Scenario-based Specification of Security Protocols and
Transformation to Security Model Checkers

Thorsten Koch
thorsten.koch@iem.fraunhofer.de
Fraunhofer IEM, Germany

Jorg Holtmann
joerg.holtmann@iem.fraunhofer.de
Fraunhofer IEM, Germany

ABSTRACT

Security protocols ensure secure communication between and within
systems such as internet services, factories, and smartphones. As ev-
idenced by numerous successful attacks against popular protocols
such as TLS, designing protocols securely is a tedious and error-
prone task. Model checkers greatly aid protocol verification, yet any
single model checker is oftentimes insufficient to check a protocol’s
security in full. Instead, engineers are forced to maintain multiple
overlapping and hopefully non-contradicting and non-diverging
specifications, one per model-checking tool—an error-prone task.

To address this problem, this paper presents VICE, a scenario-
based approach to security-protocol verification. It provides a visual
modeling language based for specifying security protocols inde-
pendent of the model checker. It then automatically transforms
the relevant fragments of these models into equivalent inputs to
multiple model checkers. In result, VICE completely relieves the
security engineer from choosing and specifying queries via a fully
automatic generation of all necessary queries.

Through a case study involving real-world specifications of eight
security protocols, we show that VICE is applicable in practice.

CCS CONCEPTS

« Security and privacy — Cryptography; « Software and its en-
gineering — Software notations and tools; Software verification and
validation.

KEYWORDS

security protocols, verification, model transformation

ACM Reference Format:

Thorsten Koch, Stefan Dziwok, Jérg Holtmann, and Eric Bodden. 2020.
Scenario-based Specification of Security Protocols and Transformation to
Security Model Checkers. In ACM/IEEE 23rd International Conference on
Model Driven Engineering Languages and Systems (MODELS ’20), October
18-23, 2020, Virtual Event, Canada. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3365438.3410946

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MODELS °20, October 18-23, 2020, Virtual Event, Canada

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7019-6/20/10...$15.00
https://doi.org/10.1145/3365438.3410946

Stefan Dziwok
stefan.dziwok@iem.fraunhofer.de
Fraunhofer IEM, Germany

Eric Bodden
eric.bodden@upb.de
Paderborn University and Fraunhofer IEM, Germany

1 INTRODUCTION

In 2019, the World Economic Forum [37] identified software secu-
rity as the greatest technological risk for the world’s population
because software-intensive systems such as internet services, fac-
tories, and smartphones process critical data and provide critical
services. Furthermore, BUCCHIARONE ET AL. [7] classify security
as one of the grand challenges in the field of model-driven engi-
neering. Especially the message-based communication within and
between the systems mentioned above is highly vulnerable to man-
in-the-middle attacks, which can cause great damage. To counter
this risk, security protocols [5] can ensure the security within com-
munication networks by executing security-related functions and
applying cryptographic methods. Here, it is of absolute importance
that the protocols are correctly designed and specified. However,
designing and specifying such protocols is an error-prone task, due
to the complex security requirements and their dependencies on the
attacker model [5, 13]. As a consequence, many flaws of security
protocols were only discovered after years of productive usage, e.g.,
it took 17 years to identify a critical flaw in the Needham-Schroeder
Public-Key protocol [24].

Nowadays, to analyze whether a security protocol is correct
concerning security properties such as confidentiality and authen-
tication, security engineers typically use model checkers such as
ProVerif [5], ProVerif-ATP [13], and Tamarin [26]. This, however,
is not without limitations. For instance, model checking a security
protocol is NP-complete for a bounded number of sessions and
even undecidable if that number is unbounded [5, 10]. To deal with
this problem, the various model checkers make varying approx-
imations, which results in various analysis limitations. For this
and similar reasons, a thorough verification of a security protocol
typically requires multiple model checkers with different analysis
capabilities.

While specifying and analyzing security protocols using (mul-
tiple) model checkers, we identified two challenges that lead to
inefficient development and critical security flaws if they are in-
sufficiently handled: (1) All model checkers have their own textual
modeling and query languages, which are typically fundamentally
different from one another. Moreover, each single input language
requires the security engineer to have deep knowledge and expe-
rience. However, as stated above, the security engineer has to use
multiple model checkers for a thorough analysis and, thus has to
re-model the security protocol including its queries in the other
languages repeated times. This is time-consuming and error-prone.
Moreover, in our experience, the textual input languages of these

https://doi.org/10.1145/3365438.3410946
https://doi.org/10.1145/3365438.3410946

MODELS ’20, October 18-23, 2020, Virtual Event, Canada

model checkers are generally rather hard to comprehend, which
adds an additional burden to the engineer. (2) Choosing the set of
queries that the model checker must verify is highly important, as
the query results ultimately decide whether the protocol is accepted
as secure. If important queries are missing, or are specified incor-
rectly, existing mistakes may remain undetected in the security
protocol and may lead to critical security flaws. In existing models,
the knowledge to choose and specify this set of queries is typically
hidden, distributed over several papers and websites, or within the
brains of experts. Therefore, it is not easily accessible for a common
security engineer.

Related work only marginally addresses these challenges. FANG
ET AL. [15] provide an extension for Unified Modeling Language
(UML) Interactions [30] to model security protocols and analyze
them by means of ProVerif. However, their modeling and query
language is very ProVerif-specific. As a consequence, the security
engineer still has to learn the ProVerif modeling and query language.
Other model checkers are not supported and their support would
require significant changes to the modeling language. Moreover, the
security engineer receives no support for choosing the sufficient set
of queries. AMEUR-BOULIFA ET AL. [4] present a modeling approach
based on the Systems Modeling Language (SysML) [29] with the
goal of enabling the specification of security and safety aspects
using SysML State Machines including security protocols and their
queries. For the security analysis, they translate their models to
ProVerif and generate queries concerning the confidentiality of the
protocol. However, they only support ProVerif as the single model
checker for security protocols. In addition, they do not generate all
sufficient queries concerning the authenticity of the protocol. Fi-
nally, scenario-based models are more appropriate than state-based
models for the specification of requirements on message-based in-
teractions in terms of efficient comprehensibility [22]. Particularly,
scenario-based notations have an intuitive representation [18] and
improve the comprehension of interaction requirements for people
experienced in modeling [3].

This paper presents VICE (VIsual Cryptography vErifier), a
scenario-based approach to security protocol verification that is
model-checker independent. VICE fully solves the two challenges
mentioned above: (1) It extends the UML-compliant modeling lan-
guage Modal Sequence Diagrams (MSDs) [17] to enable the vi-
sual and scenario-based specification of security primitives and
protocols—independently of a specific model checker and compre-
hensible for software engineers knowing the UML. (2) It further
provides a generic model transformation concept to transform secu-
rity protocols defined as a sequence diagram into a model checker
suited for these protocols. We illustrate this using our extended
MSDs and the two model checkers ProVerif and ProVerif-ATP. (3)
VICE encapsulates the knowledge formerly hidden within models,
documents, and experts to specify and choose the necessary set of
queries that the model checker shall verify to decide whether the
protocol is secure w.r.t. confidentiality and authentication. VICE
realizes this by an automatic generation of all necessary queries
from the specified sequence diagram model.

To evaluate VICE, we conduct a case study using eight differ-
ent security protocols from SPORE (the security protocols open
repository)[9] —among others—using the Needham-Schroeder Public-
Key protocol, which we also use as a running example. Within our

T. Koch et al.

case study, we show that VICE is applicable and useful in practice. In
particular, it significantly reduces the effort to specify and analyze
a security protocol, reduce the possibility of (critical) security flaws,
and makes these tasks more accessible for non-security experts.

The remainder of the paper is structured as follows. We next
introduce the fundamentals of this paper. Then, Section 3 presents
our language extension to MSDs. Afterward, Section 4 introduces
our transformation approach VICE. In Section 5, we conduct a case
study to evaluate VICE. Section 6 covers related work. Finally, Sec-
tion 7 concludes this paper with a summary and an outlook on
future work.

2 FOUNDATIONS

We introduce the required foundations for the understanding of this
paper. First, Section 2.1 presents basic concepts about the two secu-
rity model checker ProVerif and ProVerif-ATP. Finally, Section 2.2
introduces Modal Sequence Diagrams.

2.1 ProVerif

ProVerif is an automated model checker for the verification of
security protocols presented by BLANCHET ET AL. [5, 6] that is able to
prove security properties such as confidentiality and authentication
under the perfect encryption assumption. Under this assumption,
encryption schemes are considered as black boxes and it is assumed
that an adversary cannot learn anything from an encrypted message
except if he has the corresponding key [5, 10].

ProVerif takes as input a plain text model of a security protocol
specified by means of the applied pi calculus [1, 2]. This model is
automatically translated into an internal presentation to execute
the analysis and to verify if the desired security properties hold.
If they do not hold, ProVerif tries to construct a counterexample
encompassing a trace that falsifies the security properties.

2.1.1 Structure of a ProVerif model. We explain the three differ-
ent parts of a ProVerif input model using the Needham-Schroeder
Public-Key protocol [24]. The security protocol enables mutual au-
thentication between participants. For this purpose, the security
protocol relies on a trusted key server, which stores and distributes
the public keys of all participants. Due to space limitations, we
use only extracts from the ProVerif specification and refer to [6,
Chapter 5] for the complete specification.

The first part of a ProVerif input model defines terms, e.g., func-
tions and variables, used within the security protocols. Functions,
denoted by the keywords fun and reduc, are used to specify crypto-
graphic primitives. Since all cryptographic primitives are treated
as black boxes, functions only specify the signature but not the
behavior.

For example, in Listing 1, the function fun aEnc specifies asym-
metric encryption and takes as input an argument of type bitstring
and an argument of type publicKey and returns a bitstring. The
asymmetric decryption is specified by the function reduc aDec in
Listing 1.

Variables are used to describe communication channels (e.g., free
c: channel in line 1 of Listing 2) or other terms that are shared by
every participant (e.g., free client : host in line 4 of Listing 2). Vari-
ables are typed either by means of predefined types (e.g., channel
in line 1 of Listing 2) or by means of user-defined types (e.g., host

0NN U R W N -

W N =

[N B S N O

Scenario-based Specification of Security Protocols and Transformation to Security Model Checkers

MODELS ’20, October 18-23, 2020, Virtual Event, Canada

type privateKey.

type publicKey.

fun genPubKey(privateKey): publicKey.

fun aEnc(bitstring, publicKey): bitstring.

reduc forall m: bitstring, k: privateKey;
aDec (aEnc(m, genPubKey(k)), k) = m.

Listing 1: ProVerif Declarations for Asymmetric Encryption

in line 3 of Listing 2). Functions and variables are by default public,
and thus accessible by the attacker. If this is not intended they can
be declared as private.

free ¢ : channel.
type host.

free client : host.
free server : host.

Listing 2: ProVerif Declarations for Channels and Variables

The second part of a ProVerif input model defines the behavior
of participants of the security protocol by so-called sub-processes
(denoted by the keyword let). The behavior described within a
sub-process encompasses the declaration of variables (e.g., new
nonce : bitstring in line 13 of Listing 3), the sending and receiving
of messages over a communication channel (e.g., out(c, (client,
server)); in line 5 of Listing 3 and in(c, msg : bitstring); in line 7 of
Listing 3) as well as the conditional execution of a sub-process.

let processClient(

cPrivateKey : privateKey, cPublicKey : publicKey
)=

out(c, (client, server));

in(c, message : bitstring);

let(sPublicKey : publicKey, =server)

= aDec(message, cPrivateKey) in

new nonce: bitstring;

out(c, akEnc((client, server), sPublicKey));

Listing 3: Example for a ProVerif sub-process

Finally, the third part of a ProVerif input model defines the main
process, denoted by the keyword process. The main process is
the entry point of the security protocol. It can reference any sub-
process. Listing 4 depicts an excerpt of the main process of the
Needham-Schroeder Public-Key protocol. In lines 9 - 11 of the main
process, two sub-processes are instantiated to be run in parallel
(denoted by |) in an unbounded number of sessions (denoted by !).

2.1.2 Security properties. ProVerif is able to prove reachability
properties and so-called correspondence assertions, among other
things. In this section, we introduce the specification of queries to
enable the analysis.

Confidentiality. ProVerif is able to prove reachability properties,
and thus allows the investigation of which terms are kept secret and
which are available to an attacker during the execution of security
protocol. To analyze the confidentiality of a term M, a query of the
form query attack(M) is included in the ProVerif input model [6].

1
2
3
4
5
6
7
8
9

10

11
12

process
new cPrivateKey : private_key;
let cPublicKey = genPubKey(cPrivateKey) in
new sPrivateKey : private_key;
let sPublicKey = genPubKey(sPrivateKey) in
(

(!processClient(cPrivateKey,

(!processServer (bPrivateKey,

cPublicKey))

bPublicKey))
)

Listing 4: Example for a ProVerif main process

Authentication. ProVerif is able to prove authentication proper-
ties based on correspondence assertions introduced by Woo AND
Lam [36]. A correspondence assertion captures the relationship
between events that occur in the execution of the security pro-
tocol. Informally, it can be expressed as "if an event e; has been
executed, then the event ey has been previously executed" [6, p.
19]. The ability to check correspondence assertions is essential to
validate authentication properties, as these typically require that
certain privileged actions may only be allowed after the successful
completion of prior authentication events.

In ProVerif, to mark important steps in the execution of the secu-
rity protocol, sub-processes and the main process can be annotated
with events. To analyze the correspondence assertions and thereby
authentication properties of the security protocol, these events
must be related to each other using a query of the form query:
event eq() ==> inj-event ey() [6].

2.1.3 ProVerif-ATP. Although many flaws of security protocols
have been detected under the perfect encryption assumption, it is
in general too strong for most real-world protocols, since many
attacks exploit properties of the cryptographic primitives. In other
cases, the execution of protocols relies on some algebraic properties
of the cryptographic primitives [10].

To enable the analysis of algebraic properties of the crypto-
graphic primitives, D1 L1 AND T1u [13] recently introduced ProVerif-
ATP as a combination of ProVerif and automated theorem proving
(ATP). By these means, ProVerif-ATP is able to find flaws that would
not be detected by means of ProVerif.

To specify the input model and the analysis queries, ProVerif-
ATP uses the same language as ProVerif. The algebraic properties
can also be accommodated in the input model using equations.
Although the resulting input model is syntactically correct, it is not
accepted by the ProVerif prove engine. Thus, D1 L1 AND Tru [13]
made several changes to the ProVerif prove engine and added their
own proof engine based on automated theorem proving. Due to
these changes, ProVerif-ATP is only able to analyze confidentiality.

In the remainder of this paper, we use ProVerif to analyze con-
fidentiality and authentication properties under the perfect en-
cryption assumption and ProVerif-ATP to analyze confidentiality
properties taking algebraic properties of the cryptographic primi-
tives into account. Thereby, we address a broad range of attacks on
protocols.

MODELS ’20, October 18-23, 2020, Virtual Event, Canada

2.2 Modal Sequence Diagrams (MSDs)

As motivated in the introduction, scenario-based notations compre-
hensibly represent message-based interaction requirements, and
UML Interactions [30, Clause 17] provide such a notation as a vi-
sual modeling language by means of the notion of sequence dia-
grams. However, UML Interactions lack precise semantics regard-
ing universal/existential properties [17] and provide no adequate
modeling constructs for the specification of temporal variables
and of references to them or to parameter values [35]. The latter
point leads to the problem that one cannot specify conditional
behavior that depends on the values of temporal variables (typi-
cally storing computation results) or on parameter values (e.g., “if
(<someComputationResult> > <someValue>) then <someMessage-
Sequence> else <anotherMessageSequence>").

To address the problem of the imprecise semantics regarding
universal/existential modal semantics, the Modal profile [17] syn-
tactically extends UML Interactions with modeling constructs as
known from Live Sequence Charts [11]. Thereby, this profile intro-
duces a UML-compliant form of Live Sequence Charts, called Modal
Sequence Diagrams (MSDs). We present a variant of the Modal pro-
file that additionally provides modeling constructs for temporal
variables and references to them, among other things [19]. These
modeling constructs and their semantics enable a precise definition
of conditional behavior depending on the variables’ values. In this
paper, we neglect the modal semantics of MSDs but focus on the
general structure of MSD specifications according to this Modal
profile variant as well as on its syntax and semantics for variables
and references to them.

We next introduce the overall structure of such MSD specifica-
tions and then the aspects on variables in Section 2.2.2.

2.2.1 Structure of MSD Specifications. In terms of the applied
Modal profile variant, an MSD specification is structured by means of
MSD use cases. These encapsulate the requirements on the message-
based interaction behavior to be provided by the system under
development regarding a self-contained situation. An MSD use
case encompasses the participants involved in the situation as well
as a set of MSDs describing the requirements on the interactions
between these participants. For example, Figure 1 depicts an MSD
specification excerpt. Such an MSD specification is subdivided into
three parts, which we explain in the following.

UML classes provide reusable types for all MSD use cases of the
specification, where the classes encompass operations that are used
as message signatures as part of the actual MSDs. For example, the
class diagram in the top of Figure 1 contains a class Server. Amongst
others, this class encompasses an operation helloServer with the
String parameters nonce and ownld.

Based on the UML classes and for each MSD use case, a UML
collaboration (dashed ellipse symbol) [30, Clause 11.7] specifies
the participant roles involved in the particular use case. These
participants are typed by the classes mentioned above and are used
as lifelines as part of the actual MSDs. For example, the collaboration
in the middle of Figure 1 encompasses, among other things, the
participant role server that has an abstract syntax link type to the
class Server.

Based on the UML classes and collaborations, a set of MSDs is
specified for each UML collaboration and thereby for each MSD

T. Koch et al.

class [Package] Needham-Schroeder::Types) Server

+ helloServer (#—-—-—-+ .

server: Server

trustedServer:
TrustedThirdParty

Client TrustedThirdParty nonce: String, i
ownld: String) A H
. |
'
o _ |
=== T —— type' '
_ - Needham-Schroeder Participants T ' |
5555 ~_ | I
. o

/ A trustedServer: . \
\\ client: Client H TrustedThirdParty |—| serveAr. Server // !
~ I & |
S~ [i
e —— i —=—- ”‘!’represents i

I

msd Needham-Schroeder Key Exchange & Authentificatiorﬂ i i
H '
!
!
|
1
o

signature }

|

|
' |
[|
- [|
String N_a = | helloServer (|
“«CjqUGBkxh* | LASSignment Lol Monce = N.a, |
[|
T i

|

|

ownld = “client*)

Condition I

T
|
|
|
|
|
|
|
! /

Trace continues only if 1\

P ~ | condition evaluates to true
|]
’_L> |

g

Figure 1: MSD Specification Excerpt

use case. These MSDs specify the requirements on the interac-
tions between the participant roles involved in the use case. For
example, the bottom diagram in Figure 1 depicts such an MSD.
An MSD encompasses MSD messages, which are associated with a
sending and a receiving lifeline representing the participant roles
as well as an operation signature. For example, the receiving life-
line server: Server of the MSD message helloServer has an abstract
syntax link represents to the equally named role in the UML collab-
oration. Furthermore, the MSD message helloServer is associated
with the equally named operation signature of the class Server by
means of the abstract syntax link signature.

2.2.2 MSD Semantics for Variables. Assignments in MSDs enable
storing temporally valid, intermediate values. They are represented
by rectangles that cover one or multiple lifelines and contain ex-
pressions in the form <var> = <expr=>. In this context, <var> is the
name of a typed diagram variable temporally declared for the time
the MSD is active, and <expr> is a value expression specifying a
literal or an expression specified by means of the Object Constraint
Language (OCL) [28]. For example, the MSD in the bottom of Fig-
ure 1 contains such an assignment covering the lifeline client: Client.
In this assignment, the diagram variable N_a of type String is de-
clared, and a random string xCjqUGBkxh is assigned. The diagram
variables and thereby their values can be referenced by message
arguments and particularly conditions, which we explain in the
remainder of this section.

The operations associated by the MSD messages can have param-
eters of certain types. In the case of the MSD message helloServer
as part of the MSD in the bottom of Figure 1, the associated and

Scenario-based Specification of Security Protocols and Transformation to Security Model Checkers

equally named operation in the class Server encompasses the String
parameters nonce and ownld. The arguments for these parameters
can reference diagram variables, for example, the first parameter
nonce is specified to carry the value of the diagram variable N_a
as argument. Furthermore and like in conventional UML, concrete
literal values can be specified for the message parameters. For ex-
ample, the second parameter ownld is specified to carry the literal
values “client” as argument.

To specify conditional behavior, MSDs can contain conditions,
which are represented as hexagons that cover one or more lifelines.
Conditions contain OCL expressions that evaluate to a Boolean
value, typically involving one of the diagram variables mentioned
above. For example, the MSD in the bottom of Figure 1 contains
a condition covering the lifeline client: Client. In this condition,
the value of the diagram variable N_a is compared with the value
of another diagram variable N_a’. If the expression of condition
evaluates to true, the resulting execution trace is continued (the
MSD “proceeds”). If the expression evaluates to false, the trace is
legal but discontinues (the MSD “terminates”).

3 MODELING SECURITY PROTOCOLS

In this section, we present our Security Modeling profile which
enables to specify security primitives and apply them to the re-
quirements on the communication behavior. In this profile, we
align concepts from a study of existing security protocols from
SPORE (the security protocol open repository) [9], from examples in
ProVerif [5, 6], and from further security model checkers [13, 14, 26].

The Security Modeling profile extends the UML and stereotypes
of the Modal profile for the specification of variables and of refer-
ences to them or to parameter values. The entire profile consists
of 20 stereotypes and provides OCL constraints to validate static
semantics. The profile has been realized by means of Eclipse Pa-
pyrus!. Due to space limitations, in this section, we only illustrate
an exemplary profile application.

In Figure 2, we apply the profile for the specification of the
Needham-Schroeder Public-Key protocol. The communication be-
tween the client: Client and the server: Server is asymmetrically
encrypted. Hence, our Security Modeling profile enables secu-
rity engineers to annotate the messages exchanged between the
client: Client and the server: Server with the stereotype «asymmet-
ric_encryption». As for all stereotypes that are applied to messages
(e.g., symmetric encryption or digital signatures), the stereotype
indicates that the message is encrypted before it is sent and that it
is decrypted after it is received. The cryptographic key needed to
perform the encryption and decryption can be referenced within
the stereotype. It can be any property that is annotated with the
stereotype «PublicKey» and «PrivateKey», respectively. For exam-
ple, in Figure 2, the client: Client sends the message helloServer to
the server: Server. This message is asymmetrically encrypted by
means of the public key pKeyS of the server: Server.

Besides messages, security protocols like the Needham-Schroeder
Public-Key protocol encompass assignments and conditions. While
assignments are typically used to create and manipulate protocol
variables, conditions are used to describe the conditional execution
of the protocol. Based on our study of existing security protocols,

https://www.eclipse.org/papyrus/

MODELS ’20, October 18-23, 2020, Virtual Event, Canada

class [Package] Needham-Schroeder::Types)

Client TrustedThirdParty Server

- «privateKey» sKeyC: + requestPublicKey (

ownld: String, - «privateKey» sKeyS:

ftrlnp%blicKey» pKeyC: requested|d: String) String :
String + «publicKey» pKeyS:

String

+ sendPublicKey (
publicKey: String,
requestedld: String)

+ helloServer (#—-—-—-+ —
nonce: String,
ownld: String) ‘

+ response (nonce: String)

+ sendPublicKey (
publicKey: String,
requestedld: String) | | + generateNonce () :

+ challenge (String
nonce1: String,
nonce2: String)

CryptographicHelper

_ - — 7 "Needham-Schroeder Participants == type
s =~
-

e i N
/ . trustedServer: . \
\\ client: Client }—| TrustedThirdParty sen/eAr. Server /,

S~ l T _--
=~ - - a4 -
T —— = |represents

msd Needham-Schroeder Key Exchange & Authentiﬁcatiorﬂ

dlie lient trustedServer:
TrustedThirdParty

requestPublicKey (
ownld = “client",
requestedld = “server”)

server: Server

sendPublicKey (
publicKey = publicKeyS,
requestedld = “server”)

«asymmetric_encryption»!
publicKey = pKeyC
privateKey = sKeyC .
‘ helloServer (— - s_lg_nﬂu_re_r _____ _
nonce =N_a,

»
> ‘

Cryptogre;phicHeIper
.generateNonce()

ownld = “client")

«asymmetric_encryption» N
publicKey = pKeyS
privateKey = sKeyS

requestPublicKey (
ownld =“server”,
requestedld = “client”)

-

publicKey = pKeyC,
requestedld = “client")

«asymmetric_encryption»
publicKey = pKeyS
privateKey = sKeyS

1
«asymmetric_encryption»! N_b=
Cﬂglrl]ecré%e:(N b publicKey = pKeyC CryptographicHelper
a' ()

nonce2 = N_a') | privateKey = skeyC .generateNonce
_: a >

|
\
\
sendPublicKey (‘
\
\
\
\

il 1
N a=N 9} «asymmetric_encryption»
= publicKey = pKeyS

\
L g ivateK KeyS |
. rivateKey = sKe
N_b =N_b P Y = SReYS ‘ \
‘ . response (nonce =N_b") =
[[P> Q
| |

Figure 2: Extended MSD Specification for the Needham-
Schroeder Public-Key protocol

we identified a commonly used set of cryptographic types (e.g.,
nonces, timestamps, primes, and shared keys) that are instantiated
during the execution. We encapsulate the creation of correspond-
ing diagram variables in the helper-class CryptographicHelper. In
addition, there is a number of algebraic operations (e.g., addition,
multiplication, and modular exponentiation), which are frequently
used and summarized in the helper-class AlgebraicHelper.

To enable the specification of protocol variables, we introduce
the concept of security assignments. Like conventional assignments
(cf. Section 2.2.2), a security assignment has the form <var> = <expr>,
where <var> is the name of a typed diagram variable. The term expr

MODELS ’20, October 18-23, 2020, Virtual Event, Canada

can be any OCL expression evaluating to a value of the type of
<var>, including operations of the two helper-classes. To visually
distinguish security assignments from non-security assignments,
we add a lock at the upper right corner of the rectangle. In Fig-
ure 2, we use the operation CryptographicHelper.generateNonce()
to assign a random nonce to the diagram variables N_a and N_b.

In addition, to specify conditional behavior of the protocol, we
introduced the concept of security conditions. A security condition
contains OCL expressions that evaluate to a Boolean value, involv-
ing diagram variables and operations of the two helper-classes. To
visually distinguish security conditions from non-security condi-
tions, we add a lock at the upper right corner of the hexagon. In
our example, we use security conditions to validate that the nonces
that are received from the communication partner are the same
that have been sent previously in the execution of the protocol (e.g.,
N_a = N_a’ in Figure 2).

4 TRANSFORMATION OF SECURITY
PROTOCOLS

We next describe our transformation from MSD specification to
ProVerif and ProVerif-ATP input models. In Section 4.2 we then
present our technique to derive verifiable constraints from the
MSD specification.

4.1 Transformation from MSDs to ProVerif

VICE is designed as a model-to-text transformation and imple-
mented by means of the Eclipse-based framework Xtend?. By de-
fault, VICE creates a ProVerif specification and analyzes the security
protocol under the perfect encryption assumption w.r.t. confiden-
tiality and authentication. However, if VICE detects that the MSD
specification contains elements that rely on algebraic properties, it
additionally generates a ProVerif-ATP specification and performs
the analysis accordingly.

Since the input models of ProVerif and ProVerif-ATP are based
on the same input language, the transformation rules do not differ
very much. The transformation algorithm consists of four steps. In
each step, it generates different parts of the input model based on
the different parts of the MSD specification. In the following, we
describe each step in further details:

4.1.1 Transformation Step 1 — generateProtocolPreamble. In the
first step, the transformation algorithm checks if the MSD specifica-
tion is specified correctly using the OCL constraints defined in our
profile. If this is not the case, the transformation is aborted and the
security engineer is informed accordingly. If the MSD specification
is specified correctly, the transformation algorithm generates the
first part of the ProVerif input model encompassing all declara-
tions of types and functions that are supported by our profile. For
example, for the stereotype «asymmetric_encryption», the trans-
formation algorithm generates the ProVerif constructs depicted
in Listing 1. Furthermore, for all operations that are provided by
the CryptographicHelper and AlgebraicHelper, the transformation
algorithm creates corresponding types and functions.

For the generation of ProVerif-ATP input models, further equa-
tions are generated to express the algebraic properties.

https://www.eclipse.org/xtend/

T. Koch et al.

4.1.2 Transformation Step 2 — generateProtocolStructure. In the
second step, the transformation algorithm transfers structural infor-
mation of the MSD specification into ProVerif constructs. Therefore,
it generates free variables for each property of the UML classes.
Furthermore, it generates a free variable of type host for all roles
contained in the UML collaboration. Finally, a communication chan-
nel is modeled by means of a free channel named with the name of
the UML collaboration.

4.1.3 Transformation Step 3 — generateProtocolBehavior. In the
third step, the transformation algorithm generates a ProVerif sub-
process for each lifeline contained in the MSD. These ProVerif
sub-processes encompass all sending and receiving messages, as
well as security assignments and security conditions. Therefore, the
transformation algorithm iterates over the ordered set of interaction
fragments for each lifeline and transforms them into corresponding
constructs in ProVerif.

Due to space reasons, we illustrate the transformation approach
only for an exemplary set of stereotypes contained in our profile.
Nevertheless, the transformation rules for the remaining stereo-
types are similar.

Transformation of a sending message occurrence specification. The
transformation rules 1-3, depicted in Figure 3, illustrate the trans-
formation of a sending message occurrence specification and differ
mainly in the number of security-related stereotypes applied to the
message. The transformation encompasses four steps, whereas the
first two and the last one are identical for all three cases.

First, the transformation algorithm resolves the signature of the
message and, thus, obtains the list of parameters. For each of them,
the transformation algorithm creates a new variable of the form
vX_param : bitstring, where v is used as a prefix, X is a consec-
utive number, and param is the name of the message parameter
(cf. line 1 in transformation rules 1-3 in Figure 3) The variables are
numbered consecutively so that the same parameter name or the
repeated occurrence of a message does not result in the variable
being rebound.

Second, the transformation algorithm checks whether the argu-
ments for the message parameters have been set within the MSD. If
this is the case, the transformation algorithm assigns the argument
value to the message parameter (e.g., vX_param = arg; in transfor-
mation rules 1-3 in Figure 3). Hereby, it is possible to reuse values
in the resulting security protocol in ProVerif.

Third, the transformation algorithm checks if security-related
stereotypes are applied to the message. We distinguish the following
three cases:

No applied security stereotype: Ifno security-related stereo-
type is applied to the message, the transformation algorithm
creates a new variable representing the bitstring of the mes-
sage and assigns the set of the parameter variables to this
variable (cf. line 5 of transformation rule 1 in Figure 3).

One applied security stereotype: If one security-related ste-
reotype is applied to the message, the transformation algo-
rithm resolves the function that belongs to the stereotype
(e.g., aEnc for the stereotype asymmetric_encryption). After-
ward, the transformation algorithm creates a new variable
representing the bitstring of the message and assigns the

Scenario-based Specification of Security Protocols and Transformation to Security Model Checkers

result of the function to this variable. The set of message
parameters is used as input of the function. If the function
needs a cryptographic key, this key is referenced by the
stereotype (cf. line 5 of transformation rule 2 in Figure 3).

More than one applied security stereotype: If more than
one security-related stereotype is applied to the message, the
transformation algorithm iteratively resolves the ProVerif
function that belongs to the security stereotype and applies
it as described in the previous case. The result of the former
function is used as input for the next one (cf. lines 5 and 6 of
transformation rule 3 in Figure 3).

Finally, the transformation algorithm generates an out(channel,
msg) construct, where channel is the channel used for the commu-
nication between the participants and msg is the bitstring to be
transmitted. Thereby, the out-construct represents the sending of
the message (cf. line 7 of transformation rules 1-3 in Figure 3).

Transformation of a receiving message occurrence specification.
The transformation rules 4-6, depicted in Figure 3, illustrate the
transformation of a receiving message occurrence specification.
The transformation rules are very similar to the transformation
rules presented for a sending message occurrence specification.

First, the transformation algorithm creates a in(channel, msg :
bitstring) construct as the counterpart of the receiving message
occurrence specification (cf. in(channel, msg : bitstring) in line 1 of
transformation rules 4 - 6 in Figure 3).

Second, the received bitstring msg is disassembled into its parts
according to the number of applied security-related stereotypes.
The idea of the transformation rules is similar to the transformation
rules for a sending message occurrence specification. If no security
related-stereotype is applied to the message, the transformation
algorithm resolves the parameter of the message and creates a let
construct of the form let(v0_param) = message (cf. transformation
rule 4 in Figure 3). If one or more security-related stereotypes are
applied to the message, the transformation algorithm first uses the
function that corresponds to the applied security-related stereotype
and proceeds with the creation of the let construct as described
before (cf. transformation rule 5 and 6 in Figure 3).

Transformation of Security Assignments. As described in Sec-
tion 3, a security assignment is used to either create new variables
or modify existing variables. In both cases, the security assignment
refers to operations of the helper-classes CryptographicHelper and
AlgebraicHelper. The transformation algorithm creates a new vari-
able v_1 for the variable of the assignment if it has not been declared
previously. Furthermore, if the operation describes the modification
of an existing variable v_2, the operation is applied to the variable
v_2 and stored in the variable v_1.

Transformation of Security Conditions. As described in Section 2.2.2,
an MSD proceeds only after a condition evaluates to true, otherwise,
the MSD terminates. In ProVerif, a condition has the structure if
<condition> then <P> else <Q>, where < P > and < Q > are sub-
processes. However, if the sub-processes < Q > does not contain
any behavior, the else part can be omitted. Thus, the transformation
algorithm only generates the if <condition> then <P> part of the
condition. Therefore, the transformation algorithm resolves the
variables of the condition and creates a corresponding construct.

MODELS ’20, October 18-23, 2020, Virtual Event, Canada

4.14 Transformation Step 4 — generateMainProcess. Finally, in the
last step, the transformation algorithm generates the main process.
Therefore, it creates free variables for all cryptographic keys used
in the security protocols. Furthermore, it creates references to the
sub-processes describing the behavior of the protocol participants.

4.2 Creation of Analysis Queries

In this section, we describe the generation of queries based on the
MSD specification to enable the analysis of the security properties
confidentiality and authentication.

4.2.1 Generation of Confidentiality Queries. If security engineers
want to analyze the confidentiality of protocol variables in ProVerif
and ProVerif-ATP, they will have to manually add confidentiality
queries of the form query attacker(secret) to the input model. In our
approach, we want to reduce the effort for security engineers, and
thus our transformation algorithm generates the confidentiality
queries automatically based on the MSD specification.

The generation of confidentiality queries encompasses two parts.
In the first part, the transformation algorithm generates confiden-
tiality queries for all private properties contained in the UML classes.
For the example depicted in Figure 2, the transformation algorithm
generates, the query query attacker(sKeyC) for the role client :
Client and the property sKeyC : String of the UML class Client.

In the second part, the transformation algorithm generates con-
fidentiality queries for all diagram variables created by means of
security assignments during the execution of the protocol. For
example, the transformation algorithm generates, amongst other
things, the query query attacker(new N_a) for the diagram vari-
able N_a = CryptographicHelper.createNonce() to check whether
an attacker can learn the nonce N_a during the execution of the
protocol.

This procedure generates corresponding queries for all secret
variables and the security engineer can no longer forget a query.
However, it may happen that the transformation algorithm is too
restrictive and creates queries for diagram variables that the security
engineer already knows are public. In these cases, the security
engineer can define the diagram variable as public by means of a
property of the security assignments, and thus no secrecy query is
created.

4.2.2 Generation of Authentication Queries. If security engineers
want to analyze the authentication of protocol participants in
ProVerif, they will have to manually add correspondence assertions
to the ProVerif input model. As stated in Section 2.1.2, correspon-
dence assertions have the form query: event e;() ==> inj-event ex()
and are used to capture the relationship between events that mark
important stages in the execution of the security protocol.

The placement of events within the ProVerif input model usually
requires a deeper understanding of the security protocol. However,
BLANCHET ET AL. [6] explain that there is some flexibility in the
placement of the correspondence assertions. "The event e; that
occurs before the arrow ==> can be placed at the end of the pro-
tocol, while the event ey that occurs after the arrow ==> must
be followed by at least one message output. Otherwise, the whole
protocol can be executed without executing the latter event, so the
correspondence certainly does not hold" [6].

MODELS ’20, October 18-23, 2020, Virtual Event, Canada

T. Koch et al.

1 [Transformation of a sending MOS — no security stereotype applied 4 [Transformation of a receiving MOS — no security stereotype applied
Sender Sender
| op(param : String) | op(param : String)
A | |
| type | ype
t t
col : bi ing; col in(channel, msg : bitstring);
: signature let ve_param = arg in signature ‘ let (ve_param) in msg
s
reprefeMs | let msg=(vo_param) in | reszens
! }
i i
msg(arg) msg(arg)
2 [Transformation of a sending MOS — one security stereotype applied 5 [Transformation of a receiving MOS — one security stereotype applied
Sender
| op(param : String) | op(param : String)
A |
ype ! type
n :
t t
col new v@_param : bitstring; col in(channel, msg : bitstring);
=) | - : =) i (et v ieine
signature let v@_param = arg in signature let (ve_param) =)
repre‘sems | | repre‘senls aDec(msg, privKey) in
; let msg = aEnc(ve_param, ;
t ubKey) ; t
msd . pubkey) msd :
i i
; out(channel, msg);
i
msg(arg) msg(arg)
—— o)
privateKey = privKey |
publicKey = pubKey
3 [Transformation of a sending MOS — multiple security stereotypes applied 6 [Transformation of a receiving MOS — multiple security stereotypes applied
Sender
| op(param : String) | op(param : String)
A | |
| ype | type
t t
col 0 : bitstring; col in(channel, : bitstring);
i new v@_param itstring i in(channe msg itstring)
s\gnéture let v@_param = arg in s\gnélure let (tMsg) = checkSign(msg,
represents | | represents sPubKey)
P let tMsg = aEnc(ve_param, pr
" ! t pubKey); " t ! let (v@_param) =
ms ms 3 3
; let msg = sign(tMsg, | ;
msg(arg) sigPrivKey); ‘ msg(arg)
Lot I
[«asymmetric encryption» | [«digital signature» | out(channel, msg); [encryption» | [«digital signature» |
sigPrivateKey = sPrivKey privateKey = privKey
publicKey = pubKey sigPublicKey = sPubKey

Figure 3: Transformation rules for the transformation from MSDs to ProVerif

For the generation of correspondence assertions based on an
MSD specification, we use the guidelines described above. To enable
the analysis of the authentication of a participant A to a participant
B, the transformation algorithm generates a correspondence asser-
tion of the form query event terminatedB ==> inj-event lastMes-
sageFromAtoB(). Therefore, it identifies the last message sent from
A to B and annotates the generated ProVerif process of A with
the event lastMessageFromAtoB() accordingly. Furthermore, the
transformation algorithm annotates the generated process of B with
the event terminatedB() at the end of the process description.

The generation of correspondence assertions is applied to each
communication pair of the MSD specification. This ensures that all
necessary queries are generated. However, it may happen that the
transformation algorithm is too restrictive and creates correspon-
dence assertions although the security engineer already knows that
the authentication property does not hold. Hence, in future releases
of VICE, we plan to enable the security engineer to exclude pairs
of communication partners from analysis.

5 CASE STUDY

To evaluate the efficacy of VICE, we conduct a case study based
on the guidelines by KITCHENHAM ET AL. [21] and RUNESON ET
AL. [31, 32]. Here, we investigate the applicability and usefulness
of VICE in practice.

In preparation of the case study, we implemented a prototype of
VICE based on ScenarioTools MSD tool suite® based on Eclipse Pa-
pyrus. For the transformation from MSD specifications to ProVerif
and ProVerif-ATP input models, we used the Eclipse-based frame-
work Xtend. Finally, we set up an installation of ProVerif and
ProVerif-ATP within a Docker container and implemented a web
interface for the communication between ScenarioTools and the
two model checkers.

5.1 Case Study Context

We examine the three evaluation questions (EQ):

3http://scenariotools.org/projects2/

Scenario-based Specification of Security Protocols and Transformation to Security Model Checkers

EQ1 Does VICE enable the specification of real-world security
protocols?

EQ2 Does VICE generate syntactically and semantically cor-
rect ProVerif and ProVerif-ATP input models?

EQ3 Does VICE’s automatic derivation of analysis queries lead
to correct queries for the security analysis of ProVerif and
ProVerif-ATP?

For this purpose, we select eight different real-world security
protocols from SPORE (the security protocol open repository) [9].
The selected security protocols use different cryptographic primi-
tives and, thus, present a broad range of possible security protocols.
Furthermore, for each protocol, researchers have previously per-
formed a formal analysis of potential weaknesses. Hence, we are
able to validate VICE's results against theirs.

5.2 Research Hypotheses

Based on our objective and evaluation questions, we define the
following four evaluation hypotheses:

H1 The security protocols of the different cases can be specified
by using our extended MSDs as presented in Section 3. For
evaluating H1, we model eight different security protocols.
We rate the hypothesis as fulfilled if these protocols can
be specified using solely the extended MSDs presented in
Section 3.

H2 VICE can automatically transform the eight security proto-
cols into syntactically correct ProVerif models. For evaluating
H2, we generate the ProVerif input models for the MSD spec-
ifications created for the evaluation of H1 and analyze them
in ProVerif. If the security protocols contain primitives that
rely on algebraic properties, we further analyze the gener-
ated ProVerif-ATP specification. We consider H2 as fulfilled
if all ProVerif models can be opened and analyzed in ProVerif
and if necessary in ProVerif-ATP.

H3 The automatic derivation of analysis queries is correct and
complete. For evaluating H3, we manually investigate the
generated ProVerif inputs models for the MSD specifications
and check whether the generated queries are complete and
correctly specified. We consider H3 as fulfilled if VICE gen-
erates all queries that are necessary to prove the security of
the eight security protocols.

H4 The overall security analysis of ProVerif and ProVerif-ATP
leads to the same results as previously performed formal
analysis of the security protocols. We consider H4 as fulfilled
if the analysis results match our expectations.

5.3 Hypothesis validation

For the validation of the hypotheses, we apply VICE to the eight
security protocols. We first model the MSD specifications for each
security protocol and check whether our MSD extensions are ex-
pressive enough to specify the security protocol. Second, we use
VICE to generate the corresponding ProVerif input models includ-
ing queries. We open the generated input models in ProVerif. Finally,
we perform the ProVerif analysis for each input model. We manually
inspect the results of each analysis for correctness.

In addition, if the security protocol contains primitives that rely
on algebraic properties, we open the generated input model in

MODELS ’20, October 18-23, 2020, Virtual Event, Canada

ProVerif-ATP, perform the analysis, and manually inspect the result
of the analysis for correctness.

5.4 Result Analysis

The results of the case study are depicted in Table 1. For all selected
security protocols, the corresponding MSD specification uses only
modeling elements introduced in Section 3. Furthermore, VICE is
able to transform the MSD specifications to syntactically and seman-
tically correct input models. We were able to open and analyze each
input model with ProVerif and ProVerif-ATP, respectively. Thus, we
conclude that H1 and H2 are fulfilled.

Finally, we performed the security analysis based on the derived
queries. The analysis results achieved are the same as stated in the
literature for the different security protocols. Thus, we conclude
that H3 and H4 are fulfilled.

Concluding the case study, the fulfilled hypotheses indicate that
VICE for the specification and analysis of security protocols is
applicable and useful in practice.

5.5 Threats to Validity

The validity of our study results is threatened by the following
facts. First, we only considered eight different security protocols
and, thus, cannot generalize the fulfillment of the hypothesis for
all possible security protocols. Nevertheless, the selected security
protocols represent typical examples and, thus, we do not expect
large deviations for other security protocols.

Second, the modeling of the security protocols has been done
by the same researcher that developed the approach. Since the
researcher might have a bias toward the developed model-driven
approach, the case study would be more significant, if security
experts would have modeled the security protocols. To mitigate this
threat, we selected security protocols for which security analyses
exist in literature and compared our results against these.

6 RELATED WORK

There exist many different approaches for the specification and
analysis of security protocols.

FANG ET AL. [15, 33] propose a modeling and analysis approach
for security protocols. They introduce a UML profile to enable
the modeling of security protocols by means of UML Interactions.
In addition, they describe a translation from their UML profile
to ProVerif to verify properties of the specified security protocol.
However, they do not provide a transformation to ProVerif-ATP.
Compared to our profile, their profile does not model the general
concepts of security protocols but remains very close to the input
language of ProVerif. As a consequence, the security engineer has
still to learn the input language of ProVerif. Furthermore, they do
not provide any support for choosing the sufficient set of analysis
queries.

AMEUR-BOULIFA ET AL. [4, 25] present a modeling approach
based on SysML to enable the specification of security aspects
for embedded systems. They enhance SysML block and state ma-
chine diagrams to capture security features like confidentiality and
authenticity. Furthermore, they provide a model-to-text transfor-
mation to enable the formal verification of the security concepts by
means of ProVerif. While they enable the automatic derivation of

MODELS ’20, October 18-23, 2020, Virtual Event, Canada

T. Koch et al.

Protocol

Generated correct
input models

Generated correct Analysis results

queries match expectations

Andrew Secure RPC [8]

Andrew Secure RPC (BAN) [8]

CHO7 [34]

Denning-Sacco Shared Key [12]

Diffie-Hellman Key Exchange [10]

Gong’s Mutual Authentication Protocol [16]

Needham-Schroeder Public Key [24]

ANERNANANENENENAN

Wired Equivalent Privacy Protocol [10]

SNENENENENENENEN
SNENENENENENENEN

Table 1: Results of the case study

confidentiality queries, the security engineer has to manually define
authenticity queries. In contrast to their approach, we conceived a
modeling approach based on sequence charts since they are more
appropriate for the specification of requirements on message-based
interactions [22]. In addition, we support the security engineer in
choosing the sufficient set of analysis queries (confidentiality and
authenticity). Thus, the security engineer no longer has to learn
the query language. Furthermore, he cannot make mistakes when
defining queries or forget important queries.

LOBDDERSTED ET AL. [23] present SecureUML, a UML-based mod-
eling language for model-driven security. The approach enables
the design and analysis of secure, distributed systems by adding
mechanisms to model role-based access control. Furthermore, they
provide an automatic generation of access control infrastructures
based on the specified models. In contrast, we focus on the modeling
and analysis of security protocols in general and not only on access
controls. In addition, we provide the verification of the security
protocols to ensure that they fulfill the desired confidentiality and
authenticity properties.

UMLSec [20] is a model-driven approach encompassing a UML
profile for expressing security concepts, such as encryption mecha-
nisms and attack scenarios. It provides a modeling framework to
define security properties of software components and of their com-
position within a UML framework. Similar to UMLSec, MOEBIUS ET
AL. [27] provide the model-driven approach SecureMDD to enable
the development of security-critical applications. However, both
approaches focus either on high-level security requirements or on
application-specific security requirements and not, as in our ap-
proach, on security properties like confidentiality and authenticity.

In summary, most approaches focus on the modeling of secu-
rity protocols and their transformation into a particular model
checker for analyzing security properties. However, in most ap-
proaches, only one model checker is supported and the modeling
language is very close to the input language of the targeted model
checker. Hence, the integration of further model checkers requires
changes to the language. In contrast, our modeling language has
been designed to model the general concepts of security protocols
independent of the targeted model checkers.

Furthermore, in most approaches, the security engineer has to
manually specify the queries to analyze security properties. This
requires a deep knowledge of the used model checker. In our ap-
proach, we automatically derive the analysis properties from our

extended MSD scenarios and thus significantly reduce the effort
for the modeling and analysis of security protocols.

7 CONCLUSION AND FUTURE WORK

In this paper, we present VICE, an approach for the scenario-based
specification of security protocols and their transformation into
different security model checkers for confidentiality and authenti-
cation analysis purposes. To this end, we contribute two building
blocks. First, we extend the UML-based scenario formalism MSDs
with language constructs enabling the specification of security pro-
tocols by means of our Security Modeling UML profile. Second, we
present a model transformation from such extended MSD scenarios
into the two security model checker ProVerif and ProVerif-ATP,
where the transformation generates all relevant queries and auto-
matically determines if the analysis by means of ProVerif-ATP is
necessary. By means of eight real-world security protocols, we eval-
uate whether the language constructs are adequate for the protocol
specification, whether the transformation derives correct model
checker inputs, and whether the model checkers yield the expected
analysis results.

Our modeling language extensions enable security engineers to
specify security protocols in an intuitive way by applying scenarios
for message-based interactions. Particularly, the security engineers
do not need any knowledge on the input and query languages of
the model checkers, because the transformation completely encap-
sulates this knowledge. Furthermore, the engineers do not have to
care about which properties they have to analyze in which model
checker, because our transformation determines this decision based
on the information specified in the scenarios. The evaluation indi-
cates the practical applicability and usefulness of VICE.

Future work encompasses two aspects. First, we plan to con-
duct a user study to evaluate whether our modeling language is
intuitive and easy to use for security engineers compared to the
input languages of the security model checkers. Second, we want
to integrate further model checkers (e.g., Tamarin [26]) to show
that VICE is applicable to model checkers whose input and query
language is completely different.

ACKNOWLEDGMENTS

This research has been partly sponsored by the project "AppSe-
cure.nrw - Security-by-Design of Java-based Applications" funded
by the European Regional Development Fund (ERDF-0801379).

[

=

flaa

REFERENCES

[1] Martin Abadi, Bruno Blanchet, and Cédric Fournet. [n.d.]. The Applied Pi

Calculus: Mobile Values, New Names, and Secure Communication. http:
J/arxiv.org/pdf/1609.03003v2

Martin Abadi and Cédric Fournet. 2001. Mobile values, new names, and secure
communication. In Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages - POPL °01, Chris Hankin and Dave Schmidt
(Eds.). ACM Press, New York, New York, USA, 104-115. https://doi.org/10.1145/
360204.360213

Silvia Abrahao, Carmine Gravino, Emilio Insfran, Giuseppe Scanniello, and Gen-
oveffa Tortora. 2013. Assessing the Effectiveness of Sequence Diagrams in the
Comprehension of Functional Requirements: Results from a Family of Five Ex-
periments. IEEE Transactions on Software Engineering 39, 3 (2013), 327-342.
https://doi.org/10.1109/TSE.2012.27

Rabéa Ameur-Boulifa, Florian Lugou, and Ludovic Apvrille. 2019. SysML Model
Transformation for Safety and Security Analysis. In Security and Safety In-
terplay of Intelligent Software Systems, Brahim Hamid, Barbara Gallina, Asaf
Shabtai, Yuval Elovici, and Joaquin Garcia-Alfaro (Eds.). Lecture Notes in Com-
puter Science, Vol. 11552. Springer International Publishing, Cham, 35-49.
https://doi.org/10.1007/978-3-030-16874-2{_}3

Bruno Blanchet. 11-13 June 2001. An efficient cryptographic protocol verifier
based on prolog rules. In Proceedings. 14th IEEE Computer Security Foundations
Workshop, 2001. IEEE, 82-96. https://doi.org/10.1109/CSFW.2001.930138
Bruno Blanchet. 2016. Modeling and Verifying Security Protocols with the
Applied Pi Calculus and ProVerif. Foundations and Trends® in Privacy and
Security 1, 1-2 (2016), 1-135. https://doi.org/10.1561/3300000004

Antonio Bucchiarone, Jordi Cabot, Richard F. Paige, and Alfonso Pierantonio.
2020. Grand challenges in model-driven engineering: an analysis of the state of
the research. Software and Systems Modeling 19, 1 (2020), 5-13. https://doi.org/
10.1007/s10270-019-00773-6

Michael Burrows, Martin Abadi, and Roger Needham. 1990. A logic of authen-
tication. ACM Transactions on Computer Systems (TOCS) 8, 1 (1990), 18-36.
https://doi.org/10.1145/77648.77649

[9] John Clark and Jeremy Jacob. 2002. Security Protocols Open Repository. http:

/[www.lsv.fr/Software/spore/index.html

Véronique Cortier, Stéphanie Delaune, and Pascal Lafourcade. 2006. A survey
of algebraic properties used in cryptographic protocols. Journal of Computer
Security 14, 1 (2006), 1-43. https://doi.org/10.3233/JCS-2006-14101

Werner Damm and David Harel. 2001. LSCs: Breathing Life into Message Se-
quence Charts. Formal Methods in System Design 19, 1 (2001), 45-80. https:
//doi.org/10.1023/A:1011227529550

Dorothy E. Denning and Giovanni Maria Sacco. 1981. Timestamps in key distri-
bution protocols. Commun. ACM 24, 8 (1981), 533-536. https://doi.org/10.1145/
358722.358740

Long Di Li and Alwen Tiu. 2019. Combining ProVerif and Automated Theorem
Provers for Security Protocol Verification. In Automated Deduction — CADE 27,
Pascal Fontaine (Ed.). Springer International Publishing, Cham, 354-365.

[14] Jannik Dreier, Lucca Hirschi, Sasa Radomirovic, and Ralf Sasse. 09.07.2018 -

12.07.2018. Automated Unbounded Verification of Stateful Cryptographic Proto-
cols with Exclusive OR. In 2018 IEEE 31st Computer Security Foundations Sympo-
sium (CSF). IEEE, 359-373. https://doi.org/10.1109/CSF.2018.00033

Kunding Fang, Xiaohong Li, Jianye Hao, and Zhiyong Feng. 23.08.2016 -
26.08.2016. Formal Modeling and Verification of Security Protocols on Cloud
Computing Systems Based on UML 2.3. In 2016 IEEE Trustcom/BigDataSE/ISPA.
IEEE, 852-859. https://doi.org/10.1109/TrustCom.2016.0148

Li Gong. 1989. Using one-way functions for authentication. ACM SIGCOMM
Computer Communication Review 19, 5 (1989), 8-11. https://doi.org/10.1145/
74681.74682

David Harel and Shahar Maoz. 2008. Assert and negate revisited: Modal semantics
for UML sequence diagrams. Software & Systems Modeling 7, 2 (2008), 237-252.
https://doi.org/10.1007/s10270-007-0054-z

[18] Jameleddine Hassine, Juergen Rilling, and Rachida Dssouli. 2010. An Evaluation of

Timed Scenario Notations. Journal of Systems and Software 83, 2 (2010), 326-350.
https://doi.org/10.1016/].jss.2009.09.014

Scenario-based Specification of Security Protocols and Transformation to Security Model Checkers

(19]

[20]

[21

[22

~
&

[24]

[25

[27]

(37]

MODELS ’20, October 18-23, 2020, Virtual Event, Canada

Jorg Holtmann, Markus Fockel, Thorsten Koch, David Schmelter, Christian Bren-
ner, Ruslan Bernijazov, and Marcel Sander. 2016. The MechatronicUML Require-
ments Engineering Method: Process and Language. Technical Report tr-ri-16-
351. Software Engineering Department, Fraunhofer IEM / Software Engineering
Group, Heinz Nixdorf Institute.

Jan Jurjens. 2002. UMLsec: Extending UML for Secure Systems Development.
In The unified modeling language, Jean-Marc Jézéquel (Ed.). Lecture Notes in
Computer Science, Vol. 2460. Springer, Berlin [u.a.], 412-425. https://doi.org/10.
1007/3-540-45800-X{_}32

Barbara Kitchenham, Lesley M. Pickard, and Shari Lawrence Pfleeger. 1995.
Case studies for method and tool evaluation. IEEE Software 12, 4 (1995), 52-62.

https://doi.org/10.1109/52.391832
Grischa Liebel and Matthias Tichy. 2015. Comparing Comprehensibility of

Modelling Languages for Specifying Behavioural Requirements. In Proceedings of
the First International Workshop on Human Factors in Modeling (HuFaMo). 17-24.
Torsten Lodderstedt, David Basin, and Jirgen Doser. 2002. SecuretUML: A UML-
Based Modeling Language for Model-Driven Security. In <<UML>> 2002 — The
Unified Modeling Language, Jean-Marc Jézéquel, Heinrich Hussmann, and Stephen
Cook (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 426-441.

Gavin Lowe. 1996. Breaking and fixing the Needham-Schroeder Public-Key
Protocol using FDR. In Tools and Algorithms for the Construction and Analysis
of Systems, Gerhard Goos, Juris Hartmanis, Jan Leeuwen, Tiziana Margaria, and
Bernhard Steffen (Eds.). Lecture Notes in Computer Science, Vol. 1055. Springer
Berlin Heidelberg, Berlin, Heidelberg, 147-166. https://doi.org/10.1007/3-540-
61042-1{_}43

Florian Lugou, Letitia W. Li, Ludovic Apvrille, and Rabéa Ameur-Boulifa. 2016.
SysML Models and Model Transformation for Security. In MODELSWARD 2016,
Slimane Hammoudi (Ed.). SCITEPRESS - Science and Technology Publications
Lda, Setabal, 331-338. https://doi.org/10.5220/0005748703310338

Simon Meier, Benedikt Schmidt, Cas Cremers, and David A. Basin. 2013. The
TAMARIN Prover for the Symbolic Analysis of Security Protocols. In Computer
Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg,
Russia, July 13-19, 2013. Proceedings (Lecture Notes in Computer Science, Vol. 8044),
Natasha Sharygina and Helmut Veith (Eds.). Springer, 696-701. https://doi.org/
10.1007/978-3-642-39799-8\backslash{ }48

Nina Moebius, Kurt Stenzel, Holger Grandy, and Wolfgang Reif. 16.03.2009 -
19.03.2009. SecureMDD: A Model-Driven Development Method for Secure Smart
Card Applications. In 2009 International Conference on Availability, Reliability
and Security. IEEE, 841-846. https://doi.org/10.1109/ARES.2009.22

Object Management Group (OMG). 2014. OMG Object Constraint Language (OCL)
— Version 2.4. OMG Document Number: formal/14-02-03.

Object Management Group (OMG). 2017. OMG Systems Modeling Language
(OMG SysML) - Version 1.5. OMG Document Number: formal/2017-05-01.
Object Management Group (OMG). 2017. OMG Unified Modeling Language (OMG
UML) — Version 2.5.1. OMG Document Number: formal/2017-12-05.

Per Runeson (Ed.). 2012. Case study research in software engineering: Guide-
lines and examples (1st ed. ed.). Wiley, Hoboken, N.J. https://doi.org/10.1002/
9781118181034

Per Runeson and Martin Host. 2009. Guidelines for conducting and reporting
case study research in software engineering. Empirical Software Engineering 14,
2(2009), 131-164. https://doi.org/10.1007/s10664-008-9102-8

Gang Shen, Xiaohong Li, Ruitao Feng, Guangquan Xu, Jing Hu, and Zhiyong
Feng. 2014. An Extended UML Method for the Verification of Security Protocols.
In 2014 19th International Conference on Engineering of Complex Computer Systems
(ICECCS). IEEE, Piscataway, NJ, 19-28. https://doi.org/10.1109/ICECCS.2014.12
Ton van Deursen and Sasa Radomirovi¢. 2009. Attacks on RFID Protocols. Cryp-
tology ePrint Archive 2008, 310 (6 Aug. 2009), 1-56.

Marc-Florian Wendland, Martin Schneider, and @ystein Haugen. 2013. Evolu-
tion of the UML Interactions Metamodel. In Proceedings MODELS 2013 (LNCS).
Springer, 405-421. https://doi.org/10.1007/978-3-642-41533-3_25

Thomas Woo and Simon S. Lam. 24-26 May 1993. A semantic model for
authentication protocols. In Proceedings 1993 IEEE Computer Society Sympo-
sium on Research in Security and Privacy. IEEE Comput. Soc. Press, 178-194.
https://doi.org/10.1109/RISP.1993.287633

World Economic Forum. 2019. Global risks 2019: Insight report (14th edition ed.).
World Economic Forum, Geneva.

http://arxiv.org/pdf/1609.03003v2
http://arxiv.org/pdf/1609.03003v2
https://doi.org/10.1145/360204.360213
https://doi.org/10.1145/360204.360213
https://doi.org/10.1109/TSE.2012.27
https://doi.org/10.1007/978-3-030-16874-2{_}3
https://doi.org/10.1109/CSFW.2001.930138
https://doi.org/10.1561/3300000004
https://doi.org/10.1007/s10270-019-00773-6
https://doi.org/10.1007/s10270-019-00773-6
https://doi.org/10.1145/77648.77649
http://www.lsv.fr/Software/spore/index.html
http://www.lsv.fr/Software/spore/index.html
https://doi.org/10.3233/JCS-2006-14101
https://doi.org/10.1023/A:1011227529550
https://doi.org/10.1023/A:1011227529550
https://doi.org/10.1145/358722.358740
https://doi.org/10.1145/358722.358740
https://doi.org/10.1109/CSF.2018.00033
https://doi.org/10.1109/TrustCom.2016.0148
https://doi.org/10.1145/74681.74682
https://doi.org/10.1145/74681.74682
https://doi.org/10.1007/s10270-007-0054-z
https://doi.org/10.1016/j.jss.2009.09.014
https://doi.org/10.1007/3-540-45800-X{_}32
https://doi.org/10.1007/3-540-45800-X{_}32
https://doi.org/10.1109/52.391832
https://doi.org/10.1007/3-540-61042-1{_}43
https://doi.org/10.1007/3-540-61042-1{_}43
https://doi.org/10.5220/0005748703310338
https://doi.org/10.1007/978-3-642-39799-8$\backslash ${_}48
https://doi.org/10.1007/978-3-642-39799-8$\backslash ${_}48
https://doi.org/10.1109/ARES.2009.22
https://doi.org/10.1002/9781118181034
https://doi.org/10.1002/9781118181034
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1109/ICECCS.2014.12
https://doi.org/10.1007/978-3-642-41533-3_25
https://doi.org/10.1109/RISP.1993.287633

	Abstract
	1 Introduction
	2 Foundations
	2.1 ProVerif
	2.2 Modal Sequence Diagrams (MSDs)

	3 Modeling Security Protocols
	4 Transformation of Security Protocols
	4.1 Transformation from MSDs to ProVerif
	4.2 Creation of Analysis Queries

	5 Case Study
	5.1 Case Study Context
	5.2 Research Hypotheses
	5.3 Hypothesis validation
	5.4 Result Analysis
	5.5 Threats to Validity

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

