
A Systematic Hardening of Java’s Information Hiding
Philipp Holzinger

Fraunhofer SIT
Darmstadt, Germany

philipp.holzinger@sit.fraunhofer.de

Eric Bodden
Paderborn University & Fraunhofer IEM

Paderborn, Germany
eric.bodden@uni-paderborn.de

ABSTRACT
The Java runtime is installed on billions of devices worldwide, and
over years it has been a primary attack vector for online criminals.
In this work, we address that many attack vectors exploit weak-
nesses in Java’s information hiding, making use of illegal access to
private members of system classes. To study to what extent such
attacks can be mitigated, and at what cost, this paper demonstrates
a proof-of-concept solution to strengthen information hiding. Ex-
periments show that this approach is backward compatible, and
that it blocks 84% of all information-hiding attacks in a large-scale
sample set at an average performance overhead below 2%. Based on
our experiments, we suggest a solution to strengthen information
hiding for productive use that has the potential to outperform our
proof of concept in terms of robustness and performance, and also
would block the remaining information-hiding attacks. Finally, we
conclude with general advice on the design of secure software.

CCS CONCEPTS
• Security and privacy→ Software security engineering; Ac-
cess control; Browser security.

KEYWORDS
Java, information hiding, access control, security design, exploit

ACM Reference Format:
Philipp Holzinger and Eric Bodden. 2021. A Systematic Hardening of Java’s
Information Hiding. In Proceedings of the 2021 International Symposium on
Advanced Security on Software and Systems (ASSS ’21), June 7, 2021, Virtual
Event, Hong Kong. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3457340.3458300

1 INTRODUCTION
Since its introduction in the mid-90’s, the Java platform has seen
widespread adoption, and is now present on literally billions of
devices worldwide. It is one of the first runtime environments
that was originally designed to securely contain the execution
of untrusted code, for which it implements an elaborate security
model [17]. Yet, as Cisco’s Annual Security Reports show, Java was
the primary attack vector for web exploits in 2013 with a share of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASSS ’21, June 7, 2021, Virtual Event, Hong Kong
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8403-2/21/06. . . $15.00
https://doi.org/10.1145/3457340.3458300

87% [9], and even 91% in 2014, thus clearly outranking Flash and
Adobe PDF [10], and still remains an important target today.

At a first glance this seems rather curious, given that Java imple-
ments numerous defense strategies: Java’s bytecode validation, for
instance, statically type-checks all bytecode prior to its execution.
Dynamic policy enforcement uses stack-based access control to
restrict which sensitive operations untrusted code may execute,
while automatic memory management seeks to prevent memory-
corruption vulnerabilities. Altogether Java’s security architecture
involves more than a dozen different safeguards, which might lead
one to believe that every mechanism is backed up by at least one
other mechanism, thus implementing defense in depth. In this work
we show, however, that in practice all those mechanisms provide
largely orthogonal guarantees. Because of this, a single failure in
any one mechanism can often enable attackers to completely bypass
all security checks. As we explain, the problem is caused by the
fact that the Java runtime’s security relies heavily on the principle
of information hiding: The security status of the entire platform
depends on a small set of private variables in system classes. By
obtaining access to those variables, or to certain private system
methods, attackers can disable all security checks. Using a set of
exploits covering more than a decade of Java exploitation [21], we
show that 61% of the exploits attack information hiding.

In recent years, Java’s maintainers have fixed numerous indi-
vidual vulnerabilities that had enabled those exploits. As we show
in this paper, however, the vulnerabilities are just symptoms of a
major underlying design weakness.

This paper gives a detailed account of two possibilities to strength-
en information hiding such as to avert all attacks known to date.
The first, the heavyweight mitigation strategy is clean and simple
to explain, yet requires deep and extensive modifications of the
Java virtual machine and its inner workings. Such modifications
would require access to the Java virtual machine’s source code, and
significant engineering efforts to integrate our solution into Java
runtimes of different vendors, on different platforms, in different
versions, to support large-scale testing. This heavyweight solution
is very useful for future platform implementation, but unfortunately
precludes us from implementing and assessing this solution for the
closed-source Java runtimes provided by Oracle and IBM.

Hence, to study the extent to which such attacks can be miti-
gated by a systematic solution that does not require modifications
of the Java virtual machine, we also present a lightweight proof-
of-concept approach that strengthens Java’s information hiding by
moving sensitive fields into a securely-encapsulated storage area,
the “blackbox”. This automatically renders impossible all accesses
to those fields through previously exploited channels, such as re-
flection. The hardening further comprises a dedicated protection
of private methods, classpool layout randomization, and integrity
checks. Our implementation automatically integrates the proposed

https://doi.org/10.1145/3457340.3458300
https://doi.org/10.1145/3457340.3458300
https://doi.org/10.1145/3457340.3458300

changes into past and current versions of the Java platform, without
requiring access to its source code.

Our evaluation shows that this proof-of-concept hardening suc-
cessfully blocks 84% of all information-hiding exploits in a large-
scale sample set, and we explain how even the remaining exploits
can be blocked as well. At the same time, the approach is back-
ward compatible and highly efficient—all real-world applications
we tested run unaffectedly, with an average performance overhead
below 2%.

As we also explain, if implemented, the heavyweight mitigation
strategy has the potential to outperform the lightweight proof-of-
concept approach in terms of both speed and robustness.

This paper presents the following core contributions:
• A systematic analysis of Java’s information hiding, which
highlights systematic flaws in Java’s security model.

• A systematic hardening of Java’s information hiding as a
proof-of-concept implementation.

• An analysis showing that the proof of concept blocks 84% of
past information hiding exploits, while retaining backward
compatibility and high performance.

• An elaborate solution approach to strengthen information
hiding for productive use, which improves over the proof of
concept.

• A general discussion on secure software design, taking into
account the insights we gained during our study.

This paper is organized as follows. Section 2 elaborates on the im-
portance of information hiding in the Java security model. Section 3
discusses threats to information hiding, and Section 4 presents our
lightweight proof-of-concept solution to strengthen the platform.
Section 5 evaluates the proposed lightweight countermeasures. Sec-
tion 6 discusses the heavyweight redesign of Java’s security ar-
chitecture for productive use, and in Section 7 we draw general
conclusions on the design of secure software. Finally, Section 8
presents related work, and Section 9 concludes.

2 BACKGROUND
At a high level, the platform comprises two components. The Java
virtual machine (JVM) is the program execution engine. It features
a classloader, bytecode interpreter, just-in-time compiler, and other
basic functionality. The second component is the Java class library
(JCL), which interfaces between the user-provided application and
the JVM. It consists of numerous trusted system classes, which
offer commonly-needed functionality to applications, similar to the
standard libraries of other languages.While the JVM is implemented
in native code, most parts of the JCL are implemented in Java. The
Java native interface (JNI) can be used to call native functions from
Java methods, and vice versa.

The platform enforces policies to restrict access to security-
critical functionality (e.g., file and network access) in the JCL by
combining several security mechanisms. Some of these mechanisms
are implemented in the JVM, while others are implemented in the
JCL itself. Security-sensitive methods in the JCL are guarded by
a permission check, which is triggered by a call to the Security-
Manager. A permission check inspects the call stack to determine
if the sequence of callers that attempt the desired action are associ-
ated with sufficient privileges, and throws a SecurityException

otherwise. This stack-based access control is one of Java’s core se-
curity mechanisms. It can be enabled and disabled by the user, but
for the remainder of this paper we assume that a security manager
has been put in charge. Besides, there is also, e.g., bytecode verifica-
tion, which ensures that class files are well-formed, type-safe and
contain only legal operations, or automatic memory management,
which is responsible for the automatic deallocation of memory, thus
avoiding memory-corruption vulnerabilities.

Information hiding is crucial in policy enforcement. The secu-
rity status of the entire platform is determined by the contents of
private variables in system classes. One prominent example of such
a security-critical field is System.security. It holds the instance
of SecurityManager that is currently in charge of performing per-
mission checks. Setting this field to nullwill disable policy enforce-
ment, thus enabling arbitrary code execution. Another example can
be found in java.beans.Statement. Objects of this class represent
arbitrary method calls. They can be instantiated during runtime
and executed by calling execute(). To prevent attackers from gain-
ing privileges by calling a sensitive method through Statement as
opposed to calling it directly, Statement captures the current secu-
rity context in a private field acc and ensures that execute() will
call the target method only within this context. However, attackers
can elevate their privileges by illegitimately replacing the security
context stored in acc by another context with all privileges, as
demonstrated by the exploit for CVE-2013-2465.

Finally, system classes store instances of restricted classes in pri-
vate variables. Restricted classes are a subset of system classes
that must remain inaccessible to untrusted code, because they
contain security-sensitive methods that are not guarded by per-
mission checks. A well-known example of a restricted class is
sun.misc.Unsafe, which many exploits abuse to disable security
checks.

3 THREAT MODEL
In the following we outline our assumptions with respect to attack-
ers and attacks that shaped the design of our solution.

3.1 Attacker goals and capabilities
In our threat model, the attacker’s primary goal is to escalate privi-
leges of attacker-controlled code executed by a JRE on the target
machine—with security manager enabled. For this, the attacker
breaks information hiding by exploiting security vulnerabilities in
the JRE to gain access to sensitive private class members in sys-
tem classes, which in turn are used to achieve privilege escalation.
Eventually, a full compromise of the JVM becomes possible.

For the defenses we present in this paper, we assume that the
attacker has the following capabilities. The presented defenses are
designed to withstand attackers with those capabilities.

• Execute Java code with a restricted set of privileges on the
target machine.

• Exploit vulnerabilities in the Java runtime that allow for
illegitimate access to private sensitive variables and methods
in system classes.

• Statically and dynamically analyze the installation files of
the Java runtime as they are deployed by the vendor.

We further assume the following restrictions.

• The attacker cannot intercept method calls between system
classes, their call arguments are confidential. This assump-
tion is also relevant for the original Java security model.

• The attacker cannot modify the Java runtime on the target
machine in order to prepare the attack. The binary represen-
tations of all system classes and native components of the
Java platform on the target machine are out of reach for the
attacker. This assumption is certainly realistic, unless the
target has been compromised already through other means.

3.2 Attack vectors to break information hiding
We reviewed a set of 61 exploits that Holzinger et al. already stud-
ied in depth in previous work [21]. This set is the largest sample
set of Java exploits available, covering more than a decade of Java
insecurity. We found that 37 of the exploits directly break Java’s
information hiding, for which they are using one of the following
three ways. Interestingly, each of these attack vectors can be im-
plemented by exploiting just a single security vulnerability, which
supports our claim that the Java security model systematically lacks
defense in depth.

Insecure use of introspection –The reflectionAPI and Method-
Handles allow for class introspection at runtime. Their use is re-
stricted and hence subject to policy enforcement, which is imple-
mented through stack-based access control—relevant methods in,
e.g., the reflection API are guarded by a call to the security manager,
which ensures that all code involved in the action has been assigned
appropriate privileges. However, system classes can use introspec-
tion APIs in an insecure manner, thus turning them into confused
deputies. This is always the case if a trusted system class uses un-
trusted input to perform reflective access, e.g., a system class that
calls arbitrary method handles originally provided by untrusted
application code, or field accesses to fields whose names are pro-
vided by untrusted code. Exploits can use such confused deputies
to access members that should be inaccessible to them [20].

Type confusion – Java was designed to provide strong type-
safety guarantees. The platform combines static and dynamic checks
to prevent that an object of one type is illegally cast to an incompati-
ble type. Enforcing type safety is complex, however, and in the past,
several defects made the platform susceptible to type-confusion
attacks.

In a type-confusion attack, the exploit causes the JVM to incor-
rectly treat an object of a certain type A as an object of another type
B. Consequently, the attacker can perform actions on this object
that are allowed for type B, but not for type A. If, for example, type
A declares a private field at a certain offset, and type B declares a
public field at the same position, type confusion can be used to
illegally access the private field—convenient, for instance, if one
wishes to null out the field System.security.

Buffer overflows – The JVM is implemented in native code and
hence potentially susceptible to buffer overflows, which attackers
may use to alter portions of memory. The consequence of overwrit-
ing memory locations this way is different from case to case, and
strongly depends on the type of memory locations that are affected
by the vulnerability. If the target buffer that is affected by the vul-
nerability resides on the stack,1 attackers will typically attempt to

1see “CWE-121: Stack-based Buffer Overflow”

overwrite return addresses, which would allow them to take over
the control flow of the application. If instead the vulnerable buffer
is allocated on the heap,2 attackers might attempt to manipulate
application-specific data structures, as the stack is out of reach. In
the context of Java security, this might be the contents of sensitive
variables of system classes which are stored on the heap.

Due to the different ways in which different buffer overflow
vulnerabilities can impact the security of the Java platform, we
differentiate two different cases.

Information-hiding attacks use buffer overflows that affect buffers
that are near the locations of sensitive variables of system classes,
which the JVM stores on the heap. Such attacks can be used to over-
write private variables and hence represent a breach of information
hiding. One example of such an attack on the Java platform is the
exploit for CVE-2013-2465. These attacks are within the scope of
this paper, and the countermeasures presented in this paper are
designed to mitigate them.

Control-flow hijacking attacks use buffer overflows that affect
memory locations whose integrity is important to the control flow
of the application, such as return addresses on the call stack of the
JVM. These attacks can take over the application’s control flow
and hence achieve arbitrary code execution without corrupting
information hiding. Control-flow hijacking attacks are not specific
to Java, but instead affect a broad range of native applications. There
are a variety of countermeasures that have been implemented in
the past, such as data execution prevention [30], or address space
layout randomization, to address such attacks. Moreover, there is an
active research community that develops novel countermeasures,
e.g., control-flow integrity checks [2]. Note that the JVM is equally
susceptible to control-flow hijacking attacks as, e.g., PDF viewers,
browsers, or other native applications. This means that a solution
that mitigates such attacks for Java is likely a general solution to
the problem.

Since the focus of this paper is on strengthening information
hiding in Java, we consider control-flow hijacking attacks as out
of scope. However, the countermeasures that were proposed in
academia to address the problem of control-flow hijacking can also
be implemented for the JVM, even complementary to the coun-
termeasures we propose in this paper to strengthen information
hiding.

4 PROOF-OF-CONCEPT SOLUTION
As explained in the introduction, this paper gives a detailed account
of two possibilities to strengthen information hiding such as to avert
all attacks known to date. The heavyweight mitigation strategy is
clean and simple to explain, and is what we would suggest for
productive use. Yet, implementing this solution requires access to
the JVM’s source code, and significant engineering effort. Section 6
explains the design of this strategy.

In this section, we instead present a backward-compatible pro-
totype solution that goes without modifications of the JVM. It is
composed of a systematic orchestration of several countermea-
sures specifically designed to strengthen information hiding in Java.
These countermeasures effectively block a broad range of attacks
on information hiding, while retaining backward compatibility and

2see “CWE-122: Heap-based Buffer Overflow”

Table 1: Relationship between countermeasures and attack
vectors

Attack vectors
Countermeasure Introspection Type conf. Buffer overfl.
Field blackbox ✓ ✓ ✓

Integrity checker (✓)* (✓)* (✓)*
Method blackbox ✓ ✓ -
Classpool layout - ✓ ✓
randomization

*partially: ensures field values’ integrity, but not confidentiality

high performance. We designed them such that they can be instru-
mented into even closed-source JREs, which allows us to perform
tests on different platforms with different versions.

However, as we explain in detail below, these advantages come
at the cost of using secret tokens that our proof-of-concept solu-
tion hardwires into the method bodies of system classes. As we
explain, these tokens are randomly generated and individual for
every host system. It would be possible to generate and update the
secret tokens during the installation routine of the JRE, or even
before every single application run. Alternatively, it would also
be possible to modify the JRE’s class loading mechanism in such
a way that it automatically generates and integrates new secret
tokens into system classes while they are loaded by the JVM. This
way, secret tokens would never be persisted on disk, which would
further complicate attacks. Importantly, however, this drawback
concerns only our experimental lightweight solution. The solution
we propose for productive use in Section 6 does not depend on any
secret tokens.

4.1 Conceptual overview
Section 3.2 presents the various attack vectors that attackers can
use to break information hiding: insecure use of introspection, type
confusion, and buffer overflows. In order to address these attacks,
we propose the “blackbox”: a combination of four countermeasures
that can be integrated into the JCL to prevent illegal member access.
The following details these countermeasures and their individual
purposes in defending information-hiding attacks. Table 1 provides
an overview of how the countermeasures relate to the different
attack vectors.
(1) The field blackbox restricts sensitive fields to be accessed only
from known, trusted code – The values of sensitive variables of
system classes are stored in an isolated storage area to which intro-
spection APIs have only limited access.
(2) The method blackbox restricts sensitive methods to be accessed
only from known, trusted code – Its purpose is to prevent exploits
from calling private methods of system classes using introspection
APIs or type confusion.
(3) Some sensitive fields are read (never written!) directly by the JVM.
The integrity checker assures their integrity, without requiring JVM
modifications – To this end, it adds additional integrity checks to
the JCL that serve as security gates, illegal field modification is thus
detected before having an effect.

(4) Classpool layout randomization is an additional defense layer
against type confusion and buffer overflows – It randomizes the lo-
cation of field values in memory by modifying the classpool. This
measure alone is not sufficient as countermeasure, as it may be by-
passed by advanced search routines. However, it complements the
field blackbox and integrity checker by adding an additional layer
of security, thus raising the bar for future attacks, and contributing
to defense in depth.

4.2 Detailed overview
Field blackbox – As many different attack vectors rely on ille-
gal access to private fields in system classes, protecting sensitive
fields is a key feature of the blackbox. We consider all private
fields in system classes of the following types as sensitive: Unsafe,
SecurityManager, AccessControlContext, ProtectionDomain,
and PermissionCollection, including their array representations.
We derived this list of relevant types from a thorough review of the
Java security architecture [17], as well as from reviews of exploits
in our sample set.

To protect sensitive field values, we replace all regular accesses to
them by calls to the blackbox, thus ensuring that they will never be
read or written from their original locations. This protects against
type confusion and buffer overflows, because sensitive values are
no longer stored along with the parent object’s representation in
memory, but rather in a hard to access location in the blackbox.
Conceptually, the blackbox can use various measures to protect
its contents, including, but not limited to, memory randomization,
on-the-fly encryption, process separation, and even hardware sep-
aration. The CHERI ISA [33], for example, is an instruction set
that provides dedicated support for hardware-based, fine-grained
memory protection. Using the CHERI ISA allows applications to
securely restrict how code can access certain memory locations,
which could be used by a blackbox implementation to prevent ille-
gitimate access to the values it contains. As we explain in Section 8,
Chisnall et al. [8] applied the CHERI ISA to implement a sandboxing
mechanism for native code in Java, which highlights the relevance
of this instruction set for Java platform security.

Listing 1 shows an example of a method sysMethod() that ac-
cesses a field acc of type AccessControlContext in its parent
class. Before our modification, sysMethod() reads and writes di-
rectly the static field (lines 6-7). After integrating the field blackbox
into the class library, rather than loading and storing values in
acc, sysMethod() uses the blackbox’s public interface to read and
write sensitive values instead (lines 9-10). To access field values
in the blackbox, sysMethod() passes at least two arguments. The
first argument, here 2583, is a secret token required to access any
security-relevant functionality in the blackbox. Importantly, the
runtime automatically protects the secret token much better than
the original sensitive field, as it is hardcoded into the method body
of the system class, which cannot be inspected or analyzed by un-
trusted code. The secret tokens cannot be guessed: Any attempt to
access a blackboxmethodwithout the correct token is considered an
attack, and will result in a call to Blackbox.panic(). This method
is an emergency method that adequately responds to an attack, e.g.,
by generating logs and reports for manual interventions, or even by
terminating the execution of a violating application. Note that the

Listing 1: Effects of integrating the field blackbox into the
class library.
1 / / s e n s i t i v e f i e l d
2 p r i v a t e s t a t i c Acce s sCon t ro lCon t ex t acc ;
3
4 p u b l i c vo id sysMethod (Acce s sCon t ro lCon t ex t

newAcc) {
5 / / \ \ o r i g i n a l code : \ \
6 / / acc = newAcc ;
7 / / System . out . p r i n t l n (acc) ;
8 / / \ \ mod i f i ed code : \ \
9 B lackbox . s e t _static_ r e f (2 5 8 3 , 8 7 7 9 0 L , newAcc) ;
10 System . out . p r i n t l n (B lackbox . g e t _static_ r e f

(2 5 8 3 , 8 7 7 9 0 L)) ;
11 }

solution we propose in Section 6 to strengthen information hiding
for productive use does not depend on such secret tokens. Instead,
it extends the JVM instruction set by instructions that can only be
used by system classes, which, however, requires modifications to
the JVM. The second argument, here 87790L, is a unique identifier
associated with the field to be accessed.

Replacing sensitive field accesses in system classes as in Listing 1
causes sensitive fields such as acc to become “dead” as they will
not any more be read or written by their parent class. Without any
further modifications, this would cause legacy reflective accesses to
such fields to misbehave, because the reflection API would access
the original, now “dead” field, while the variable’s parent class
would use the field blackbox instead.

Hence one should seek to support reflective accesses to the black-
box. Yet, while doing so, one must be mindful of the problem of
reflection-based confused-deputy attacks. Confused-deputy vulner-
abilities are caused by system classes that make insecure use of
reflection—they call methods of the reflection API in a way that
allows attackers to arbitrarily specify the targets of reflective ac-
cess, thus providing access to private variables of system classes. A
secure use of reflection, in contrast, is performed using constant
arguments, which cannot be modified dynamically. We found ac-
tual examples of system classes that make secure use of reflection
to access sensitive fields of other system classes. Preserving this
legitimate access is thus required to retain backward compatibility.
We did not find any examples of classes in the JCL which make
insecure use of reflection to access sensitive fields of other system
classes.

We thus propose to extend the reflection API and modify call
sites accordingly such that secure, i.e., restricted, uses of reflection
will be automatically rerouted to the field blackbox, while insecure,
i.e., unrestricted, uses of reflection remain unchanged. To detect
relevant call sites, we statically analyze all system classes in the JCL
to find calls to Class.getDeclaredField(fieldName). For every
such finding, the analysis determines if the call is performed on
constant values for Class and fieldName. As the attacker cannot
modify such calls, they imply a restricted, secure use of reflection.
Actions performed on an instance of Field obtained this way can be
safely rerouted to the field blackbox. To achieve this, the analysis

Listing 2: Secure reflective access to sensitive fields will be
automatically rerouted to the blackbox to ensure backward
compatibility.
1 p u b l i c Unsafe s e c R e f l e c t () {
2 F i e l d f = Unsafe . c l a s s . g e t D e c l a r e d F i e l d ("

theUnsa f e ") ;
3 f . enab l eB l a ckbox (2 5 8 3 , 3 8 3 9 7 0 L) ;
4 f . s e t A c c e s s i b l e (t r u e) ;
5 r e t u r n (Unsafe) f . g e t (n u l l) ; / / s u c c e ed s
6 }
7
8 p u b l i c Unsafe i n s e c R e f l e c t (S t r i n g s) {
9 F i e l d f = Unsafe . c l a s s . g e t D e c l a r e d F i e l d (s) ;
10 f . s e t A c c e s s i b l e (t r u e) ;
11 r e t u r n (Unsafe) f . g e t (n u l l) ; / / f a i l s
12 }

instruments any secure call site for getDeclaredField() such
that the returned instance of Field will be permanently associated
with the unique identifier for the concerning field. This identifier
is required to access the corresponding value in the field blackbox.
Our modification of the reflection API causes methods such as
Field.get() to check for such an association of a unique identifier.
If such an association exists, rather than attempting to read the
respective value from the original variable, the identifier is used to
obtain it from the field blackbox. If the static analysis finds a call
site that it does not consider to be secure, or it detects a secure call
site that targets a non-sensitive field, the original code will not be
modified and the method call will not be rerouted to the blackbox.

Listing 2 illustrates how the analysis deals with different uses of
reflection. In this example, secReflect() invokes getDeclared-
Field() in line 2 on constant values Unsafe.class and "the-
Unsafe", which the analysis considers to be a secure use of re-
flection. Because of that, and the fact that Unsafe.theUnsafe is a
sensitive variable, the analysis will reroute the field access to the
blackbox.

The second method in this example, insecReflect(), is treated
differently. In contrast to secReflect(), it contains a call to get-
DeclaredField() in line 9 that passes a variable as field name,
rather than a constant. The analysis considers this insecure and
does not modify the call site to reroute Field.get() in line 11 to
prevent potential confused deputy attacks.

Method blackbox – Certain private methods in system classes
can be used to bypass security checks. The purpose of the method
blackbox is to prevent attackers from using type confusion or re-
flection to call these sensitive methods.

As illustrated in Listing 3, our approach is simple, and yet effec-
tive against common attacks. In this example, getPrivateFields()
is a sensitive private method that must be protected from illegal
invocation. To achieve this, the method blackbox adds an additional
argument token to getPrivateFields() that will be checked at
the beginning of the method, see lines 2-3 in Listing 3. The method
will continue its normal operations only if token contains a spe-
cific value, here 9377, otherwise, Blackbox.panic() will be called,
which serves as an emergency method that adequately responds to

Listing 3: Themethod blackbox protects private methods by
adding a check for a secret token.
1 p r i v a t e F i e l d [] g e t P r i v a t e F i e l d s (i n t token ,

C l a s s c) {
2 i f (token != 9 3 7 7) {
3 B lackbox . pan i c () ;
4 } / / . . . o r i g i n a l code
5 }
6
7 p u b l i c boo lean h a s P r i v a t e F i e l d s (C l a s s c) {
8 i f (g e t P r i v a t e F i e l d s (9 3 7 7 , c) . l e ng t h > 0)
9 / / . . . o r i g i n a l code
10 }

attempted attacks. As can be seen in line 8, all callers in the parent
class will be updated such that they pass the required secret token
as an argument, backward compatibility is thus retained. Exploits
that obtain access to methods protected this way, e.g., by using a
confused deputy, cannot call themwithout the correct token. Impor-
tantly, the solution we propose for productive use in Section 6 does
not use any secret tokens. Instead, it extends the JVM instruction
set by dedicated instructions for sensitive method calls that only
system classes can use.

Integrity checker – The field blackbox is the core feature of
our proposed solution, but there are some sensitive fields in the
JCL to which it cannot be applied. Those fields are accessed not
only by their parent class, but also directly by native code in the
JVM. Replacing field accesses only in their parent classes while
leaving accesses in the JVM unmodified would result in inconsistent
behavior. However, modifying the JVM accordingly would require
access to its source code, thus violating the design goals of our
proof of concept (see Section 4).

A review of the relevant fields reveals that in all cases the con-
fidentiality of their values is not an issue, but only their integrity
is important to the security of the platform. The array Access-
ControlContext.context is an example of such a field. It con-
tains the set of protection domains that will be considered when
a permission check is to be executed in the respective context. Its
content is not secret and could possibly even be obtained through
other means, so it is not required to protect the confidentiality
of context. Its integrity, however, is of high importance, because
illegal modification would compromise access control.

Further, the JVM writes to these fields only during object ini-
tialization, if at all. In all other cases, the JVM only performs read
accesses, e.g., reading AccessControlContext.context when a
permission check is to be executed.

To protect also these special fields, we developed the integrity
checker, an alternative countermeasure that is used to guard sensi-
tive fields that cannot be moved to the blackbox. The basic concept
of the integrity checker is to track throughout program execution
all legal field modifications of protected fields such that illegal mod-
ifications can be detected before they impact the security of the
platform. To achieve this, we keep a checksum in the field blackbox
for every object that contains at least one field whose integrity
is to be protected. Every legal field modification in a parent class

will cause the corresponding checksum in the field blackbox to be
updated. To prevent attackers from simply updating themselves
the checksum after an illegal field modification, updating this value
requires a secret token known only to the parent class. Similarly to
the field blackbox, this token is stored only within the class’ code,
and the solution we propose in Section 6 for productive use works
without secret tokens.

We added integrity checks to the JCL that serve as security gates—
whenever they are reached during program execution, they will
evaluate for relevant objects whether the current field values of
protected fields still correspond to the checksum in the field black-
box. If this is not the case, at least one of the fields must have been
modified illegally, and the blackbox will call its emergency method
Blackbox.panic(), which adequately responds to attempted at-
tacks.

Classpool layout randomization – Every class file contains
a section known as the classpool, which lists all class and instance
fields of the type. The location of fields in memory is dependent on
their position in the classpool. Past exploits expect certain sensitive
fields to be at certain memory locations, because their location in
the classpool is known.

To break assumptions of known exploits and increase the effort
required to implement new low-level exploits, we apply classpool
layout randomization. This countermeasure shuffles the order of
existing fields in the classpool and adds a random number of new
dummy fields, which results in randomized locations of field values
in memory. All attacks that aim for specific fields in memory will
thus have to integrate a search routine to find the correct locations.
We currently apply this countermeasure only to AccessControl-
Context, but it can be applied to other system classes as well.

4.3 Implementation
To be able to validate our prototype implementation of the proposed
countermeasures on different JREs, we designed it as a transforma-
tion engine. It takes as input the class library of a given JRE (e.g.,
the rt.jar file of the Oracle JRE), then modifies all required classes
to integrate our proposed countermeasures, and finally outputs the
set of files that have changed. Then any original, unmodified JVM
can be instructed via command line arguments to use the modified
system classes that were generated by the transformation engine.

Our implementation uses the Javassist [7] library to locate fields
and methods, and to implement all modifications to class files that
are necessary to integrate our proposed countermeasures into the
JCL. We use ASM [1] to identify system classes that implement
statically-confined reflective accesses to fields protected by the
blackbox, so that we can redirect these calls accordingly.

The transformation engine is implemented such that it automati-
cally searches for fields andmethods that meet our specified criteria,
which significantly reduces the effort required to adjust the engine
to previously unseen JRE implementations. This high portability
allowed us to apply it to Oracle Java 7 and 8 on Windows, as well
as to IBM Java 7 on Linux.

The prototype features two modes of operation. In one of them,
all sensitive values are stored in native code, all accesses have to
be made through JNI. Since this is implemented in native code, the
technical measures that could be used to protect the blackbox and

its contents are unlimited. In the other mode, sensitive values are
stored in a dedicated Java class, which is only used within methods
of system classes that legally access the blackbox. This mode of
operation is highly portable as it is implemented in Java, but its
capabilities to use certain protection mechanisms are also restricted.

4.4 Limitations
One major concern of the lightweight solution is the use of secret
tokens that are hardwired into the method bodies of system classes.
The purpose of these tokens is to prevent untrusted code from
accessing methods of the blackbox. The use of secret tokens in our
proof of concept is the result of a deliberate design choice: it is a
tradeoff that allows us to integrate our lightweight solution into
closed-source Java runtimes without having to modify native com-
ponents, at the cost of reduced attack resistance. The heavyweight
solution we propose for productive use in Section 6 requires no
secret tokens, but, as we will explain, its implementation requires
modifications to the JVM.

Other concerns, besides the use of secret tokens, relate to the
storage area of the blackbox, that is supposed to securely contain
the contents of security-critical variables. Similar to the secret to-
kens, also these values might potentially be leaked to attackers due
to memory safety problems. One mitigation strategy is to leverage
software-based protection mechanisms, such as process isolation,
or ASLR. Using Rust [24] to implement the native blackbox com-
ponents would provide strong guarantees with respect to mem-
ory safety, thus reducing the risk of introducing security-critical
vulnerabilities. Additional mitigation strategies involve the use of
dedicated hardware support. TPMs can be used to store sensitive
values, which would significantly strengthen the implementation of
the blackbox. Alternatively, as we explained previously in Section 4,
the CHERI ISA [33], or similar solutions can be used to prevent
untrusted code from accessing sensitive memory locations.

5 EVALUATION
We next explain how we used our “lightweight” prototype to evalu-
ate the following research questions:

RQ1: How effective is the blackbox in blocking existing attack
vectors?

RQ2: Is the blackbox backward compatible with legacy applica-
tions?

RQ3: What is the performance impact of the blackbox on appli-
cations?

5.1 RQ1: Effectiveness
We evaluated the effectiveness of the blackbox using a sample set
of 61 unique, well-studied exploits [21], which, to the best of our
knowledge, is the most comprehensive sample set of Java exploits
available. We added an additional exploit that we forked from one
of the 61 exploits to demonstrate that violating the integrity of a
field that is accessed directly by the JVM is sufficient to compromise
the Oracle JRE.

As a first step, we removed all exploits that do not depend on a
breach of information hiding, as they are out of scope. The result is a
set of 38 relevant exploits, which is a larger share than we originally

Table 2: Overview of the exploits that are blocked by at least
one of the countermeasures that we propose.

Countermeasures
Exploit Fields Integrity Methods Layout

IntegrityTestExploit ✓ ✓ - -
NO-CVE-27 ✓ - - ✓
MULTI-CVE-2012-

✓ - - -5075-2012-4681
MULTI-CVE-2012-

✓ - - -4681-2012-5074

O
ra
cl
e
JR
E
on

W
in
do

w
s MULTI-CVE-2012-

✓ - - -1682-2012-1726
MULTI-CVE-2012-

✓ - - -0547-2012-1726
CVE-2013-2465 ✓ - - -
CVE-2013-1475 ✓ - - ✓
CVE-2012-1726 ✓ - ✓ -
CVE-2012-5076b ✓ - - -
CVE-2012-5076c ✓ - - -
CVE-2012-5076d ✓ - - -
CVE-2012-5076e ✓ - - -
CVE-2012-5076f ✓ - - -
CVE-2012-5076g ✓ - - -
CVE-2013-2423 ✓ - - -
CVE-2012-4681 ✓ - - -
CVE-2012-5076a1 ✓ - - -
NO-CVE-3 ✓ - - -

NO-CVE-8-ibm ✓ - - -
NO-CVE-9-ibm ✓ - - -

IB
M

JD
K
on

Ub
un

tu

NO-CVE-10-ibm ✓ - - -
NO-CVE-11-ibm ✓ - - -
NO-CVE-12-ibm ✓ - - -
NO-CVE-13-ibm ✓ - - -
NO-CVE-14-ibm ✓ - - -
NO-CVE-18-ibm ✓ - - -
NO-CVE-19-ibm ✓ - - -
NO-CVE-20-ibm ✓ - - -
NO-CVE-24-ibm ✓ - - ✓
NO-CVE-26-ibm - ✓ - -
NO-CVE-30-ibm - ✓ - -

expected. We then evaluated how many of these 38 information-
hiding attacks are blocked by our proof-of-concept solution. We
found that our solution effectively blocks 32 exploits (84%). Table 2
provides details on the effectiveness of each of the four counter-
measures. Considering that under normal conditions Java’s regular
protection of private class members is also in effect, all 32 exploits
are now mitigated by at least two complementary countermeasures,
five of them even by three.

Finally, we reviewed the remaining six information-hiding at-
tacks not blocked by our solution, and found that they implement
the same attack vector, but using different vulnerabilities as a foun-
dation. All these attacks use defects that provide illegitimate access

to ClassLoader.defineClass(), a protected method that attack-
ers can abuse to define high-privileged, custom classes. The method
blackbox is not applied to this method to remain backward compati-
ble: when there is no security manager, there may be user-provided
subclasses of ClassLoader that call defineClass() for legitimate
purposes. While our current prototype does not block these attacks,
there are two possible solutions to address this.

One solution is to apply the method blackbox also to define-
Class() in cases when a security manager is set. While our current
implementation does not consider the status of the security man-
ager, such support can be added for this purpose. Another solution
is to apply the “privilege escalation rule” proposed by Coker et
al. [11], which prevents classes from loading other classes with
higher privileges. It was designed to mitigate attacks involving
defineClass() or similar functionality. Although this counter-
measure does not address information-hiding attacks in general, it
is an ideal complement to our solution.

5.2 RQ2: Backward compatibility
To evaluate the backward compatibility of the blackbox, we exe-
cuted a small set of simple test applications, as well as all bench-
marks in the DaCapo benchmark suite [6] version 9.12-bach on our
modified versions of the Oracle JRE 7 and IBM JDK 7. The DaCapo
suite consists of 14 different benchmarks, which represent complex
real-world applications of various application domains, running
non-trivial workloads. All applications completed as expected and
we did not discover any misbehavior that resulted from our modi-
fications. The countermeasures we propose are highly backward
compatible. Integrating the blackbox into the JCL does not modify
any public interfaces, the officially supported functionality of the
platform is retained, and applications run unaffectedly.

The prototype is implemented as a transformation engine that
instruments its changes into an original JRE installation. It can be
applied to a broader spectrum of different JREs, in different versions,
on different platforms, although JVM-specific adaptations may be
required, e.g., concerning the fields that are to be protected by the
integrity checker.

5.3 RQ3: Performance
We used the DaCapo benchmark suite for a large-scale performance
evaluation, because it was specifically designed for this purpose [6].

We executed all benchmarks under several configurations. First,
we run all benchmarks using an unmodified Oracle JRE 7 installa-
tion, which serves as a baseline for comparisons. Then, we run all
benchmarks on the modified Oracle JRE 7 that contains the black-
box mechanisms. This is performed twice per benchmark: once
in the “Java blackbox” mode of operation, which stores sensitive
values in a dedicated Java class, and once in the “native blackbox”
mode of operation, which stores sensitive values in a custom native
component. Finally, all tests are executed two times, once without
a SecurityManager, and once with the default SecurityManager
with a security policy that grants all permissions to all code. In
each configuration, we conducted 500 timed application runs per
benchmark. We excluded the first 100 runs, which served only as
a warmup, and reported the average of the remaining runs as a

Table 3: Results of our performance measurements. Abso-
lute overheads provided in milliseconds.

Java blackbox Native blackbox
w/o SM w/ SM w/o SM w/ SM

Benchmark abs. rel. abs. rel. abs. rel. abs. rel.
avrora -23 -1% -4 0% -4 0% -16 -1%
batik -2 0% -* -* 1 0% -* -*
eclipse 437 3% 1925 10% 138 1% 2412 13%
fop -5 -3% -5 -2% 2 1% -1 -1%
h2 -90 -2% -79 -2% 8 0% 143 4%
jython 19 1% 31 2% 24 2% 47 3%
luindex 3 0% 2 0% -25 -3% 35 3%
lusearch -4 0% -22 -2% -21 -2% 5 1%
pmd 32 2% 58 3% 75 4% 113 6%
sunflow -6 0% -41 -2% -9 0% -21 -1%
tomcat -113 -1% 295 2% -225 -2% 1019 5%
tradebeans -15 0% 21 1% 8 0% 72 2%
tradesoap 445 2% -119 0% 32 0% -337 -1%
xalan 11 1% 2 0% -5 -1% -9 -1%
Geom. mean 0% 1% 0% 2%

*batik cannot be executed with a security manager.

result. Measurements were performed on Windows 10, Intel Core
i5-3350P 3.10GHz CPU, with 12GB RAM.

Table 3 shows the results of our performance tests. As can be
seen, in the “Java blackbox” mode of operation, all overheads lie
in the range of -3% and 10%. Except for two outliers, overheads
induced by the blackbox are between -2% and 3%. Only seven bench-
marks show a slowdown at all. Negative overheads imply that our
modifications increased execution speed, however, this is rather un-
likely. Our measurements are subject to small inaccuracies, which
are not caused by deficiencies in our experimental setup, but rather
inherent to all Java benchmarks executed on a real hardware/soft-
ware stack. Gil et al. [16] studied this effect in depth and found that
even executing identical code can lead to slightly different runtime
measurements. Gu et al. [19] identified various factors that can lead
to variances in execution speed of Java applications.

The performance measurement results for the “native blackbox”
mode of operation are similar, but we observe slightly higher over-
heads for some benchmarks. Overall, the overheads lie between -3%
and 13%. Excluding two outliers, overheads range from -2% to 6%.
We expected these higher overheads, because the native blackbox
involves a higher number of JNI calls, which are costly compared
to regular Java calls.

The highest overheads in both modes of operation can be seen
for Eclipse. The reason is that this benchmark is itself a collection
of performance tests for the Eclipse Java Development Tools, which
frequently exercise a specific call sequence that became slower
through our modifications. Even though Eclipse is a real-world
application, the workload it performs in the DaCapo benchmark
suite does not at all resemble typical user behavior.

In summary, average overheads (geometric means) lie between
0% and 2%.

6 REDESIGNING JAVA FOR PRODUCTIVE USE
The following presents ideas on how to strengthen information
hiding for productive use, overcoming weaknesses of our proof-of-
concept approach.

The first step in improving the security design of the platform
would be to consolidate the core of policy enforcement in a central,
isolated component, which we call the Java security monitor. This
includes all data structures that determine the security status of
the system (e.g., whether security mechanisms are enabled or not),
data structures involved in policy enforcement (security policies,
etc.), and all algorithms that operate on these data structures.

For protecting sensitive members in system classes that do not
belong to the core of policy enforcement (like Statement.acc),
we propose to extend the Java Language Specification [18] by an
additional modifier critical. Members modified this way should
be protected in the same way as the blackbox protects fields: reflec-
tive access should, if at all, only be allowed when performed in a
statically-confined manner, and the member’s location in memory
should be randomized to prevent low-level attacks. Further, we pro-
pose to extend the JVM instruction set by a new set of instructions
whose use is reserved for system classes only. These instructions,
on the one hand, comprise dedicated commands that system classes
must use to call private methods. On the other hand, the new in-
struction set comprises dedicated commands for critical field
access. We provide a specification of these instructions in Appen-
dix A. Since application classes cannot use these instructions, they
are systematically prevented from accessing sensitive members
directly, or by means of reflection. This design prevents illegiti-
mate access to sensitive members without the use of secret tokens,
which reduces the attack surface compared to the proof-of-concept
implementation presented in Section 4.

We suggest the following strategy to implement our proposed
changes:
(1) Consolidate the core of policy enforcement in a natively imple-
mented security monitor, which includes all functionality required
to carry out permission checks. The security monitor must further
comprise a dedicated, secure data store for critical field values,
like Statement.acc. The implementation should be based on a
multi-process architecture, such that operating system-based pro-
cess isolation can be used to separate the security monitor from
application code.
(2) Extend the JVM’s bytecode interpreter and just-in-time com-
piler by the new set of instructions that we propose for sensitive
member access.
(3) Modify the platform’s bytecode verifier to provide support for
the new set of instructions. The verifier must ensure that these
instructions are only used by system classes, by which we avoid
the use of any secret tokens.
(4) Modify the JCL’s source code to add the newmodifier critical
to all sensitive fields in system classes that do not belong to the core
of policy enforcement, like Statement.acc. It is possible to reuse
our proof-of-concept implementation to automatically identify all
relevant fields.
(5) Modify the Java compiler as follows:

(a) System classes that access a critical field must use the ex-
tended instruction set for this purpose to make use of the security
monitor’s data store.
(b) System classes must use the extended instruction set to call

private methods.
(c) Extend the compiler by a static analysis that detects reflective

access from a system class to critical members of other system
classes, using a similar approach like our proof-of-concept imple-
mentation. Statically-confined, and hence secure accesses to private
members must be treated like regular, legal critical member ac-
cesses and must apply the new instruction set to allow the access.
(6) Extend the runtime to enforce the “privilege escalation rule”
proposed by Coker et al. [11], which prevents classes from loading
other classes with higher privileges. This specifically guards against
attacks that abuse ClassLoader.defineClass(), or similar func-
tionality.

7 SECURE SOFTWARE DESIGN
The case of Java raises general questions concerning the secure
design of complex systems. Despite significant efforts, many large-
scale systems were repeatedly exposed to single vulnerabilities
which undermined their entire security architectures. Such fragility
must be inherent to the implemented architectures, and continuous
efforts in patching individual bugs does not solve the underlying
problems in system design.

We can measure the brittleness of a target software system in
two dimensions:

Compile-time metric – What is the minimum number of lines
in the target system’s source code that need to be modified to com-
promise the whole system? In the case of Java, a single line of
code is sufficient. Inserting return null; in the beginning of
System.getSecurityManager() is just one example, and there
are many alternatives.

Runtimemetric –What is the minimum number of bits in mem-
ory that need to bemodified to compromise the target system? For Java,
the number of bits is lower or equal to the size of a single object refer-
ence in memory. Flipping the bits that represent System.security
is just one example.

Low numbers for any of the two metrics represent high brittle-
ness, however, it is not clear to what extent these metrics correlate.
Besides the obvious examples that we gave to illustrate Java’s brit-
tleness, there is an unknown number of non-obvious modifications
that would equally compromise policy enforcement. In fact, replac-
ing a single occurrence of == by = might break a large number
of highly security-critical software systems. High brittleness not
only implies that a software system is susceptible to security bugs
introduced unintentionally, it also implies a high potential for hid-
ing hard-to-find backdoors. Java was designed as a self-protecting
system, i.e., the security mechanisms that are supposed to protect
the system are part of the system itself. This inherently leads to
circular dependencies, which presumably contributes to brittleness.
An alternative to a self-protecting system is a system that is com-
partmentalized such that access control decisions are carried out
by a dedicated component, the reference monitor. This fundamental
concept has its origins in the design of secure military systems,
and it aims for reliable and hard-to-bypass policy enforcement.

Early work in this area [4] defines a set of principles, according
which the reference monitor has to be tamper proof, be involved in
all security-related decisions, and simple enough to be verifiable.
The similar concept of a security kernel directly associates tamper
resistance with isolation [28]. The redesign of Java’s security ar-
chitecture that we proposed is fully in line with these principles.
Previous work referred to the SecurityManager as an implemen-
tation of a reference monitor [15], however, we argue that it does
not sufficiently comply to any of the above principles.

The fragility of complex software is, to large extents, caused by
shortcomings in its security design. This detailed study of informa-
tion hiding in Java can be seen as a case study that supports this
claim. Further research is needed to provide a better understanding
of how to detect and prevent security design flaws.

8 RELATEDWORK
Various different approaches to strengthen the Java platform have
been proposed in the past. However, as we explain in the follow-
ing, none of them adequately protect against common attacks on
information hiding.

There is a countermeasure that specifically addresses the dan-
gers of insecure use of reflection: so-called filter maps. System
classes can use public interfaces of the reflection API to add indi-
vidual class members to filter maps, which hides them from reflec-
tive access, similar to a blacklist. System.security is an example
of a field that is added to the field filter map by default—calling
System.getDeclaredFields() will thus return all declared fields
except for security. This countermeasure is generally ineffective
against low-level attacks involving, e.g., type confusion, as sensitive
field values remain in the samememory locations. Filter maps could,
in theory, be effective against attacks involving confused deputies
that insecurely use reflection, but in practice, many sensitive fields
are not added to filter maps.

Besides, there have been various proposals in academia to revise
Java’s original approach to stack inspection [3, 25, 32]. While these
approaches overcome certain shortcomings of Java’s stack inspec-
tion routine, they were not designed to strengthen information
hiding. Especially low-level attacks involving type confusion and
buffer overflows are not in scope of these mechanisms, and they
hence do not provide sufficient protection against these attacks.

Various techniques have been proposed to detect and prevent
buffer overflows in native code [12, 13, 23, 27], including approaches
to enforce control-flow integrity [2, 34]. Although this field of re-
search advanced in the past years, buffer overflows are still consid-
ered a challenge today, as many approaches suffer from practical
problems, like high performance overheads, or low precision. More-
over, none of these techniques address illegal field access in Java
through type confusion, or by means of a confused deputy.

Classpool layout randomization is a countermeasure that achieves
randomized memory locations of sensitive fields of Java classes.
Different variants of address obfuscation and randomization have
been proposed and implemented in the past [5, 22, 29], however, to
the best of our knowledge, we are the first ones to implement this
specifically for Java class files.

Woodruff et al. [33] presented the CHERI Instruction-Set Ar-
chitecture (ISA), which implements fine-grained, capability-based

memory protection at the hardware layer. Our prototype implemen-
tation of the blackbox uses software-based mechanisms and secret
tokens to prevent illegal access to the contents of the blackbox. The
CHERI ISA could be used to separate the contents of the blackbox
and restrict access to only legitimate callers on the hardware level,
thus further strengthening the implementation of our proposed
concept. Chisnall et al. [8] used the CHERI ISA to implement a
sandboxing mechanism for native code in Java, which ensures that
also this code adheres to Java’s security and memory model, thus
preventing access to security-critical memory locations.

Toledo et al. [31] investigated a different approach to redesign
access control in Java. They found that security-related code is scat-
tered all over the codebase, and use aspect-oriented programming
to modularize access control. Their solution increases maintainabil-
ity and allows for finer-grained policies, but it does not address
common attacks on information hiding.

Finally, it is important to note that the Java module system [26]
was introduced with Java 9. This new scheme allows for stronger
encapsulation of sensitive system classes, resulting in fewer system
classes being available to attacker-controlled code, which poten-
tially reduces the attack surface. However, the module system is not
specifically designed to mitigate the low-level attacks we discussed
in this paper, see Section 3. For example, illegal field modification
through a type confusion vulnerability or buffer overflow remains
an important issue that is not solved by the module system. Further,
as shown by Dann et al. [14], the module system does not compre-
hensively prevent sensitive objects from escaping their declaring
modules, even in cases where they are declared to be internal, which
can result in vulnerabilities similar to the ones we discussed here.
From this, we conclude that the countermeasures we propose re-
main highly relevant. From a conceptual point of view, the solutions
we present in this paper are compatible with the module system,
and implementing the solution we propose in Section 6 together
with the module system may in fact provide the strongest defense.

In summary, we conclude that no countermeasure that has been
proposed previously reliably and comprehensively protects against
common attacks on information hiding in Java.

9 CONCLUSION
In this paper, we studied the role of information hiding in Java’s
security model and found that a large portion of common attack
vectors depend on illegal access to private members of system
classes. We presented a proof-of-concept solution that significantly
strengthens information hiding in the Java platform by combining
a set of different countermeasures that can be integrated into the
JCL. An evaluation shows that these countermeasures block 84% of
all information-hiding attacks in a large-scale sample set, and we
explain how even the remaining attacks can be blocked as well. We
further show that our solution retains backward compatibility and
high performance—a set of real-world applications runs with an
average overhead below 2%. Moreover, we suggest a fundamental
redesign of the Java platform for productive use that has the poten-
tial to outperform our proof of concept in terms of robustness and
speed. We finally discuss general thoughts on the design of secure
software, which are based on the insights we gained during our
study.

REFERENCES
[1] [n.d.]. https://asm.ow2.io/.
[2] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005. Control-flow

integrity. In Proceedings of the 12th ACM conference on Computer and communi-
cations security. ACM, 340–353.

[3] Martin Abadi and Cédric Fournet. 2003. Access Control Based on Execution
History.. In NDSS, Vol. 3. 107–121.

[4] James P Anderson. 1972. Computer Security Technology Planning Study. Volume 2.
Technical Report. DTIC Document.

[5] Sandeep Bhatkar, Daniel C DuVarney, and Ron Sekar. 2003. Address Obfuscation:
An Efficient Approach to Combat a Broad Range of Memory Error Exploits.. In
USENIX Security Symposium, Vol. 12. 291–301.

[6] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dinck-
lage, and B. Wiedermann. 2006. The DaCapo Benchmarks: Java Benchmarking
Development and Analysis. In OOPSLA ’06: Proceedings of the 21st annual ACM
SIGPLAN conference on Object-Oriented Programing, Systems, Languages, and
Applications (Portland, OR, USA). ACM Press, New York, NY, USA, 169–190.
https://doi.org/10.1145/1167473.1167488

[7] Shigeru Chiba. 1998. Javassist - a reflection-based programming wizard for Java.
In Proceedings of OOPSLA’98 Workshop on Reflective Programming in C++ and
Java (Vol. 174).

[8] David Chisnall, Brooks Davis, Khilan Gudka, David Brazdil, Alexandre Joannou,
Jonathan Woodruff, A Theodore Markettos, J Edward Maste, Robert Norton,
Stacey Son, et al. 2017. CHERI JNI: Sinking the Java security model into the
C. In Proceedings of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM, 569–583.

[9] Cisco. 2013. 2013 Cisco Annual Security Report. http://www.cisco.com/web/
offer/gist_ty2_asset/Cisco_2013_ASR.pdf.

[10] Cisco. 2014. 2014 Cisco Annual Security Report. http://www.cisco.com/web/
offers/lp/2014-annual-security-report/index.html.

[11] Zack Coker, Michael Maass, Tianyuan Ding, Claire Le Goues, and Joshua Sun-
shine. 2015. Evaluating the flexibility of the Java sandbox. In Proceedings of the
31st Annual Computer Security Applications Conference. ACM, 1–10.

[12] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. 1998. Stack-
guard: automatic adaptive detection and prevention of buffer-overflow attacks..
In Usenix Security, Vol. 98. 63–78.

[13] Michael Dalton, Hari Kannan, and Christos Kozyrakis. 2008. Real-World Buffer
Overflow Protection for Userspace and Kernelspace.. In USENIX Security Sympo-
sium. 395–410.

[14] Andreas Dann, Ben Hermann, and Eric Bodden. 2019. ModGuard: Identifying
Integrity &Confidentiality Violations in Java Modules. IEEE Transactions on
Software Engineering (2019).

[15] Drew Dean, Edward W Felten, and Dan S Wallach. 1996. Java security: From
HotJava to Netscape and beyond. In Security and Privacy, 1996. Proceedings., 1996
IEEE Symposium on. IEEE, 190–200.

[16] Joseph Yossi Gil, Keren Lenz, and Yuval Shimron. 2011. A microbenchmark case
study and lessons learned. In Proceedings of the compilation of the co-located
workshops on DSM’11, TMC’11, AGERE! 2011, AOOPES’11, NEAT’11, & VMIL’11.
ACM, 297–308.

[17] Li Gong and Gary Ellison. 2003. Inside Java(TM) 2 Platform Security: Architecture,
API Design, and Implementation (2nd ed.). Pearson Education.

[18] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. 2014. The
Java Language Specification, Java SE 8 Edition (Java Series).

[19] Dayong Gu, Clark Verbrugge, and Etienne M Gagnon. 2006. Relative factors in
performance analysis of Java virtual machines. In Proceedings of the 2nd interna-
tional conference on Virtual execution environments. ACM, 111–121.

[20] Philipp Holzinger, Ben Hermann, Johannes Lerch, Eric Bodden, and Mira Mezini.
2017. Hardening Java’s Access Control by Abolishing Implicit Privilege Elevation.
In 2017 IEEE Symposium on Security and Privacy (Oakland S&P). IEEE, IEEE Press.
To appear.

[21] Philipp Holzinger, Stefan Triller, Alexandre Bartel, and Eric Bodden. 2016. An
In-Depth Study of More Than Ten Years of Java Exploitation. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security. ACM,
779–790.

[22] Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun Xu, and Peng Ning.
2006. Address space layout permutation (ASLP): Towards fine-grained random-
ization of commodity software. In Computer Security Applications Conference,
2006. ACSAC’06. 22nd Annual. IEEE, 339–348.

[23] David Larochelle, David Evans, et al. 2001. Statically Detecting Likely Buffer
Overflow Vulnerabilities.. In USENIX Security Symposium, Vol. 32. Washington
DC.

[24] Nicholas D Matsakis and Felix S Klock II. 2014. The rust language. In ACM
SIGAda Ada Letters, Vol. 34. ACM, 103–104.

[25] Marco Pistoia, Anindya Banerjee, and David A Naumann. 2007. Beyond stack
inspection: A unified access-control and information-flow security model. In
Security and Privacy, 2007. SP’07. IEEE Symposium on. IEEE, 149–163.

[26] Mark Reinhold. 2017. The Java Platform Module System (JSR 376). http://cr.
openjdk.java.net/~mr/jigsaw/spec/.

[27] Olatunji Ruwase and Monica S Lam. 2004. A Practical Dynamic Buffer Overflow
Detector.. In NDSS, Vol. 2004. 159–169.

[28] Roger R Schell, Peter J Downey, and Gerald J Popek. 1973. Preliminary Notes
on the Design of Secure Military Computer Systems. Technical Report. DTIC
Document.

[29] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh. 2004. On the effectiveness of address-space randomization. In
Proceedings of the 11th ACM conference on Computer and communications security.
ACM, 298–307.

[30] Nenad Stojanovski, Marjan Gusev, Danilo Gligoroski, and Svein J Knapskog. 2007.
Bypassing data execution prevention on microsoftwindows xp sp2. In Availability,
Reliability and Security, 2007. ARES 2007. The Second International Conference on.
IEEE, 1222–1226.

[31] Rodolfo Toledo, Angel Nunez, Eric Tanter, and Jacques Noyé. 2012. Aspectizing
Java access control. IEEE Transactions on Software Engineering 38, 1 (2012),
101–117.

[32] Dan S Wallach, Andrew W Appel, and Edward W Felten. 2000. SAFKASI: A
security mechanism for language-based systems. ACM Transactions on Software
Engineering and Methodology (TOSEM) 9, 4 (2000), 341–378.

[33] Jonathan Woodruff, Robert NM Watson, David Chisnall, Simon W Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G Neumann, Robert Norton,
and Michael Roe. 2014. The CHERI capability model: Revisiting RISC in an
age of risk. In Computer Architecture (ISCA), 2014 ACM/IEEE 41st International
Symposium on. IEEE, 457–468.

[34] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen Mc-
Camant, Dawn Song, and Wei Zou. 2013. Practical control flow integrity and
randomization for binary executables. In Security and Privacy (SP), 2013 IEEE
Symposium on. IEEE, 559–573.

A EXTENSION TO THE JVM INSTRUCTION
SET

Instruction:
getfield_critical

Operation:
Fetch critical field from object.

Format:
getfield_critical
indexbyte1
indexbyte2

Operand stack:
..., objectref→
..., value

See also:
getfield

Instruction:
getstatic_critical

Operation:
Get critical static field from class.

Format:

https://asm.ow2.io/
https://doi.org/10.1145/1167473.1167488
http://www.cisco.com/web/offer/gist_ty2_asset/Cisco_2013_ASR.pdf
http://www.cisco.com/web/offer/gist_ty2_asset/Cisco_2013_ASR.pdf
http://www.cisco.com/web/offers/lp/2014-annual-security-report/index.html
http://www.cisco.com/web/offers/lp/2014-annual-security-report/index.html
http://cr.openjdk.java.net/~mr/jigsaw/spec/
http://cr.openjdk.java.net/~mr/jigsaw/spec/

getstatic_critical
indexbyte1
indexbyte2

Operand stack:
...,→
..., value

See also:
getstatic

Instruction:
putfield_critical

Operation:
Set critical field in object.

Format:
putfield_critical
indexbyte1
indexbyte2

Operand stack:
..., objectref, value→
...

See also:
putfield

Instruction:
putstatic_critical

Operation:
Set critical static field in class.

Format:
putstatic_critical
indexbyte1
indexbyte2

Operand stack:
..., value→
...

See also:
putstatic

Instruction:
invokespecial_critical

Operation:

Invoke private instance method.

Format:
invokespecial_critical
indexbyte1
indexbyte2

Operand stack:
..., objectref, [arg1, [arg2 ...]]→
...

See also:
invokespecial

Instruction:
invokestatic_critical

Operation:
Invoke private static method.

Format:
invokestatic_critical
indexbyte1
indexbyte2

Operand stack:
..., [arg1, [arg2 ...]]→
...

See also:
invokestatic

	Abstract
	1 Introduction
	2 Background
	3 Threat model
	3.1 Attacker goals and capabilities
	3.2 Attack vectors to break information hiding

	4 Proof-of-concept solution
	4.1 Conceptual overview
	4.2 Detailed overview
	4.3 Implementation
	4.4 Limitations

	5 Evaluation
	5.1 RQ1: Effectiveness
	5.2 RQ2: Backward compatibility
	5.3 RQ3: Performance

	6 Redesigning Java for productive use
	7 Secure software design
	8 Related work
	9 Conclusion
	References
	A Extension to the JVM instruction set

