simulation, we measure the accumulated time taken to adjust the schedule as a
result of an event. We distinguish the running time of code executing at the untrusted server, the
time spent invoking and inside the trusted module, and the number of operations performed on
encrypted data inside and outside of the trusted module. To evaluate the real-time property of our
solution, we also determine the maximum event response time over all events.

Evaluation results. Figure 10 presents the total running time of each simulation for HASE and
TACO. It can be seen that TACO significantly outperforms HASE in this experiment. The smallest
simulation using 10 EVs takes 802 seconds for HASE but only 4 seconds for TACO. Even for the
largest simulation involving 400 EVs, the running time of 139 seconds for TACO is significantly
less than for 10 EVs using HASE. The graph does not include any HASE results for parameters
larger than 20, because we aborted the HASE experiment due to its long running time and high
response time. In Figure 10, we can also see that sometimes the running time of a simulation
decreases although the number of EVs is increased (e.g., for parameters 220 and 230). This is caused
by randomized sampling of simulation data, which may result in larger instances being easier to
solve by the heuristic than smaller instances.

Figure 11 shows the number of trusted module calls for each simulation. The trusted module
calls linearly increase in the number of EVs, as is expected based on the algorithm. For parameters
220 and 230, the number of trusted module calls are in line with the respective running times and
again suggest that the simulation involving 230 EVs was easier to solve. As in the neural network
experiment, HASE requires less trusted module calls than TACO. For example, for 10 EVs, HASE
requires 284,290 trusted module calls, whereas TACO performs 309,656. This may result in better
overall HASE performance in case an alternative trusted module with more expensive calls is
used.
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Figure 12 illustrates the time TACO spent inside and outside the trusted module. The portion
of time inside the trusted module varies between 59.5% for 320 EVs and 62.4% for 10 EVs, and as
such can be considered independent of the number of EVs. In comparison, for HASE the average
portion of time inside the trusted module is 99.5%, despite the lower number of trusted module
calls and higher total running time.

Figure 13 presents the maximum event response time, an important property of real-time appli-
cations. By definition, the maximum response time is dominated by single events that are complex
to handle for the heuristic. Such events cause spikes in the chart, as can be observed for 70 and
130 EVs. If we ignore those outliers, we can split the graph into two parts. From 10 to 90 EVs, the
maximum response time continuously increases with the number of EVs. This is because time is
mostly spent in the scheduling step and only a small number of violations have to be resolved
in the prioritization step (cf. Figure 9). For larger numbers of EVs, the maximum response time
varies between 0.70 and 2.14 seconds, an average of 1.06 seconds. Considering the response time
of different simulations, we can see that it is practially independent of the number of EVs.

In summary, DFAuth using TACO enables the protection of sensitive data while simultaneously
providing sufficiently fast response times required by the smart charging use case.

8 RELATED WORK

Our work is related to obfuscation techniques and trusted hardware, (homomorphic) authenti-
cated encryption, and computation on encrypted data—including but not limited to homomorphic
encryption.
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Obfuscation techniques and trusted hardware. Approaches straightening or obfuscating the
control flow can be combined with DFAuth on the unprotected program part and are hence
mostly orthogonal to our work. We provide a detailed analysis of the security and performance
implications of executing control-flow driven programs in related work [19].

Molnar et al. [39] eliminate control-flow side channels by transforming code containing condi-
tional instructions into straight-line code employing masking.

GhostRider [37] enables privacy-preserving computation in the cloud assuming a remote
trusted processor. It defends against memory side channels by obfuscating programs such that
their memory access pattern is independent of control-flow instructions. However, as a hardware-
software co-design, GhostRider requires a special co-processor. In contrast, our approach works
on commodity SGX-enabled CPUs and provides a program-independent TCB inside the secure
hardware. Raccoon [44] extends these protections to the broader class of side channels carrying
information over discrete bits. Essentially, Raccoon executes both paths of a conditional branch
and later combines the real and the decoy path using an oblivious store operation.

HOP [40] obfuscates programs by encrypting them such that only a trusted processor can
decrypt and run them. By incorporating encryption routines into the program, HOP can be
extended to also protect program input and output. However, HOP assumes the program is free
of software vulnerabilities and runs the entire program inside the trusted hardware. In contrast,
in DFAuth, vulnerabilities are confined to the untrusted program and the code inside the trusted
module is program independent.

(Homomorphic) authenticated encryption. Authenticated encryption is an encryption mode that
provides confidentiality as well as authenticity (unforgeability) and is the recommended security
notion for symmetric encryption schemes. An authenticated encryption can be obtained by com-
posing an IND-CPA secure encryption scheme with a signature or MAC [8]. Hence, one can obtain
a homomorphic authenticated encryption by combining a homomorphic encryption scheme with
a homomorphic MAC. However, since the best known homomorphic MACs [22] are not yet fully
homomorphic, a different construction is required. Joo and Yun [30] provide the first fully homo-
morphic AE. However, their decryption algorithm is as complex as the evaluation on ciphertexts
undermining the advantages of an encrypted program—that is, one could do the entire compu-
tation in the trusted module. In parallel work, Barbosa et al. [6] develop labeled homomorphic
encryption that, however, has not been applied to trusted modules.

Boneh et al. [11] introduced linearly homomorphic signatures and MACs to support the
efficiency gain by network coding. However, their signatures were still deterministic, hence
not achieving IND-CPA security. Catalano et al. [14] integrated MACs into efficient, linearly
homomorphic Paillier encryption [42] and used identifiers to support public verifiability (i.e., ver-
ification without knowledge of the plaintext). However, their scheme also has linear verification
time undermining the advantages of a small trusted module.

In our HASE construction, we aimed for using identifiers and not plaintext values to enable
dataflow authentication. Furthermore, we split verification into a precomputed derivation phase
and a verification phase. Hence, we can achieve constant time verification.

Aggregate MACs [31] provide support for aggregation of MACs from distinct keys. However,
our current dataflow authentication considers one client and secret key.

Computation on encrypted data. Since FHE [23] entails rather high computational overhead [24],
researchers have resorted to partially encrypting computations. MrCrypt [49] infers feasible en-
cryption schemes using type inference. In addition to homomorphic encryption, MrCrypt makes
use of randomized and deterministic order-preserving encryption. However, the set of feasible
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programs is limited and the authors only evaluate it on shallow MapReduce program snippets.
Even in this case, several test cases cannot be executed. JCrypt [15] improved the type inference
algorithm to a larger set of programs. Even then, no conversions between encryption schemes
were performed. AutoCrypt [50] used these conversions, however, and realized their security
implications. The authors hence disallowed any conversion from homomorphic encryption to
searchable encryption. This restriction prevents any program from running that modifies its input
and then performs a control-flow decision. Such programs include the arithmetic computations
we performed in our evaluation.

Next to programs written in imperative languages (e.g., Java), programs in declarative languages
(e.g., SQL) are amenable to encrypted computation. In these languages, the programmer does
not specify the control-flow decisions, but they may be optimized by the interpreter or compiler.
Hence, any resulting data is admissible and weaker encryption schemes must be used. Hacigiimiis
et al. [27] used deterministic encryption to implement a large subset of SQL. Popa et al. [43] used
also randomized and order-preserving encryption in an adjustable manner [43].

Verifiable computation [21] can be used by a client to check whether a server performed a
computation as intended—even on encrypted data. However, this does not prevent the attacks
by malicious adversaries considered in this article. It only proves that the server performed one
correct computation, but not that it did not perform any others.

Functional encryption [12] is a more powerful computation on encrypted data than homomor-
phic encryption. It not only can compute any function but also can reveal the result of the com-
putation and not only its ciphertext. However, generic constructions [26] are even slower than
homomorphic encryption. Searchable encryption [48] is a special case of functional encryption
for comparisons. It could be used to implement comparisons in dataflow authentication. However,
since the actual comparison time is so insignificant compared to the cryptographic operations, it
is more efficient to implement comparison in the trusted module as well.

9 CONCLUSION

Summary. We introduce the concept of dataflow authentication (DFAuth), which prevents an
active adversary from deviating from the dataflow in an outsourced program. This in turn allows
safe use of re-encryptions between homomorphic and leaking encryption schemes to allow a larger
class of programs to run on encrypted data where only the executed control flow is leaked to the
adversary. Our implementation of DFAuth uses two novel schemes—HASE and TACO—and trusted
modules in an SGX enclave. Compared to an implementation solely on FHE, our approach provides
high efficiency and actually practical performance due to fast ciphertext operations and support
for control flow. Compared to an implementation solely on Intel’s SGX, we offer a much smaller
TCB independent of the protected application. We underpin these results by an implementation of
a bytecode-to-bytecode compiler that translates Java programs into Java programs operating on
encrypted data using DFAuth.

Future work. First, our security model does not assume the existence of verification oracles for
MAC:s. There exist schemes that are secure in our model, but not with verification oracles [7].
We leave the construction of a proof in a security model with verification models as future work.
Second, DFAuth considers a simple scenario between two parties: a client and a server (which has
a trusted module). In the context of extending DFAuth to multiple clients, an open question is
whether HASE can be adjusted to a public-key setting without weakening its security properties.
Third, the trusted module in this work was implemented using an SGX enclave. An open question
is whether DFAuth can gain any security or performance improvements from using alternative
trusted execution environments.
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APPENDICES
A POSTPONED SECURITY REDUCTIONS

We perform security reductions using a sequence of games. The first game is the original security
experiment provided by the security definition. Each subsequent game is equal to the previous
game except for some small well-defined change for which we argue that it does only negligibly
influence adversarial advantage. The last game then has a special and easy to verify property (e.g.,
the adversary has no advantage over a blind guess). Only negligible change in advantage between
subsequent games implies only negligible change in advantage between the first and the last game,
which concludes the reduction.

A.1 Proof of Theorem 1 (HASE-IND-CPA)

Proor. LetII, G, H be as described, and let A be a PPT adversary. We use a sequence of games
to show that A’s advantage Advg})ﬁcm(&) is negligible in A. For Game n, we use S, to denote
the event that b = b’. The final game and the encryption oracle used in all games are given in
Figure 14.

Game 0. This is the original experiment from Definition 3, but instead of relying on II,

the challenger performs the exact same computations on its own. Clearly, Adv%%CPA(A) =

|Pr[Se] — 3.

Game 1 (Indistinguishability-Based Transition). Instead of deriving the label used in the third
component of the challenge ciphertext using the PRF H : K X I — G for some random k <%,
we make use of a random function f «s ¥ from the set of functions ¥ = {F : 7 — G}.

We construct a polynomial time algorithm 8 distinguishing between a PRF (for a random key)
and a random function using A as a black box. If B’s oracle is a PRF, then the view of A is
distributed as in Game 0 and we have Pr[S,] = Pr [Bﬂ’H(k")(l’l) = 1] for some k s K. If B’s
oracle is a random function, then the view of A is distributed as in Game 1 and thus we have
Pr[S;] =Pr [Bﬂ’f(')(l’l) = 1] for some f «s ¥ . Under the assumption that H is a PRF, | Pr[S,] —
Pr[S;]]| is negligible.

Game 2 (Conceptual Transition). Because f is only evaluated on a single input i, and f is a
random function, the result is a random element of G. Thus, instead of computing [ := f (i), we
can compute [ := g° for a random exponent s «—sZ,. Since this is only a conceptual change, we
have Pr[S;] = Pr[S,].

Game 3 (Indistinguishability-Based Transition). In the challenge ciphertext, we replace h" = g*”
with a random group element g* generated by raising g to the power of a random z «sZ,.

We construct a polynomial time distinguishing algorithm 9 solving the DDH problem that
interpolates between Game 2 and Game 3. If D receives a real triple (g%, g#, g*F) for a, f s Zyg,
then A operates on a challenge ciphertext constructed as in Game 2 and thus we have

Pr(S;] = Pr[D7(G.q.9.9%. 9. ") =1].

If D receives a random triple (g%, g%, g¥) for a, B,y s Zg, then A operates on a challenge cipher-
text constructed as in Game 3 and thus we have

Pr(S3] = Pr[D7(C.q.9.9%.4".g") = 1].

In both cases, D receives (G, g, g) output by G(1*). Under the assumption that the DDH problem
is hard relative to G, | Pr[S,] — Pr[Ss] | is negligible.
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Fig. 14. Final security experiment used in the HASE-IND-CPA proof. Changes compared to the first experi-
ment are highlighted.

Conclusion. In the last game, the first component of the challenge ciphertext is trivially indepen-
dent of the challenge plaintext as well as the challenge identifier. In the second component, g7 acts
like a one-time pad and completely hides m;. Similarly, [ = ¢g° acts like a one-time pad in the third
component. Because the challenge ciphertext does not contain any information about my, or i, we
conclude that Pr(S;] = % Overall, we have that AdvIﬂNPﬁCPA(/I) = negl(1). O

A.2 Proof of Theorem 2 (HASE-UF-CPA)

Proor. Let I1, G, H be as described, and let A be a PPT adversary. We use a sequence of games
to show that A’s advantage Advg{'gPA(/l) is negligible in A. For Game n, we use S, to denote the

event that the adversary wins the game. The final game is illustrated in Figure 15.

Game 0. This is the original experiment from Definition 4, but instead of relying on II, the
challenger performs the exact same computations on its own. Clearly, Adv(;ﬁ'r(fPA(/l) =|Pr[So] .

Game 1 (Conceptual Transition). We eliminate the conditional statement by comparing ¢ and w
in the return statement.

Game 2 (Indistinguishability-Based Transition). We replace the PRF H(k, -) with a function f(-)
chosen at random. Under the assumption that H is a PRF, we have that | Pr[S;] — Pr[S,] | is negli-
gible as in the previous security reduction in Theorem 1.

Conclusion. We show that Pr[S,] = negl(4). Let X be the event that Vi € I : A(m, i) € S (i.e., all
identifiers have been used in encryption oracle queries).

In case event X does not happen, the challenger evaluates function f on at least one new argu-
ment. By the definition of f, the result is a random value in the image of f. This random group
element acts as a one-time pad and makes [ look random. Subsequently, ¢ is also random from the
point of view of the adversary. To win the experiment, A has to fulfill ¢ = w. Because ¢ is random,
A cannot guess the correct w with probability better than é. Thus, we have

Pr[S, A =X] = é Pr[-X]. (1)
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Game, 1 o7 (A) E(sk, m, i)

S:=1{} parse sk = (G, q,g,a,x,y, h, j, M)
(G,q.9) « g(ll) if i € m(S) then

a,x,y «<s$Zqk s ‘K, return L

h .= gx’j = gy else

ek =G S=SuU{(mi)}

sk :=(G,q.9.a,x,y,h, j,) resZgl=|f()

B
(e1)  APCR) (17, ek) ¢i= (g om 7 m D

L= ][f®

iel

return ¢

parse ¢ = (1,0, w)
m=u* 0
t=u¥ -m* 1

if I ¢ m2(S) then

else

~ ’
e @ m

(m’,i)eS,iel
return Am#m

Fig. 15. Final security experiment used in the HASE-UF-CPA proof. Changes compared to the first experi-
ment are highlighted.

Recall that q is the order of G (of which w is an element), and both are output by the group
generation algorithm G(1%). Also note that =X holds when A performs no encryption queries at
all.

Now consider the case when event X happens, and let (c, I) be the output of the adversary. The
set of identifiers I determines a label [ and an expected message ri. Furthermore, let ¢ = (i, 0, w)
be the ciphertext resulting from the application of II.Eval to ciphertexts identified by I. As ¢ is an
honestly derived encryption of m, the following must hold:

m=u*-0
w=uY-m-1
=@>-0)-1 (2)
Similarly, for ¢ = (u, v, w) to be accepted as a forgery regarding I, it must hold that
w= (™" 0v)-1 (3)

for some m := u™* - v # m. Because m # m, we know that 2¥™ -0 # u¥* -vand w # w.
Combining Equations (2) and (3) yields

@)l

C (w¥x -v)a -l

T
- (—uy_x : v) , (4)
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For ¢ to be a forgery with regard to I, Equation (4) needs to be satisfied. But since a is a random
element of Z,, the probability that A can satisfy (4) is only é. Hence,

Pr[S, A X] = é Pr[X]. 5)

Summing up (1) and (5), we have
1
Pr[Sz] = PI[SZ A _|X] +PI'[SZ /\X] = a,

and, overall we have that Advgiﬁm(l) = negl(1). O

A.3 Theorems 3 and 4

The security of Construction 2 (Theorem 3 and Theorem 4) follows directly from the security of
Construction 1 (Theorem 1 and Theorem 2).

A.4 Proof of Theorem 5 (TACO-IND-CPA)

Proor. Let IT be Construction 3 and SE its symmetric encryption scheme. Note that if SE has
IND-CCA security, it also has IND-CPA security.

Assume there exists an adversary winning the TACO-IND-CPA game with non-negligible prob-
ability. By definition, the adversary can then distinguish for chosen messages m;,m; € M and
identifiers iy, iy € Z the ciphertext

¢; < IL.Enc(sk, mq, i1) Def SE.Enc(sk, m;||Der(iy))

from
¢y < I1.LEnc(sk, ma, is) Def SE.Enc(sk, mz||Der(is))

with non-negligible probability. In case the adversary performed no evaluation oracle queries, this
is a contradiction to IND-CPA security of SE.

To show that the evaluation oracle provides only negligible advantage to the adversary, we sim-
ulate it as an attacker on the IND-CCA property of the SE scheme. The IND-CCA property of the
SE scheme provides indistinguishability with additional access to a decryption oracle. Assume the
adversary wants to perform an evaluation ¢ on ciphertexts C = (c1, .. .,¢p,). In case C does not
include the challenge ciphertext c, the evaluation can be simulated by decrypting each ciphertext
using the SE.Dec oracle, calculating ¢ on the results, and encrypting with the encryption oracle
again. In case the adversary wants to perform an evaluation ¢ on a tuple including the challenge
ciphertext ¢, instead of computing SE.Dec(sk, c), we use m;, and i, with b «s {0, 1} for the calcula-
tion of ¢. If the attacker can distinguish the simulation from a honest oracle with non-negligible
probability, he can again distinguish SE.Enc(m]) from SE.Enc(m;) for at least two m{,m; € M
with non-negligible probability. Since the number of evaluations requested by the attacker is poly-
nomial in A, we can show that IT is TACO-IND-CPA secure. m]

A.5 Proof of Theorem 6 (TACO-UF-CPA)

Proor. Let II be Construction 3, SE its symmetric encryption scheme, and Q = (Gen, H) its
hash function. The instructions defined in the TACO-UF-CPA game lead directly to the following
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equalities:

AdvE A ()
=Pr[mi#LAmy# LAm % my]
= Pr[II.Dec(sk, c1,1) # L AIl.Dec(sk,co, 1) # L A my # my]
= Pr[SE.Dec(sk,ci) # L Al; = ASE.Dec(sk,c2) # LAl =1 Amy # my]
< Pr[l; = I, A SE.Dec(sk,c;) # L A SE.Dec(sk,cz) # L Amy # my]. (6)

Here, [; and [, are the parsed labels of the back part of the SE.Dec decrypted ciphertexts. Applying
the definition of conditional probability results in

Adv[;ﬁ'l(]:PA(/l) < Pr[ly =1, | m;y # my A SE.Dec(sk,c;) # L A SE.Dec(sk,cy) # L]. (7)

Since the underlying encryption scheme is assumed to be unforgeable, for SE.Dec(sk,c1) # L A
SE.Dec(sk, cz) # L to hold with non-negligible probability, the ciphertexts must have been created
using the secret key. This implies that the ciphertexts were created by either the evaluation oracle
or the encryption oracle. For the evaluation not to result in L, it must be performed on valid
ciphertexts. Let Pr[S, ] be the probability in Inequality (7), where n is the number of evaluations
an adversary performs on valid ciphertexts to create the ciphertexts ¢; and ¢, before passing them
to the challenger. We show the security by an induction proof over n:

o Claim: Pr[S,] is negligible Yn € N with n polynomial in A.
o First base case for n = 0: No evaluations have been performed such that

PI‘[S()] =Pr [ll =L |m #myAc = E(Sk, my, il) Ncy = E(Sk, mo, lg)]
= Pr [H(k, i1]|0) = H(k, ix]|0) | my # my A ¢; = E(sk,my,i1) A ¢o = E(sk, my, i3)]

Since the encryption oracle does not allow to encrypt different messages with the same
identifier, it must hold that i; # i», which leads to

Pr[So] = Pr[H(k,i1]|0) = H(k,i2]|0) | iy # iz].

This probability is negligible due to the assumption that Q is collision resistant.

e Second base case for n = 1: Without loss of generality, let c¢; be the ciphertext created by an
evaluation of an operation ¢ and valid ciphertexts (cy1, . . ., ¢1,p,) With corresponding labels
(11’1, ey ll,pq,)- Then

Pr[Si ] =Pr[li =L | my # my Acy = Eval(sk, ¢, (c1,15- .-, €1p,)) A c2 = E(sk, my, i)]
= Pr[H(k. id(p) L1l .. lILp, 1) = H(k.i2]10) ].

This probability is negligible due to the assumption that Q is collision resistant.

e Step case for n ~ n+1: Assume the claim is true for 0 < n* < n.If only one challenger cipher-
text is created by evaluations, then the proof in the second base case applies. Otherwise, for
Jj € {0, 1}, let ¢; be the ciphertext created by an evaluation of operation ¢; and valid cipher-
texts (¢j1,. .., Cj.py, ) with corresponding labels (I; 1, . . ., lj,p,,,j) and corresponding messages
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(mj1,. ..,mj,p(pj). Then
Pr(Spu]=Pr[li =L [m #m
AVj €10,1} = ¢j = Eval(sk, @), (¢ji1, - - -2 Clip,y, )
A SE.Dec(sk,c;) # L A SE.Dec(sk,cp) # L]
= Pr [H(k. id(p)lI 1]l . 1 p,, 117)
= H(k,id(@2) L1l - - - llL2,p,, 111) | my # my
A SE.Dec(sk,c1) # L A SE.Dec(sk,cz) # L]
=Pr{H(...)=H(.)AN(p1 #@2VIj il #Lj) | mi#my

A SE.Dec(sk,c1) # L A SE.Dec(sk,cp) # L], (8)
+ Pr [H() ZH() A ((pl = Q2 /\Vj:ll,j = lz’j) | my # my
A SE.Dec(sk,c1) # L A SE.Dec(sk,cp) # L] 9)

Probability (8) is negligible since the input to H differs and Q is collision resistant. We explore
Probability (9) in more detail by considering its conditions.

mp # mp
= SE.Dec(sk, Eval(sk, ¢1, (c1,1 - - - ¢1,p,, ) # SE.Dec(sk, Eval(sk, @2, (c21, - - -, c2.p,,)))
= ¢1(SE.Dec(sk,c1,1), .. .,SE.Dec(sk, ClLpy, )) # ¢2(SE.Dec(sk, cz,1), . . ., SE.Dec(sk, 02,p¢2))
= ¢1(SE.Dec(sk,c1,1), . .., SE.Dec(sk, ¢1,p,, ) # ¢1(SE.Dec(sk,cz1), . .., SE.Dec(sk, ¢z,p,, ))
= 3j* : SE.Dec(sk, ¢y j-) # SE.Dec(sk, ¢y j+) (10)
We choose such an j* fulfilling Inequality (10) and obtain the following.
Pr(Spyi]=Pr[H(..)=H(.)Ap1=@ AVj:lij =1L ;I m #my
A SE.Dec(sk,c;) # L A SE.Dec(sk, ¢cz) # L] + negl(A)
<Pr[H(..)=H(.)A@1 =@ ANl j» =1 | mi #my
A SE.Dec(sk,c;) # L A SE.Dec(sk, cz) # L] + negl(A)
SPrlly =1 | my#my
A SE.Dec(sk,c;) # L A SE.Dec(sk, ¢cy) # L] + negl(A)
=Pr[ly =l | m #my
A SE.Dec(sk,c;) # L A SE.Dec(sk,c;) # L
A SE.Dec(sk, ¢y j+) # SE.Dec(sk, cy j+)] + negl(1)
< Pr[ly,j =1 | SE.Dec(sk,c) # L
A SE.Dec(sk,cz) # L Amyj- # my j=] + negl(A)
Moreover, it holds the following.
SE.Dec(sk,c1) # L A SE.Dec(sk,cp) # L
= SE.Dec(Eval(sk, ¢1, (c1,1, - - -+ €1,p,, ) # L A SE.Dec(Eval(sk, @2, (c2,15 - - - €2,p,,))) # L
= SE.Dec(cy,j*) # L A SE.Dec(cy,j+) # L

Pr[S,+1] <Pr [le* = lg,j* | SE.DEC(CLJ'*) LA SE.DBC(CZ,J'*) L Amyj# mz’j*] + negl(/l)
=Pr[S,-] + negl(2), n*<n
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This probability is negligible according to the induction hypothesis proving that that Vn €
N Pr[S,] is negligible. Because the number of evaluations an adversary can perform n is

polynomial in A, Adv[;(F"r([:PA (4) is negligible. O

B ADDITIVE HASE BENCHMARK

The decryption algorithm of the Additive HASE construction (Construction 2) involves computing
a discrete logarithm for each ciphertext component (after Elgamal decryption). Since each homo-
morphic addition can increase the bit length of exponents by 1, a large amount of homomorphic
additions can make decryption exponentially costlier (or impossible, assuming only a lookup table
with precomputed logarithms), despite the use of the CRT approach provided by Hu et al. [29].
In the following experiment, we demonstrate that re-encryptions inserted by the DFAuth com-
piler are an effective measure for preventing excessive exponent growth and ensuring an efficient
decryption.

Experimental setup. Thoughout this experiment, we use a CRT decomposition involving 13 dif-
ferent 5-bit primes. These parameters were chosen such that we can represent 64-bit integer values.
In the trusted module, a lookup table containing 2!® precomputed discrete logarithms was gener-
ated. We measure the runtime of the decryption algorithm when applied to a ciphertext resulting
from the homomorphic evaluation of n ciphertexts. For each n, we consider two variants of the
experiment: one without re-encryptions, and the other with re-encryptions performed after ev-
ery 4,000 homomorphic evaluations. We use n € {10, 100, 1,000, 10,000, 100,000} and perform each
measurement 100 times.

Evaluation results. Figure 16 presents the mean runtime of the decryption algorithm for each
n and each variant (without re-encryption and with re-encryptions). We can see that the decryp-
tion time without re-encryptions are mostly constant up to 1,000 homomorphic evaluations but
increases drastically for larger numbers of evaluations. The reason for this sharp increase in decryp-
tion time is likely the fact that the discrete logarithms can no longer be computed via table lookup
but the decryption has to fall back to exhaustive search (cf. Section 6.1). In comparison, when
re-encryptions are performed, the decryption time only increases minimally, even for n = 100,000.

100.000
10.000
1.000
100

10

1 . . .
0
10 100

1000 10000 100000
#Additions
W With Re-encryptions B No Re-encryptions

Decryption Time [ms]

Fig. 16. Mean runtime (in milliseconds) to decrypt a ciphertext produced by summing up a varying number
of ciphertexts using the Additive HASE scheme.
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