
Reducing Configurations to Monitor in a
Software Product Line

Chang Hwan Peter Kim1, Eric Bodden2, Don Batory1 and Sarfraz Khurshid1

1 Department of Computer Science and
Department of Electrical and Computer Engineering

The University of Texas at Austin, USA
{chpkim@cs, batory@cs, khurshid@ece}.utexas.edu

2 Software Technology Group
Technische Universität Darmstadt, Germany
bodden@st.informatik.tu-darmstadt.de

Abstract. A software product line is a family of programs where each
program is defined by a unique combination of features. Product lines,
like conventional programs, can be checked for safety properties through
execution monitoring. However, because a product line induces a number
of programs that is potentially exponential in the number of features, it
would be very expensive to use existing monitoring techniques: one would
have to apply those techniques to every single program. Doing so would
also be wasteful because many programs can provably never violate the
stated property. We introduce a monitoring technique dedicated to prod-
uct lines that, given a safety property, statically determines the feature
combinations that cannot possibly violate the property, thus reducing
the number of programs to monitor. Experiments show that our tech-
nique is effective, particularly for safety properties that crosscut many
optional features.

1 Introduction

A software product line (“SPL” or “product line” for short) is a family of pro-
grams where each program is defined by a unique combination of features. By
developing programs with commonalities and variabilities in a systematic way,
SPLs help reduce both the time and cost of software development [17]. Unfor-
tunately, SPLs also pose significant new challenges, as they involve reasoning
about a family of programs whose cardinality may be exponential in the number
of features.

In this paper, we consider the problem of runtime-monitoring SPLs for safety
property [16] violation. We avoid monitoring every program of an SPL by stat-
ically identifying feature combinations (i.e., programs) that provably can never
violate the stated property. These programs do not need to be monitored. Achiev-
ing this reduction is beneficial in at least two settings under which monitors are
used. First, it can significantly speed up the testing process as these programs
do not need to be run to see if the property can be violated. Second, if the

monitor is used in production, it can speed up these programs because they are
not monitored unnecessarily.

We accomplish this goal by starting with analyses that evaluate runtime
monitors at compile time for single programs [5–7]. Our work extends these
analyses by lifting them to understand features, making them aware of possible
feature combinations. A programmer applies our analysis to an SPL once at
each SPL release. The output is a bi-partitioning of feature combinations: (1)
configurations that need to be monitored because violations may occur and (2)
configurations for which no violation can happen.

To validate our work, we analyze two different Java-based SPLs. Experiments
show we can statically rule out over half of the configurations for these case stud-
ies. Further, analyzing an entire SPL is not much more expensive than applying
the earlier analyses to a single program.

To summarize, the contributions of this paper are:

– A novel static analysis to determine, for a given SPL and runtime-monitor
specification, the feature combinations (programs) that require monitoring,

– An implementation of this analysis within the Clara framework for hy-
brid typestate analysis [4], as an extension to Bodden et al.’s earlier whole-
program analysis [6], and

– Experiments that show that our analysis noticeably reduces the number of
configurations that require runtime-monitoring and thus saves testing time
and program execution time for the programs studied.

2 Motivating Example

Figure 1 shows a simple example SPL, whose programs fetch and print data.
There are different ways of representing a product line. In this paper, we use the
SysGen program representation [13], where an SPL is an ordinary Java program
whose members are annotated with the name of the introducing feature and
statements are conditionalized using feature identifiers (in a manner similar to
#ifdef).3 Local data is fetched if the Local feature is selected (blue code), local
data from a file is fetched if File is selected (yellow code) and internal contents of
data are printed if Inside is selected (green code). Each member (class, field, or
method) is annotated with a feature. In this example, every member is annotated
with Base feature, meaning that it will be present in a program only if the Base

feature is selected. A program (also referred to as a configuration or feature
combination) in SysGen is instantiated by assigning a Boolean value for each
feature and statically evaluating feature-conditionals and feature-annotations.

Every SPL has a feature model [2] that defines the legal combinations of fea-
tures. The feature model for our SPL is expressed below as a context-sensitive
grammar. Base is a required feature. Optional features (Inside, File, and
Local) are listed in brackets.

3 For presentation, we omit the class of field references in feature-conditionals and
capitalize feature identifiers.

Fig. 1. Example Product Line

Example :: [Inside] [File] [Local] Base;

Inside or File or Local;

// Implementation constraints

(Inside implies Base) and (File implies Base) and (Local implies Base);

The model further requires at least one of the optional features to be selected
(second line). In the last line, the feature model enforces additional implementa-
tion constraints that must hold for all programs in the product line to compile.
For example, File implies Base because the code of the File feature refer-
ences data (line 17, Figure 1) that belongs to Base (lines 3-5, Figure 1). A tech-
nique described elsewhere [18] can generate these implementation constraints
automatically. In total, the feature model allows seven distinct programs (eight
variations from three optional features then remove the case without any op-
tional feature).

2.1 Example Monitor Specifications: ReadPrint and HasNext

Researchers have developed a multitude of specification formalisms for defin-
ing runtime monitors. As our approach extends the Clara framework, it can
generally apply to any runtime-monitoring approach that uses AspectJ aspects
for monitoring. This includes popular systems such as JavaMOP [8] and trace-
matches [1]. For the remainder of this paper, we will use the tracematch notation

because it can express monitors concisely. Figure 2(a) shows a simple example.
ReadPrint prevents a print event after a read event is witnessed. In line 3 of
Figure 2(a), a read symbol captures all those events in the program execution,
known as joinpoints in AspectJ terminology, that are immediately before calls
to Util.read*(..). Similarly, the symbol print captures joinpoints occurring
immediately before calls to Util.print*(..). Line 6 carries the simple regular
expression “read+ print”, specifying that code body in lines 6–8 should exe-
cute whenever a print event follows one or more read events on the program’s
execution. Figure 2(b) shows a finite-state machine for this tracematch, where
symbols represent transitions.

1 aspect ReadPrint {
2 tracematch () {
3 sym read before : ca l l (∗ U t i l . read ∗ (. .)) ;
4 sym pr in t before : ca l l (∗ U t i l . p r i n t ∗ (. .)) ;
5

6 read+ p r in t {
7 throw new RuntimeException (‘ ‘ ReadPrint v i o l a t i o n ! ’ ’) ;
8 }
9 }

10 }
(a) ReadPrint Tracematch

0start 1 2
read

read

print

(b) Finite-State Machine

Fig. 2. ReadPrint Safety Property

Figure 3 shows another safety property, HasNext [6], which checks for it-
erators if next() is called twice without calling hasNext() in between. Note
that this tracematch only matches if the two next() calls bind to the same
Iterator object i, as shown in Figure 3(a), lines 2–4. When the tracematch
encounters an event matched by a declared symbol that is not part of the reg-
ular expression, such as hasNext, the tracematch discards its partial match.
Therefore, the tracematch would match a trace “next(i1) next(i1)” but not
“next(i1) hasNext(i1) next(i1)”, which is exactly what we seek to express.

A naive approach to runtime-monitoring would insert runtime monitors like
ReadPrint and HasNext into every program of a product line. However, as we
mentioned, it is often unnecessary to insert runtime monitors into some programs
because these programs provably cannot trigger the runtime monitor.

1 aspect HasNext {
2 tracematch (I t e r a t o r i) {
3 sym next before : ca l l (∗ I t e r a t o r . next ()) && target (i) ;
4 sym hasNext before : ca l l (∗ I t e r a t o r . hasNext ()) && target (i) ;
5

6 next next {
7 throw new RuntimeException (‘ ‘ HasNext v i o l a t i o n ! ’ ’) ;
8 }
9 }

10 }
(a) HasNext Tracematch

0start 1 2

next

hasNext

next

(b) Finite-state machine

Fig. 3. HasNext Safety Property [6]

2.2 Analysis by Example

Our goal is to statically determine the feature configurations to monitor, or con-
versely the configurations that cannot trigger the monitor. For our running exam-
ple, let us first deduce these configurations by hand. For ReadPrint, both read

and print symbols have to match, meaning that File (which calls read(..) in
line 17) and Base (which calls print*(..) in lines 29 and 30) have to be present
for the monitor to trigger. Also, Local needs to be present because it enables
File’s code to be reached. Therefore, the ReadPrint monitor has to be inserted
if and only if these three features are present, which only holds for two out of
the seven original configurations.

We represent the condition under which a monitor has to be inserted by treat-
ing a monitor, e.g. ReadPrint, as a feature itself and constructing its presence
condition: ReadPrint iff (File and Local and Base). Similarly, the moni-
tor for HasNext only has to be inserted iff Iterator.next() can be called, i.e.,
on the four configurations with Inside and Base present. The presence condition
for HasNext is HasNext iff (Inside and Base). The goal of our technique is
to extend the original feature model so that tracematch monitors are now fea-
tures and the tracematch presence conditions are part of the revised feature
model (the extension is shown in italics):

// ReadPrint and HasNext are now features themselves

Example :: [ReadPrint] [HasNext] [Inside] [File] [Local] Base;

// Implementation constraints

(Inside implies Base) and (File implies Base) and (Local implies Base);

// Tracematch presence conditions

ReadPrint iff (File and Local and Base);

HasNext iff (Inside and Base);

Note that, although a tracematch is itself a feature which can be selected or
not, it is different from other features in that its selection status is determined
not by the user, but instead by the presence or absence of other features.

2.3 The Need for a Dedicated Static Analysis for Product Lines

As mentioned earlier, there exist static analyses that improve the runtime per-
formance of a monitor by reducing its instrumentation of a single program [5–7].
We will refer to these analyses as traditional program analyses (TPA). There
are two ways to apply such analyses to product lines. One way is inefficient, the
other way imprecise. Running TPA against each instantiated program will be
very inefficient because it will have to inspect every program of the product line
separately. The other way is to run TPA against the product line itself. This
is possible because a product line in a SysGen program representation can be
treated as an ordinary program (recall that a SysGen program uses ordinary
program constructs like if-conditionals, rather than pre-processor constructs like
#ifdefs, to represent variability). However, this second way will be imprecise.
For example, suppose we apply TPA on the ReadPrint and HasNext trace-
matches for our example SysGen program: both tracematches may match in the
case in which all features are enabled. Being oblivious to the notion of features,
the analysis will therefore report that the tracematches have to be present for
every program of the product line. This shows that a static analysis, to be both
efficient and effective on an SPL, has to be aware of the SPL’s features.

3 Product Line Aware Static Analysis

Figure 4 displays an overview of our approach. First, for a tracematch, our anal-
ysis determines the symbols required for the tracematch to trigger (“Determine
Required Symbols”). For each of these symbols, we use the aspect weaver to
identify the statements that are matched (“Determine Symbol-To-Shadows”).
We elaborate on these two steps in Section 3.1. Then, for each of the matched
statements, we determine the feature combinations that allow the statement to
be reachable from the program’s main() method. This results in a set of presence
conditions. We combine all these conditions to form the presence condition of
the tracematch. We repeat the process for each tracematch (“Determine Pres-
ence Conditions”) and add the tracematches and their presence conditions to
the original feature model (“+”). We explain these steps in Section 3.2.

3.1 Required Symbols and Shadows

A safety property must be monitored for a feature configuration c if the code
in c may drive the finite-state monitor from its initial state to its final (error)
state. In earlier work [6], Bodden et al. described three different algorithms
that try to determine, with increasing levels of detail, whether a single program
can drive a monitor into an error state, and using which transition statements.

Fig. 4. Overview of Our Technique

The first, called Quick Check , rules out a tracematch if the program does not
contain transition statements required to reach the final automaton state. The
second, called Consistent-Variables Analysis, performs a similar check on every
consistent variable-to-object binding. The third, called Active-Shadows Analysis,
is flow-sensitive and rules out a tracematch if the program cannot execute its
transition statements in a property-violating order.

In this paper, we limit ourselves to extending the Quick Check to SPLs. The
Quick Check has the advantage that, as the name suggests, it executes quickly.
Nevertheless, our results show that even this relatively pragmatic analysis ap-
proach can noticeably reduce the number of configurations that require monitor-
ing. It should be possible to extend our work to the other analyses that Bodden
et al. proposed, but doing so would not fundamentally alter our technique.

Required Symbols A symbol represents a set of transition statements with
the same label. Given a tracematch, we determine the required symbols, i.e.,
the symbols required to reach the error state, by fixing one symbol s at a time
and checking whether removing all automaton edges labeled with s prevents
the final state from being reached. For any given program p, if there exists a
required symbol s for which p contains no s-transition, then p does not have
to be monitored. For the ReadPrint property, the symbols read and print are
required because without one of these, the final state in Figure 2(b) cannot be
reached. For the HasNext property, only the symbol next is required. This is
because one can reach the final state without seeing a hasNext-transition. If
a tracematch has no required symbol, e.g. a|b (either symbol will trigger the
monitor, meaning that neither is required), it has to be inserted in all programs
of the product line.4

4 In practice, such a tracematch will be rare because the regular expression is generally
used to express a sequence of events (meaning one of the symbols will be required),
rather than a disjunction of events, which is typically expressed through a pointcut.

Symbol-to-Shadows For each required symbol, we determine its joinpoint
shadows (shadows for short), i.e., all program statements that may cause events
that the symbol matches. We implemented our analysis as an extension of the
Clara framework. Clara executes all analyses right after the advice-matching
and weaving process has completed. Executing the analysis after weaving has the
advantage that the analysis can take the effects of all aspects into account. This
allows us to even handle cases correctly in which a monitoring aspect itself would
accidentally trigger a property violation. A re-weaving analysis has access to the
weaver, which in turn gives detailed information about all joinpoint shadows.

In the ReadPrint tracematch, the read symbol’s only shadow is the read-

("secret.txt") call in line 17 of Figure 1 and the print symbol’s shadows are
the calls printHeader() in line 29 and print(p.data) call in line 30. For the
HasNext tracematch, the next symbol’s shadows are the next() calls in lines 50
and 51, and the hasNext symbol’s only shadow is the hasNext() call in line 49.

3.2 Presence Conditions

A tracematch monitor must be inserted into a configuration when each of the
tracematch’s required symbols is present in the configuration. The presence con-
dition (PC) of a tracematch is thus the conjunction of the presence condition
of each of its required symbols. In turn, a symbol is present if any one of its
shadows is present. Thus, the PC of a symbol is the disjunction of the PC of
each of its shadows. The PC of a shadow is the conjunction of features that
are needed for that shadow to appear in an SPL program. A first attempt to
computing the PC of a tracematch is therefore:

tracematch iff (pc(reqdSymbol_1) and ... and pc(reqdSymbol_n))

pc(symbol_i) = pc(shadow_i1) or ... or pc(shadow_im)

pc(shadow_j) = feature_j1 and ... and feature_jk

For example, Figure 5 shows how we determine the PC of the ReadPrint

tracematch. The required symbols of this tracematch are read and print. read
has one shadow in line 17 of Figure 1 and print has two shadows in lines 29
and 30. For the shadow in line 17 to be syntactically present in a program, the
if(FILE) conditional in line 16 must be true and the fetchLocal() method
definition (annotated with BASE in line 14) must be present. That is, pc(line17)
= [File and Base]. Similarly, pc(line29) and pc(line30) are each expanded
into [Base] because each of the shadows just requires BASE, which introduces
the Program class and its main-method definition.

ReadPrint iff (pc(read) and pc(print))

ReadPrint iff ((pc(line17)) and (pc(line29) or pc(line30)))

ReadPrint iff (([File and Base]) and ([Base] or [Base]))

ReadPrint iff (File and Base)

Fig. 5. Computing ReadPrint’s Presence Condition

The solution in Figure 5 is imprecise in that it allows configurations where
a shadow is syntactically present, but not necessarily reachable from the main

method. For example, according to the algorithm, the read(..) shadow (line 17)
is “present” in configurations {Base=true, Local=false, File=true, Inside=-
DONT CARE} even though it is not reachable from main due to Local being turned
off. Based on this observation, the algorithm that we implemented can take
into account the shadow’s callers in addition to its syntactic containers. The
algorithm therefore conjoins a shadow’s imprecise PC with the disjunction of
precise PC of each of its callers, recursively. For the line 17 shadow, which is
called by line 10, which is in turn called by line 28, this precise algorithm would
return:

pc(line17) = [enclosingFeatures and (pc(caller1) or ... or pc(caller_m))]

= [enclosingFeatures and (pc(line10))]

= [enclosingFeatures and

(enclosingFeaturesLine10 and (pc(line28)))]

= [File and Base and (Local and Base and (Base))]

= File and Local and Base

Substituting this in Figure 5, we get ReadPrint iff (File and Local and

Base), which is optimal for our example and, as mentioned in Section 2.2, is
what we set out to construct. Similarly, HasNext’s presence condition is:

HasNext iff (pc(next))

HasNext iff (pc(line50) or pc(line51))

HasNext iff ([Inside and Base and (Base)] or [Inside and Base and (Base)])

HasNext iff (Inside and Base)

Note that, even though HasNext is more localized than ReadPrint, i.e., in
one optional feature (Inside) as opposed to two optional features (File and
Local), it is required in more configurations (4 out of 7) than ReadPrint (2 out
of 7).5 This is because the feature model allows fewer configurations with both
Local=true and File=true than configurations with just Inside=true.

There may be shadows that can only be reached through a cyclic edge in a
call-graph. Rather than including the features controlling the cyclic edge in the
presence condition of such a shadow, for simplicity, we ignore the cyclic edge.
This is not optimally precise but sound. For example, Util.read(..) call in
Figure 6 is actually only present in an execution if the execution traverses the
cyclic edge from c() to a(), which is possible only if X=true. Instead of adding
this constraint on X to the presence condition of Util.read(..), we simply
insert the monitor for both values of X.

3.3 Precision on a Pay-As-You-Go Basis

While considering the callers of a shadow makes its presence condition more
precise, doing so is entirely optional for the following reason: without considering
the callers, a shadow will simply be considered to exist both when a caller is

5 Base is a required feature according to the feature model.

Fig. 6. Example of Computing a Presence Condition with Cycles in the Call-Graph

present and when a caller is not present, which will insert a monitor even if a
required symbol’s shadow cannot be reached. For example, it would be sound,
although not optimally precise, to return the imprecise presence condition of
the shadow at line 17. But users of our approach can even go beyond that.
Our analysis is pessimistic, i.e., starts from a sound but imprecise answer that
ignores the call graph and then gradually refines the answer by inspecting the
call graph. Therefore, our analysis can report a sound intermediate result at any
time and after a certain number of call sites have been considered, we can simply
stop going farther in the call-graph, trading precision for less computation time
and resources. Being able to choose the degree of precision is useful especially
because the call graph can be very large, which can make computing the presence
condition expensive both time-wise and memory-wise. Our technique works with
any kind of call graph. In our evaluation, we found that even simple context-
insensitive call graphs constructed from Spark [14] are sufficient.

4 Evaluation

We implemented our analysis as an extension of the Clara framework for hy-
brid typestate analysis [4] and evaluated it on the following SPLs: Graph Product
Line (GPL), a set of programs that implement different graph algorithms [15]
and Notepad , a Java Swing application with functionality similar to Windows
Notepad. We considered three safety properties for each SPL. For each property,
we report the number of configurations on which the property has to be moni-
tored and the time taken (duration) to derive the tracematch presence condition.
We ran our tool on a Windows 7 machine with Intel Core2 Duo CPU with 2.2
GHz and 1024 MB as the maximum heap size.

Note that, although the product lines were created in-house, they were cre-
ated long before this paper was conceived (GPL over 5 years ago and Notepad
2 years ago). Our tool, the examined product lines and monitors, as well as the
detailed evaluation results are available for download [12].

4.1 Case Studies

Graph Product Line (GPL) Table 1 shows the results for GPL, which has
1713 LOC with 17 features and 156 configurations. The features vary algorithms
and structures of the graph (e.g. directed/undirected and weighted/unweighted).

Table 1. Graph Product Line (GPL) Results

Lines of code 1713
No. of features 17

No. of configurations 156
DisplayCheck

No. of configurations 55 (35%)
Duration 69.4 sec. (1.2 min.)

SearchCheck
No. of configurations 46 (29%)

Duration 110.2 sec. (1.8 min.)
KruskalCheck

No. of configurations 13 (8%)
Duration 69.8 sec. (1.2 min.)

The DisplayCheck safety property checks if the method for displaying a
vertex is called outside of the control flow of the method for displaying a graph:
a behavioral API violation. Instead of monitoring all 156 configurations, our
analysis reveals that only 55 configurations, or 35% of 156, need monitoring.
The analysis took 1.2 minutes to complete. The tracematch presence condition
that represents these configurations is available on our website [12].

SearchCheck checks if the search method is called without first calling the
initialize method on a vertex, which would make the search erroneous. Our
analysis shows that only 29% of the 156 configurations need monitoring. The
analysis took 1.8 minutes to complete.

KruskalCheck checks if the method that runs the Kruskal’s algorithm returns
an object that was not created in the control-flow of the method, which would
mean that the algorithm is not functioning correctly. In 1.2 minutes, our analysis
showed that only 8% of the GPL product line needs monitoring.

Notepad Table 2 shows the results for Notepad, which has 2074 LOC with
25 features and 144 configurations. Variations arise from permuting end-user
features, such as saving/opening files, printing, and user interface support (e.g.
menu bar or tool bar). The analysis, for all safety properties, takes notably
longer than that for GPL because Notepad uses the Java Swing framework,
which heavily uses call-back methods that increase by large amounts the size of
the call graph that our analysis needs to construct and to consider.

PersistenceCheck checks if java.io.File* objects are created outside of
persistence-related functions, which should not happen. Our analysis completes
in 4.9 minutes, reducing the configurations to monitor by 50%.

Table 2. Notepad Results

Lines of code 2074
No. of features 25

No. of configurations 144
PersistenceCheck

No. of configurations 72 (50%)
Duration 296.3 sec. (4.9 min.)

CopyPasteCheck
No. of configurations 64 (44%)

Duration 259.9 sec. (4.3 min.)
UndoRedoCheck

No. of configurations 32 (22%)
Duration 279.8 sec. (4.7 min.)

CopyPasteCheck checks if a paste can be performed without first performing
a copy, an obvious error with the product line. The analysis completes in 4.3
minutes, reducing the configurations to monitor to 44% of the original number.

UndoRedoCheck checks if a redo can be performed without first performing
an undo. The analysis takes 4.7 minutes and reduces the configurations to 22%.

4.2 Discussion

Cost-Benefit Analysis. As the Duration row for each product-line/tracematch
pair shows, our analysis introduces a small cost. Most of the duration is from
the weaving that is required to determine the required shadows and from con-
structing the inter-procedural call-graph that we then traverse to determine the
presence conditions. Usually, monitors are used in testing. Then, the one-time
cost of our analysis is worth incurring if it is less than the time it takes to
test-run each saved configuration with complete path coverage (complete path
coverage is required to see if a monitor can be triggered). Consider Notepad and
PersistenceCheck pair, for which our technique is least effective as it takes the
longest time, 4.1 seconds, per saved configuration (144-72=72 configurations are
saved in 296.3 seconds of analysis time). The only way our technique would not
be worth employing is if one could test-run a configuration of Notepad with com-
plete path coverage in less than 4.1 seconds. Executing such a test-run within
this time frame is unrealistic, especially in a UI-driven application like Notepad.

In another scenario where a monitor is used in production, our analysis allows
developers to shift runtime-overhead that would incur on deployed systems to a
development-time overhead that incurs through our static analysis.

Ideal (Product Line, Tracematch) Pairs. Our technique works best for
pairs where the tracematch can only be triggered on few configurations of the
product line. Ideally, a tracematch would crosscut many optional features or
touch one feature that is present in very few configurations. This is evident
in the running example, where the saving for ReadPrint, which requires two
optional features, is greater than that for HasNext, which requires one optional
feature. It is also evident in the case studies, where KruskalCheck and Undo-

RedoCheck, which are localized in a small number of features but requires other

features due to the feature model, see better saving than their counterparts.
Without any constraint, a tracematch requiring x optional features needs to
be inserted on 1/(2x) of the configurations (PersistenceCheck requires one
optional feature, hence the 50% reduction). A general safety property, such as
one involving library data structures and algorithms, is likely to be applicable
to many configurations of a product line (if a required feature uses it, then it
must be inserted in all configurations) and thus may not enable our technique to
eliminate many configurations. On the other hand, a safety property crosscutting
many optional features makes an ideal candidate.

5 Related Work

Statically Evaluating Monitors. Our work is most closely related to [6].
As mentioned in Section 2.3, this traditional static analysis is not suitable for
product lines because it is oblivious to features. As mentioned in Section 3.1,
the traditional static analysis proposes three stages of precision. Although we
took only the first stage and extended it, there is no reason why the other stages
cannot be extended in a similar fashion. Whether further optimization should
be performed after running our technique remains an open question. Namely,
it may be possible to take a configuration or a program that our technique has
determined to require a monitor and apply the traditional program analysis on it,
which could yield optimizations that were not possible in the SysGen program.

Testing Product Lines. The idea of reducing configurations for product
line monitoring originated from our work on product line testing [13], which finds
“sandboxed” features, i.e. features that do not modify other features’ control-flow
or data-flow, and treats such features as don’t-cares to determine configurations
that are identical from the test’s perspective. But the two works are different
both in setting and technique. In setting, in [13], only one of the identical config-
urations needs to be tested. In this paper, even if a hundred configurations are
identical in the way they trigger a monitor (e.g. through the same feature), all
hundred configurations need to be monitored because all hundred can be used
by the end-user. In testing mode, it would be possible to run just one of the
hundred configurations if our technique could determine that the configurations
are identical in the way they trigger the monitor. However, this would require a
considerably more sophisticated analysis and is beyond the scope of this paper.
In technique, the static analysis employed in [13] is not suitable for our work be-
cause a sandboxed feature can still violate safety properties and cause a monitor
to trigger. Thus the two works are complementary.

Model-Checking Product Lines. Works in model-checking product lines
[9, 10] are similar in intent to ours: using these techniques, programmers can
apply model checking to a product line as a whole, instead of applying it to
each program of the product line. In the common case, these approaches yield
a far smaller complexity and therefore have the potential for speeding up the
model-checking process. However, these approaches do not model-check concrete
product lines. Instead, they assume a given abstraction, such as a transition sys-

tem, of a product line. Because our technique works on SysGen and Java, we need
to consider issues specific to Java such as the identification of relevant events,
the weaving of the runtime monitor and the static computation of points-to
information. Also, model-checking answers a different question than our analy-
sis: model-checking a product line can only report the configurations that may
violate the given temporal property. Our analysis further reports a subset of
instrumentation points (joinpoint shadows) that can, in combination, lead up to
such a violation. As we showed in previous work [3], identifying such shadows
requires more sophisticated algorithms than those that only focus on violation
detection.

Safe Composition. [18, 11] collect implementation constraints in a product
line that ensure that every feature combination is compilable or type-safe. Our
work can be seen as a variant of safe composition, where a tracematch is treated
as a feature itself that “references” its shadows in the product line and requires
features that allow those shadows to be reached. However, our analysis checks a
much stronger property, i.e. reachability to the shadows, than syntactic presence
checked by the existing safe composition techniques. Also, collecting the refer-
ential dependencies is much more involved in our technique because it requires
evaluating pointcuts that can have wildcards and control-flow constraints.

Relying on Domain Knowledge. Finally, rather than relying on static
analysis, users can come up with a tracematch’s presence condition themselves
if they are confident about their understanding of the product line and the trace-
match pair. However, this approach is highly error-prone as even a slight mistake
in the presence condition can cause configurations that must be monitored to
end up not being monitored. Also, our approach promotes separation of concerns
by allowing a safety property to be specified independently of the product line
variability.

6 Conclusion

A product line enables the systematic development of a large number of related
programs. It also introduces the challenge of analyzing families of related pro-
grams, whose cardinality can be exponential in the number of features. For safety
properties that are enforced through an execution monitor, conventional wisdom
tells us that every configuration must be monitored. In this paper, we presented a
static analysis that minimizes the configurations on which an execution monitor
must be inserted. The analysis determines the required instrumentation points
and determines the feature combinations that allow those points to be reachable.
The execution monitor is inserted only on such feature combinations. Experi-
ments show that our analysis is effective (often eliminating over one half of all
possible configurations) and that it incurs a small overhead.

As the importance of product lines grows, so too will the importance of
analyzing and testing product lines, especially in a world where reliability and
security are its first and foremost priorities. This paper takes one of the many
steps needed to make analysis and testing of product lines an effective technology.

Acknowledgement. The work of Kim and Batory was supported by the
NSF’s Science of Design Project CCF 0724979 and NSERC Postgraduate Schol-
arship. The work of Bodden was supported by CASED (www.cased.de). The
work of Khurshid was supported by NSF CCF-0845628 and IIS-0438967.

References

1. C. Allan, P. Avgustinov, A. S. Christensen, L. J. Hendren, S. Kuzins, O. Lhoták,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Adding trace matching
with free variables to aspectj. In OOPSLA, pages 345–364, 2005.

2. D. Batory. Feature models, grammars, and propositional formulas. Technical
Report TR-05-14, University of Texas at Austin, Texas, Mar. 2005.

3. E. Bodden. Efficient Hybrid Typestate Analysis by Determining Continuation-
Equivalent States. In ICSE 2010. ACM Press.

4. E. Bodden. Clara: a framework for implementing hybrid typestate analyses. Tech-
nical Report Clara-2. Available from http://www.bodden.de/pubs/tr-clara-2.pdf,
2009.

5. E. Bodden, F. Chen, and G. Rosu. Dependent advice: a general approach to
optimizing history-based aspects. In AOSD 2009. ACM.

6. E. Bodden, L. J. Hendren, and O. Lhoták. A staged static program analysis to
improve the performance of runtime monitoring. In ECOOP 2007.

7. E. Bodden, P. Lam, and L. Hendren. Finding programming errors earlier by eval-
uating runtime monitors ahead-of-time. In SIGSOFT 2008/FSE-16. ACM.

8. F. Chen and G. Roşu. MOP: an efficient and generic runtime verification frame-
work. In OOPSLA 2007, pages 569–588. ACM Press.

9. A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin. Model
checking lots of systems: Efficient verification of temporal properties in software
product lines. In ICSE 2010. IEEE.

10. A. Gruler, M. Leucker, and K. Scheidemann. Modeling and model checking soft-
ware product lines. In FMOODS 2008, pages 113–131. Springer-Verlag.

11. C. Kästner and S. Apel. Type-checking software product lines - a formal approach.
In Automated Software Engineering (ASE), 2008.

12. C. H. P. Kim. Reducing Configurations to Monitor in a Software Product
Line: Tool and Results. Available from http://userweb.cs.utexas.edu/~chpkim/

splmonitoring, 2010.
13. C. H. P. Kim, D. Batory, and S. Khurshid. Reducing Combinatorics in

Product Line Testing. Technical Report TR-10-02, University of Texas at
Austin, January 2010. Available from http://userweb.cs.utexas.edu/~chpkim/

chpkim-productline-testing.pdf.
14. O. Lhoták and L. Hendren. Scaling Java points-to analysis using Spark. In Com-

piler Construction, volume 2622 of LNCS, pages 153–169. Springer, 2003.
15. R. E. Lopez-herrejon and D. Batory. A standard problem for evaluating product-

line methodologies. In Proc. 2001 Conf. Generative and Component-Based Soft-
ware Eng, pages 10–24. Springer, 2001.

16. F. B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur.,
3(1):30–50, 2000.

17. Software Engineering Institute, CMU. Software product lines. http://www.sei.

cmu.edu/productlines/.
18. S. Thaker, D. S. Batory, D. Kitchin, and W. R. Cook. Safe composition of product

lines. In C. Consel and J. L. Lawall, editors, GPCE, pages 95–104. ACM, 2007.

