
Two Sparsification Strategies for Accelerating
Demand-Driven Pointer Analysis

Kadiray Karakaya
Heinz Nixdorf Institute
Paderborn University
Paderborn, Germany

kadiray.karakaya@upb.de

Eric Bodden
Heinz Nixdorf Institute

Paderborn University & Fraunhofer IEM
Paderborn, Germany
eric.bodden@upb.de

Abstract—To resolve aliasing, precise program analyses rely
on pointer analyses. Demand-driven pointer analysis seeks to be
efficient by computing information only for variables on which
a demand is raised, through a points-to or alias query. Yet,
research has shown that when applied to large-scale programs
even demand-driven analyses can become expensive in terms
of memory and runtime. This paper thus investigates to what
extent demand-driven pointer analysis can be accelerated further
if being executed over a sparse control-flow graph (CFG), spe-
cialized to those queries. We investigate two designs: First, type-
aware sparsification, in which the resulting CFG only consists
of statements containing variables that are type compatible with
the query variable. Second, alias-aware sparsification, where the
resulting CFG consists of the def-use chains of the query variable
and all its intra-procedural aliases.

We implement both designs in SPARSEBOOMERANG by ex-
tending BOOMERANG, a pointer analysis framework based
on push-down systems. We evaluate SPARSEBOOMERANG by
comparing it to BOOMERANG in terms of precision and per-
formance. On the POINTERBENCH micro-benchmark suite for
alias analysis, SPARSEBOOMERANG maintains the precision of
BOOMERANG, in both designs. We evaluate the runtime and
memory performance of SPARSEBOOMERANG by using FLOW-
DROID as a taint analysis client on real-world apps. Compared
to the baseline BOOMERANG, on average SPARSEBOOMERANG
solves alias queries 2.4x faster when using the type-aware
sparsification strategy, and 2.8x faster when using the alias-aware
variant with negligible memory overhead.

Index Terms—sparse pointer analysis, demand-driven analysis,
data-flow analysis

I. INTRODUCTION

Static program analysis clients are used in diverse applica-
tion domains, including compiler optimization [1], bug [2] and
vulnerability detection [3], and feature-based classification [4].
Client analyses are tailored depending on the requirements of
the domain. Yet, independent of their domain, all such client
analyses require pointer information [5]. For that purpose,
they sometimes implement a pointer analysis as part of the
client analysis [6], but more frequently use a pre-existing
pointer analysis [7]. Fast and precise pointer analysis is still
an open challenge for large-scale programs. To be precise,
pointer analyses track calling contexts, fields, and statements,
but that can hinder scalability. To be more scalable, many
current pointer analyses are performed in a demand-driven
manner [8], as opposed to conducting an exhaustive whole-
program analysis [9]. They benefit from the fact that client

analyses frequently require pointer information only for certain
variables at certain program points. For instance, assume a
direct assignment in a taint analysis, e.g., x.f = t where t
is tainted. Here, aliases of x need to be known to the taint
analysis so that this analysis can taint the f fields of x’s
aliases, too. Demand-driven pointer analyses exploit just that:
they compute alias information only for variables on which
clients raise a demand through a query. Yet, previous work
has shown that even demand-driven analyses can be expensive
when run on large-scale programs [10].

BOOMERANG [10] is a state-of-the-art demand-driven
pointer analysis framework that uses synchronized pushdown
systems (SPDS) [11]. Pushdown systems (PDS) [12] are
applicable to context-free language reachability problems, with
which context-, and field-sensitivity can be modeled [11].
BOOMERANG synchronizes two PDS that model context- and
field-sensitivity respectively. Both PDS depend on rules that
correspond to data-flow functions. In this work, we exploit that
many of these rules are redundant as they only affect data-flow
facts that do not matter to the end result. Data-flow facts in
pointer analysis correspond to the variables and their aliases.
Redundant rules exist because control flow graphs (CFG) not
only contain statements that affect the alias relationships, but
also many other statements that do not. The beauty of demand-
driven pointer analysis is that one knows the exact query
variable (i.e., the variable, whose aliases are being queried),
ahead of the analysis time. Therefore, when answering a
raised demand one can sparsify the CFG by removing the
statements that are irrelevant to the result for the particular
query variable, and thus omit the redundant rules during the
construction of the SPDS.

Previous work has successfully applied sparsification to
improve the scalability of general data-flow analyses [13]–
[15] and pointer analysis in particular [16]–[18]. All these
approaches create sparse versions of the CFGs of a target
program. These sparse versions are often called sparse value
flow graphs (SVFGs) [14], or sparse control flow graphs
(SCFGs) [19]. Most previous approaches create those SCFGs
in a pre-analysis stage, for the whole program, and thus settle
for the information available at that stage. Recent work by
He et al. [19] showed that one can increase sparseness, i.e.,
omit from the CFG more irrelevant statements, by specializing

the SCFGs to the individual data-flow facts. Their work was
applied to the IFDS [20] framework, which is applicable only
to distributive analysis problems. Pointer analysis is known
to be non-distributive [21]. In this work, we thus investigate
to what extent one can make use of the idea of fact-specific
sparseness nonetheless also in pointer analysis. In the proposed
framework SPARSEBOOMERANG, the analysis creates a new
SCFG specific to any queried value.

The goal of sparsification is to speed up the analysis run
by restricting it to fewer program statements, while ideally
generating results identical to those of an exhaustive analysis.
Yet, the creation of the SCFGs itself incurs a cost both in
terms of memory and runtime. Sparsification pays off when
the savings during evaluating the sparse graph, in comparison
to the original exhaustive graph, outweigh the construction
time. To investigate this performance trade-off, in this work
we present two sparsification strategies with different degrees
of sparsification. Both strategies create on-demand SCFGs
specific to each alias query. First, type-aware sparsification
(TAS), where the resulting CFG only consists of the statements
containing variables that are type compatible with the query
variable. Second, alias-aware sparsification (AAS), where the
resulting CFG consists of the def-use chains of the query
variable and all its intra-procedural aliases. Those strategies
mirror designs published earlier in the context of virtual call
resolution [22], declared-type analysis (DTA) and variable-
type analysis (VTA), respectively. DTA and VTA create as-
signment chains, where each node represents a variable either
as its declared type (in DTA) or as itself (in VTA). Our
strategies create def-use chains, where each node represents a
statement either with the types (in TAS) or with the variables
(in AAS) it contains.

We evaluate the applicability of the proposed two
sparsification strategies within the SPDS framework. For
that, we implement SPARSEBOOMERANG by extending the
SPDS-based BOOMERANG. To validate whether the two
sparsification strategies maintain the precision of the original
exhaustive BOOMERANG, we run all approaches on the
POINTERBENCH [23] benchmark suite for alias analysis. To
evaluate the performance impact of the strategies, we run
both BOOMERANG and SPARSEBOOMERANG on real-world
Android applications. To this end, we extend FLOWDROID, a
state-of-the-art taint analysis client for Android applications,
so that it creates on-demand alias queries to BOOMERANG
and SPARSEBOOMERANG. Evaluation results show that
SPARSEBOOMERANG using either of the sparsification
strategies solves the alias queries on average twice as faster
as BOOMERANG, and while maintaining full precision. The
performance gains achieved by the demand-driven pointer
analysis are reflected in the taint analysis client, FLOWDROID.

To summarize, this paper presents these original contributions:
• Two sparsification strategies; type-aware sparsification

and alias-aware sparsification for demand-driven pointer
analysis,

• a sparse implementation of BOOMERANG, which we call

SPARSEBOOMERANG, which maintains BOOMERANG’s
precision, and

• a modification of FLOWDROID that uses demand-
driven pointer analyses BOOMERANG and SPARSE-
BOOMERANG, and their performance evaluation on real-
world android apps.

The remainder of the paper is organized as follows. In
Section II, we present the background that our work is based
on. In Section III, we introduce our on-demand sparsification
strategies. In Section IV, we explain the implementation de-
tails of SPARSEBOOMERANG. Section V, presents the results
obtained from our evaluations. In Section VI, we discuss
the limitations of our approach and threats to its validity. In
Section VII, we discuss the related work and we conclude with
SectionVIII.

II. BACKGROUND

In this section, we introduce the key concepts that are
required to understand the rest of the paper. First, we introduce
sparse data-flow analysis. Then we explain how fact-specific
sparsification works and why it is a good fit for demand-driven
pointer analysis. We finally briefly explain BOOMERANG’s
approach to pointer analysis.

A. Sparse Data-flow Analysis

The precision of a data-flow analysis is determined by how
accurately it reflects the effects of program statements on
the data-flow facts. State-of-the-art precise data-flow analyses
seek to be maximally context-, field-, and flow-sensitive.
Context-sensitive analyses differentiate data-flow facts under
different calling contexts. Field-sensitive analyses keep the
different fields of a base object separate. Flow-sensitive anal-
yses consider a program’s control-flow ordering. Optimization
approaches that aim to improve performance often compro-
mise on these precision dimensions [24]–[27]. Sparsification,
however, is a complementary optimization approach that aims
to improve performance usually without sacrificing precision.
Data-flow analyses can be instantiated to solve a wide range of
analysis problems. Depending on the problem, flow functions,
which model the effects of the program statements, differ. For
instance, the effects of arithmetic operations are important for
constant propagation analysis, but not for taint analysis. Spar-
sification approaches can speed up the analysis by instructing
it to ignore statements that have no effect in the context of
that particular analysis problem. CFG sparsification has been
performed using def-use chains [18] and using SSA (static
single-assignment) form [28], but often in a pre-analysis stage
[17]. Such staged approaches are excessive for demand-driven
analyses because they might sparsify program parts irrelevant
to the raised demands.

B. Fact-specific Sparsification using Sparse IFDS

The IFDS (Interprocedural Finite Distributive Subset)
framework by Reps et al. [20] is a widely adopted interproce-
dural data-flow analysis framework. While IFDS is not univer-
sally applicable: it requires the data-flow domain to be finite

foo(){

L1: A a1 = new A();

L2: A a2 = a1;

L3: a1.f = source();

L4: sink(a2.f);

}

0 a1.f a2.f

Pointer
Analysis

query

alias query / information

taint analysis with alias information

Fig. 1: Data-flow Graphs for Taint Analysis with Alias Infor-
mation

and flow functions to be distributive over the meet operator,
which is set-union. Nonetheless, IFDS has been instantiated
for diverse analysis problems, including taint [6], [19], [29]–
[31] and typestate analysis [32]–[34]. The IFDS algorithm
represents data-flow problems as a graph-reachability problem,
where each data-flow fact holds at a specific program point
if its graph node is reachable at that point. Edges of the
graph correspond to flow functions that reflect the effect of
a statement on the data-flow facts.

Flow functions that do not affect any facts at a given
statement are known as id functions. Recently, He et al. [19]
observed that many non-id flow functions, in fact, behave as
fact-specific id functions: while they may affect some data-
flow facts, they are irrelevant to many others. Because IFDS,
due to its distributivity, evaluates data-flow facts independent
of each other, one can, during the evaluation of a data-
flow fact d, safely disregard a flow function f if it is a d-
specific identity function. Using this observation, He et al.
introduced the Sparse IFDS algorithm, which includes fact-
specific sparsification: it creates on-demand SCFGs specific
to each data-flow fact that is being propagated. Facts are
propagated to their next use point within their individual
SCFGs. The original IFDS algorithm [20] instead propagates
data-flow facts to all reachable program points. Fact-specific
sparsification seems like an ideal fit for on-demand analyses
because specific data-flow facts d only become known during
analysis. He et al. exploited this during the demand-driven
analysis of FLOWDROID, yet they did not assess sparsification
in the broader context of pointer analysis, which is actually a
non-distributive problem.

C. Demand-driven Pointer Analysis

Pointer analysis determines which program variables can
point to which objects at runtime. It is required in real-world
analysis problems where multiple program variables frequently
point to the same object. Two variables that point to the same
object are called aliases. Such alias information is crucial for a
precise data-flow analysis for tracking the indirect data-flows
through the aliases. Pointer analysis is usually not distributive

at an assignment x.f = t one must assign aliases of t to
the f-fields of all the aliases of x. For this reason, one cannot
usually soundly handle all aliases independently, and the IFDS
framework is not applicable, thus neither is Sparse IFDS.

Yet, as opposed to whole-program pointer analysis, demand-
driven pointer analysis [8] is performed only for variables
on which a demand, e.g., a pointer or alias query, is raised.
It computes just enough information to satisfy the query.
Interestingly, as Späth et al. showed [10], one can decompose
a flow-sensitive pointer analysis such that when queries raise
sub-queries at “points of indirection” (POI), e.g., at reads and
writes to/from the heap, the evaluation of those sub-queries
does become a distributive and thus distributively solvable
analysis problem. Figure 1 shows the data-flow graphs that a
taint analysis would produce with alias information. To know
that the analysis must taint a2.f at L3, it must know that
a1 and a2 alias at that point. In the case of a context- and
flow-sensitive demand-driven pointer analysis, an alias query
would look as follows:

Q(v, s,m)

v is the query variable for which alias information is required.
s is the query statement and m its surrounding method. Thus,
the query in Figure 1 would be instantiated as:

Q(a1, L3, foo())

In demand-driven pointer analysis, the query variable is used
as the initial data-flow fact. It is provided explicitly, ahead
of the analysis time. This allows one to perform on-demand
fact-specific sparsification, building a SCFGs specific to each
particular query.

D. BOOMERANG

Use of the IFDS framework requires data-flow functions to
be distributive over the union meet operator [20]. However,
precise pointer analysis is a non-distributive problem. With
BOOMERANG, Späth et al. [10] showed that the pointer
analysis problem can be modeled with distributive sub-queries
that can still be solved with the IFDS algorithm. Such sub-
queries are created at POIs. POIs cause the outer IFDS solver
to instantiate sub-queries in the opposite direction, which
are then again solved by inner IFDS solvers. BOOMERANG
handles the following POIs:

• Allocation Site: Upon finding an allocation site (new
object creation) during a backward analysis, a forward
sub-query is created to find out which variables point to
this object.

• Field Write and Read: Upon finding a field write
statement during a forward analysis, a backward sub-
query is created to find the aliases of the base variable
of the field. Field read statements are handled in a
backward analysis similar to the field write statements
in the forward analysis.

• Return and Call: Return indirections are caused by
the context change during the forward analysis and call
indirections are caused during the backward analysis.

bar(){
L1: B b1 = new B();

L2: B b2 = new B();

L3: C c1 = new C();

L4: A a1 = b1;

L5: A a2 = b2;

L6: B b3 = b1;

L7: C c2 = c1;

L8: a1.f = source();

L9: sink(b3.f);

}

a1 b1

b1 a1

B@L1

b3

a1 b1

b1 a1

B@L1

b3

a1 b1

b1 a1

B@L1

b3

a1@L8 a1@L8 a1@L8

Relevant Statement

Irrelevant Statement

Relevant Edge

Irrelevant Edge

(a) Input for Pointer Analysis,
where B is a subtype of A

(b) Non-Sparse CFG (c) Type-Aware SCFG (d) Alias-Aware SCFG

Fig. 2: Data-flow Graphs of BOOMERANG’s Analysis on Non-Sparse CFG and SPARSEBOOMERANG’s Analyses on Type-
Aware and Alias-Aware SCFGs

Recently, BOOMERANG has been reimplemented with
SPDS [11] instead of the IFDS framework. IFDS and PDS
are equally expressive and can be used to model the same
inter-procedural data-flow problems [12]. SPDS uses two
pushdown systems, Call-PDS and Field-PDS. The Call-PDS
models flow- and context-sensitive data-flow analysis. Its push
rules correspond to call-flow functions of the IFDS framework,
whereas its pop rules correspond to return-flow functions.
Normal rules of the Call-PDS are equivalent to the intra-
procedural flow functions of IFDS, i.e., normal-flow functions
and call-to-return-flow functions. The Field-PDS models flow-
and field-sensitive data-flow analysis. Push and pop rules of
the Field-PDS represent field store and field load statements
respectively, where its normal rules correspond to assignments.
SPDS improves over the IFDS via its compact encoding of
field-sensitivity with the Field-PDS [11]. Call-PDS and Field-
PDS both benefit from the proposed sparsification strategies
because they both process the same CFG for the same query
variable. From the sparsification point of view, the underlying
solver (IFDS-, or SPDS-based) does not directly matter be-
cause, in the end, they both compute the same data flows over
the same CFGs.

III. DEMAND-DRIVEN SPARSIFICATION STRATEGIES

In Section II-C, we showed that an alias query consists of a
query variable, a statement where its aliases are required, and
a method that defines its context. Figure 2a shows an input

program for pointer analysis. An example alias query looks as
follows:

Q(a1, L8, bar())

We seek to find the aliases of a1 at line L8 in method bar().
Figure 2b shows how BOOMERANG performs this on a non-
sparse CFG by default. It first initiates a backward pass (for
a1@L8) to find the allocation site of the object, that a1 points
to. After finding the allocation site at L1, a POI, a forward
pass for B@L1 is initiated. The forward pass continues until
it reaches the initial query location, yielding all variables that
point to the same object (B@L1) as the query variable.

In fact, only the statements in lines L1, L4, L6 can affect the
aliasing relationships of a1, where L8 is the query statement.
Therefore, the edges that originate from the other statements
are irrelevant. Irrelevant statements and edges that start from
them are highlighted in Figure 2. Note that after sparsification,
relevant edges connect to the relevant statements that are next
in the respective SCFGs. By sparsifying CFGs, i.e., removing
the redundant transition rules, a great deal of computation time
can potentially be saved. However, sparsification consumes
computation time as well, which depends on the degree of
sparsification. Therefore, in the remainder of this paper we
will seek to validate or refute the following assumption:

Assumption: A fine-grained SCFG is cheap to analyze,
yet expensive to build, whereas a coarse SCFG is cheap
to build, yet more expensive to analyze.

b1=B()

b2=B()

c1=C()

a1=b1

a2=b2

b3=b1

c2=c1

a1

{B}

{B}

{C}

{A,B}

{A,B}

{B}

{C}

(a)

b1=B()

b2=B()

c1=C()

a1=b1

a2=b2

b3=b1

c2=c1

a1

{B}

{B}

{A,B}

{A,B}

{B}

Ø

Ø

(b)

b1=B()

b2=B()

a1=b1

a2=b2

b3=b1

a1

{B}

{B}

{A,B}

{A,B}

{B}

(c)
(a) Each statement si is associated with its var types(si)
(b) After applying hierarchy types(a1) ∩ var types(si)
(c) The final SCFGa1,L8,bar after removing irrelevant statements

Fig. 3: Steps involved in Type-aware Sparsification

To investigate whether this assumption holds, we imple-
mented two sparsification strategies with different degrees of
sparsification. We will present these next.

Given a query, Q(v, s,m), the sparse CFG specific to the
query, SCFGv,s,m, is obtained from the original CFG of the
method m, CFGm, by removing those statements that are
irrelevant to the aliasing of v at the statement s. Below, we
explain how the two sparsification strategies identify irrelevant
statements.

A. Type-Aware Sparsification

Type-aware sparsification follows a heuristic that is inspired
by Declared-Type Analysis [22], which is based on the fol-
lowing idea. Given a program written in a strongly typed
language, a variable can only point to an object compatible
with its declared type. In object-oriented languages such as
Java, this definition includes any types that are subtypes or
supertypes of the declared type of the variable. Supertypes
need to be included to incorporate the possibility of explicit
casts. Accordingly, an assignment, leading to aliasing, can only
happen between two variables whose types are in a subtype-
supertype relationship. Therefore, given a query variable, one
can obtain an SCFG by keeping only such relevant statements.
Type-aware sparsification retains the relevant statements as
follows. Given a query variable v, hierarchy types(v) is the
set of types in the type hierarchy of v’s declared type, i.e., its
sub- and supertypes. var types(s) is the set of types that the
statement s references, e.g., the type of the left-hand side and
right-hand side for an assignment, or the argument types and
base type for a method call. Then, s is a relevant statement
with respect to v if and only if:

hierarchy types(v) ∩ var types(s) ̸= ∅

Figure 3 shows how type-aware sparsification works
for the query Q(a1, L8, bar()) in the example program

{b1}

{b2}

{c1}

{a1}

{a2}

{b3}

{c2}

b1=B()

b2=B()

c1=C()

a1=b1

a2=b2

b3=b1

c2=c1

a1

(a)

{b1}

{a1}

b1=B()

b2=B()

c1=C()

a1=b1

a2=b2

b3=b1

c2=c1

a1

Ø

Ø

Ø

Ø

Ø

(b)

b1=B()

b2=B()

c1=C()

a1=b1

a2=b2

b3=b1

c2=c1

a1

{B()}

{B()}

{C()}

{b1}

{b2}

{b1}

{c1}

(c)

b1=B()

b2=B()

c1=C()

a1=b1

a2=b2

b3=b1

c2=c1

a1

{b1}

{b1}

Ø

Ø

Ø

Ø

Ø

(d)

b1=B()

a1=b1

b3=b1

a1

{b1}

{a1,b1}

{b1}

(e)
(a) Backward pass, each si is labeled with uses(si), i.e., LHS
(b) After applying intra aliases(a1) ∩ uses(si)
(c) Forward pass, each si is represented by uses(si), i.e., RHS
(d) After applying intra aliases(a1) ∩ uses(si)
(e) The final SCFGa1,L8,bar , union of the relevant statements in
all passes

Fig. 4: Steps involved in Alias-aware Sparsification

in Figure 2a. The type B is a subtype of A, therefore
hierarchy types(a1) = {A,B}. Figure 2c shows how
SPARSEBOOMERANG solves an alias query over the resulting
SCFGa1,L8,bar. Note that it still contains irrelevant edges,
due to the coarse-grained type-aware approach.

B. Alias-Aware Sparsification

Alias-aware sparsification likewise follows the approach
introduced with the VTA algorithm [22], it represents variables
by themselves, here denoted by variable names. VTA uses def-
use chains. Definitions and uses of a variable cause aliasing.
Intuitively, one can obtain an SCFG that only consists of
the statements that belong to the def-use chain of the query
variable. However, it is also necessary to be aware of the def-
use chains of all the aliases created in the initial def-use chain,
until a fixed point is reached where there are no new aliases
to be discovered. To ensure this, alias-aware sparsification
works in two passes, similarly to BOOMERANG [10] but intra-
procedurally. First, a backward pass is performed until an
allocation site is found, then a forward pass follows until
the query statement is reached. There may be multiple such
passes, whose details are explained in Section IV-B. Alias-
aware sparsification retains the relevant statements as follows.
Given a query variable v, intra aliases(v) is the set of intra-
procedural aliases of v. uses(s) is the set of variables used in
the statement s, then s is a relevant statement with respect to
v if and only if:

intra aliases(v) ∩ uses(s) ̸= ∅

We maintain intra aliases(v), which initially only contains
the v itself. The meaning of use depends on the direction of
the pass. For instance, in the backward pass, the left-hand
side (LHS) of an assignment is in the uses(si) and in the

TABLE I: Statements Handled by Type-aware Sparsification

Statement IR var types Effect on typeWorklist

assign x← y {t(x), t(y)} —
cast x← (T)y {t(x), t(y)} —
load x← y.f {t(x), t(f)} add(t(y))
store x.f ← y {t(f), t(y)} add(t(x))
invoke r ← b.m(ai.f) {t(r), t(f)} add(t(b), t(ai))

forward pass the right-hand side (RHS). Accordingly, in the
backward pass, the RHS of an assignment is added to the set
intra aliases(v) and in the forward pass the LHS.

Figure 4 shows how alias-aware sparsification works for the
query Q(a1, L8, bar()) in the example program in Figure 2a.
In the backward pass, initially intra aliases(a1) is {a1},
after a1=b1 it becomes {a1, b1}. In the forward pass, initially
intra aliases(a1) is {b1}, after a1=b1 it becomes {b1, a1}
and after b3=b1 it becomes {b1, a1, b3}. The resulting
SCFGa1,L8,bar contains the union of the relevant statements
from both passes. Figure 2d shows how SPARSEBOOMERANG
solves an alias query over SCFGa1,L8,bar that is obtained via
the alias-aware sparsification.

Client
Analysis

Query

Alias Set

Target
Program

Result

SparseBoomerang

SPDS
Solver

SCFG
Cache

SCFG
Builder

Query

QuerySCFG

SCFG

Fig. 5: System Overview of SPARSEBOOMERANG

IV. SPARSEBOOMERANG

In this section, we explain the implementation details of our
approach. Figure 5 shows the system overview of SPARSE-
BOOMERANG. It applies a caching mechanism similar to that
of Sparse IFDS [19], with a nuance that SCFGs are cached
per query instead of per data-flow fact. Queries can be both
originating from the client or internal queries that the SPDS
solver issues, e.g., on switching contexts. Depending on the
configured sparsification strategy (type-aware or alias-aware),
the corresponding SCFG builder and the cache are instantiated.

In Section III, we explained how the proposed sparsification
strategies find relevant statements. We next explain how the
statements are handled at the intermediate representation (IR)
level, and introduce the algorithms for each strategy.

A. Implementation of Type-Aware Sparsification

Table I shows the statements handled by type-aware sparsi-
fication with their IR. assign and cast statements are handled
the same, but we make the distinction to point out that
assignments from both supertypes and subtypes exist. load
and store statements concern reading from, and writing to the
heap using field references. This makes it necessary to track

the aliases of their base variables. To do so, we maintain a
worklist of types, typeWorklist, where we store the declared
types of the base variables of field references and process
them in the subsequent iterations. var types correspond to
the declared types of the variables involved in a statement.
Note that invoke statements may have multiple arguments (e.g.,
b.m(a1.f, a2.f, ...)), so each of them must be included.

Algorithm 1 shows how type-aware sparsification works.
It takes as input the variables passed as part of the alias
query, Q(v, s,m). relevantStmts is the set of statements that
are relevant to the alias query. typeWorklist is initiated with the
type of the query variable, type(v). The algorithm works until
the typeWorklist is empty, e.g., there are no further relevant
types to process.

1 Function TypeAwareSparsification(v, s, m):
2 relevantStmts← {}
3 typeWorklist← {type(v)}
4 while typeWorklist ̸= {} do
5 Get t from typeWorklist
6 FindRelevantStmts(t, s, m)
7 end
8 Sparsify(m, relevantStmts)
9 Function FindRelevantStmts(t, s, m):

10 foreach si ≪ s in m do
11 if var_types(si) ∩

hierarchy_types(t) ̸= ∅ then
12 Add si to relevantStmts
13 HandleBase(si)
14 end
15 end
16 Function HandleBase(si):
17 if si contains field then
18 Add type(base(field)) to typeWorklist
19 end

Algorithm 1: The Algorithm of Type-Aware Sparsification

FindRelevantStmts iterates over the CFG of the query
method m until it reaches the query statement s. The method
HandleBase identifies the statements that contain a field ref-
erence and populates the typeWorklist with the type of their
base variables, i.e., type(base(field)). To sparsify the CFG, it
is traversed at the end to retain the relevantStmts.

B. Implementation of Alias-aware Sparsification

Table II shows the statements handled by alias-aware spar-
sification. In this case, we additionally handle allocation and
identity statements, which were treated as simple assignments
by the type-aware variant. allocation indicates that a variable
is instantiated within the current CFG. identity denotes a
mapping from a method argument to a local variable. identity
and load indicate that a variable is instantiated elsewhere. store
signals that the base variable of the field reference must be
handled. invoke is a special case. In a backward pass, it must
be handled similarly to an allocation, in a forward pass it
must be handled similarly to a field store. As explained in

Section III-B, the meaning of uses depends on the direction
of the pass, therefore we denote the uses for the backward
pass as bw uses and for the forward fw uses. To discover the
aliasing relationships caused by points of indirections (POI)
[10], in this strategy, we maintain two worklists. A backward
worklist is used to create the def-use chains in the backward
pass, and a forward worklist is used to create them in the
forward pass. POIs can be discovered during each pass. POIs
discovered in a backward pass cause bw uses to be added
to the forward worklist. POIs discovered in a forward pass
cause base variables or invocation receivers to be added to the
backward worklist.

TABLE II: Statements Handled by Alias-aware Sparsification

Statement IR bw uses fw uses POI for

assign x← y {x} {y} —
cast x← (T)y {x} {y} —
allocation x← T () {x} — Backward
identity x← arg {x} — Backward
load x← y.f {x} {f} Backward
store x.f ← y {f} {y} Forward
invoke r ← b.m(a1.f) {r} {b, f} Both

Algorithm 2, shows how alias-aware sparsification works. It
may perform multiple backward and forward passes depending
on the number of POIs. To be brief, we assume that the
method uses() acts as fw uses or bw uses, depending on the
direction of the pass. Similarly, we assume intra aliases(v)
is maintained implicitly. Both algorithms soundly preserve
branching statements and stop processing after reaching the
query statement.

V. EVALUATION

Sparsification aims to improve the performance of the
analyses, while still preserving their precision. Therefore, we
evaluate the impact of the proposed sparsification strategies
considering two dimensions: precision, and performance im-
pact. To do so, we have formulated the following research
questions:

• RQ1: Do the sparsification strategies cause precision
loss?

• RQ2: How do the sparsification strategies impact the
performance of the demand-driven pointer analysis and
its client?

• RQ3: How does the degree of sparsification impact the
SCFG construction time and its evaluation time?

A. Experimental Setup

SPARSEBOOMERANG, available at https://github.com/
secure-software-engineering/SparseBoomerang, extends
the latest version of BOOMERANG at the time of writing
(1179227) [35]. We use FLOWDROID as a taint analysis
client with its default source and sink definitions. We also
extended the latest version of FLOWDROID (d97f9d9) [36]
so that it creates on-demand alias queries for BOOMERANG
and SPARSEBOOMERANG instead of using its own integrated
alias analysis. Both tools are based on Soot static analysis

1 Function AliasAwareSparsification(v, s,
m):

2 relevantStmts← {}
3 bwWorklist← {v}
4 fwWorklist← {}
5 while bwWorklist ̸= {} do
6 Get b from bwWorklist
7 FindRelevantStmts(b, s, m)
8 while fwWorklist ̸= {} do
9 Get f from fwWorklist

10 FindRelevantStmts(f , s, m)
11 end
12 end
13 Sparsify(m, relevantStmts)
14 Function FindRelevantStmts(v, s, m):
15 foreach si ≪ s in m do
16 if uses(si) ∩ intra_aliases(v) ̸= ∅

then
17 Add si to relevantStmts
18 HandlePOI(si)
19 end
20 end
21 Function HandlePOI(si):
22 if si is POI for backward then
23 Add uses(si) to bwWorklist
24 end
25 if si is POI for forward then
26 Add base(field) to fwWorklist
27 end

Algorithm 2: The Algorithm of Alias-Aware Sparsifica-
tion

framework [37]. We use the following benchmarks in our
experiments:

• POINTERBENCH: POINTERBENCH [23] is a micro-
benchmark suite for alias analysis. We use this suite to
evaluate the correctness of the sparsification approaches.
We check whether we can obtain the same aliases by
issuing alias queries to BOOMERANG without sparsifica-
tion and to SPARSEBOOMERANG with type-aware and
alias-aware sparsification strategies.

• Real-world Apps: We include real-world Android apps
to investigate the performance of our approach under the
workload of large-scale and complex programs. For that,
we selected the 20 most downloaded Android apps from
the Google Play store listed in androidrank.org [38], then
we downloaded their most recent version from Androzoo
[39].

• Replication Package: We provide a replication package
that contains the complete toolchain to reproduce the
findings, along with their source codes. The replication
package is available at https://drive.google.com/drive/
folders/1UTckUbqKs54Org3BBkba SJssih6Ugds

All the experiments were performed on a Macbook Pro with
a Quad-Core Intel i7 processor at 2,3 GHz and 32 GB memory.

https://github.com/secure-software-engineering/SparseBoomerang
https://github.com/secure-software-engineering/SparseBoomerang
https://drive.google.com/drive/folders/1UTckUbqKs54Org3BBkba_SJssih6Ugds
https://drive.google.com/drive/folders/1UTckUbqKs54Org3BBkba_SJssih6Ugds

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20
0

20

40

60

80

100

31
 s

16
 s

15
 s

5
s

41
 s

13
 s

6
s

15
 s

18
 s

12
 s

16
 s

24
0

s

73
 s

6
s

4
s

20
0

s

20
1

s

16
 s

10
 s

10
1

sBaseline
Runtime

FD using Boomerang
Boomerang

FD using SB-TAS
SB-TAS

FD using SB-AAS
SB-AAS

Fig. 6: Relative time spent on taint analysis and solving alias queries by FLOWDROID (FD) using baseline BOOMERANG,
SPARSEBOOMERANG (SB) with TAS and with AAS, in %

The JVM was configured with a maximum heap size of 25GB,
and a maximum stack size of 1GB. All performance data was
generated as the average of five runs of each input app with
each alias analysis.

B. RQ1: Do the sparsification strategies cause precision loss?

It is crucial for the sparsification approaches to maintain
the precision of their non-sparse counterparts. Sparsification
aims to reduce the number of statements that are irrelevant
to the particular analysis, but this requires a careful study of
the program statements to find out how to handle each one of
these. We, therefore, test whether both approaches maintain the
level of precision that is obtained by non-sparse BOOMERANG,
on POINTERBENCH. The micro-benchmark suite contains
35 target programs. Its basic tests include branching, loops,
recursion, and inter-procedural aliasing. It also includes corner
cases where field-, flow-, and context-sensitivities are tested.
The results show that both sparsification approaches report
results identical to the non-sparse analysis. Precision, in par-
ticular, is therefore maintained.

C. RQ2: How do the sparsification strategies impact the
performance of the demand-driven pointer analysis and its
client?

As discussed in Section IV, both sparsification strategies
come at a cost. They need to build, on-demand, sparse versions
of the original CFGs of the input programs. To measure
the impact of the sparsification strategies on solving alias
queries, and on the overall runtime of the taint analysis
client, we evaluate the performance of SPARSEBOOMERANG
by comparing it to BOOMERANG.

Figure 6 shows the relative time spent by FLOWDROID on
taint analysis and by BOOMERANG and SPARSEBOOMERANG
on solving alias queries on each input app. FLOWDROID
using BOOMERANG is used as the baseline. Each run by
SPARSEBOOMERANG with TAS, and with AAS is normal-
ized against this baseline. It can be observed that, despite
their cost in SCFG construction, both sparsification strategies
frequently reduce the time spent by demand-driven pointer
analysis on solving alias queries. More specifically, SPARSE-
BOOMERANG, compared to BOOMERANG, solves the alias
queries on average 2.4x faster with type-aware sparsification,
and 2.8x faster with the alias-aware variant. The maximum
speedups achieved by each strategy are 14.6x and 18.7x
respectively. The speedups gained during the pointer analysis
are also reflected in the client analysis. FLOWDROID using
SPARSEBOOMERANG performs the taint analysis on average
1.13x faster with type-aware sparsification and 1.17x faster
with alias-aware sparsification. The maximum speedups by
each strategy are 1.9x and 2.5x respectively. The full set of
absolute numbers is contained in Table III.

To investigate the significance of the results, we have also
performed Wilcoxon signed-rank test [40] at 0.05 significance
level. Both TAS (p=0.0027) and AAS (p=0.0094) improve the
performance of the pointer analysis significantly. Similarly, the
client’s performance also increases significantly when using
TAS (p=0.0012) and AAS (p=0.0011).

Figure 7 shows the maximum memory consumption of
FLOWDROID using SPARSEBOOMERANG with TAS and AAS
compared to the baseline memory consumption of FLOW-
DROID using BOOMERANG. On average, the maximum mem-
ory consumption increases. We have measured an average of
3% increase in memory consumption when using SPARSE-

TABLE III: Performance of FLOWDROID using the baseline BOOMERANG (B) and SPARSEBOOMERANG with TAS and AAS

APK Runtime (s) Memory (GB) Total Query Time (ms) Query Solv. (ms) SCFG Const. (ms) DoS
B TAS B/TAS AAS B/AAS B TAS AAS B TAS B/TAS AAS B/AAS B TAS AAS TAS AAS TAS AAS

1 candycrush 31 30 1.02 29 1.07 2.33 2.06 1.82 2368 2062 1.15 1396 1.70 2368 2029 1357 32 39 0.30 0.33
2 chrome 15 15 1.01 15 1.04 0.69 0.69 0.71 141 130 1.08 126 1.12 141 113 111 17 15 0.40 0.51
3 excel 14 14 1.01 14 1.01 0.65 0.68 0.72 67 74 0.91 73 0.92 67 64 64 9 9 0.75 0.77
4 fblite 5 5 1.00 5 1.00 0.18 0.18 0.18 108 102 1.06 90 1.20 108 81 68 21 22 0.47 0.49
5 garena 40 38 1.06 35 1.15 1.48 1.12 0.99 3674 2740 1.34 2081 1.77 3674 2624 1885 116 196 0.37 0.42
6 gclock 12 13 0.97 13 0.95 0.72 0.70 0.77 233 209 1.12 463 0.50 233 172 439 37 23 0.43 0.53
7 gfiles 5 5 1.07 5 1.12 0.19 0.19 0.19 45 57 0.78 52 0.86 45 40 39 17 12 0.33 0.55
8 gkeyboard 15 14 1.06 14 1.06 0.96 0.74 0.84 1183 595 1.99 609 1.94 1183 414 446 181 162 0.33 0.52
9 gsearchlite 18 18 1.00 18 0.98 0.97 0.90 0.97 444 335 1.32 584 0.76 444 287 550 48 33 0.44 0.51
10 mivideo 12 11 1.13 9 1.32 0.32 0.80 0.78 3134 1240 2.53 992 3.16 3134 1085 884 155 108 0.52 0.53
11 msword 16 15 1.04 16 1.01 0.72 0.72 0.72 66 72 0.91 75 0.88 66 62 65 10 9 0.75 0.77
12 mxplayer 239 126 1.89 97 2.46 5.59 6.04 2.35 159583 48761 3.27 21874 7.30 159583 45194 15304 3567 6569 0.40 0.47
13 netflix 73 72 1.01 69 1.06 2.14 1.25 0.90 10150 3228 3.14 1306 7.77 10150 3125 1216 102 90 0.45 0.73
14 shareit 6 5 1.03 5 1.11 0.32 0.30 0.36 53 66 0.80 70 0.76 53 58 61 8 9 0.32 0.54
15 shareme 4 4 1.00 4 1.00 0.23 0.23 0.23 49 64 0.76 61 0.80 49 52 49 12 11 0.46 0.56
16 tiktok 199 187 1.07 193 1.03 3.56 2.36 5.56 7801 534 14.59 6501 1.20 7801 499 4760 35 1740 0.37 0.31
17 ucmobile 201 135 1.49 123 1.63 4.64 3.63 3.00 81620 10632 7.68 4374 18.66 81620 10137 3498 495 875 0.47 0.49
18 viber 15 15 1.00 15 1.01 0.74 0.74 0.70 215 215 1.00 190 1.13 215 199 175 16 15 0.39 0.44
19 webview 10 9 1.04 9 1.06 0.48 0.48 0.48 121 91 1.33 80 1.50 121 79 68 12 12 0.44 0.55
20 whatsapp 101 61 1.65 75 1.34 0.77 1.28 2.78 68743 31784 2.16 46522 1.48 68743 31658 46030 126 491 0.42 0.36

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20
0

50

100

150

200

250

300

350

2.3
3 G

B

0.6
9 G

B

0.6
5 G

B

0.1
8 G

B

1.4
8 G

B

0.7
2 G

B

0.1
9 G

B

0.9
6 G

B

0.9
7 G

B

0.3
2 G

B

0.7
2 G

B

5.5
9 G

B

2.1
4 G

B

0.3
2 G

B

0.2
3 G

B

3.5
6 G

B

4.6
4 G

B

0.7
4 G

B

0.4
8 G

B

0.7
7 G

BBaseline
Memory

SB-TAS
SB-AAS

Fig. 7: Relative Memory Consumption of FLOWDROID using
SPARSEBOOMERANG with TAS and with AAS compared to
the baseline BOOMERANG, in %

BOOMERANG with TAS, and 13% when it’s using AAS.
However, according to the Wilcoxon signed-rank test, memory
increases with TAS (p=0.24) and AAS (p=0.70) are insignifi-
cant. The impact on memory consumption is largest for apps
#10, and #20. When observing the same apps in Figure 6, it
can be observed that these apps also benefited from a large
speedup in the analysis runtime.

An increase in memory consumption was expected. This is
because, after all, both sparsification strategies make use of
caching to reduce the amount of time spent on sparsification
in case the same queries are issued. However, surprisingly,
we see that for some subject apps, e.g., #5, #13, and #17,
sparsification substantially decreases memory consumption.
We attribute this to savings in the client analysis which, given
the sparsification, needs to associate data-flow facts with fewer
CFG nodes.

D. RQ3: How does the degree of sparsification impact the
SCFG construction time and its evaluation time?

We have already informally used the term degree of spar-
sification (DoS). We define it formally as follows. Given an
input program p, M is the set of all the methods of p in

which an alias query is issued. Let m a method in M , where
CFGm is its original non-sparse CFG, and SCFGm is its
sparse SCFG. |CFGm| is the number of statements in CFGm

and |SCFGm| is the number of statements in SCFGm. DoSp

is then calculated as:

DoSp =

∑
m∈M |CFGm| − |SCFGm|∑

m∈M |CFGm|
In Section III, we made the assumption that a higher DoS

would lead to a larger decrease in runtime when solving alias
queries. To investigate this, in Figure 8, we show, for each
run, the correlation between DoS and the average time taken to
solve alias queries in these runs. The trend shows the assumed
inverse relation on a small scale. When the DoS increases, i.e.,
when more irrelevant statements are removed, it takes less
time to solve the alias queries. Accordingly, when the DoS
decreases, i.e., when it is necessary to retain a large fraction
of relevant statements, on average it takes more time to solve
the alias queries.

100 200 300 400 500 600
Average Time Spent on Solving Alias Queries for Each App

0.3

0.4

0.5

0.6

0.7

De
gr

ee
 o

f S
pa

rs
ifi

ca
tio

n

TAS
AAS

Fig. 8: Degree of sparsification (DoS) and average time spent
on solving alias queries

To further highlight the impact of the DoS, in Figure 9 we
show the relative time spent by each sparsification strategy
on constructing the SCFGs, and then solving the alias queries
over them. We observe that the assumption generally holds: in
most cases, a higher degree of sparsification shortens the alias-
query evaluation time. However, the results on apps #6, #7,

#8, #9 contradict the rule: counter-intuitively for those apps,
we see that the construction of the type-aware SCFGs actually
takes longer than the construction of the alias-aware SCFGs,
although the latter actually operates on a more detailed data
structure, the def-use chains.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20
0

20

40

60

80

100

TAS Solv.
SCFG Const.

AAS Solv.
SCFG Const.

Fig. 9: Relative Time Spent on Solving the Alias Queries and
Constructing the SCFGs by each Strategy, in %

We have preferred calculating DoS based on the number of
statements, to have a common metric that can be used by both
the pointer analysis and the sparsification approaches. While
the complexity of pointer analysis depends on the number
of edges in the CFG, the complexities of the sparsification
strategies depend on the diversity of the base types (for TAS)
and the number of POIs (for AAS).

VI. THREATS TO VALIDITY

We have used the most installed apps on androidrank.org
[38]. Among them, we have discarded the ones that did not
contain any sources or sinks that FLOWDROID could detect
with its default configuration. Further, we have ignored the
apps that caused an error for the underlying static analysis
framework, Soot. This might introduce some selection bias,
however, appears hard to avoid.

To even out noise in runtime and memory measurements,
we measured five runs and here report the average over these
five runs.

Because both the pointer and the client analysis are running
in the same process, it is very hard to attribute increases or
decreases in memory consumption to either of them, let alone
individual data structures and algorithms. We thus focus on
reporting the overall consumption.

VII. RELATED WORK

Sparsification has been applied in diverse static-analysis
settings. PINPOINT [13] is a staged sparsification approach
that uses intraprocedural data dependence to selectively solve
only the necessary interprocedural data dependence queries.
SVF [14] uses as input points-to information that is generated
by a cheap imprecise analysis, constructs value-flows which
are then used for a precise sparse analysis. Sparsification
approaches are usually specific to particular analyses, yet Oh
et al. [15] introduced a general sparsification framework that

is theoretically applicable to any analysis. Our work can be
seen as an instantiation of their framework.

Applications of sparsification have also been performed for
pointer analysis in particular. SFS [17] is a flow-sensitive
pointer-analysis approach that uses sparse def-use chains cre-
ated by a flow-insensitive analysis stage. With alias-aware
sparsification, we create def-use chains too, except in a
demand-driven manner utilizing the query information avail-
able at the analysis time. Hardekopf and Lin [18] introduced
a semi-sparse approach, where sparsification is only applied
to top-level variables. This approach could be employed as a
further, more coarse-grained sparsification strategy. SPAS [16]
is a path-sensitive sparsification approach that is applied in
stages to pointer analysis. Handling path-sensitivity is beyond
the scope of our study.

Many of the existing approaches sparsify program parts in
a pre-analysis stage, where only limited information about the
target program is available. The Sparse IFDS algorithm by
He et al. showed that further sparsification is possible when
applying sparsification on-demand and using the information
available at the runtime of the analysis. Their approach is
also demonstrated by extending FLOWDROID. Yet, a direct
comparison with their approach was not possible because
they sparsify the FLOWDROID itself whereas we sparsify
BOOMERANG. So the impact of our approach is only indirectly
reflected in FLOWDROID. FLOWDROID is multithreaded, but
BOOMERANG currently does not support multithreading, so
neither does SPARSEBOOMERANG.

VIII. CONCLUSION AND FUTURE WORK

In this work, we proposed two sparsification strategies to ac-
celerate demand-driven pointer analysis. Both strategies create
query-specific sparse CFGs by utilizing the information avail-
able at the analysis runtime. Although sparse CFG construction
takes up time, we have shown that it is negligible given the
achieved speedups. The proposed strategies soundly preserve
branching statements, further sparsification can be achieved
by identifying where branching statements themselves become
irrelevant due to the removal of other statements. The proposed
strategies have been applied to pointer analysis, but in the
future, we plan to investigate their applicability also to general
demand-driven context- and flow-sensitive data-flow analysis
problems. In this study, we presented a comparison of the two
strategies. However, in the future, we also seek to apply a
combination of both strategies.

REFERENCES

[1] G. A. Kildall, “A unified approach to global program optimization,”
ser. POPL ’73. New York, NY, USA: Association for Computing
Machinery, 1973, p. 194–206. [Online]. Available: https://doi.org/10.
1145/512927.512945

[2] N. Ayewah, W. Pugh, D. Hovemeyer, J. D. Morgenthaler, and J. Penix,
“Using static analysis to find bugs,” IEEE Software, vol. 25, no. 5, pp.
22–29, 2008.

[3] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: a static analysis tool for
detecting web application vulnerabilities,” in 2006 IEEE Symposium on
Security and Privacy (S&P’06), 2006, pp. 6 pp.–263.

https://doi.org/10.1145/512927.512945
https://doi.org/10.1145/512927.512945

[4] K. Karakaya and E. Bodden, “Sootfx: A static code feature extraction
tool for java and android,” in 2021 IEEE 21st International Working
Conference on Source Code Analysis and Manipulation (SCAM), 2021,
pp. 181–186. [Online]. Available: https://doi.org/10.1109/SCAM52516.
2021.00030

[5] M. Hind, “Pointer analysis: Haven’t we solved this problem yet?”
in Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, ser. PASTE ’01.
New York, NY, USA: Association for Computing Machinery, 2001, p.
54–61. [Online]. Available: https://doi.org/10.1145/379605.379665

[6] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’14.
New York, NY, USA: Association for Computing Machinery, 2014, p.
259–269. [Online]. Available: https://doi.org/10.1145/2594291.2594299

[7] L. Luo, E. Bodden, and J. Späth, “A qualitative analysis of android taint-
analysis results,” in 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2019, pp. 102–114.

[8] N. Heintze and O. Tardieu, “Demand-driven pointer analysis,” in
Proceedings of the ACM SIGPLAN 2001 Conference on Programming
Language Design and Implementation, ser. PLDI ’01. New York, NY,
USA: Association for Computing Machinery, 2001, p. 24–34. [Online].
Available: https://doi.org/10.1145/378795.378802

[9] O. Lhoták and L. Hendren, “Scaling java points-to analysis using
spark,” in Proceedings of the 12th International Conference on Compiler
Construction, ser. CC’03. Berlin, Heidelberg: Springer-Verlag, 2003,
p. 153–169.

[10] J. Späth, L. Nguyen Quang Do, K. Ali, and E. Bodden, “Boomerang:
Demand-driven flow-and context-sensitive pointer analysis for java,” in
30th European Conference on Object-Oriented Programming (ECOOP
2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[11] J. Späth, K. Ali, and E. Bodden, “Context-, flow-, and field-sensitive
data-flow analysis using synchronized pushdown systems,” vol. 3, no.
POPL, jan 2019. [Online]. Available: https://doi.org/10.1145/3290361

[12] T. Reps, S. Schwoon, S. Jha, and D. Melski, “Weighted pushdown
systems and their application to interprocedural dataflow analysis,”
Science of Computer Programming, vol. 58, no. 1, pp. 206–
263, 2005, special Issue on the Static Analysis Symposium 2003.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167642305000493

[13] Q. Shi, X. Xiao, R. Wu, J. Zhou, G. Fan, and C. Zhang, “Pinpoint: Fast
and precise sparse value flow analysis for million lines of code,” in
Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI 2018. New York,
NY, USA: Association for Computing Machinery, 2018, p. 693–706.
[Online]. Available: https://doi.org/10.1145/3192366.3192418

[14] Y. Sui and J. Xue, “Svf: Interprocedural static value-flow analysis in
llvm,” in Proceedings of the 25th International Conference on Compiler
Construction, ser. CC 2016. New York, NY, USA: Association
for Computing Machinery, 2016, p. 265–266. [Online]. Available:
https://doi.org/10.1145/2892208.2892235

[15] H. Oh, K. Heo, W. Lee, W. Lee, and K. Yi, “Design and implementation
of sparse global analyses for c-like languages,” in Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI ’12. New York, NY, USA: Association
for Computing Machinery, 2012, p. 229–238. [Online]. Available:
https://doi.org/10.1145/2254064.2254092

[16] Y. Sui, S. Ye, J. Xue, and P.-C. Yew, “Spas: Scalable path-sensitive
pointer analysis on full-sparse ssa,” in Programming Languages and
Systems, H. Yang, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 155–171.

[17] B. Hardekopf and C. Lin, “Flow-sensitive pointer analysis for millions
of lines of code,” in International Symposium on Code Generation and
Optimization (CGO 2011). IEEE, 2011, pp. 289–298.

[18] ——, “Semi-sparse flow-sensitive pointer analysis,” SIGPLAN Not.,
vol. 44, no. 1, p. 226–238, jan 2009. [Online]. Available: https:
//doi.org/10.1145/1594834.1480911

[19] D. He, H. Li, L. Wang, H. Meng, H. Zheng, J. Liu, S. Hu, L. Li, and
J. Xue, “Performance-boosting sparsification of the ifds algorithm with
applications to taint analysis,” in 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2019, pp. 267–
279.

[20] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural dataflow
analysis via graph reachability,” in Proceedings of the 22nd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
1995, pp. 49–61.

[21] R. Padhye and U. P. Khedker, “Interprocedural data flow analysis
in soot using value contexts,” in Proceedings of the 2nd ACM
SIGPLAN International Workshop on State Of the Art in Java
Program Analysis, ser. SOAP ’13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 31–36. [Online]. Available:
https://doi.org/10.1145/2487568.2487569

[22] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam,
E. Gagnon, and C. Godin, “Practical virtual method call resolution
for java,” in Proceedings of the 15th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
ser. OOPSLA ’00. New York, NY, USA: Association for Computing
Machinery, 2000, p. 264–280. [Online]. Available: https://doi.org/10.
1145/353171.353189

[23] “secure-software-engineering/pointerbench: A points-to and alias anal-
ysis benchmark suite,” https://github.com/secure-software-engineering/
PointerBench, (Accessed on 10/04/2022).

[24] Y. Li, T. Tan, A. Møller, and Y. Smaragdakis, “A principled approach
to selective context sensitivity for pointer analysis,” ACM Trans.
Program. Lang. Syst., vol. 42, no. 2, may 2020. [Online]. Available:
https://doi.org/10.1145/3381915

[25] S. Ye, Y. Sui, and J. Xue, “Region-based selective flow-sensitive pointer
analysis,” in Static Analysis, M. Müller-Olm and H. Seidl, Eds. Cham:
Springer International Publishing, 2014, pp. 319–336.

[26] T. Tan, Y. Li, and J. Xue, “Making k-object-sensitive pointer analysis
more precise with still k-limiting,” in Static Analysis, X. Rival, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 489–510.

[27] A. Deutsch, “Interprocedural may-alias analysis for pointers: Beyond
k-limiting,” in Proceedings of the ACM SIGPLAN 1994 Conference on
Programming Language Design and Implementation, ser. PLDI ’94.
New York, NY, USA: Association for Computing Machinery, 1994, p.
230–241. [Online]. Available: https://doi.org/10.1145/178243.178263

[28] J.-D. Choi, R. Cytron, and J. Ferrante, “Automatic construction of
sparse data flow evaluation graphs,” in Proceedings of the 18th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’91. New York, NY, USA: Association
for Computing Machinery, 1991, p. 55–66. [Online]. Available:
https://doi.org/10.1145/99583.99594

[29] J. Lerch, B. Hermann, E. Bodden, and M. Mezini, “Flowtwist: Efficient
context-sensitive inside-out taint analysis for large codebases,” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. FSE 2014. New York,
NY, USA: Association for Computing Machinery, 2014, p. 98–108.
[Online]. Available: https://doi.org/10.1145/2635868.2635878

[30] J. Wang, Y. Wu, G. Zhou, Y. Yu, Z. Guo, and Y. Xiong, “Scaling
static taint analysis to industrial soa applications: A case study at
alibaba,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2020. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1477–1486. [Online].
Available: https://doi.org/10.1145/3368089.3417059

[31] X. Zhang, X. Wang, R. Slavin, and J. Niu, “Condysta: Context-aware
dynamic supplement to static taint analysis,” in 2021 IEEE Symposium
on Security and Privacy (SP), 2021, pp. 796–812.

[32] N. A. Naeem and O. Lhotak, “Typestate-like analysis of multiple
interacting objects,” in Proceedings of the 23rd ACM SIGPLAN
Conference on Object-Oriented Programming Systems Languages and
Applications, ser. OOPSLA ’08. New York, NY, USA: Association
for Computing Machinery, 2008, p. 347–366. [Online]. Available:
https://doi.org/10.1145/1449764.1449792

[33] N. A. Naeem, O. Lhoták, and J. Rodriguez, “Practical extensions to
the ifds algorithm,” in Compiler Construction, R. Gupta, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 124–144.

[34] S. J. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay, “Effective
typestate verification in the presence of aliasing,” ACM Trans. Softw.
Eng. Methodol., vol. 17, no. 2, may 2008. [Online]. Available:
https://doi.org/10.1145/1348250.1348255

[35] “Codeshield-security/spds: Efficient and precise pointer-tracking data-
flow framework,” https://github.com/CodeShield-Security/SPDS, (Ac-
cessed on 09/22/2022).

https://doi.org/10.1109/SCAM52516.2021.00030
https://doi.org/10.1109/SCAM52516.2021.00030
https://doi.org/10.1145/379605.379665
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/378795.378802
https://doi.org/10.1145/3290361
https://www.sciencedirect.com/science/article/pii/S0167642305000493
https://www.sciencedirect.com/science/article/pii/S0167642305000493
https://doi.org/10.1145/3192366.3192418
https://doi.org/10.1145/2892208.2892235
https://doi.org/10.1145/2254064.2254092
https://doi.org/10.1145/1594834.1480911
https://doi.org/10.1145/1594834.1480911
https://doi.org/10.1145/2487568.2487569
https://doi.org/10.1145/353171.353189
https://doi.org/10.1145/353171.353189
https://github.com/secure-software-engineering/PointerBench
https://github.com/secure-software-engineering/PointerBench
https://doi.org/10.1145/3381915
https://doi.org/10.1145/178243.178263
https://doi.org/10.1145/99583.99594
https://doi.org/10.1145/2635868.2635878
https://doi.org/10.1145/3368089.3417059
https://doi.org/10.1145/1449764.1449792
https://doi.org/10.1145/1348250.1348255
https://github.com/CodeShield-Security/SPDS

[36] “secure-software-engineering/flowdroid: Flowdroid static data flow
tracker,” https://github.com/secure-software-engineering/FlowDroid,
(Accessed on 09/22/2022).

[37] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot: A java bytecode optimization framework,” in CASCON First
Decade High Impact Papers, 2010, pp. 214–224.

[38] “Free android market data, history, rankings — since 2011,” https://
www.androidrank.org/, (Accessed on 09/29/2022).

[39] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of android apps for the research community,” in
Proceedings of the 13th International Conference on Mining Software
Repositories, ser. MSR ’16. New York, NY, USA: ACM, 2016, pp. 468–
471. [Online]. Available: http://doi.acm.org/10.1145/2901739.2903508

[40] F. Wilcoxon, Individual comparisons by ranking methods. Springer,
1992.

https://github.com/secure-software-engineering/FlowDroid
https://www.androidrank.org/
https://www.androidrank.org/
http://doi.acm.org/10.1145/2901739.2903508

	Introduction
	Background
	Sparse Data-flow Analysis
	Fact-specific Sparsification using Sparse IFDS
	Demand-driven Pointer Analysis
	Boomerang

	Demand-Driven Sparsification Strategies
	Type-Aware Sparsification
	Alias-Aware Sparsification

	SparseBoomerang
	Implementation of Type-Aware Sparsification
	Implementation of Alias-aware Sparsification

	Evaluation
	Experimental Setup
	RQ1: Do the sparsification strategies cause precision loss?
	RQ2: How do the sparsification strategies impact the performance of the demand-driven pointer analysis and its client?
	RQ3: How does the degree of sparsification impact the SCFG construction time and its evaluation time?

	Threats to Validity
	Related Work
	Conclusion and Future Work
	References

