
Join Point Interfaces for Modular Reasoning in
Aspect-Oriented Programs

Milton Inostroza Éric Tanter
PLEIAD Laboratory

Computer Science Department (DCC)
University of Chile – Santiago, Chile

{minostro,etanter}@dcc.uchile.cl

Eric Bodden
Software Technology Group

Center for Advanced Security Research
Darmstadt (CASED)

Technische Universität Darmstadt - Germany
bodden@acm.org

ABSTRACT
While aspect-oriented programming supports the modular
definition of crosscutting concerns, most approaches to aspect-
oriented programming fail to improve, or even preserve, mod-
ular reasoning. The main problem is that aspects usually
carry, through their pointcuts, explicit references to the base
code. These dependencies make programs fragile. Changes
in the base code can unwittingly break a pointcut definition,
rendering the aspect ineffective or causing spurious matches.
Conversely, a change in a pointcut definition may cause parts
of the base code to be advised without notice. Therefore
separate development of aspect-oriented programs is largely
compromised, which in turns seriously hinders the adoption
of aspect-oriented programming by practitioners.

We propose to separate base code and aspects using Join
Point Interfaces, which are contracts between aspects and
base code. Base code can define pointcuts that expose se-
lected join points through a Join Point Interface. Con-
versely, an aspect can offer to advise join points that pro-
vide a given Join Point Interface. Crucially, however, aspect
themselves cannot contain pointcuts, and hence cannot re-
fer to base code elements. In addition, because a given join
point can provide several Join Point Interfaces, and Join
Point Interfaces can be organized in a subtype hierarchy, our
approach supports join point polymorphism. We describe a
novel advice dispatch mechanism that offers a flexible and
type-safe approach to aspect reuse.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs

General Terms
Design, Languages

Keywords
Aspect-oriented programming, modularity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

1. JOIN POINT INTERFACES
Inevitably, aspect-oriented programming [3] aids modu-

larizing crosscutting code: it helps programmers to put to-
gether code that belongs together. So far, however, most ap-
proaches to aspect-oriented programming have failed to im-
prove, or even preserve, modular reasoning. Such modular
reasoning is easily established in traditional procedural lan-
guages. In such languages, programmers can reason about
one procedure at a time and in isolation. The procedure’s
signature establishes a strong contract with the contexts in
which the procedure may be used. Object-oriented program-
ming already gives up modular reasoning to some extent.
Object-oriented programs carry virtual method calls. For
such calls, at least in statically typed languages, the signa-
ture of the call is known at the call site, and hence the usage
contract for the called method is known as well. It is un-
known, however, which concrete implementation the virtual
method call will eventually be dispatched to in the running
program.

1.1 Aspects and modular reasoning
With aspect-oriented programming, modular reasoning be-

comes even harder, as aspect-oriented programs adds a cru-
cial feature: implicit invocation with implicit announcement
(IIIA) [7]. Through IIIA, an aspect can become active at
many different program points (called join points) without
any explicit call to the aspect being present at these points.
This is problematic because maintainers of the base code
may be unaware of the program point being advised, and
hence may refactor this point or change the point other-
wise, unwittingly breaking the connection to the advising
aspect. There has been several attempts to discuss and en-
hance the possibilities for modular reasoning in presence of
pointcuts and advice, but they all eventually fall short in
supporting full separate development with static and mod-
ular typechecking.

Running Example
As a running example, we will consider an e-commerce sys-
tem with a set of discount rules. (Deliberately, we keep the
example similar to a motivating example by Steimann et
al. [7].) In the initial system, a customer can check out a
product by either buying or renting the product. On the cus-
tomer’s birthday, the customer will be given a 5% discount
when checking out a product. We will be adding further
rules later.

1 class ShoppingSess ion {
2 ShoppingCart sc = new ShoppingCart () ;
3 Invo i c e inv = new Invo i c e () ;
4

5 void checkOut (Item item , f loat pr i ce ,
6 int amount , Customer cus){
7 sc . add (item , amount) ;
8 inv . add (item , amount , cus) ;
9 }

10 }
11

12 aspect Discount {
13 pointcut checkingOut (Item item , f loat pr i ce ,
14 int amount , Customer cus) :
15 execution (∗ Ses s i on . checkOut (. .))
16 && args (item , pr i ce , amount , cus) ;
17

18 void around (Item item , f loat pr i ce , int amt ,
Customer cus) :

19 checkingOut (item , amt , cus) {
20 int f a c t o r = cus . hasBirthday () ? 0 .95 : 1 ;
21 proceed (item , p r i c e ∗ f a c to r , amt , cus) ;
22 }
23 }

Listing 1: Shopping session with discount aspect

Listing 1 shows an implementation of the example in plain
AspectJ [5]. The around advice in lines 18–22 applies the
discount by reducing the item price to 95% of the origi-
nal price when proceeding on the customer birthday. Note
how brittle the AspectJ implementation is with respect to
changes in the base code. Most changes to the signature
of the checkOut method, such as renaming the method or
modifying its parameter declarations, will cause the Birth-

dayDiscount aspect to lose its effect. The root cause of this
problem is that the aspect, through its pointcut definition
in lines 13–16, makes explicit references to named entities of
the base code—here to the checkOut method.

1.2 Join Point Interfaces
In this paper, we propose to establish an additional layer

of abstraction between base code and aspects, through a
novel mechanism called Join Point Interfaces. Our goal is
to allow for complete modular reasoning on both the side of
the aspect programmer and the side of the base-code pro-
grammer. In particular, our system will allow programmers
to catch all possible typing errors at the time the individ-
ual code fragments (aspect, base code) are compiled. There
have been other approaches to decoupling aspects from base
code but those approaches are not able to capture many
typing errors in a modular manner at compile time. Rather,
they only detect errors at weave-time, i.e. at the time the as-
pect is actually composed with the base-code system. This
is because the layers that they introduce are “transparent”;
they separate aspects from the base code only to some ex-
tent. Crosscutting interfaces (XPIs) [4] are based on pure
AspectJ, which provides no language-based mechanisms for
the separation that we envision. Steimann et al.’s work on
join point types for IIIA [7] does introduce specialized syn-
tax but this syntax is not rich enough to be able to allow for
modular reasoning and separate compilation. In Section 3
we will elaborate further on these approaches.

Listing 2 shows how Join Point Interfaces improve on the
shopping cart example. Line 2 declares the join point inter-
face (jpi) checkingOut. Syntactically, a Join Point Inter-
face declaration is identical to a method signature: it has

1 jp i void checkingOut (Item item , f loat pr i ce ,
2 int amount , Customer cus) ;
3

4 class ShoppingSess ion {
5 exhibit void checkingOut (Item i , f loat pr i ce ,
6 int amount , Customer c) :
7 execution (∗ checkOut (. .))
8 && args (i , p r i ce , amount , c) ;
9

10 . . .
11 }
12

13 aspect Discount {
14 void around checkingOut (Item item , f loat pr i ce ,
15 int amt , Customer cus){
16 int f a c t o r = cus . hasBirthday () ? 0 .95 : 1 ;
17 proceed (item , p r i c e ∗ f a c to r , amt , cus) ;
18 }
19 }

Listing 2: Introducing a Join Point Interface

a return type (here void), a name, a formal-parameter list
and an optional throws-clause. (This choice is for a good
reason. In a recent piece of work, Bodden showed that one
can avoid many semantic pitfalls by regarding join points as
typed closures [2].)

The base-code class ShoppingSession is enhanced to de-
clare that it exhibits join points of type checkingOut. The
exhibit-clause binds the Join Point Interface to concrete
join points, using a regular AspectJ pointcut.

Crucially, however, through the usage of Join Point Inter-
faces, the aspect is completely liberated of pointcut defini-
tions. Note that in line 14 the aspect refers directly to the
Join Point Interface, obviating the need to explicitly refer to
base code elements. As the example shows, Join Point Inter-
faces allows for the modularization of crosscutting concerns
while at the same time restoring modular reasoning. The
base-code programmer can maintain pointcut definitions in
sync with the base code that these pointcut definitions refer
to. The programmer is also immediately aware of the join
points exposed to aspects. On the other hand, the aspect
becomes free of any textual references to base-code elements,
making the aspect reusable in other contexts.

1.3 Static and modular type checking
Join Point Interfaces support modular reasoning through

a fully static and modular type system. For instance, the
type system ensures that the header of the around advice at
line 14 is compatible with the definition of the checkingOut

Join Point Interface. As described in earlier work [2], this
needs to involve invariant parameter and return types. Fur-
ther, if an advice a advises a Join Point Interface j which
declares to throw checked exceptions of type e then a must
either catch exceptions of this type or declare to propagate
them. Similarly, all join point shadows (i.e., code locations)
matched by any pointcut tagged with j must handle or prop-
agate these exceptions. These typing rules guarantee that
the implicit invocation of a piece of advice at a given join
point always comply with the Join Point Interface.

We envision Join Point Interfaces to be used such that the
Join Point Interface definition in line 2 would be available
to both the base-code programmer and the aspect program-
mer. This allows for separate compilation of aspects and
base code. In this case, our type system gives the strong
guarantee that there can be no weave-time errors: all typ-

checkingOut

buying renting

Figure 1: Inheritance between Join Point Interfaces

ing errors will be caught at the time the aspect or base code
are (potentially independently!) defined, and no further er-
rors can occur when aspects and base code are composed. To
the best of our knowledge, our system is the first to provide
such guarantees. For instance, while Steimann et al.’s types
for IIIA [7] also offers the benefits described in Section 1.2,
their approach is unable to provide modular reasoning and
separate compilation because their join point types are only
partial join point specifications. In their approach some con-
ditions, such as return type compatibility, must be checked
at weave time, which is undesirable in a collaborative work-
ing environment and also hinders aspect reuse.

1.4 Polymorphic join points
Join Point Interfaces give types to join points. In the same

way that object interfaces in languages like Java support a
flexible form of subtype polymorphism, Join Point Interfaces
enable polymorphic join points. A join point can be seen as
providing multiple Join Point Interfaces, and advice dispatch
at that join point can take advantage of this polymorphism.

Which Join Point Interfaces does a join point provide?
This is the role of pointcuts. As we have seen, a class de-
fines the pointcuts that expose certain join points in its exe-
cution, following a given Join Point Interface. For instance,
in Listing 2, class ShoppingSession defines a pointcut that
gives the type checkingOut to all join points that are exe-
cutions of the checkOut method. Because a join point can
be matched by several pointcuts, a join point can have mul-
tiple types. For instance, an execution of checkOut can be
seen as a checkingOut, and could be seen additionally as
a loggableEvent (a Join Point Interface whose definition is
left to the imagination of the reader). In addition, as in Java,
Join Point Interfaces support subtyping. We illustrate join
point subtyping using two subtypes of checkingOut, buying
and renting (Figure 1). The rest of this section illustrates
their use in our running example.

Consider that we introduce the following business rule:
the customer gets a 15% discount when buying at least 10
products of the same kind; this promotion is not compatible
with the birthday discount.

Listing 3 shows how a programmer could implement this
additional rule using the subtyping relationship on Join Point
Interfaces. First, we declare the Join Point Interface buying

as a subtype of checkingOut. The semantics of this subtyp-
ing relationship implies that buying represents a subset of
the join points that checkingOut represents.

The aspect Discount now declares two pieces of advice.
The first one is the same as in the previous example. It
applies to all checkingOut join points, in particular also
to those checkingOut join points that are not buying join
points. points that are of type buying and hence also of
type checkingOut? To the best of our knowledge, our ap-
proach is the first to provide a clear and natural mechanism
to resolve this situation. According to the semantics of Join

1 jp i void buying (Item item , f loat pr i ce ,
2 int amount , Customer cus)
3 extends checkingOut ;
4

5 aspect Discount {
6 void around checkingOut (Item item , f loat pr i ce ,

int amt , Customer cus) {
7 int f a c t o r = cus . hasBirthday () ? 0 .95 : 1 ;
8 proceed (item , p r i c e ∗ f a c to r , amt , cus) ;
9 }

10 void around buying (Item item , f loat pr i ce ,
11 int amt , Customer cus) {
12 int f a c t o r = (amt > 10) ? 0 .85 : 1 ;
13 proceed (item , p r i c e ∗ f a c to r , amt , cus) ;
14 }
15 }

Listing 3: Advice overriding

Point Interfaces, the advice with the most-specific signature
executes. Hence, in this example, a join point of type buying
is advised only by the buying advice, since it is the most spe-
cific1.

This semantics of advice dispatch with Join Point Inter-
faces is natural because it directly follows how overloading is
resolved in languages with multiple dispatch, like the Com-
mon Lisp Object System (CLOS) [6]: the runtime type of
the argument (here, the type of the join point) determines
which method is executed (here, which piece of advice). The
analogy makes sense because with implicit invocation, there
is by definition no explicit receiver, just like with generic
functions in CLOS. It is the runtime type of the arguments
that drives the dispatch process.

Reusing behavior. In a previous version of our language
design, we pushed the analogy between advice dispatch and
multiple dispatch a step further, by having applicable pieces
of advice ordered in terms of specificity (like applicable meth-
ods in CLOS), and providing a nextadvice primitive (the
equivalent of call-next-method in CLOS) to call the next
most-specific advice in the ordering). While this allows for
direct reuse of advices, the interaction of nextadvice and
proceed induces too much complexity. Therefore, we give
up on nextadvice; reuse among advices has to be mediated
through aspect methods, as illustrated below.

Consider another extension of our running example, with
a rule stating that when renting at least 10 items of the
same kind there will be a 10% discount; but in this case
the birthday discount does apply. Listing 4 shows the code
for this extended example. First, we declare the new join
point subtype renting. Then, because we want to reuse
the birthday discount logic, we extract a separate method
birthdayFactor in the aspect. The advice for checkingOut
join points is modified accordingly, to use this method. Now,
the advice for renting can also reuse the birthday discount
logic by invoking the birthdayFactor method, in order to
compute the final discount rate.

2. NOVELTY
To the best of our knowledge, our approach is the first to

provide true modular reasoning in the presence of pointcuts

1As usual with proceed, if there are other pieces of advice
advising buying then those execute before the original join
point, with precedence defined as in AspectJ.

1 jp i void r en t ing (Item item , f loat pr i ce ,
2 int amount , Customer cus)
3 extends checkingOut ;
4

5 aspect Discount {
6 int birthdayFactor (Customer cus){
7 return cus . hasBirthday () ? 0 .95 : 1 ;
8 }
9 void around checkingOut (. . .) {

10 proceed (item , p r i c e ∗birthdayFactor (cus) , amt ,
cus) ;

11 }
12 void around buying (. . .) { /∗ as be f o r e ∗/ }
13 void around r en t ing (Item item , f loat pr i ce ,
14 int amt , Customer cus) {
15 i f (amt>10)
16 int f a c t o r = (amt > 10) ? 0 .9 : 1 ;
17 proceed (item , p r i c e ∗ f a c t o r ∗birthdayFactor (cus)

, amt , cus) ;
18 }
19 }

Listing 4: Advice overriding—reusing behavior

and advice: Join Point Interfaces are the first mechanism
to provide separate compilation for aspects with the guar-
anteed absence of weave-time errors. Further, our approach
is the first to properly support join point polymorphism,
enable flexible advice reuse.

3. RELATED WORK
There are have been several approaches to tackle the is-

sue of modular reasoning in the presence of advice, including
Open Modules [1], XPIs [4] and join point types for Implicit
Invocation with Implicit Announcement (IIIA) [7]. The pro-
posal of Steimann et al. is the most recent and as such in-
cludes a detailed discussion of all previous approaches to
aspects and modular reasoning [7].

Similar to our proposal, Steimann et al. propose to in-
troduce typing annotations for join points, called join point
types, to facilitate modular reasoning. They also provide
a subtyping hierarchy on join points, to facilitate extensi-
bility and reuse. Our proposal builds upon IIIA, but with
significant and crucial differences. IIIA falls short on several
levels, most importantly, static and modular type checking,
and join point polymorphism.

IIIA defines join point types using a struct-like syntax in-
stead of a method-signature-like syntax as we do. Method
signatures have the advantage that they can capture crucial
elements like return types and declared exceptions, that the
join point types of IIIA cannot capture. Join Point Inter-
faces allow us to support strong static guarantees and sep-
arate compilation. Both are impossible using IIIA, which
relies on weave-time error reporting.

The IIIA approach falls short when it comes to resolv-
ing advice dispatch in presence of join point subtyping. To
briefly illustrate why, consider again the join point hierarchy
shown in Figure 1. Let us assume that we wish to dispatch
pieces of advice for a join point that is both of type buying

and of typing renting, and assume that there exists a unique
piece of advice defined, for checkingOut. In Steimann et
al.’s proposal to IIIA, the implementation will generate two
separate join point instances, one of type buying and one of
type renting. Because both of those instances are subtypes
of checkingOut, they both dispatch to the checkingOut ad-
vice: the checkingOut advice executes twice!

Concretely, this means that IIIA does not support join
point polymorphism; rather, it emits several join points for
the same execution point. This semantics appears more
than surprising and hardly useful under any circumstances.
Our approach, on the other hand, supports true join point
polymorphism. A single join point can have multiple types,
and the well-known semantics used in multiple dispatch lan-
guages is used. In addition, this brings us the possibility
of introducing nextadvice, to reuse and specialize pieces of
advice.

4. EXPECTED FEEDBACK
First of all, at the most general level, we are interested in

getting feedback on the importance of separate compilation
and static modular type checking for the adoption of aspects.
As language designers, we feel this is a great step forward,
that even the latest development in aspects and modular-
ity do not address properly [7]. We are really interested in
discussing this with the software engineering community at
large to see if this impression is shared.

At a more specific level, we are looking forward to feed-
back on the language design for Join Point Interfaces. Poly-
morphic join points and dynamic advice dispatch seem to
enable a wider range of aspect designs for reuse than the
existing proposals. Finally, as mentioned in Section 1.4, we
gave up on the possibility to have nextadvice in order to
trigger less-specific advice, as in multiple dispatch. The rea-
son is that the kind of reuse offered by nextadvice does
not seem to compose well with proceed, especially consider-
ing the fact that in most aspect languages, it is possible to
invoke proceed multiple times. Discussion on these topics
would be of particular interest for the further development
of Join Point Interfaces.

5. REFERENCES
[1] Jonathan Aldrich. Open modules: Modular reasoning

about advice. In Andrew P. Black, editor, Proceedings
of the 19th European Conference on Object-Oriented
Programming (ECOOP 2005), number 3586 in LNCS,
pages 144–168, Glasgow, UK, July 2005.
Springer-Verlag.

[2] Eric Bodden. Closure joinpoints: block joinpoints
without surprises. In Proceedings of the tenth
international conference on Aspect-oriented software
development, AOSD ’11, pages 117–128, New York, NY,
USA, 2011. ACM.

[3] Robert E. Filman, Tzilla Elrad, Siobhán Clarke, and
Mehmet Akşit, editors. Aspect-Oriented Software
Development. Addison-Wesley, Boston, 2005.

[4] William G. Griswold, Kevin Sullivan, Yuanyuan Song,
Macneil Shonle, Nishit Tewari, Yuanfang Cai, and
Hridesh Rajan. Modular software design with
crosscutting interfaces. IEEE Softw., 23:51–60, January
2006.

[5] Ramnivas Laddad. AspectJ in Action: Practical
Aspect-Oriented Programming. Manning Press, 2003.

[6] Andreas Paepcke, editor. Object-Oriented Programming:
The CLOS Perspective. MIT Press, 1993.

[7] Friedrich Steimann, Thomas Pawlitzki, Sven Apel, and
Christian Kästner. Types and modularity for implicit
invocation with implicit announcement. TOSEM,
20(1):1–43, 2010.

	Join Point Interfaces
	Aspects and modular reasoning
	Join Point Interfaces
	Static and modular type checking
	Polymorphic join points

	Novelty
	Related Work
	Expected feedback
	References

