
The Journal of Systems & Software 169 (2020) 110697

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

A systematic literature review ofmodel-driven security engineering
for cyber–physical systems
Johannes Geismann a,b,∗, Eric Bodden a,b,c

a Software Engineering Group, Heinz Nixdorf Institute, Fürstenallee 11, 33102 Paderborn, Germany
b Department of Computer Science, Paderborn University, Fürstenallee 11, 33102 Paderborn, Germany
c Fraunhofer IEM, Zukunftsmeile 1, 33102 Paderborn, Germany

a r t i c l e i n f o

Article history:
Received 29 August 2019
Received in revised form 8 June 2020
Accepted 15 June 2020
Available online 16 June 2020

Keywords:
Literature survey
Systematic literature review
Model-driven security
Cyber–physical systems
Platform-specific
Security modeling

a b s t r a c t

The last years have elevated the importance of cyber–physical systems like IoT applications, smart cars,
or industrial control systems, and, therefore, these systems have also come into the focus of attackers.
In contrast to software products running on PCs or smartphones, updating and maintaining cyber–
physical systems presents a major challenge. This challenge, combined with the often decades-long
lifetime of cyber–physical systems, and with their deployment in often safety-critical contexts, makes
it particularly important to consider their security already at design time. When aiming to obtain
a provably secure design, model-driven security approaches are key, as they allow to identify and
mitigate threats in early phases of the development. As attacks may exploit both code-level as well
as physical vulnerabilities, such approaches must consider not just the cyber layer but the physical
layer as well. To find out which model-driven security approaches for cyber–physical systems exist
considering both layers, we conducted a systematic literature review. From a set of 1160 initial papers,
we extracted 69 relevant publications describing 17 candidate approaches. We found seven approaches
specifically developed for cyber–physical systems. We provide a comprehensive description of these
approaches, discuss them in particular detail, and determine their limitations. We found out that
model-driven security is a relevant research area but most approaches focus only on specific security
properties and even for CPS-specific approaches the platform is only rarely taken into account.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Cyber–physical Systems (CPS) Lee (2008) are complex em-
bedded systems that are distributed over several control units,
communicate with each other, and interact with their phys-
ical environment (Fitzgerald et al., 2014). Examples are sys-
tems in the automotive domain, aerospace, medical environ-
ments, or industrial control systems. Often, such systems are used
in safety-critical contexts and, therefore, have to fulfill safety-
requirements, i.e., hard real-time requirements (Lee, 2008). Since
modern systems interact with each other and with their envi-
ronment, these systems do not operate any longer in isolation.
Thus, malicious actors may gain access to the infrastructure of
these systems and, therefore, security for CPS becomes a topic of
high relevance (Reddy, 2015). Furthermore, in contrast to classical
software systems, CPS use both the cyber and the physical layer
for interaction and communication. Thus, both layers are possible
attack surfaces and attack targets (Dorbala and Bhadoria, 2015) as

∗ Corresponding author at: Software Engineering Group, Heinz Nixdorf
Institute, Fürstenallee 11, 33102 Paderborn, Germany.

E-mail address: johannes.geismann@uni-paderborn.de (J. Geismann).

recent incidents show like the attacks on a steel mill (Lee et al.,
2014) or modern cars (Ishtiaq Roufa et al., 2010). Due to this
hybrid nature of CPS and their increasing relevance in daily life,
it is important to consider security for both layers as well as their
combination (Rajkumar et al., 2010).

Many CPS have to operate for several years without down-
time and, therefore, fixing vulnerabilities gets more complex.
For example, updating a car’s software has to be done manu-
ally, by a certified mechanic, or by using public update channels
which may increase the attack surface. Furthermore, updating
embedded systems for fixing vulnerabilities at runtime is in many
cases difficult or even impossible and leads to high costs (Cigi-
tal Federal Inc., 2011), e.g., in industrial control systems where
downtime of the system gets very expensive. Another problem is
that some vulnerabilities might not be fixable by simply updating
the software because they result from a bad design decision
regarding software and platform, e.g., when deploying software
components to executing hardware nodes of the system. Thus,
considering security decisions at design time of the system can
help detect and prevent vulnerabilities early in the development
lifecycle (Uzunov et al., 2012).

Model-Driven Software Development (MDSD) Völter et al.
(2013) has become a leading paradigm for developing CPS and to

https://doi.org/10.1016/j.jss.2020.110697
0164-1212/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jss.2020.110697
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2020.110697&domain=pdf
mailto:johannes.geismann@uni-paderborn.de
https://doi.org/10.1016/j.jss.2020.110697


2 J. Geismann and E. Bodden / The Journal of Systems & Software 169 (2020) 110697

formally verify safety requirements at their design time. In MDSD,
models are used as first-class entities, which means that the mod-
els are used as primary artifacts of the development (Brambilla
et al., 2012). This includes that they are formally refined and
synthesized to more specific models and finally to source code
guaranteeing to fulfill the safety requirements at any develop-
ment step. Applying MDSD to security has to be considered in a
special way, since not all security requirements can be expressed
by liveness and safety properties (McLean, 1996). Additionally,
security properties have to be explicitly considered for each step
of the software development life cycle (in the following denoted
as SDLC) because even correct refinements may not preserve
proven security properties (Jacob, 1989). Similarly to approaches
for safety, in the last decade, several model-driven engineering
approaches for security were developed to consider security
already during the design of the system (Nguyen et al., 2015).
The focus of these approaches differs in the application domain,
used modeling languages, kinds of analyses, and covered security
properties. The same holds for the goal of these approaches
because some approaches focus, for example, on the verification
of security protocols and others on generating security test cases.
While most approaches focus on information systems in general,
there are also approaches that are tailored to the special domain
of CPS.

Based on the guidelines proposed by Kitchenham (2004) and
Kitchenham and Charters (2007), we conducted a systematic
literature review to find out which model-driven approaches
for secure CPS do exist that cover explicitly both software de-
scription (‘‘cyber’’-layer) and platform description. For CPS, this
platform layer gets important because it describes not only the
runtime environment (including operating system, middleware,
and provided libraries) but also the physical layer which repre-
sents the connection to the physical environment. From a set of
1160 papers, we extracted 17 model-driven security approaches
that consider the platform. We found out that seven of these
approaches are specific to CPS and investigated these approaches
in more detail. Our survey summarizes each approach, shows
how the platform information is utilized in these approaches,
which phases of the software development lifecycle are consid-
ered most, and which kinds of threats are covered. We state
current limitations of these approaches and discuss open research
questions and directions in this area. The survey showed that
the selected approaches insufficiently cover the platform layer
and the integration of third-party code, that threat modeling is
applied only in an implicit way, and that the degree of automation
of tracing and refining security requirements into implemented
security solutions should be increased.

The remainder of this paper is structured as follows. In Sec-
tion 2, we outline the rationale of the survey and discuss the
relation to other existing surveys in this area. In Section 3, we
describe the planning and conduct of the survey. We describe
the selected approaches in Section 4 and summarize and discuss
results of the survey in Section 5. Finally, we conclude and state
future directions in Section 6.

2. Background and rationale of the survey

Following Edward Lee, ‘‘Cyber–Physical Systems [. . . ] are in-
tegrations of computation with physical processes’’. Lee (2008).
In contrast to embedded systems, one additional key aspect of
CPS is the network communication within and between such
systems (Lee, 2008; Zhang et al., 2013). From the security point of
view, this becomes a highly relevant aspect because CPS and their
security rely not only on cyber attacks but also on their physical
environment (Rajkumar et al., 2010). It is important to consider
these different kind of attacks as well es hybrid attacks (exploiting

both cyber attacks and physical attacks) in early development
steps (Banerjee et al., 2012). Hence, in the context of this survey,
we focus on this special nature of CPS. In CPS, vulnerabilities are
particularly hard to fix after deployment because maintenance is
not possible or the vulnerability is based on bad design decisions.
Hence, it is important to consider security in the design phase and
to refine these secure designs into deployed systems. Finding and
preventing vulnerabilities is up to 30 times less expensive than
fixing them in a deployed system (Cigital Federal Inc., 2011). Ap-
plying model-driven engineering for security can help to address
this problem and to prove that specific security properties and
assumptions hold in the deployed system as well.

In the last few years, surveys in the area of model-driven
security and security for distributed systems were already pub-
lished. Nguyen et al. (2015) conducted an extensive systematic
literature review and provide a quantitative evaluation and clas-
sification of model-driven security approaches. Yet, they do not
focus on approaches for CPS nor approaches that take the plat-
form into account. Overall, only 6% of the approaches they cover
are in the area of CPS. In addition, in Nguyen et al. (2017)
Nguyen et al. present a mapping study studying the research ac-
tivities in ‘‘model-based security engineering for cyber–physical
systems’’ (Nguyen et al., 2017). This mapping study provides a
broad overview of publications in this research area. In contrast,
we focus on model-driven approaches that explicitly take the
platform into account. Uzunov et al. (2012) present an extensive
survey in the area of security for distributed systems. Some parts
of our survey are based on or inspired by this survey, e.g., we
used the proposed taxonomy of model-driven engineering (cf.
Section 3). In contrast to our survey, Uzunov et al. (2012) did
not conduct a systematic literature review. Nevertheless, the
survey by Uzunov et al. is the most extensive survey in this
area and provides a very detailed description of a large set of
methodologies for distributed systems. Yet, Uzunov et al. do not
focus on the use of the platform for the approaches but classify
them in more general categories. Kriaa et al. present a ‘‘sur-
vey of approaches combining safety and security for industrial
control systems’’ (Kriaa et al., 2015). They show how important
the combination of safety and security is, how requirements for
both can contradict each other, and which approaches cope with
this problem. In contrast to our survey, they focus more on risk
analysis in the SDLC. Furthermore, they do not explicitly consider
the physical layer or model-driven techniques. In Jensen and
Jaatun (2011), Jensen et al. provide a survey with a focus on code
generation in model-driven security approaches. In contrast to
our survey, Jensen et al. do not consider the whole SDLC but
focus on code-generation capabilities only. Felderer et al. present
in Felderer et al. (2016) a survey on model-based security testing.
In contrast to our survey, Felderer et al. do not explicitly focus
on the needs of CPS. In addition, they focus not on model-driven
engineering even though model-based security testing might be
used by some model-driven design approaches. Lun et al. (2016)
present a mapping study of security approaches for CPS and give
a good overview of this area but do not consider model-driven
approaches in detail.

In line with these surveys, we agree that security has to
be considered in the whole SDLC and not only in one phase,
e.g., design or implementation. Uzunov et al. (2012) state four
distinct phases for security based on the SDLC. In particular, the
authors define general phases for security along with the general
phases of software development: Security Requirements Deter-
mination (along with Requirements Analysis), Security Modeling
(along with design phase), Implementation (along with imple-
mentation phase), and Configuration and Monitoring (along with
deployment phase). We agree to these phases in general but
refined them into six steps for the purpose of better differenti-
ation of the studied approaches. Fig. 1 shows these phases. In



J. Geismann and E. Bodden / The Journal of Systems & Software 169 (2020) 110697 3

Fig. 1. Phases of the secure software development life cycle.

the first step, one specifies security requirements. In this step,
the used artifacts are not necessarily defined formally. In the
next step, one specifies the system design. Since we focus on
model-driven approaches, formal models are used. It is important
that both cyber and physical layer of the systems are considered
to match the nature of CPS. Furthermore, an approach has to
allow the specification of possible threats and/or attacks. Since
this activity is crucial for model-driven security, we propose to
state a dedicated phase for specifying formal threats or attacks
to the system. In the best case, these threats are derived from
the specified security requirements. The outcome of this step is a
formal threat model. It is essential that the threats can be specified
formally, such as to enable Security Analyses and Transformations.
Security Analyses are used to prove or disprove certain security
properties of the models, whereas transformations are used for
the refinement of models or to introduce security controls into
the existing models. We propose to state also a dedicated phase
for this, since threat specification and security analyses might
be on a different level of expressiveness, e.g., if an approach
allows one to specify more kind of threats than analyses can find
in the models. During the deployment, additional vulnerabilities
might be introduced. Thus, securing the deployment (allocation
of software to hardware nodes, deploying the software to con-
crete hardware, configuration, etc.) should also be considered. In
contrast to Uzunov et al. we see the implementation coupled with
the deployment, because when developing CPS, the source code
often highly depends on the concrete allocation of the software.
Runtime on the other hand should be a dedicated phase, in our
opinion, since during runtime, additional security mechanisms
can be applied, e.g., monitoring the system. It can be used to
detect attacks or to enforce security mechanisms, by utilizing
information synthesized from the system models.

In an initial literature survey, we collected requirements that
a model-driven security approach should satisfy. We base our
requirements on existing surveys in this area. In particular, the
most influencing survey is Uzunov et al. (2012). We took an initial
set of requirements from these surveys and state in the following
the most important requirements. We leave out requirements
regarding usability and industrial applicability since these are not
in the focus of our survey but focus on requirements that are
essential to platform-aware security approaches. We do not claim
this list to be complete but state these requirements as the most
important.

R1 Support different layers of the system: One key aspect of CPS
is that they consist of different layers. In this survey, we
distinguish two main layers: cyber layer and the platform
layer. The cyber layer describes the software part of the
system. The platform layer covers the whole runtime en-
vironment (as for usual IT systems) containing artifacts
like operating system and middleware but also the phys-
ical part of the system, e.g. sensors and actuators. Since
in this survey we focus on the use of the platform, this
requirement has some significance.

R2 Phases of the SDLC: Security-by-Design means to consider se-
curity in all phases of the SDLC. Thus, all phases of the SDLC
should be covered. First of all, the system has to be de-
signed, e.g., by modeling the software architecture and the
target platform. Furthermore, potential threats and attacks
have to be specified, e.g., by a threat model. Additional

phases are the application of formal analyses, (automatic)
threat mitigation, deployment, or runtime analyses like
monitoring or simulation. It is important that each phase is
clearly defined and has specified input and output artifacts.

R3 System of systems: Modern CPS are complex systems that
consist of several sub-systems. To handle the development
of such system-of-systems, the method has to provide a
structured approach, e.g., to allow compositional analyses,
it has to provide the specification of a hierarchical system
specification. In large systems, not all subsystems are de-
veloped by the same provider. Thus, complex systems often
integrate third-party resources. Hence, in the best case, a
method is able to process both fully known parts and only
partially known (or even unknown) parts of the system.

R4 Threat model: Since the threat model defines potential threats
to the system, it is important that such a model is suffi-
ciently expressive; it should cover as many kind of threats
as possible. In the best case, the threat model is extensible,
allowing one to define new threats. We do not restrict
the threat model to the application layer but also consider
threats regarding the platform and hardware.

R5 Formal methods and formal models: Security-by-Design is
aided by applying formal analyses and model transfor-
mations to enable consistency between all development
steps. Thus, the method has to provide formal models for
the system and the threats and attacks as well as formal
analyses on these models.

R6 Refinement and relation to implementation: An approach has
to provide a correct synthesis to source code, i.e., a source-
code generation that preserves the analysis results, e.g., by
generating secure source code for the platform. In the
best case, a full code generation for the is provided but
also partial code generation for the security implemen-
tations might be sufficient, e.g., if the code for secure
communication is generated. Other code generations are
possible, e.g., automatically generated test cases or static
code analyses.

R7 Requirements: Typically, beside functional requirements and
security requirements also non-functional requirements
are essential for CPS, since CPS are often restricted by
resource constraints, e.g., restricted memory or comput-
ing power. Restricted computational power and timing
constraints get important properties and make the secure
development of CPS more difficult, e.g., when encryp-
tion is needed. Also, such systems have to formally show
that specific (hard real-time) safety-requirements are ful-
filled. Hence, an approach has to provide the specification
and/or verification of such non-functional requirements. In
the best case, an approach has to allow the specification
and verification of functional, non-functional, and security
requirements.

The main question we seek to answer is to which extent
existing approaches fulfill the requirements of the model-driven
development of CPS. In particular, we focus on approaches for
security engineering that consider in the models both software
and platform. Therefore, we conducted a systematic literature



4 J. Geismann and E. Bodden / The Journal of Systems & Software 169 (2020) 110697

review to determine (a) to which extent current approaches
consider the platform of the system, (b) which requirements for
the development of CPS are satisfiable by existing model-driven
methods, and (c) the open research challenges.

3. Survey

To address our research questions, we conducted a systematic
literature review. We next describe the organization and conduct
of this review. To increase the validity of the survey and the re-
sults, we followed the guidelines proposed by Kitchenham (2004)
and Kitchenham and Charters (2007). One key element to the
methodology they propose is to define a survey protocol before
the survey is actually conducted. This protocol defines how the
survey has to be executed, ‘‘to reduce the possibility of researcher
bias’’ (Kitchenham and Charters, 2007). During the entire survey,
this protocol must be strictly followed. In Section 3.1, we describe
the preparation and organization of our survey, including the
survey protocol. In Section 3.2 we then describe organizational
aspects during the conduct of the survey.

3.1. Preparation/organization

Following Kitchenham and Charters (2007), the survey pro-
tocol has to describe (among others) a rationale for the survey,
research questions, a search strategy, study selection (and exclusion)
criteria, and a data-extraction strategy. The rationale for our survey
was already outlined in Section 2. We next describe in more detail
the other parts of our survey protocol.

3.1.1. Research questions
The main questions we seek to answer are also already out-

lined in Section 2. For the survey protocol, we defined the ques-
tions more explicitly:

RQ1: To which extent do model-driven security approaches for
CPS consider the platform? (cf. R1)

RQ2: Which of the other stated requirements (cf. R2-R7) do these
approaches fulfill?

RQ3: What are current challenges and open research questions
in the area of such platform-aware approaches for model-
driven security?

3.1.2. Search strategy
The approaches we are looking for are covering three different

areas: Cyber–physical Systems, Security, and Model-driven Develop-
ment. To find an initial set of approaches covering all three areas
we decided to apply a keyword-based title-search. For this, we
defined three sets of keywords:

1. Secure, Security, Threat, Attack
2. Cyber–physical System, CPS, (Embedded AND distributed)
3. Model-Driven, MDSD, MDE, Aspect-oriented, AOM,

(Method AND Model)

Using these keywords, we generated search strings to find
approaches that contain at least one keyword of Set 1 and Set
2 each, or at least one keyword of Set 1 and Set 3 each. More
precisely, the search string is: (1 X 2) OR (1 X 3), where X is the
Cartesian product. Another possible approach would have been to
simply search for publications that contain at least one keyword
of each set. However, an initial search showed that too many
relevant approaches would be excluded during this search. This
is because the papers do not necessarily cover all three areas
(depending of the research area and commonly used terms).

After that, we refined the resulting set of approaches by exclu-
sion: first based on reading the title, second based on reading the
abstract, third based on reading the full paper. Exclusion is based
on clearly defined criteria explained in the next paragraph. In
addition to the automatic searches in the libraries, we conducted
snowballing based on the resulting set of papers. During snow-
balling, further papers are added manually following relevant
references within the set of already selected papers. We applied
forward as well as backward snowballing (Wohlin, 2014) until no
additional papers were found.

We conducted our search in the digital libraries of IEEE Xplore
(http://ieeexplore.ieee.org), the ACM Digital Library (http://dl.
acm.org/), Springer Link (http://link.springer.com), and ScienceDi-
rect (https://www.sciencedirect.com).

3.1.3. Exclusion criteria
We defined a set of exclusion criteria. If one of these criteria

holds for an approach, this approach is excluded from the list and,
to enable traceability of our decisions for later evaluation of the
survey, marked with the reason for which we excluded it. We
used the following exclusion criteria:

• Unrelated Domain: We exclude papers that describe domain-
specific approaches for other, unrelated domains, e.g., cloud
or web services.

• Informal approaches: We exclude approaches that specify
threats or the system model only informally. These ap-
proaches cannot be used for MDSD because the models
cannot be refined properly.

• Not Model-driven: In addition to the former criteria, we
exclude all approaches that do not aim at the principle of
MDSD. We use the definition by Uzunov et al. where we
‘‘focus on system models as first class entities" (Uzunov
et al., 2012), e.g., it gets excluded when an approach con-
siders only one model-layer and cannot be refined to more
platform-specific models.

• Only One Stage of SDLC: We exclude approaches that cover
only one stage of the SDLC, e.g., if the approach covers only
threat modeling without a relation to a concrete system
model.

• Work-in-progress Papers: Since we would like to focus on
(to a certain degree) mature approaches we do not consider
approaches that are considered as work-in-progress. This
includes approaches marked explicitly as work-in-progress,
but also approaches published at workshops and poster
sessions only. We instead focus on approaches published in
conference proceedings, journals, and book chapters. Fur-
thermore, we exclude short papers (with fewer than five
pages).

• Language: We exclude all papers not written in English.

3.1.4. Data extraction strategy
To give a broad overview of the selected approaches and to

answer the research questions, we collected specific data for each
approach. In the following, we describe in more detail which
pieces of data were collected:

General Information: We extract for each approach if a
method is defined, if tooling is proposed or available, how the
approach is evaluated, e.g., using toy example or case studies,
based on industrial scenarios, or large-scale systems. In addi-
tion, we extract for which target domain the approach is mainly
developed, if possible.

Kind of Approach: We distinguish between approaches that
are designed for security purposes only leaving the functional
aspect of the system out, and approaches that cover both security
and functional modeling. In the latter case, an approach provides

http://ieeexplore.ieee.org
http://dl.acm.org/
http://dl.acm.org/
http://dl.acm.org/
http://link.springer.com
https://www.sciencedirect.com


J. Geismann and E. Bodden / The Journal of Systems & Software 169 (2020) 110697 5

Table 1
Platform specificity of the selected approaches.
Approach General PS CPS

SecureUML (Basin, 2006) ✓
UMLsec (Jürjens, 2005) ✓
SECTET (Hafner et al., 2006) ✓
ModelSec (Sánchez et al., 2009) ✓
Motii (2017) ✓
Security4UML (Neri et al., 2013) ✓
ISSEP (Ruiz et al., 2015) ✓
SecureMDD (Moebius et al., 2009) ✓
Security-enhanced SPACE (Gunawan et al., 2011) ✓
Neureiter et al. (2016) ✓
DREMS (Levendovszky et al., 2014) ✓
ProCom (Saadatmand and Leveque, 2012) ✓
Wasicek et al. (2014) ✓
Al Faruque et al. (2015) ✓
Eby et al. (2007) ✓
SysML-Sec (Li et al., 2018) ✓
SEED (Vasilevskaya, 2015) ✓

model elements for both functional system elements and dedi-
cated security elements. As a special case of this and, therefore,
a third case, we see approaches that integrate security features
into an existing functional approach, i.e., where security solutions
are integrated into the system model such that the model still
conforms to the functional meta-model (based on R1 and R5).

Stages of the SDLC: We extract which phase of the SDLC
(cf. Fig. 1) is covered. We distinguish between fully covered, not
covered, and partially covered (based on R2 and R7).

Models for System Design: If the system model is to be
refined to a security-aware system model, one requires mature
functional models. Thus, we also extract how the system model is
defined. In particular we distinguish in this survey between three
kinds of models: architectural models describing the structure of
the system, e.g., component diagrams, behavioral models describ-
ing the functional behavior of the system, e.g. state machines, and
platform models describing the platform of the system (based on
R1, R3, R4, R5 and R7).

Formal Threat Specification: Additionally, if model-driven
methods are used for (automatic) refinement then one requires
formal threat models. Therefore, we extract which threats and
attacks can be formally specified in the approaches. In particular,
we extract the used modeling language, concrete kind of threats
and attacks (based on R4 and R5), and the focus. Correspond-
ing to Shostack (2014a), we distinguish between three different
kinds: attacker-centric, system-centric, asset-centric. Attacker-
centric approaches focus on concrete attack and threat spec-
ification whereas system-centric and asset-centric approaches
focus more on security properties. System-centric approaches
use system models to find potential threats, while asset-centric
approaches focus on concrete assets and potential threats.

Security Transformations & Analyses: Approaches for model-
driven security provide transformations for refinement of the
models or analyses, e.g., to find possible design flaws. We extract
for each approach which kind of transformations and analyses are
provided (based on R6).

3.2. Conducting the survey

We next give insights to the conduct of the survey. The survey
was conducted in February 2019. Content-related information is
discussed in the data-elicitation described in Section 4. First, we
give an overview of the number of papers and approaches after
each exclusion stage. Then we state threats to validity of the
survey.

Fig. 2. Exclusion steps and number of publications after each step.

3.2.1. Selection of approaches
In the following, we shortly explain the numbers of papers

after each exclusion stage. Fig. 2 shows the number of publica-
tions after each exclusion step. The title-based search resulted
in a set of 1160 publications, nearly 50 percent of them in IEEE
digital library. Merging the search results and eliminating dupli-
cates resulted in a set of 1135 publications. The identification of
duplicates was aided by tool support of Mendeley Mendeley Ltd.
(2020). In the next step, we excluded publications based on their
title. Additionally, we removed all workshop papers and, thereby,
reduced the number of papers to 587. Next, we excluded papers
based on the abstract. In this step, we excluded many approaches
that do not follow the model-driven paradigm, use informal mod-
els, or were not applicable for CPS. Here, we reduced the set to
50 percent of the publications that remained at this stage. Finally,
we evaluated all remaining 237 publications and reduced the
number of relevant publications to 44 by applying our exclusion
criteria. We followed relevant references of these publications
(‘‘snowballing’’), resulting in a final set of 69 publications. Those
69 publications describe a set of 17 relevant approaches. We
classified these 17 approaches into three categories, based on
how CPS-specific they are. In particular, we distinguish between
General Approaches that consider the platform in an abstract way,
Platform-specific Approaches (PS) that explicitly take the platform
into account, but do not focus on CPS, and CPS-specific Approaches
that explicitly focus on model-driven development for CPS that
also take the platform into account. Table 1 shows the classifica-
tion for all 17 approaches and one main reference per approach.
In this survey, we focus on these CPS-specific approaches. Thus,
we got a final set of 7 relevant approaches. A list of all surveyed
papers can be found in our replication package Geismann and
Bodden (2020).

3.2.2. Threats to validity
In the following we discuss known threats to validity and how

we tried to mitigated them. We use the classification scheme for
validity by Runeson and Höst (2009) and, therefore, distinguish
between Construct Validity, Internal Validity, External Validity, and
Reliability. For each classification, we discuss potential threats
shortly.

Construct validity. Approaches on model-driven security for CPS
come from different research domains, which is reflected in our
keywords. To mitigate the threat of missing some approaches, we
tried to keep the keywords not too restrictive. However, we still
might have missed some relevant publications because they used
other terminology, e.g., IoT instead of CPS, or were published in
other libraries not included by our search. To mitigate this, we ap-
plied forward and backward snowballing to find approaches that



6 J. Geismann and E. Bodden / The Journal of Systems & Software 169 (2020) 110697

are not covered by our keywords or were not contained in the
searched libraries. All approaches found during the snowballing
were studied based on the same search protocol and, therefore,
may have been excluded step-by-step based on the exclusion
criteria. Also, it is often not completely clear whether an approach
fits into a category, e.g., if it belongs to the domain of CPS or if it
is a model-driven approach. To mitigate this, each approach that
got marked to be excluded, was cross-checked by at least one
additional researcher. In addition, in case of doubts, we discussed
these cases with members of our research group.

Internal validity. For searching, we used the online search en-
gines of each digital library. Since the search algorithms are not
publicly available, the correctness of the search results cannot be
validated. To make the results more comprehensible, we split the
search string into a single search string per keyword combination
and checked each result set for the keywords.

External validity. Excluding all papers that cover only one stage
of the SDLC might exclude approaches that cover several stages
of the SDLC but distribute their contributions to several papers.
Also, workshop papers and work-in-progress papers may refer
to other, relevant papers. To cover this problem, we marked
these papers as Conditionally Excluded and checked this list at the
end of the survey again making sure that approaches distributed
over several papers were included. We also applied snowballing
ensuring that relevant references were taken into account.

Reliability. It is important to make the survey reproducible. We
provide all relevant information of our goals and context in Sec-
tion 2 as well as information of the search protocol in Section 3.
For the purpose of replicability and transparency, we provide an
archive containing the survey protocol, the search results for each
library, a list documenting all papers and their inclusion and ex-
clusion, and the data extraction template Geismann and Bodden
(2020). However, as discussed for construct validity, exclusion of
approaches might be affected by authors bias. We believe that our
clear protocol and defined exclusion criteria can help to mitigate
this threat.

4. Selected approaches and data elicitation

In this section, we describe the data elicitation for the seven
selected approaches. This includes a description of each approach
and a summary of the collected data. A discussion of the data
collection and of the approaches is presented in Section 4.2.

4.1. Summary of approaches

In this section, we discuss approaches that explicitly aim at
security for CPS. We discuss seven approaches, which vary in their
focus and expressiveness. There are on the one hand approaches
that extend existing model-driven approaches for safety-critical
CPS by certain security properties like ProCom or DREMS. On
the other hand, there are approaches that focus on security is-
sues only. For each approach, we give a short overview of the
approach, which stages of the SDLC are addressed and which
security analyses can be applied.

4.1.1. DREMS
DREMS Balasubramanian et al. (2015) is a model-driven ap-

proach for distributed embedded systems, e.g., ‘‘cloud computing
platforms built from mobile embedded devices’’ (Levendovszky
et al., 2014). One focus is the generation of a middleware layer
to ensure the correct communication and the abstraction of the
subsequent deployment at design time. Here, one aspect is the
secure communication between all parts of the system. Even if

this might not be the main focus of DREMS, this aspect (and other
security features) makes this approach relevant for this survey.
DREMS aims to guarantee secure information flows within the
system and secure deployment of the applications. The concepts
are based on the OMG Common Object Request Broker Architec-
ture (CORBA) and is implemented for C/C++ projects. The ap-
proach got evaluated on real hardware nodes by emulating the
communication between three satellites.

Stages of the SDLC. DREMS covers all stages except Requirements
which are described in the following.

System Design: The system is described component-based.
When instantiating a system, components are assigned to so-
called actors. There are two different actor types: application
actors that execute the components, and system actors that pro-
vide system services. An actor represents an OS process and
executes either the behavior of the components or the system
services. The behavior of actors is not specified by models but
has to be implemented manually (against a generated interface).
Actors are deployed to hardware nodes that can also be specified
as a model. Using the DREMS OS, meeting security requirements
of actors is guaranteed, e.g., by addressing them in the scheduling.

Formal Threat Specification: Instead of specifying concrete
threats or attacks, DREMS provides a security property specifica-
tion based on the systems description. One key part of security
in DREMS is a ‘‘multi-level security’’ policy that is based on a
label-oriented modeling approach to ensure that actors cannot
access data that they are not supposed to. In contrast to usual
label-based approaches, DREMS uses so-called multidomain labels.
Each label has 1 to n domains, which allows specifying not only
different applications but also applications of different providers,
e.g., companies. Each domain declares 1 to n labels with iden-
tifiers. The labels describe security levels and are ordered by
a domination relation. They can be used to label ports, actors,
and hardware modules. Hence, DREMS provide a system-centric
threat specification.

Security Analyses and Transformations: DREMS provides
analyses to check if all security requirements are fulfilled in the
given design. In particular, the authors provide an automatic
static analysis to verify that all information flows in the systems
conform to the specified multi-level security policies.

Deployment: In addition to the already generated code-
skeletons for the software components, source code for parts
of the software as well as descriptive deployment plans are
generated. One key advantage of DREMS is the automatic gen-
eration of a middleware. The middleware is used to ensure the
correct execution of the specified system with regard to the
model specification. This middleware is used at runtime to ensure
security assumptions made in the model.

Runtime: In addition to the functional implementation (e.g.,
correct communication, scheduling, etc.) also security-related
functionality like the multi-level label security policy is enforced
by the middleware. Hence, assumptions that are made on the
results of the label analysis also hold for the system at runtime.
Additionally, DREMS allows separating actors at runtime. Each
actor runs in a separate memory part, e.g., to prevent memory
attacks between two distinct organizations. Additionally, DREMS
uses temporal separation which ensures that predefined actors
are never scheduled on the same electronic control unit (ECU) at
the same time. Thus, attacks to the data of actors that share a CPU
are mitigated.

Discussion. DREMS utilizes formal models, model analyses and
code generation. One big advantage is the provided middleware
that can handle functional tasks but also enforce security policies
during runtime. Noteworthy is that DREMS is the only approach



J. Geismann and E. Bodden / The Journal of Systems & Software 169 (2020) 110697 7

of the selected approaches providing security controls at run-
time that enforces specific security properties. It also provides
– in contrast to the other approaches – generated deployment
plans to reduce human mistakes during deployment, which is in
our opinion an important feature to secure the complete SDLC.
DREMS provides a method to specify security levels in the sys-
tem. Unfortunately, behavioral models are not provided. Instead,
manually implemented source code is integrated. Hence, behavior
of the actors cannot be analyzed for possible security threats
but only the static (structural) system information is taken into
account. However, DREMS utilizes model-driven techniques to
increase the use of security in the SDLC, especially in the final
steps Deployment and Runtime.

4.1.2. ProCom
In Saadatmand and Leveque (2012), Saadatmand et al. present

an approach to integrate security features in the existing model-
driven engineering approach ProCom (Bureš et al., 2008) which
focuses on the development of real-time systems in automo-
tive and telecommunication domains. The authors present an
approach that enables one to explicitly specify security issues
regarding Authentication and Confidentiality. It was integrated
into the ProCom development tooling PRIDE (Borde et al., 2011)
and evaluated on a academic case study from the automotive
domain. (Saadatmand and Leveque, 2012)

Stages of the SDLC. The presented approach covers all stages of
the SDLC except Requirements and Runtime.

System Design: ProCom distinguishes between two layers for
the system component specification: ProSys and ProSave. ProSys
is the top layer and describes concurrently running subsystems
that can communicate asynchronously. ProSave is used to de-
scribe each of these systems in a component-based way. Analyses
can be used to show that specific real-time requirements are
fulfilled for a given system model. The developer has to specify a
software component model, a data model, and a platform model
that describes ECUs and their communication channels. Based on
this, a mapping of software components to ECUs and software
component communication to concrete hardware communication
channels is specified.

Formal Threat Specification: In the second step, the data
model, as well as the platform model, get annotated by security
annotations. Thus, the threat model is asset-centric as well as
system-centric. After the system design, the designer annotates
data in the data model with required security properties for
confidentiality and authentication. In the platform model of the
system, each physical subsystem can be annotated as (physically)
accessible by possible attackers or as physical secure. Similar to
this, communication channels can be annotated as secure or not.

Security Analyses and Transformations: Based on the secu-
rity annotations, software component communication is deter-
mined that needs to be secured, e.g., when components that share
confidential data are deployed to different subsystems. Addition-
ally, for each communication that has to be secured, an applicable
security mechanism is determined. After that, for each security
mechanism, two additional ProSave components are generated:
One for encryption of the data at the sender component and
one for the decryption at the receiver component. Since ProCom
focuses on real-time systems, a worst case execution time for
each algorithm is provided to determine an encryption algorithm
that fits best into the real-time schedule of the system. For this
step, the developer can choose from different strategies to select
the most suitable algorithm, e.g., providing strongest security that
is still schedulable by the system. The result is a ProCom model
whose component model is enriched by security components for
encrypting sensitive data.

Deployment: ProCom itself provides code generation that al-
lows to generate parts of the source code for the target plat-
form (Borde and Carlson, 2011). Thus, code generation for the
functional part of the system exists. However, code generation
for the proposed encryption components and decryption compo-
nents is left for future work (Saadatmand and Leveque, 2012).

Discussion. The presented approach integrates security into the
existing ProCom approach for engineering CPS. Since it utilizes
existing model elements and provides runtime properties (like
execution times and memory size) for security solutions, it
demonstrates how basic security controls can be integrated into
model-driven engineering for systems that have restricted re-
sources and hard real-time requirements. One advantage of this
approach is that the original models are annotated and then
transformed automatically into a security-aware system, which
still conforms to the original meta-model. Consequently, this
model can be used for further analyses of the original approach.
Based on simple security assumptions, only threats against au-
thentication and confidentiality can be analyzed. Also the pro-
vided encryption techniques should be further investigated, e.g.,
how they can be adopted for different execution platforms. The
approach assumes that asymmetric cryptographic keys for en-
cryption and certificates are used but key management is not
covered and should be further investigated.

4.1.3. Wasicek et al.
In Wasicek et al. (2014), the authors present an aspect-

oriented approach for model-driven development of CPSs. A main
goal of the approach is to enrich model-driven design methods
by security features. Since this approach is aspect-oriented, the
functional models of the system are not affected. In particular,
attack models are specified and associated with the communi-
cation between software components of the functional model.
The approach ‘‘aims at revealing potential vulnerabilities that
manifest as malicious design and interaction faults’’ (Wasicek
et al., 2014). It was evaluated based on a case study in the context
of the automotive domain describing the scenario of adaptive
cruise control. For the evaluation Wasicek et al. use Ptolemy (Eker
et al., 2003) environment instead of describing a new modeling
environment for their approach.

Stages of the SDLC. The authors propose four steps for the ap-
proach: 1. design, where the system is designed, 2. annotate,
where attack models are specified, 3. analyze, where the system
design is analyzed for effects of the specified attacks, and 4.
synthesize, where an implementation for detecting or dismissing
attacks is devised. According to our taxonomy, these phases can
be mapped to System Design, Formal Threat Specification, Security
Analyses and Transformations, and Deployment and are described
in the following.

System Design: Conceptually, Wasicek et al. (2014) is not
restricted to one system specification meta-model. However,
the approach is evaluated using models defined with Ptolemy
II (Ptolemaeus, 2014). In Ptolemy, the system is composed of sev-
eral actors that are executed concurrently and can communicate
via specified ports.

Formal Threat Specification: The threat specification in the
presented approach is attacker-centric because general attacks
to the system are modeled. Four different attacks are modeled
as aspects in Ptolemy: A FuzzAttack to insert random data into
a connection, an InterruptionAttack to prevent communication,
a ManInTheMiddleAttack to eavesdrop the communication, and a
ReplayAttack to re-transmit known data.

Security Analyses and Transformations: Following the
paradigm of aspect-oriented modeling, these attacks are woven
into the system specification during a simulation to monitor how



8 J. Geismann and E. Bodden / The Journal of Systems & Software 169 (2020) 110697

each attack can affect the system by plotting the values for each
incoming and outgoing data value.

Deployment: According to the approach, in the last step,
an implementation for detecting or dismissing attacks has to
be developed. Even if the authors state that this step is also
highly applicable for automation, it is not further discussed in
the approach. Since there are approaches for the automatic code
generation from Ptolemy models (Zhou et al., 2007), also code for
the specified attack patterns can be generated.

Discussion. This approach is one of two aspect-oriented
approaches and shows how model-driven techniques can be used
to harden CPS against effects of known attacks. Since aspect-
oriented modeling supports the separation of concerns to a high
degree, system modeling and security modeling can be easily
split and be done by different modeling experts. An advantage
is that the functional models also cover the system’s behavior
and, therefore, allow for precise analyses. In this approach, con-
crete attacks are modeled instead of possible threat categories.
Since the attack patterns injected into the system models can
be specified in the same language, the security modeling expert
also needs high domain knowledge of the system models. Finding
effects of attacks in the model is a big advantage. However,
support for finding threats or assets in general could make this
approach more powerful and would enable to find unknown
attacks to the system. Also the (automatic) integration of security
solutions or countermeasures would increase the expressiveness
of this approach.

4.1.4. Al Faruque et al.
In Al Faruque et al. (2015), Al Faruque et al. present a frame-

work for designing secure CPS and take the ‘‘properties of the un-
derlying computation and communication platforms’’ (Al Faruque
et al., 2015) into account explicitly. The main focus is to find
security flaws and impact of security solutions on a given CPS
represented by a functional model. For this, the approach covers
steps for system design, attack specification, and security anal-
yses. The implementation is done in the commercial design and
simulation tools Amesim and Matlab/Simulink. The approach is
evaluated on a real-world scenario of a ground robot steered by
an attack-resilient cruise control system.

Stages of the SDLC. The approach is based on previous work on
functional modeling for CPS in the automotive domain (Wan
et al., 2017) and covers the phases System Design, Formal Threat
Specification, Security Analyses and Transformations, and Deploy-
ment.

System Design: The presented approach is integrated into
an existing approach on model-driven engineering for CPS using
functional models (Wan et al., 2015b). In functional modeling,
the cyber layer as well as the platform layer are represented as
functions that are formal model representations of software and
platform parts of the system under design (Canedo et al., 2014).

Formal Threat Specification: Correspondingly, the main idea
in the approach is to specify two different types of attacks as
functions, too: cyber attacks and physical attacks. The approach
does not provide a dedicated modeling language or specification
for attacks but provides a library of six common attacks to CPS
and is, therefore, attacker-centric. In particular, functions for the
following attacks are modeled: fuzzy, interruption, man-in-the-
middle, replay, overflow, and down-sampling. Since the attacks are
also modeled as functions, the library can be extended by using
the same language as for the system specification.

Security Analyses and Transformations: After applying the
attack functions to flows of the functional model, the model
can be simulated using a co-simulation of Matlab/Simulink and

Amesim where a physical model of the system and an environ-
ment model is used. The results can be analyzed by the system
designer by ‘‘using standard time series and plotting capabili-
ties of the simulation software’’ (Wan et al., 2015a). Hence, the
applied analyses are not security-specific but general analyses
that are used for security purposes. If security flaws in functions
are detected, the functional model can be refined. Using this
approach, the system can be analyzed for effects of security
functions on the behavior before the system is implemented.

Deployment: In Al Faruque et al. (2015), code generation is
proposed for later stages of the development. Since code genera-
tion for simulation environments is already provided, generation
for a concrete target platform is possible. Further support for
deployment is not discussed.

Discussion. Similar to Wasicek et al. the presented approach en-
ables developers to analyze effects of known attacks to a specified
system. The advantage is that precise effects of the attacks can
be measured and analyzed on the level of the physical layer. A
major drawback is that only known attacks are considered and
knowledge about the attacks and about the domain is needed.
A systematic threat modeling approach could help to determine
where attacks should be placed instead of defining it manually to
reduce the analysis space.

4.1.5. Eby et al.
Eby et al. (2007) present an approach for integrating model-

driven security concepts into existing approaches for embedded
systems. The general idea of this approach is to specify a security-
related DSL describing security aspects of embedded systems.
This DSL can then be applied to existing modeling approaches.
The approach is validated on a small example case study of
distributed system.

Stages of the SDLC. The approach covers System Design, Formal
Threat Specification, and Security Analyses and Transformations.
Since this approach is applied to an existing one, further stages
of the SDLC might be covered by the target language.

System Design: For applying the approach in Eby et al. (2007),
the system design takes place in a method or DSL of the designers’
choice. Eby et al. extend the system design by introducing the Se-
curity Analysis Language (SAL)which enables the designer to apply
two types of analyses for access control policies: information flow
analysis and threat model analysis. SAL defines so-called partitions,
which represent parts of the system that can communicate via
ports. Each partition has an attribute for a security level. Addition-
ally, every data object of the system is marked if it has to provide
integrity and/or confidentiality. Hence, SAL describes systems in
a very generic way from the security point of view.

Formal Threat Specification: For information flow analy-
sis, the authors use a combination of two security models that
are used to define access control policies: Bell-LaPadula (Bell
and LaPadula, 1973) which aims at confidentiality, and the Biba
model (Biba, 1977) which aims at integrity. Hence, Eby et al. do
not provide a specification language for threats but base the anal-
ysis on well-established security models for access control poli-
cies. Additionally, SAL provides an attacker-centric threat mod-
eling technique to detect possible man-in-the-middle-attacks.
For this, different attacker types and encryption algorithms are
specified. Each attacker defines which encryption algorithm can
be cracked.

Security Analyses and Transformations: Before analyses can
be applied, SAL has to be applied to an existing modeling ap-
proach. This transformation is in our opinion a transformation for
security purposes and is not part of the system design since it
enriches a completed system design with security-relevant infor-
mation before analyses take place. The main idea is to transform



J. Geismann and E. Bodden / The Journal of Systems & Software 169 (2020) 110697 9

an existing modeling language into a new, security-aware mod-
eling language. For this, concepts for information flow, partitions,
and annotations for security attributes are created in the source
language. Since the concepts for information flow and partitions
are quite generic, corresponding elements can be found in most
modeling languages. After that, the SAL-based analyses can be
applied. Based on this, analyses for information flow can be ap-
plied. In particular, the analysis checks if both security models are
fulfilled and gives the designer feedback if a property is violated.
Additionally, the designed system can be analyzed for possible
man-in-the-middle-attacks. For this, every information flow in
the SAL model is annotated with an attacker. Then, the security
information for each attacked information flow are analyzed re-
garding possible violations of the security properties. The result
reports possible eavesdropping of messages in the system.

Discussion. By providing the general purpose security language
SAL, this approach provides basic security controls and threat
analyses for model-driven approaches that do not focus on se-
curity aspects yet. Due to its quite general elements, SAL is
applicable to model-driven approaches that provide architectural
models. However, a drawback is that the concepts are too gen-
eral and, therefore, are restricted to basic (general) threats and
attacks. For more complex threats, the mapping to the SAL dialect
might also become a complex task. However, this approach shows
that several security threats can be handled on a more abstract
level and how model-driven security can be integrated into ex-
isting approaches. During the mapping of SAL to the existing
approach, model element IDs are also mapped. Thus, feedback of
the analyses can refer to the original model elements (Eby et al.,
2007) and, therefore, the engineer does not need any knowledge
about SAL or the analyses themselves.

4.1.6. SysML-Sec
SysML-Sec (Apvrille and Roudier, 2013; Li, 2018) is a model-

driven engineering approach that ‘‘aim[s] at fostering the collab-
oration between system designers and security experts’’ (Apvrille
and Roudier, 2014) in all phases of the SDLC for the development
of embedded systems. It is based on SysML (Weilkiens, 2011)
and provides customized SysML diagrams to describe security-
related parts of the system and a methodology for a systematic
development, which also includes formal security analyses and
validation of the model. It aims to close the gap between safety
and security modeling and explicitly focuses on security issues
coupled with the co-design of hardware and software. Starting
with (security) requirements engineering, the approach considers
refinement steps to a full system design, design validation, and
generation of C code for the target system. SysML-Sec is evaluated
in several quite detailed case studies from different domains,
e.g., automotive domain or UAVs. The evaluation scenarios are
real-world examples and since SysML-Sec was initially devel-
oped and validated within the EVITA project (EVITA, 2020), the
automotive domain seems to be the main target domain.

Stages of the SDLC. SysML-Sec follows a three-phase approach,
namely system analysis, software design, and the verification phase.
In the following, we give a short overview how these steps are
distributed over the phases of the SDLC defined in Fig. 1.

Requirements: SysML-Sec extends SysML (Weilkiens, 2011)
requirement diagrams for specifying security requirements. In
particular, affected security properties are added to the require-
ment description explicitly, e.g., confidentiality, access control, or
integrity. In addition, attack graphs (Apvrille and Roudier, 2015)
are used as threat modeling technique and describe a set of
attacks and their dependencies. Like in attack trees (Schneier,
1999), dependencies like conjunction, disjunction, and sequence
between attacks but also temporal operators are allowed. Attacks

can also refer to specific security requirements created earlier.
In Roudier et al. (2014) and Idrees (2012), the requirements stage
is improved by adding an approach to formalize the requirements
and by introducing the use of ontologies for security goals, system
architecture, attacks, security requirements, and security mecha-
nisms which can be used to annotate SysML-Sec model elements
to refine the description, e.g., a specific attack in an attack graph.

System Design: Secondly, the software design takes place
where concrete security mechanisms are defined. Related to our
taxonomy, this step can be split up into at least two sub-steps: the
actual design of the system and the formal specification of threats
or attacks respectively which is described in the next paragraph.
SysML-Sec follows the Y-chart approach (Kienhuis et al., 2002)
at first and the V-Cycle for the software design (Roudier and
Apvrille, 2015) in a second step. First of all, the system’s structure
and main functionality are described using SysML block diagrams.
Additionally, the platform of the system is described. Then, fol-
lowing the Y-chart approach, functions of the system are mapped
to specific hardware parts, which is called mapping. This step
is crucial and requires expertise in different fields, since it can
affect performance, security, and safety of the system. Analyses
can be applied to find possible flaws in the mapping. Also the
effect of applying security mechanisms on the functional parts
of the systems can be analyzed. SysML-Sec also provides a tech-
nique to generate modeling solutions for secure communication
automatically (Li et al., 2017). Once a feasible mapping is found,
the System Design takes place. Here, the system building blocks
are described by SysML models in more detail, e.g., the behavior
of blocks is specified. In particular, the software functions of the
system are refined, i.e., functions are specialized until automatic
code generation is applicable.

Formal Threat Specification: SysML-Sec provides several ex-
tensions for general SysML models enabling formal threat speci-
fication. While in the requirements phase all possible attacks are
considered, here only confidentiality and authenticity of message
exchange is analyzed. SysML-Sec bases on a Dolev–Yao attacker
model (Dolev and Yao, 1983) in which only messages exchanged
between two entities can be eavesdropped by an attacker. Hence,
the threat specification in SysML-Sec is system-centric. In case of
SysML-Sec, these entities are SysML blocks. Using this attacker
model, it is possible to describe direct attacks on the communica-
tion protocols. Attacks on the platform itself or attack sequences
against several components are not considered. For the purpose
of modeling security, three extensions are provided: 1. Com-
munication channels can be annotated as to whether message
eavesdropping is possible, 2. Blocks are extended by a set of
methods to describe cryptographic algorithms, 3. The developer
can define knowledge of specific blocks, e.g., shared keys.

Security Analyses and Transformations: During the different
development phases, SysML-Sec provides several analyses to as-
sist the developer and to find possible flaws regarding security
and safety as early as possible. The mapping models resulting
from the partitioning step can be analyzed regarding performance
issues, e.g., load of CPUs and buses. Based on the specified security
properties, the design models can be analyzed for specific safety
and security properties using UPPAAL (Behrmann et al., 2004)
and ProVerif (Roudier and Apvrille, 2015; Lugou et al., 2016).
Furthermore, liveness and reachability of crypto-protocols and
the impact of security mechanisms on safety-critical processes
can be analyzed (Li et al., 2017). If properties cannot be proven on
model level, and to harden the trust into the system, test-code for
safety and security tests can be generated from the design models
automatically.

Deployment: During the partitioning, the allocation of soft-
ware to hardware nodes is already taken into account. During



10 J. Geismann and E. Bodden / The Journal of Systems & Software 169 (2020) 110697

the deployment step, more concrete measurements and tech-
niques can be applied. It is possible to compare different archi-
tectures using simulation environments, e.g., regarding bus loads
and the resulting impact of key distribution at runtime (Roudier
and Apvrille, 2015). Based on the fine-granular behavioral mod-
els, model-to-code transformations are proposed (Apvrille et al.,
2016).

Discussion. SysML-Sec is one of the most mature approaches
found in our survey. It provides a whole methodology and pro-
vides a process, languages, and tooling. Since in the last years
several papers were published, it can be seen as actively re-
searched and maintained. These papers cover model-driven se-
curity concepts and analyses in every stage of the SDLC. It is the
only approach that provides a dedicated security requirements
phase. One major advantage of this approach is that it allows for
a very early analysis of effects on the system when integrating
security controls. One use-case that is very important for CPS is
a performance and resource analysis. Comparing system designs
(with and without security features) enables system designers to
estimate the effects of adding security to the system. Since behav-
ioral models are provided, also behavioral aspects can be handled
in the analyses. However, while all possible attacks are consid-
ered in the requirements phase, in subsequent formal phases only
confidentiality and authenticity of message exchange is analyzed.
If models get too complex for verification, generated tests can be
used to test for specific security or safety properties on code level.
One drawback is the lack of separation of concerns like in Eby
et al. because currently domain knowledge, modeling expertise,
and security knowledge is needed to apply this method.

4.1.7. SEED
Vasilevskaya et al. (2014) present an approach for Security-

Enhanced Embedded system Design (SEED). The main goal of
the approach is to ‘‘bridge the gap between [. . . ] embedded sys-
tem and security experts’’ (Vasilevskaya et al., 2014). SEED is a
model-oriented, domain-specific approach that explicitly focuses
on separation of responsibilities and concerns. It does not pro-
pose new modeling languages for the system design itself, but
‘‘increments [. . . ] existing practices and processes’’ (Vasilevskaya,
2015). The approach proposes a general process which can be
applied for various modeling languages (called SEED foundations).
Vasilevskaya et al. use SPACE and MARTE for the system spec-
ification in their concrete implementation (called SEED realiza-
tion). The approach is evaluated on several case studies including
real-world scenarios.

Stages of the SDLC. SEED does not follow exactly the SDLC steps
outlined by our survey, since the two essential steps for func-
tional modeling and defining security solutions are executed in
parallel. In general, these steps can be mapped to our SDLC steps.
The approach does not contain an explicit threat specification
but focuses on the specification of assets and corresponding pro-
tection goals. All other steps are (at least partially) covered by
SEED.

System Design: SEED bases on a common systems design
approach for embedded systems. Firstly, a functional model is
created that describes the software of the system. Since SPACE
is used for system specification, the system is described by so-
called building blocks. Building blocks can either be chosen from
a library or created by the system designer. Thus, a building block
describes a specific part of the system, and can be decomposed
into subsystems. Furthermore, the interaction of the subsystems
and the behavior is described in a model-driven way by using
activity diagrams and state machines. Secondly, an architectural
model is created that describes the execution platform of the

system. In SEED realization, the UML profile MARTE (Object Man-
agement Group, 2008) is used. Thirdly, the functional model is
mapped to the architectural model. These artifacts (functional
model, architectural model, and mapping) are the basis for the
SEED approach (Vasilevskaya, 2015).

Formal Threat Specification: SEED does not focus on threat
modeling or attack specifications but on making decisions for
security solutions. For finding and defining possible threats (im-
plicitly), two key parts are used: an asset elicitation and an
application of security knowledge. The asset elicitation is based
on formal rules and can be done automatically for the system
model and focuses on confidentiality and integrity of the assets.
Hence, the threat modeling of SEED can be seen as asset-centric.
Besides that, SEED proposes to reuse existing security knowl-
edge. For this, an approach for creating and storing security
knowledge for embedded systems is provided. Security experts
can use a UML class model to describe security solutions that
can be transformed into an ontology representation based on
a general security ontology by Herzog et al. (2007). In essence,
the proposed ontology covers security goals and specific security
solutions to fulfill the security goals for assets. Noteworthy is
that each security solution refers to a concrete domain. Hence,
SEED allows specifying domain-specific security solutions. Thus,
performance analyses for security solutions can be applied before
selecting them. In SEED realization, SPACE building blocks are
used to describe concrete security solutions.

Security Analyses and Transformations: One key idea in
SEED is to use analyses to support the engineers when select-
ing appropriate security solutions. Performance analyses for the
security solutions can be applied before or during the selection
of security solutions for the system. Based on predefined attacks,
an approach for risk assessment can be applied to elicit which
(secured) system design is the best with regard to costs and
efforts. Since embedded systems often have restrictive resource
constraints, adding additional functionality for security might
lead to problems. Based on the assets, security experts can choose
concrete security solutions from the security ontology. Since the
solutions are domain-specific as well as provide a behavior de-
scription and resource consumption, analyses can be applied to
check if the solution is applicable to the system or not.

Deployment: Since in SEED, a system model (containing soft-
ware and hardware) and a specific set of security solutions are
synthesized to a new security-aware system model, the deploy-
ment depends on the used modeling language. In case of SEED
realization, the security-aware system model is still described
by SPACE building blocks. Thus, existing code generation and
deployment methods of SPACE are still applicable.

Discussion. Similar to SysML-Sec, SEED is a method and provides
a full process, language, and tool support. A big advantage from
the research point of view is the clear separation of SEED founda-
tion and SEED realization. This separation makes an adaption of
the concepts to other model-driven approaches possible. An addi-
tional advantage are the provided and reusable platform-specific
security solutions that can be chosen from a library. It supports
separation of concerns since these solutions are developed by
security experts for each platform and can be easily integrated
into the system models. However, a higher degree of automation
would support the engineers by finding unknown threats and
attacks to the system.

4.2. Classifications and results

In this section, we summarize the elicited data and clas-
sify the selected approaches based on the aspects presented in
Section 3.1.4.



J. Geismann and E. Bodden / The Journal of Systems & Software 169 (2020) 110697 11

Table 2
General information of the selected approaches.
Approach Main domain Method Tooling Evaluation

DREMS Distributed Embedded Systems ✓ (✓) Industry/Realworld
SysML-Sec Automotive & Telecommunications ✓ ✓ Industry/Realworld
ProCom Automotive & Telecommunications ✓ (✓) Case study
Wasicek et al. Automotive (✓) (✓) Case study
Al Faruque et al. (Automotive) (✓) (✓) Industry/Realworld
Eby et al. Embedded systems (✓) (✓) Case study
SEED Distributed Embedded Systems ✓ ✓ Industry, Case study

4.2.1. General
All selected approaches are developed for the area of CPS but

have a different main focus in this area. Four of the approaches
stated explicitly to be targeting the automotive domain. Eby et al.
in contrast, explicitly focus on extending existing model-driven
approaches and, therefore, do not have an explicit target domain
but adopt the target domain of the extended approach. However,
all approaches are targeting in general CPS and, after studying
the approaches it appears that at least the concepts in general
of all of them are adaptable to most of the CPS domain to our
opinion. Table 2 shows an overview of the (main) domain of all
approaches as well as information regarding if a method is pro-
vided in the approach, a tool is provided and how the approaches
were evaluated. The information is based on publications of the
authors. We did not evaluate the tooling itself nor we reproduced
the evaluation results.

All approaches provide are at least a structured procedure
and aim at seamless development. However, DREMS, SysML-
Sec, ProCom, and SEED provide a methodology including defined
process steps and artifacts and provide therefore a more mature
methodology. The fact that only SEED and SysML-Sec cover the
specification of requirements explicitly (cf. Section 4.2.3), indi-
cate that both approaches seem to be more comprehensive in
this regard than the other selected approaches. Furthermore, all
approaches describe beside the proposed method also a tooling.
Tools for SysML-Sec, ProCom, and SEED were at least accessible
to us.

The evaluation of the approaches vary. Some approaches were
evaluated on toy examples or fictional Case Studies, e.g., Pro-
Com. Most of the approaches claim to be evaluated on industrial
or real-world scenarios. Successful industrial application (pro-
duction use not case studies) is not described for any of the
approaches. The most mature approaches seems to be SysML-Sec
and SEED since both provide a fully defined method and mature
evaluation scenarios.

4.2.2. Kind of approach
We classify the approaches into three categories as described

in Section 3.1.4. Table 3 shows the classification for the selected
approaches. We distinguish between approaches that consider
security only, approaches that consider both security and non-
security properties (Func./Sec.), and approaches that integrate
security concepts into existing approaches (Sec. → Func.).

Two approaches can be classified as security-only approaches.
Both are aspect-oriented. Due to the nature of aspect-oriented
modeling, both approaches are used to model security without
taking functional models into account. In Eby et al. aspects are
used in the end to inject security solutions into existing functional
models. Thus, this approach can also be classified into the third
category to some extent. Al Faruque et al. SysML-Sec, and DREMS
consider both functional and security features during the specifi-
cation. Al Faruque et al. use functional models to specify attacks
and use them to simulate the harm to specific functions of the
system. In the other two approaches, specific modeling elements
or annotations are used to enrich the system models for secu-
rity purposes. We classify ProCom and SEED as approaches that

Table 3
Security category of the selected approaches.
Approach Sec. only Func./Sec. Sec.→Func.

DREMS ✓
SysML-Sec ✓
ProCom ✓
Wasicek et al. ✓
Al Faruque et al. ✓
Eby et al. ✓ (✓)
SEED ✓

Table 4
Covered phases of the software development lifecycle.
Approach RQ DE TM AN DP RT

DREMS – ✓ ✓ ✓ ✓ ✓
SysML-Sec ✓ ✓ ✓ ✓ ✓ –
ProCom – ✓ ✓ ✓ ✓ –
Wasicek et al. – ✓ ✓ ✓ ✓ –
Al Faruque et al. – ✓ ✓ ✓ ✓ –
Eby et al. – ✓ ✓ ✓ – –
SEED (✓) ✓ ✓ ✓ ✓ –

Table 5
Covered modeling views for system design.
Approach Architecture Behavior Platform

DREMS ✓ – ✓
SysML-Sec ✓ ✓ ✓
ProCom ✓ – ✓
Wasicek et al. ✓ (✓) ✓
Al Faruque et al. ✓ (✓) ✓
Eby et al. ✓ – ✓
SEED ✓ ✓ ✓

integrate security into the functional system model. Here, also
security annotations are used to express security assumptions
and requirements for the model elements. However, in these
approaches, transformations are used to transform the functional
model into a security-aware model that still corresponds to the
original meta-model.

4.2.3. Stages of the SDLC
In the following, we detail which phases of the SDLC are

covered by the selected approaches. Table 4 shows the covered
phases per approach. Only SysML-Sec and SEED cover require-
ments elicitation (RQ). In this phase, SEED only supports the
developer by the automated search for assets and corresponding
security properties.

SysML-Sec provides methods and tools for specifying both
functional and non-functional requirements. In addition, SysML-
Sec allows specifying security requirements and attack graphs
that can be analyzed formally. All selected approaches provide
models for specifying the system under development at design
(DE). A special case is the approach by Eby et al. because it
does not address the system specification but the composition
of an arbitrary DSL and the proposed security extension SAL. All
approaches provide models and techniques to formally specify
threats or attacks to the system (TM). Additionally, all approaches



12 J. Geismann and E. Bodden / The Journal of Systems & Software 169 (2020) 110697

Table 6
Classification of formal threat modeling.

Approach Language Focus Kind

DREMS Multi-level
labels

System-centric Confidentiality,
integrity

SysML-Sec Model
annotations

System-centric Authenticity,
confidentiality

ProCom Model
annotations

Asset-centric,
system-centric

Authenticity,
confidentiality

Wasicek et al. Aspects Attacker-centric Confidentiality,
integrity,
availability

Al Faruque et al. Functional
models

Attacker-centric Confidentiality,
integrity,
availability

Eby et al. DSL Attacker-centric
asset-centric

Confidentiality
integrity

SEED Ontology
(DSL)

System-centric
asset-centric

Confidentiality
integrity

provide security analyses or transformations (AN) based on the
models for system design and threats/attacks. Both aspects are
discussed in more detail in a dedicated paragraph below. All
approaches except Eby et al. cover the deployment step (DP).
Here, the approaches differ in the focus and methods. In most
cases, the developer has to define an allocation of software parts
of the system to hardware nodes, e.g., in DREMS, SEED, or Pro-
Com. In SysML-Sec, the partitioning step, which is part of the
requirements phase, is used for an initial allocation. Automatic
analyses on this level support the developer when making her
decisions during system design. Only DREMS explicitly focuses
on runtime (RT) concepts. Even if some approaches provide code
generation for parts of the system, no other approach focuses
on this phase of the SDLC sufficiently. DREMS provides a mature
middleware that is used to enforce – besides functional purposes
– security policies at runtime. Adapter code of the middleware
can be used to ensure secure communication. Hence, the final
steps in the SDLC are in general not considered sufficiently.

4.2.4. Models for system design
The selected approaches use different types of models to de-

scribe the system under development. Table 5 summarizes which
model types are used in the approaches. Due to the selection
criteria of our survey, all approaches provide model elements
that represent the platform of the system. Also, all approaches
provide models that represent the architecture of the system.
Wasicek et al. and Al Faruque et al. use models that describe the
embedded systems on a very low level of detail. These functional
models do not only cover the architecture of the system but
also behavioral aspects. Since discrete (software) functions are
not covered, the behavioral aspect is only fulfilled partially (cf.
Table 5). DREMS, ProCom, SEED, and (to a certain degree) SysML-
Sec focus on component-based specification. DREMS and ProCom
provide their own meta model for the specification where as
SEED and SysML-Sec base on existing modeling languages: SEED
is based on SPACE and MARTE, SysML-Sec is (obviously) based on
SysML. Only SysML-Sec and SEED provide dedicated models for
the description of the behavior. ProCom was initially developed
for the development of safe CPS and provides therefore behavior
models in general but these models do not directly affect the
security approach discussed in this survey. Behavioral descrip-
tions of the generated ProSave components for encryption and
decryption are not provided.

4.2.5. Formal threat specification
All approaches allow for a formal threat specification. Table 6

summarizes our elicited data. In most cases, it is an implicit threat

Table 7
Applied security analyses and transformations.
Approach Testing

attacks
Searching
threats

Securing
design

Securing
code

DREMS – ✓ – ✓
SysML-Sec – ✓ ✓ (✓)
ProCom – – ✓ ✓
Wasicek et al. ✓ – – –
Al Faruque et al. ✓ – ✓ –
Eby et al. – – ✓ –
SEED – ✓ ✓ ✓

specification, since specific security properties like confidentiality
are annotated instead of specifying a threat. The main focus
of the approaches is to specify confidentiality and integrity of
information flow. Exceptions are the approaches by Wasicek et al.
Al Faruque et al. and Eby et al. because these approaches allow
specifying specific attacks targeting the stated security properties
of a system. Hence, the focus of the specification of these ap-
proaches is attacker-centric. In general, we distinguish between
three different kinds: system-centric, asset-centric, and attacker-
centric (cf. Section 3.1.4). DREMS, SysML-Sec, ProCom and SEED
focus on system-centric security specification. In addition, the
ProCom approach, Eby et al. and SEED allow specifying asset-
centric security properties, i.e., properties on concrete assets of
the system.

4.2.6. Security Transformations & Analyses
All approaches provide security analyses and transformations

based on the models. Table 7 summarizes the kinds of analyses
and transformations of the selected approaches. Only Wasicek
et al. and Al Faruque et al. provide analyses to find specific at-
tacks. Both approaches use control engineering models that allow
specifying attacks on sensor values and hardware connections but
do not focus on software vulnerabilities. DREMS, SysML-Sec, and
SEED focus on software threats. Hence, they provide analyses to
find threats in general, e.g., a potential violation of confidentiality
or integrity of system messages. Five approaches also provide
transformations that can be applied to make the given design
more secure. Three of them (DREMS, ProCom, SEED) generate or
integrate dedicated security code into the application code. In
DREMS, security adapter code for communication is generated
(provided by the middleware). ProCom follows a similar approach
but allows to specify custom implementations for encryption
and decryption components. These encryption and decryption
components are added automatically by a (horizontal) model
transformation keeping the model compliant to the ProCom meta



J. Geismann and E. Bodden / The Journal of Systems & Software 169 (2020) 110697 13

model. Eby et al. on the other hand, using a vertical model trans-
formation allowing to extend existing modeling languages with
security-relevant information. SEED aims at finding, integrating,
analyzing the effect of concrete security solutions specified by
experts into a security knowledge base. In contrast to ProCom
which focuses on secure communication, in SEED the database
of available security solutions can be extended continuously by
the experts and is therefore quite more expressive. SysML-Sec
does not utilize security solutions on code level but allows to
declare security-related functions in the design that have to be
implemented correctly by the developer. Hence, the design uses
the advantage of referring to secured source code and, therefore,
fulfills this property partially.

5. Data analysis and discussion

In this section, we discuss the elicited data with regard to our
research questions stated in Section 3.1. We discuss the selected
data and answer research questions RQ1 and RQ2 in Section 5.1.
After that, we discuss potential open research areas in Section 5.2
to answer research question RQ3.

5.1. Data analysis

To answer the question to which extent the platform is con-
sidered by the approaches (RQ1), we discuss the classification
of all approaches presented in Table 1. Our systematic literature
review eventually resulted in 17 approaches. We classified these
approaches into three classes: seven approaches consider the
platform but are nevertheless general approaches, e.g., UMLsec
uses UML deployment diagrams to describe the deployment of
the software. Typically, CPS have strict requirements regarding
real-time constraints and the underlying platform, which are
not covered by these approaches. Three approaches consider
the platform more explicitly but are not specific to CPS. Seven
approaches consider the platform in detail and are CPS-specific;
those are investigated in more detail in this paper. Noteworthy
is that the most papers in the final set represent the general
approaches, whereas the CPS-specific approaches are represented
by fewer papers. Furthermore, as also stated by Nguyen et al.
(2017), the CPS-specific approaches have mostly been published
during the last few years. However, considering all initial papers,
we recognized a lot of work-in-progress approaches within the
last two years which were excluded for our data analysis. Most
of these papers were in the context of model-driven security in
general but also in the area of CPS-specific approaches. These
facts indicate the current relevance of this research topic and
we expect more mature approaches in the future. In summary,
we state that considering the platform of CPS explicitly is a
current research topic for model-driven security. Only two of
the seven approaches (SysML-Sec and SEED) provide an entire
model-driven methodology that allows for design decisions based
on results of security analyses. However, none of the selected
approaches provide automatic design decisions with regard to
software and platform, e.g., considering security policies during
the allocation. Only DREMS allows enforcing such policies at run-
time. Hence, the automatic design decisions for securing a system
within the whole SDLC and the refinement into source code are
immature areas in this field, and could be improved, e.g., by
generating code or utilizing code analyses to verify assumptions
made in the models. Overall, we state that R1 (support different
layers) is satisfied by the rationale of this survey since we focus on
platform-specific approaches. Thus, all selected approaches allow
specifying the hardware or platform of the system. However,
Al Faruque et al. and Wasicek et al. use functional models that

Table 8
Requirements for CPS covered by the selected approaches.
Approach R1 R2 R3 R4 R5 R6 R7

DREMS ✓ ✓ ✓ p p p p
SysML-Sec ✓ ✓ ✓ p p p ✓
ProCom ✓ p ✓ p p p ✓
Wasicek et al. p p p p p p p
Al Faruque et al. p p p p p p p
Eby et al. ✓ p ✓ p p p p
SEED ✓ ✓ ✓ p p p ✓

describe both hardware and software in one model. Thus, we
state that these approaches satisfy R1 only partially.

To answer the question which requirements are met (RQ2), we
state which requirement is fulfilled for each approach. Table 8
summarizes the requirements for all of the six approaches. We
define R2 (phases of the SDLC) as fulfilled (✓) if at least five of six
phases of the SDLC are supported, and as partially fulfilled (p) if
at least three of five phases are supported. All approaches satisfy
R2 at least partially. Three approaches support five SDLC phases,
where either the requirements phase (DREMS) or the runtime
phase (SysML-Sec, SEED) is not supported sufficiently. The use
of functional models also affects the fulfillment of R3 (system of
systems), since Al Faruque et al. and Wasicek et al. do not allow for
hierarchical composition of the system. The other approaches are
component-based and ease the decomposition of the system into
smaller parts. However, none of the approaches considers third-
party software parts explicitly during the design. Approaches that
utilize manually written source code give in fact the possibility to
integrate not (fully) known system parts, e.g., DREMS or ProCom.
Here, the manual code has to be compliant to generated interfaces
but is not analyzed to ensure that it still conforms to assumptions
made during the design.

R4 (threat model) is satisfied partially by all selected ap-
proaches. Each approach provides a formal threat model as sum-
marized in Table 6. In the approaches that provide system-centric
and asset-centric specifications, only threats for confidentiality
and integrity are considered. The attacker-centric specifications
are modeled by dedicated attack models. However, in general,
all threat models base on more general concepts and aim to be
extensible for further security properties and threats respectively.
In addition, some approaches provide additional threat elicitation
techniques. SysML-Sec provides the most mature one since attack
graphs can be used to specify complex attacks that can be related
to system models, which allows effective threat modeling. The
approach does not provide a refinement for all possible attacks
into a formal threat specification, that can be used during design.
Nevertheless, it is the only surveyed approach that provides a
mature threat model that relates to a model-driven systems
engineering approach. Only the ProCom approach uses threat
models to derive secure design decisions automatically. SEED
guides the developer during decisions-making, but does not au-
tomate this step. All approaches utilize model-driven techniques
and also provide threat models or attacker models. However,
in all approaches, threat models for the platform parts are –
where existent – too simple. In general, threat modeling could be
more focused to find more (unknown) threats which then can be
tackled by automatic transformations. Hence, we state that this
requirement is only partially fulfilled.

Due to the model-driven focus of the survey, all selected
approaches provide threat/attack models and corresponding anal-
yses on a formal basis and, thus, fulfill R5 (formal methods) at least
partially. Four approaches use annotations to express security
related information within the system models. SysML-Sec, for
example, uses text annotations directly within the block diagrams
whereas in SEED the integration of security ontologies is applied



14 J. Geismann and E. Bodden / The Journal of Systems & Software 169 (2020) 110697

which allows a more flexible specification. Three approaches
provide dedicated attack models that can be used to analyze
concrete attacks and threats to the system models. However,
these concepts are only applicable to very basic attacks, e.g., mes-
sage replay or denial-of-service attacks. More general threats and
solutions are not manageable using such approaches. Neverthe-
less, results of analyses or simulations of these attacks can be
used to refine the system models into more secure ones. Most
system-centric approaches focus on confidentiality and integrity
of communication in the system. Further security approaches are
not explicitly covered in the formal models. However, the more
mature approaches, like SEED or SysML-Sec, aim to be able to
integrate additional security properties. Apart from SysML-Sec, no
other approach considers attack sequences.

To fulfill R6 (refinement, an approach should provide a correct
refinement from the requirements stage to at least platform-
specific code. Correct refinement always depends on the source
models of each refinement step. For example, in DREMS or Pro-
Com, it is assumed that the implementation of the actors is
provided by a C function which is implemented or loaded in
the deployment step. Thus, these functions cannot be consid-
ered in the early analyses and, therefore, the behavioral aspect
is also not considered during the refinement of the models. In
approaches like SysML-Sec or SEED, where dedicated behavioral
models are used and analyzed during the security analyses, a
refinement is more complex. Considering behavioral models has
the advantage of more precise analyses but can run quickly into
a state-explosion problem. All of the approaches aim for fulfilling
the verified security properties for the executed code. However,
we base our observations on the results reported by the au-
thors without executing a full correctness check of the provided
refinement steps.

Furthermore, all surveyed approaches base on concepts or
existing approaches for model-driven development for CPS. Thus,
functional requirements are covered by all approaches at least
implicitly, which is why R7 (requirements) is fulfilled at least par-
tially. Since the approach of Eby et al. refines an existing modeling
language into a security-aware dialect, the fulfillment of this re-
quirement depends on the chosen host language. SEED, ProCom,
and SysML-Sec provide dedicated possibilities for specifying func-
tional requirements and satisfy R7. SysML-Sec provides dedicated
analyses to measure the impact of security features to properties
of the system during the partitioning phase, e.g., performance.
Also SEED, ProCom, and Eby et al. allow analyzing the impact
of adding security features to the system model. Hence, these
approaches also consider non-functional requirements. SysML-
Sec is the only approach that allows to explicitly specify all kinds
of requirements, i.e., functional and non-functional. Integrating
security functionality into CPS affects the behavioral parts of the
system. Here, we observed that it is possible to abstract from
the functional models during threat modeling but that it is not
possible to abstract from these models during the mitigation
stage where security solutions are introduced.

5.2. Discussion and open research topics

Considering all surveyed approaches, it appears that the fol-
lowing areas should be researched in more detail.

Threat Model: Most of the approaches do not provide an
explicit threat model but use formal specifications of concrete
threats, and focus in general on confidentiality and integrity
of communication within the system. However, when a threat
model is created, e.g., by stating security requirements, a con-
nection between a threat model (created by domain experts)
and the formal models of the system is missing. Only SysML-
Sec provides methods for both threat and attack modeling and

the integration into model-driven development. However, a com-
bination of both in later development steps is also not given.
Creating a separate threat model and integrating it into the
CPS development would be an interesting research field. One
interesting direction for future research could be, how techniques
of non CPS-specific approaches (cf. Table 1) could be adapted for
CPS, e.g., by adding information flow specifications and analyses
as done in UMLsec (Jürjens, 2005). One major question would be
how the platform model and its different parts would affect such
analyses. Another interesting part for a threat model would be
access control. SecureUML (Basin, 2006) provides useful concepts
for access control on models. However, also here further research
on the impact of the platform part and in particular the physical
part is necessary. Since physical attacks may also affect the cyber
layer, it might not be sufficient to simply add a platform layer
to an approach. Changes in the original techniques might be
needed considering all aspects of CPS. Furthermore, even if in the
selected approaches system and platform models are developed
separately, the threat specification is not. A clear concept for
separation of the different layers is also needed when specifying
threats to support the interdisciplinary development of such
systems. Many methodologies for CPS support interdisciplinary
development for the functional part of the system. An interesting
research direction would be to investigate how a common threat
model that is usable by all involved disciplines and stakeholders
could look like. On the one hand, we like the idea of creating
a dedicated threat or security model like in ModelSec (Sánchez
et al., 2009). However, if many different disciplines and roles are
involved, a clear separation of security experts and other experts
is needed on the one hand. On the other hand, a concept for close
collaboration is needed and, therefore, also a strong connection
between security model and system model is favorable. Thus,
a concept for touchpoints in the development methodology is
needed, where different experts are forced to communicate about
problems between these areas. Beside considering the different
layers and their inter-dependencies, the different view – also
from not-technical disciplines – would be an interesting area.
Finally, current approach focus on mostly one kind of threat
specification and analysis (cf. Section 4.2.5.)

Third-party Code: Furthermore, most approaches focus on
closed systems. Even if all selected approaches support modeling
of hierarchical systems (requirement R3) at least partially, none
of the approaches does consider system parts developed by third-
party providers or full applications from different providers that
run concurrently in the same runtime environment. The only
exception is DREMS, where such kind of systems can be modeled
by using the multi-domain labels. However, they have to be mod-
eled explicitly and are expressed and handled in the same way
as all other system actors and components respectively. Third-
party code is getting more important for large-scaled systems.
On the one hand, large CPS have to integrate code and hardware
modules of other suppliers and, therefore, have different levels
of trust (depending on the suppliers). Additionally, the amount
of open source software is rising which has also to be consid-
ered during the design and implementation because often OSS
solutions are used for critical task, e.g., OpenSSL. The advantage
is that known security issues and knowledge can be added to
the own threat model. The (secure) integration of third-party
code into the system but also into the threat modeling approach
seems to be an important research direction. In general, introduc-
ing trust boundaries in the modeling approaches could improve
this integration in an easy and efficient way, e.g. as specified
in the STRIDE methodology (Shostack, 2014b). This includes a
classification of all model elements into security classes that
describe the criticality from a security point of view as done in
DREMS or Eby et al. Approaches that use source code as behavior



J. Geismann and E. Bodden / The Journal of Systems & Software 169 (2020) 110697 15

specification allow applying analyses without knowing the source
code. However, the drawback is that the source code itself is
regarded as trusted and is not covered within the threat models
explicitly. Hence, the integration of third-party system parts into
the models, and the relation to source code should be improved,
e.g., by deriving inputs for code analyses and using their results as
input for security risk analysis. This would allow security expert
to reason about the overall risk based on analysis results instead
of assumptions made during the threat modeling phase. Thus,
we see the integration of third-party code and new concepts for
integrating it into the threat modeling approach in a trustworthy
way as a interesting research field.

Platform Integration: In general, the platform and especially the
physical part of the system, is only rarely taken into account when
modeling threats and attack surfaces in the selected approaches,
e.g., by marking communication channels as publicly accessible
or as secure like done in the ProCom approach. More complex
threat models for the platform might be useful to find attacks
on the platform level in early steps, and to adapt software and
platform models for mitigation. For example, the fact if a de-
vice is physically accessible should be considered when talking
about security concepts for the software running on this device.
It makes a difference if a device is operating at a construction
side or in a secured area where only a few person have phys-
ical access to. Furthermore, the deployment and runtime are
only barely covered. DREMS is the only approach that generates
deployment plans for the system. SysML-Sec and SEED provide
designers the option to analyze and compare different versions
of the deployed system. However, providing concrete plans for
the secure operation of a system and considering active counter-
measures like intrusion detection systems during development
would improve the overall security of the system and is an
interesting research field. Only DREMS is able to enforce security
properties at runtime. Furthermore, most approaches provide
(partial) code generation for the system. However, a holistic
deployment step involves other tasks despite code generation.
For example, in analyses, it is assumed that keys for encryption
are already shared. Such a key management could be part of
the deployment, as well as configuration plans for each involved
ECU and operating system. Hence, since deploying the system
might add additional side effects, it would be interesting to think
about the validation of countermeasures during the design and
threat modeling phase. Instead of applying security only during
the development, additional work on using a threat model as a
reactive artifact describing the current security situation of the
deployed system would be interesting. In general, a higher degree
of automation in such methods would increase the degree of
security since each manual step may introduce security flaws.
This does not only affect model transformations (including those
to source code) but also the deployment and runtime controlling
of the system. In the context of security, this refinement becomes
a major challenge since a correct refinement might not preserve
security properties in all cases (Roscoe, 1995). Since in CPS the
execution highly depends on the executing platform, secure code
generation and execution (based on the design models) as well
as their validation should be further investigated.

Common Evaluation Scenario: A common evaluation scenario
would be of great benefit for approaches both in existence and
under development. Since CPS cover still a quite wide range
of domains, sticking to one domain would be restricting but
is necessary when performing comparative evaluations. Another
problem we see here is that there are too many different facets
that could be compared, e.g., expressiveness of the threat model,
kind of the threat model, traceability of threats and counter-
measures, performance, usability, etc. which might need different
scenarios. Also, the kind of approach is a factor that has to

be considered: Approaches that can be added to an existing
system modeling method could be compared based on an ex-
isting pre-defined system model. However, if an approach uses
its own modeling language for defining the system, the scenario
needs to be remodeled within this language. There are large-
scaled projects that could be used for comparing such approaches,
e.g., the EVITA project (EVITA, 2020) or the Common Component
Modeling Example (CoCoMe) (Herold et al., 2008). In general,
when designing an evaluation scenario, one has to choose if this
scenario strengthen the internal validity or external validity of
the evaluation (Siegmund et al., 2015). A concrete evaluation sce-
nario as used in the presented approaches could strengthen the
internal validity of the evaluation but then necessarily has limited
external validity at the same time. To strengthen the external
validity, on the other hand, one would need to compare multiple
approaches to one another, which thus would demand a rather
less specific scenario. Thus, as consequence a fixed modeling
example has limited utility for comparing multiple approaches.
Such a comparative evaluation could better be supported by a
list of weaknesses, e.g., a subset of the CWE database and a set
of properties. CWEs are well suited because they are describing
general weaknesses instead of concrete vulnerabilities like CVEs.
Focusing on one CWE allows one to evaluate properties such
as traceability of threats and countermeasures as well as the
properties of the used modeling syntax such as expressiveness
or usability. Choosing a database describing scenarios from real-
world projects would also be suitable to evaluate the practicality
of the approaches. However, such a data set cannot replace sce-
narios used to strengthen internal validity (Siegmund et al., 2015)
and thus should be created in addition.

6. Conclusion

Model-driven security approaches seem to be a key methodol-
ogy to fully handle the security and safety needs for modern CPS.
Since CPS are distributed systems and additionally interact with
their environment, one requires dedicated methods that cover all
requirements of CPS. In particular, the software (cyber) as well as
the platform layer have to be considered during development and
threat modeling. We conducted a systematic literature review
to answer the question to which degree model-driven security
approaches for CPS cover the platform.

We found out that during the last years several approaches
were developed in this area. However, the platform integration is
still immature in most approaches. Also, the integration of threat
modeling and the trace to applied security solutions can be im-
proved. The refinement of the models during the whole SDLC can
be improved by increasing the degree of automation. Furthermore
the tracing of security properties through all phases of the SDLC
should be considered more when providing refinements of the
models. Although the deployment is a crucial step, it is barely
covered in most approaches. Furthermore, integration of third-
party code and dependencies to other, not fully known system
parts is missing. Finally, a common evaluation scenario would
help to compare such methodologies in detail.

We hope that the results of our survey will encourage de-
velopers of model-driven methodologies to focus more on the
open research questions. The comprehensive overview of the
approaches might help to find similarities and differences, and
help to provide a base for a better understanding of this area. We
plan to extend our survey to other libraries and journals in order
to cover more approaches in this area. Finally, we are going to
investigate how classical threat modeling can be integrated into
a holistic model-driven approach for developing CPS to increase
the number of covered threats and the degree of automation in
both the cyber layer and the platform layer.



16 J. Geismann and E. Bodden / The Journal of Systems & Software 169 (2020) 110697

CRediT authorship contribution statement

Johannes Geismann: Conceptualization, Data curation, Inves-
tigation, Writing - original draft, Writing - review & editing. Eric
Bodden: Conceptualization, Supervision, Writing - original draft,
Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The authors would like to thank Andreas Dann, Christopher
Gerking, and Marie Christin Platenius-Mohr for the helpful dis-
cussions and their feedback on drafts of this paper. Johannes
Geismann is member of the Ph.D. program ‘‘Design of Flexible
Work Environments: Human-Centric Use of Cyber-Physical Sys-
tems in Industry 4.0’’, supported by the German federal state of
North Rhine-Westphalia.

References

Al Faruque, M., Regazzoni, F., Pajic, M., 2015. Design methodologies for securing
cyber-physical systems. In: International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), 2015. CODES ’15, IEEE Press,
Piscataway, NJ, USA, pp. 30–36.

Apvrille, L., Li, L., Roudier, Y., 2016. Model-driven engineering for designing
safe and secure embedded systems. In: 2016 Architecture-Centric Virtual
Integration. ACVI. pp. 4–7.

Apvrille, L., Roudier, Y., 2013. SysML-Sec: A SysML environment for the design
and development of secure embedded systems. In: Asia-Pacific Council on
Systems Engineering. APCOSEC.

Apvrille, L., Roudier, Y., 2014. Towards the model-driven engineering of secure
yet safe embedded systems. Electron. Proc. Theor. Comput. Sci. 148, 15–30.

Apvrille, L., Roudier, Y., 2015. SysML-Sec attack graphs: Compact representations
for complex attacks. In: GraMSec@CSF, Vol. 9390, pp. 35–49.

Balasubramanian, D., Dubey, A., Otte, W., Levendovszky, T., Gokhale, A., Ku-
mar, P., Emfinger, W., Karsai, G., 2015. DREMS ML: A wide spectrum
architecture design language for distributed computing platforms. Sci.
Comput. Program. 106, 3–29.

Banerjee, A., Venkatasubramanian, K.K., Mukherjee, T., Gupta, S.K.S., 2012. En-
suring safety, security, and sustainability of mission-critical cyber–physical
systems. Proc. IEEE 100 (1), 283–299.

Basin, D., 2006. Model driven security. In: First International Conference on
Availability, Reliability and Security. ARES.

Behrmann, G., David, A., Larsen, K., 2004. A tutorial on uppaal. In: Formal
Methods for the Design of Real-Time Systems, Vol. 3185. pp. 200–236.

Bell, D.E., LaPadula, L.J., 1973. Secure Computer Systems: Mathematical
Foundations. Technical Report, DTIC Document.

Biba, K.J., 1977. Integrity Considerations for Secure Computer Systems. Technical
Report, DTIC Document.

Borde, E., Carlson, J., 2011. Towards verified synthesis of ProCom, a component
model for real-time embedded systems. In: Proceedings of the 14th Interna-
tional ACM Sigsoft Symposium on Component Based Software Engineering.
CBSE ’11, ACM, New York, NY, USA, pp. 129–138.

Borde, E., Carlson, J., Feljan, J., Lednicki, L., Lévêque, T., Maras, J., Petricic, A.,
Sentilles, S., 2011. Pride-an environment for component-based development
of distributed real-time embedded systems. In: 2011 Ninth Working IEEE/IFIP
Conference on Software Architecture. IEEE, pp. 351–354.

Brambilla, M., Cabot, J., Wimmer, M., 2012. Model-driven software engineering
in practice. Synth. Lect. Softw. Eng. 1 (1), 1–182.

Bureš, T., Carlson, J., Crnkovic, I., Sentilles, S., Vulgarakis, A., 2008. ProCom –
The Progress Component Model Reference Manual. Mälardalen University,
Västerås, Sweden.

Canedo, A., Wan, J., Al Faruque, M.A., 2014. Functional modeling compiler for
system-level design of automotive cyber-physical systems. In: Computer-
Aided Design (ICCAD), 2014 IEEE/ACM International Conference on. IEEE, pp.
39–46.

Cigital Federal Inc., 2011. Addressing software security in the federal acquisition
process.

Dolev, D., Yao, A., 1983. On the security of public key protocols. IEEE Trans.
Inform. Theory 29 (2), 198–208.

Dorbala, S.Y., Bhadoria, R.S., 2015. Analysis for security attacks in cyber-physical
systems. In: Cyber-Physical Systems: A Computational Perspective. Chapman
and Hall/CRC, pp. 395–414.

Eby, M., Werner, J., Karsai, G., Ledeczi, A., 2007. Integrating security modeling
into embedded system design. In: 14th Annual IEEE International Conference
on Engineering of Computer-Based Systems.

Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S.,
Xiong, Y., 2003. Taming heterogeneity - the Ptolemy approach. Proc. IEEE 91
(1), 127–144.

EVITA, 2020. The EVITA project webpage. https://www.evita-project.org.
Felderer, M., Zech, P., Breu, R., Büchler, M., Pretschner, A., 2016. Model-based

security testing: a taxonomy and systematic classification. Softw. Test. Verif.
Reliab. 26 (2), 119–148.

Fitzgerald, J.S., Larsen, P.G., Verhoef, M., 2014. From embedded to cyber-physical
systems: Challenges and future directions. In: Collaborative Design for
Embedded Systems. Springer, pp. 293–303.

Geismann, J., Bodden, E., 2020. Replication package for the literature review.
http://dx.doi.org/10.5281/zenodo.3843478.

Gunawan, L.A., Kraemer, F.A., Herrmann, P., 2011. A tool-supported method
for the design and implementation of secure distributed applications. In:
International Symposium on Engineering Secure Software and Systems.
Springer, pp. 142–155.

Hafner, M., Breu, R., Agreiter, B., Nowak, A., 2006. SECTET: an extensible frame-
work for the realization of secure inter-organizational workflows. Internet
Res. 16 (5), 491–506.

Herold, S., Klus, H., Welsch, Y., Deiters, C., Rausch, A., Reussner, R., Krogmann, K.,
Koziolek, H., Mirandola, R., Hummel, B., Meisinger, M., Pfaller, C., 2008.
CoCoME - the common component modeling example. In: Rausch, A.,
Reussner, R., Mirandola, R., Plášil, F. (Eds.), The Common Component Mod-
eling Example: Comparing Software Component Models. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 16–53.

Herzog, A., Shahmehri, N., Duma, C., 2007. An ontology of information security.
Int. J. Inf. Secur. Priv. 1 (4), 1–23.

Idrees, M.S., 2012. A Requirement Engineering Driven Approach to Security Ar-
chitecture Design for Distributed Embedded Systems (Ph.D. thesis). Télécom
ParisTech.

Ishtiaq Roufa, R.M., Mustafaa, H., Travis Taylora, S.O., Xua, W., Gruteserb, M.,
Trappeb, W., Seskarb, I., 2010. Security and privacy vulnerabilities of in-car
wireless networks: A tire pressure monitoring system case study. In: 19th
USENIX Security Symposium, Washington DC, pp. 11–13.

Jacob, J., 1989. On the derivation of secure components. In: Proceedings. 1989
IEEE Symposium on Security and Privacy, pp. 242–247.

Jensen, J., Jaatun, M.G., 2011. Security in model driven development: A survey.
In: Sixth International Conference on Availability, Reliability and Security.
ARES, 2011, pp. 704–709.

Jürjens, J., 2005. Secure Systems Development with UML. Springer Science &
Business Media.

Kienhuis, B., Deprettere, E.F., Wolf, P.V.D., Vissers, K., 2002. A methodology
to design programmable embedded systems — The Y-chart approach. In:
Embedded Processor Design Challenges: Systems, Architectures, Modeling,
and Simulation - SAMOS, pp. 18–37.

Kitchenham, B., 2004. Procedures for Performing Systematic Reviews, Vol. 33,
No. TR/SE-0401. Keele University, Keele, UK, p. 28.

Kitchenham, B., Charters, S., 2007. Guidelines for performing Systematic Lit-
erature Reviews in Software Engineering, Vol. 2. Technical Report, Keele
University.

Kriaa, S., Pietre-Cambacedes, L., Bouissou, M., Halgand, Y., 2015. A survey of
approaches combining safety and security for industrial control systems.
Reliab. Eng. Syst. Saf. 139, 156–178.

Lee, E.A., 2008. Cyber physical systems: Design challenges. In: 2008 11th IEEE
International Symposium on Object and Component-Oriented Real-Time
Distributed Computing. ISORC, IEEE, pp. 363–369.

Lee, R.M., Assante, M.J., Conway, T., 2014. German steel mill cyber attack. Ind.
Control Syst. 30.

Levendovszky, T., Balasubramanian, D., Coglio, A., Dubey, A., Otte, W., Karsai, G.,
Gokhale, A., Nyako, S., Kumar, P., Emfinger, W., 2014. DREMS: A model-driven
distributed secure information architecture platform for managed embedded
systems. IEEE Softw. 31 (2), 62–69.

Li, L., 2018. Safe and Secure Model-Driven Design for Embedded Systems (Ph.D.
thesis). Université Paris-Saclay.

Li, L.W., Lugou, F., Apvrille, L., 2017. Security-aware modeling and analysis for
HW/SW partitioning. In: MODELSWARD, pp. 302–311.

Li, L.W., Lugou, F., Apvrille, L., 2018. Security modeling for embedded system
design. In: Lecture Notes in Computer Science (Including Subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol.
10744 LNCS. pp. 99–106.

Lugou, F., Li, L.W., Apvrille, L., Ameur-Boulifa, R., 2016. SysML models and model
transformation for security. In: 2016 4th International Conference on Model-
Driven Engineering and Software Development. MODELSWARD, SCITEPRESS,
pp. 331–338.

http://refhub.elsevier.com/S0164-1212(20)30146-1/sb1
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb1
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb1
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb1
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb1
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb1
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb1
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb4
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb4
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb4
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb6
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb6
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb6
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb6
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb6
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb6
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb6
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb7
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb7
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb7
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb7
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb7
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb9
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb9
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb9
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb10
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb10
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb10
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb11
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb11
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb11
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb12
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb12
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb12
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb12
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb12
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb12
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb12
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb13
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb13
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb13
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb13
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb13
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb13
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb13
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb14
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb14
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb14
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb15
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb15
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb15
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb15
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb15
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb16
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb16
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb16
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb16
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb16
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb16
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb16
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb17
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb17
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb17
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb18
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb18
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb18
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb19
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb19
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb19
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb19
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb19
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb21
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb21
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb21
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb21
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb21
https://www.evita-project.org
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb23
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb23
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb23
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb23
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb23
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb24
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb24
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb24
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb24
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb24
http://dx.doi.org/10.5281/zenodo.3843478
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb26
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb26
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb26
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb26
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb26
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb26
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb26
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb27
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb27
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb27
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb27
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb27
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb28
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb28
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb28
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb28
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb28
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb28
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb28
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb28
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb28
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb28
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb28
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb29
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb29
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb29
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb30
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb30
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb30
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb30
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb30
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb34
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb34
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb34
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb36
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb36
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb36
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb37
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb37
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb37
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb37
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb37
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb38
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb38
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb38
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb38
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb38
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb39
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb39
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb39
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb39
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb39
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb40
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb40
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb40
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb41
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb41
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb41
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb41
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb41
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb41
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb41
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb42
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb42
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb42
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb44
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb44
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb44
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb44
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb44
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb44
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb44
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb45
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb45
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb45
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb45
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb45
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb45
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb45


J. Geismann and E. Bodden / The Journal of Systems & Software 169 (2020) 110697 17

Lun, Y.Z., D’Innocenzo, A., Malavolta, I., Di Benedetto, M.D., 2016. Cyber-physical
systems security: a systematic mapping study. arXiv preprint arXiv:1605.
09641.

McLean, J., 1996. A general theory of composition for a class of ‘‘possibilistic’’
properties. IEEE Trans. Softw. Eng. 22 (1), 53–67.

Mendeley Ltd., 2020. Mendeley desktop. [Online]; https://www.mendeley.com/.
(Accessed May 2020).

Moebius, N., Stenzel, K., Grandy, H., Reif, W., 2009. SecureMDD: A model-driven
development method for secure smart card applications. In: International
Conference on Availability, Reliability and Security, 2009. ARES ’09, pp.
841–846.

Motii, A., 2017. Engineering Secure Software Architectures: Patterns, Models and
Analysis (Ph.D. thesis). Université de Toulouse, Université Toulouse III-Paul
Sabatier.

Neri, M.A., Guarnieri, M., Magri, E., Mutti, S., Paraboschi, S., 2013. A model-driven
approach for securing software architectures. In: International Conference on
Security and Cryptography. SECRYPT.

Neureiter, C., Engel, D., Uslar, M., 2016. Domain specific and model based
systems engineering in the smart grid as prerequesite for security by design.
Electronics 5 (4), 24.

Nguyen, P.H., Ali, S., Yue, T., 2017. Model-based security engineering for cyber-
physical systems: A systematic mapping study. Inf. Softw. Technol. 83,
116–135.

Nguyen, P.H., Kramer, M., Klein, J., Le Traon, Y., 2015. An extensive systematic
review on the Model-Driven Development of secure systems. Inf. Softw.
Technol. 68, 62–81.

Object Management Group, 2008. A UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded systems (2008-06-08), Vol. 2. Technical
Report ptc/2008-06-09, Object Management Group.

Ptolemaeus, C., 2014. System Design, Modeling, and Simulation. Using Ptolemy
II. Ptolemy. org Berkeley, p. 690.

Rajkumar, R., Lee, I., Sha, L., Stankovic, J., 2010. Cyber-physical systems: the next
computing revolution. In: Design Automation Conference. IEEE, pp. 731–736.

Reddy, Y.B., 2015. Security and design challenges in cyber-physical systems. In:
12th International Conference on Information Technology - New Generations.
ITNG, 2015, pp. 200–205.

Roscoe, A.W., 1995. CSP and determinism in security modelling. In: Proceedings
1995 IEEE Symposium on Security and Privacy. IEEE, pp. 114–127.

Roudier, Y., Apvrille, L., 2015. SysML-Sec: A model driven approach for designing
safe and secure systems. In: 3rd International Conference on Model-Driven
Engineering and Software Development. MODELSWARD, 2015, pp. 655–664.

Roudier, Y., Idrees, M.S., Apvrille, L., 2014. Improved security requirements
engineering using knowledge representation. In: Conf’rence sur la Scuritè
des Architectures Rèseaux et des Systemes d’Information.

Ruiz, J.F., Maña, A., Rudolph, C., 2015. An integrated security and sys-
tems engineering process and modelling framework. Comput. J. 58 (10),
2328–2350.

Runeson, P., Höst, M., 2009. Guidelines for conducting and reporting case study
research in software engineering. Empir. Softw. Eng. 14 (2), 131.

Saadatmand, M., Leveque, T., 2012. Modeling security aspects in distributed
real-time component-based embedded systems. In: Ninth International Con-
ference on Information Technology: New Generations. ITNG, 2012, pp.
437–444.

Sánchez, Ó., Molina, F., García-Molina, J., Toval, A., 2009. ModelSec: a generative
architecture for model-driven security. J. UCS 15 (15), 2957–2980.

Schneier, B., 1999. Attack trees. Dr Dobbs J. 24 (12), 21–29.

Shostack, A., 2014a. Threat Modeling: Designing for Security. Wiley, Indianapolis,
Ind.

Shostack, A., 2014b. Threat Modeling: Designing for Security. John Wiley Sons,
Indianapolis, USA.

Siegmund, J., Siegmund, N., Apel, S., 2015. Views on internal and external validity
in empirical software engineering. In: 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, Vol. 1, pp. 9–19.

Uzunov, A.V., Fernandez, E.B., Falkner, K., 2012. Engineering security into
distributed systems: A survey of methodologies. J. UCS 18 (20), 2920–3006.

Vasilevskaya, M., 2015. Security in Embedded Systems: A Model-Based Approach
with Risk Metrics (Ph.D. thesis). Linköping University Electronic Press.

Vasilevskaya, M., Gunawan, L.A., Nadjm-Tehrani, S., Herrmann, P., 2014. Inte-
grating security mechanisms into embedded systems by domain-specific
modelling. Secur. Commun. Netw. 7 (12), 2815–2832.

Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S., 2013. Model-Driven Software
Development: Technology, Engineering, Management. John Wiley & Sons.

Wan, J., Canedo, A., Al Faruque, M.A., 2015a. Security-aware functional modeling
of cyber-physical systems. In: 20th Conference on Emerging Technologies &
Factory Automation. ETFA, IEEE, pp. 1–4.

Wan, J., Canedo, A., Al Faruque, M.A., 2017. Functional model-based design
methodology for automotive cyber-physical systems. IEEE Syst. J. 11 (4),
2028–2039.

Wan, J., Canedo, A., Faruque, M.A.A., 2015b. Functional model-based design
methodology for automotive cyber-physical systems. IEEE Syst. J. 11 (99),
1–12.

Wasicek, A., Derler, P., Lee, E.a., 2014. Aspect-oriented modeling of attacks in
automotive cyber-physical systems. In: Proceedings of the the 51st Annual
Design Automation Conferenc. DAC, pp. 1–6.

Weilkiens, T., 2011. Systems Engineering with SysML/UML: Modeling, Analysis,
Design. Elsevier.

Wohlin, C., 2014. Guidelines for snowballing in systematic literature studies and
a replication in software engineering. In: Proceedings of the 18th Interna-
tional Conference on Evaluation and Assessment in Software Engineering.
EASE ’14, ACM, New York, NY, USA, pp. 38:1–38:10.

Zhang, L., Fallah, Y.P., Jihene, R., 2013. Cyber-Physical Systems: Computation,
Communication, and Control. SAGE Publications Sage UK, London, England.

Zhou, G., Leung, M.-K., Lee, E.A., 2007. A code generation framework for
actor-oriented models with partial evaluation. In: Embedded Software and
Systems: Third International Conference, ICESS 2007, Daegu, Korea, May 14–
16, 2007. Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg, pp.
193–206.

Johannes Geismann is a research assistant at the chair for software engineering
at the Heinz Nixdorf Intitute at Paderborn University. He received the degree
Master of Science in computer science in 2016. He is member of the Ph.D.
program ‘‘Design of FlexibleWork Environments: Human-Centric Use of cyber–
physical Systems in Industry 4". His main research interests are model-driven
security and threat modeling for cyber–physical systems.

Eric Bodden is heading the chair for software engineering at the Heinz Nixdorf
Intitute at Paderborn University. He is also director for software engineering at
the Fraunhofer Institute for Mechatronic Systems Design. Prof. Bodden’s research
focuses on a secure engineering lifecycle for software intensive systems. In
particular, his research group designs, builds and empirically evaluates tool
support for such a lifecycle.

http://arxiv.org/abs/1605.09641
http://arxiv.org/abs/1605.09641
http://arxiv.org/abs/1605.09641
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb47
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb47
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb47
https://www.mendeley.com/
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb50
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb50
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb50
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb50
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb50
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb52
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb52
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb52
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb52
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb52
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb53
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb53
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb53
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb53
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb53
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb54
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb54
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb54
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb54
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb54
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb55
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb55
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb55
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb55
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb55
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb56
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb56
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb56
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb57
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb57
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb57
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb59
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb59
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb59
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb62
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb62
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb62
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb62
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb62
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb63
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb63
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb63
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb65
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb65
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb65
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb66
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb67
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb67
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb67
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb68
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb68
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb68
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb70
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb70
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb70
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb71
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb71
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb71
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb72
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb72
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb72
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb72
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb72
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb73
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb73
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb73
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb74
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb74
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb74
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb74
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb74
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb75
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb75
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb75
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb75
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb75
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb76
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb76
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb76
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb76
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb76
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb78
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb78
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb78
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb79
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb79
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb79
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb79
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb79
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb79
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb79
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb80
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb80
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb80
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb81
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb81
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb81
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb81
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb81
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb81
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb81
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb81
http://refhub.elsevier.com/S0164-1212(20)30146-1/sb81

	A systematic literature review of model-driven security engineering for cyber–physical systems
	Introduction
	Background and rationale of the survey
	Survey
	Preparation/organization
	Research questions
	Search strategy
	Exclusion criteria
	Data extraction strategy

	Conducting the survey
	Selection of approaches
	Threats to validity


	Selected approaches and data elicitation
	Summary of approaches
	DREMS
	ProCom
	Wasicek 
	Al Faruque 
	Eby 
	SysML-Sec
	SEED

	Classifications and results
	General
	Kind of approach
	Stages of the SDLC
	Models for system design
	Formal threat specification
	Security Transformations & Analyses


	Data analysis and discussion
	Data analysis
	Discussion and open research topics

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


