2021 International Conference on Code Quality (ICCQ) | 978-1-7281-8476-0/21/$31.00 ©2021 IEEE | DOI: 10.1109/1CCQ51190.2021.9392986

Qualitative and Quantitative Analysis of
Callgraph Algorithms for PyrHON

Sriteja Kummita
sriteja.kummita@iem.fraunhofer.de
Fraunhofer IEM
Germany

Johannes Spath
johannes.spaeth@codeshield.io
Department of Computer Science, Paderborn
University
CodeShield GmbH
Germany

Abstract

As one of the most popular programming languages,
PyrHON has become a relevant target language for
static analysis tools. The primary data structure for
performing an inter-procedural static analysis is call-
graph (CG), which links call sites to potential call tar-
gets in a program. There exists multiple algorithms for
constructing callgraphs, tailored to specific languages.
However, comparatively few implementations target
PyTHON. Moreover, there is still lack of empirical evi-
dence as to how these few algorithms perform in terms
of precision and recall.

This paper thus presents EVAL_CG, an extensible
framework for comparative analysis of PyTHON call-
graphs. We conducted two experiments which run
the CG algorithms on different PyTHON programming
constructs and real-world applications. In both experi-
ments, we evaluate three CG generation frameworks
namely, CoDE2FLOW, PYAN, and WALA. We record pre-
cision, recall, and running time, and identify sources of
unsoundness of each framework.

Our evaluation shows that none of the current CG
construction frameworks produce a sound CG. More-
over, the static CGs contain many spurious edges.
CobpE2FLOW is also comparatively slow. Hence, fur-
ther research is needed to support CG generation for
PYTHON programs.

Keywords: Static Analysis, Callgraph Analysis, Python,
Qualitative Analysis, Quantitative Analysis, Empirical
Evaluation

Goran Piskachev
goran.piskachev@iem.fraunhofer.de
Fraunhofer IEM
Germany

Eric Bodden
eric.bodden@upb.de
Department of Computer Science, Paderborn
University
Fraunhofer IEM
Germany

1 Introduction

A callgraph (CG) is the fundamental data structure that
enables inter-procedural static program analysis and
has been used as baseline for static client analyses over
the last decades [18]. Using a CG, one can perform
client analyses such as identification of unreachable
methods, replacing dynamically dispatched function
calls with their static counterparts [4], performing inter-
procedural constant propagation [26], method inlining,
or refactorings based on the class hierarchy [7]. The
CG nodes represent functions from the given program
whereas the edges model the function invocations (aka.
call sites) to the respective functions (aka. call targets).
The quality of the results of any inter-procedural client
analyses heavily depends upon the precision and sound-
ness of the generated CG. A CG is sound when it in-
cludes edges to all possible runtime call targets and is
precise when it does not include edges to the call targets
that are not possible at runtime. A perfectly accurate
CG includes all runtime edges that are possible from
every call site and, at the same time, no further spurious
edge. However, the construction of such an accurate
static CG is undecidable [24] and CG algorithms must
resort to static approximations.

Despite the fact that PyrHoN has become a very
popular programming language,' research on inter-
procedural static analysis for PYTHON is rare. PYTHON's
wide-range of dynamic language features challenge
the generation of static callgraphs (CGs). While in
statically-typed languages such as Java, dynamic fea-
tures reduce to dynamic dispatch and reflection, mostly

ITIOBE index - https://www.tiobe.com/tiobe-index/

[39 of 93]
978-1-7281-8476-0/21/$31.00 © 2021 IEEE

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on July 28,2021 at 12:28:02 UTC from IEEE Xplore. Restrictions apply.

used internally by frameworks, in PyTHON dynamic
language features are used more widely. PYyTHON’s dy-
namic language instruction set contains many features,
duck typing, and eval() to name a few.

Despite these challenges, several open-source frame-
works (such as Wara [29], and Pyan [20]) have become
available that support static code analysis for PyTHON.
Hence, static analysis writers have the choice of several
frameworks that support also different CG construc-
tion algorithms. To build meaningful client analyses
for PyTHON programs, static analysis writers need to
understand the limitations of these algorithms and their
implementations.

To map this landscape, this paper presents a system-
atic evaluation of different CG construction algorithms,
with the goal to help analysis writers to select the al-
gorithm appropriate for their needs. The evaluation
covers the three frameworks, namely, Cope2FrLOW [5],
Pyan [20] and WALA. To allow others to evaluate also fu-
ture frameworks, we make our work publicly available
at https://github.com/sritejakv/eval_CG.

For our evaluation we took a similar approach as
Reif et al. [23], who published study for Java CG. Our
evaluation includes a qualitative comparison of the
CGs to identify the sources of unsoundness (aiming
to strengthen internal validity) and a quantitative com-
parison on real-world programs to measure overall per-
formance in terms of soundness and running time (to
strengthen external validity). The evaluation method-
ology includes two experiments, namely, SYNTHETIC
TEST, and REAL-WORLD TEST. SYNTHETIC TEST runs
the CG algorithms on a benchmark suite of PyrHON
programs, and REAL-WORLD TEST runs the algorithms
on real-world applications. The CG Evaluation Frame-
work in each of the experiments compares the static CG
edges with dynamic CG edges and records precision,
recall, as well as runtime information.

Our evaluation shows that none of the current CG
construction frameworks produce a sound CG. More-
over, the static CGs contain many spurious edges.
CobpE2FLOW is also comparatively slow. Hence, fur-
ther research is needed to support CG generation
for PyTHON programs. Among the three frameworks,
Pyan and WaLA perform better on individual, synthetic
PYTHON test cases. Pyan performs best in the case of
real-world applications. Yet, all three algorithms virtu-
ally yield results that will be unacceptable for most use
cases.

This paper makes the following original contribu-
tions:

Sriteja Kummita, et al.

e EVAL_CG, a CG evaluation framework for PyTHON
consisting of SYNTHETIC TEST for qualitative eval-
uation and REAL-WORLD TEST for quantitative
evaluation,

e a PyTHON benchmark suite consisting of 49 pro-
grams separated into 13 categories that cover the
language features, and

e adapters for the frameworks: ConpE2rLOW, PYAN,
and WALA and their evaluation with EvaL_CG.

The remainder of the paper is organised as follows.
Section 2 discusses the challenges in generating a CG
for PyTHON programs. Section 3 explains the method-
ology of evaluation. Section 4 explains the two experi-
ments, namely, SYNTHETIC TEST and REAL-WORLD TEST.
Section 5 presents the results. Finally, Section 6 dis-
cusses related works and Section 7 concludes the paper.

2 Challenges in static callgraph
construction for PyTHON

It is difficult to analyze PyTHON programs statically, i.e.,
without executing them, due to its dynamic features
that cause difficulties in the generation of a precise and
sound callgraph (CG). PyTHON is a strongly, dynami-
cally typed language, which means the runtime objects
have types and can vary over the course of the execu-
tion of the program. It is both compiled and interpreted
language [17].

We explain the challenges in constructing static CG
for PyTHON through some of its dynamic capabilities
shown in the example in Listing 1. The listing shows
a simple calculator program which can perform sum,
sin, cos, and tan operations on numbers. It contains a
function check_values (line 1) and a class Calculator
(line 9).

The function check values contains another nested
function decorated_wrapper (at line 2), which validates
if the first two items in the arguments are numbers (at
line 4). This function serves as a decorator. Decorators
in PyTHON allow to modify the behaviour of an object
at runtime. When there is a function call to a decorated
function, the implementation in the decorator is exe-
cuted first, and then the control is shifted to the actual
function. The function init_values is decorated with
check_values (at line 10) to allow only numbers as the
parameters.

The class Calculator consists of three user-
defined functions, init_values, calculate sum, calcu-
late_scientific, and an overridden function, __getattr .
init_values initializes the two class variables x and y.

[40 of 93]

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on July 28,2021 at 12:28:02 UTC from IEEE Xplore. Restrictions apply.

Qualitative and Quantitative Analysis of Callgraph Algorithms for PYTHON

main Dynamic CG
Pyan

decorator_wrapper Caléulator \ __getattr calculate_sum

Init_values check_values caldulate_scientific

calculate_cos

Figure 1. The dynamic CG and the static CGs con-
structed by WALA, and Pyan for Listing 1

The method calculate_sum prints the sum of the two
class variables. calculate_scientific performs scientific
calculations such as sin, cos, and tan by generating
a function during runtime using in-built PyTHON
function exec. The string variable, embedded (line 20),
contains a template that generates a function. During
runtime, if self.operation class variable contains the
value sin, then a function with name calculate_sin
(line 22) is generated which invokes sin function of
math library (line 23). PyTHON also allows runtime
code generation using eval.

Reflection is the ability to modify or change the struc-
ture and behaviour of an object at runtime. PyTHON
has the ability to invoke a function that is not defined
in its corresponding class. During runtime, PyTHON
invokes __getattr _ method of the object’s class, when
it encounters access to an undefined attribute. In this
example, we override __getattr _ method to allow calls
to three undefined functions namely, calculate_sin, cal-
culate_cos, and calculate_tan (at line 30).

Listing 2 shows the main function of the above pro-
gram. It contains two function invocations on the Calcu-
lator’s object, namely, calculate_sum and calculate_cos.

Let us first inspect the dynamic CG used at runtime.
Figure 1 presents the program’s dynamic CG as a di-
rected graph (solid edges). The graph contains a total
of eight edges and nine nodes.

Figure 1 also presents the edges generated by the
frameworks Pyan and WALA. PYAN generates three of
them (shown with blue-dashed line) whereas WALA
generates only two of them (shown with red-dotted
line) that are present in the dynamic CG. CoDE2FLOW
does not generate any edges for the above example.
These missing edges may largely impact the quality of
any static client analysis.

1 def check_values(function):

2 def decorator_wrapper (xargs):

3 return_value = "Invalid
parameters"

4 if isinstance(args[1], (int,
float, complex)) and
isinstance(args[2], (int,
float, complex)):

5 return function(xargs)
6 print(return_value)

7 return decorator_wrapper

8

9 <class Calculator(object):

10 @check_values

11 def init_values(self, x, y=0):
12 self.x = x

13 self.y =y

14

15 def calculate_sum(self):

16 print(self.x + self.y)

17

18 def calculate_scientific(self):
19 x = self.x

20 embedded = '''

21 import math

22 def calculate_%s():

23 return math.%s(x)
24 print(calculate_%s())
25 """ % (self.operation,

self.operation,
self.operation)

26 exec (embedded, locals())

27

28 def __getattr__(self,

function_name):

29 operation =
function_name.split("_")[1]

30 if operation in ["sin", "cos",
"tan"1]:

31 self.operation = operation

32 return

self.calculate_scientific

Listing 1. PYTHON program showcasing dynamic
language features.

3 ©EvaL_CG: Callgraph Evaluation
Framework

For the evaluation of PyrHON callgraphs (CGs),
we present EVAL_CG, a CG evaluation framework.
EVAL_CG enables a qualitative and a quantitive analysis

[41 of 93]

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on July 28,2021 at 12:28:02 UTC from IEEE Xplore. Restrictions apply.

33 if __name__ == '__main__

34 obj = Calculator ()

35 obj.init_values (5, 10)

36 obj.calculate_sum() #decorated

function call

37 obj.calculate_cos () #undefined
function call using
reflection

Listing 2. Main function for the example in Listing 1

dot2probe E |

+ PyanToProbeConvertor: Convertor
+ Code2flowToProbeConvertor: Convertor
+ PyCallGraphToProbeConvertor: Convertor

Probe convertors (L

kl,J

CallGraphAnalyzer 3 |

FrameworkAdapter {I

+ Pyan: FrameworkAdapter
+ Code2flow: FrameworkAdapter
+ WalaNCFA: FrameworkAdapter

+ ExtractMetrics

Figure 2. Component diagram of evar_CG

of the supplied CG algorithms for an in-depth compari-
son. Our framework accepts a program along with its
tests cases as input and extracts the dynamic CG by exe-
cuting the program using the test cases. The CG is then
used as ground truth for comparison metrics against
statically generated CG that is supplied as additional
input to the framework. Figure 2 shows the component
diagram of EvAL_CG. The framework consists of three
main components, Dot2probe, Framework Adapter, and
Call Graph Analyzer.

Dot2probe. Each of the CG generation frameworks
has its own CG format, which makes the comparison
a tedious task. EvAL_CG converts all the static and dy-
namic CGs to a single format. We chose to reuse Lho-
tak’s “probe” format [15], a data structure specifically
developed for comparing CGs. It also provides look-up
abilities to examine the CGs at a fine-granular level. The
nodes of the probe CG represent the function names
and the edges represent the function calls. Since, the
CGs of Pyan, Cope2rLow, and PYCALLGRAPH are in
the dot format [13], we implemented the corresponding
probe-converters in this component.

Sriteja Kummita, et al.

Framework Adapter. We have implemented three
framework adapters, one for each corresponding CG
generation framework, namely, Pyan, CopE2FLOW, and
WarLaA. These adapters are housed in the component,
Call Graph Analyzer. Each framework adapter is respon-
sible for converting the source CG to probe CG and
provide them to the Call Graph Analyzer for compari-
son. Pyan and Cope2rLow adapters use the converters
from dot2probe. Since the CG format of WaLA is differ-
ent from PyaN, and Cope2rLow, we have implemented
the conversion of WaLa static CG to probe CG in its
framework adapter.

Call Graph Analyzer This is the central component of
evaL_CG that houses other components. It initiates the
evaluation process by generating static and dynamic
CGs for the given input and providing them to frame-
work adapters to get corresponding probe CGs. It then
uses the class, ExtractMetrics, to compare the CGs. Ex-
tractMetrics checks each edge in the static probe CG
against each edge in the dynamic probe CG to record
the metrics. Though Probe provides comparison and
inspecting tools for CGs, they are mostly focused on
finding the differences. Our approach also focuses on
identifying the sources of unsoundness and the quan-
titive comparison. So, we only adapt the CG format
from Probe and implement the comparison suiting our
needs.

The dynamic CG is generated using PYCALLGRAPH
[21]. This component runs PYCALLGRAPH on the input
PYTHON program or alongside the test cases in the case
of input PyTHON application to generate the dynamic
CG. PYCALLGRAPH uses sys.set_trace() function, which
is called by PYTHON every time when the execution
flow enters or exits a function to record the CG [21].

We use the established metrics precision, and recall
for the evaluation of the quality of CGs. All metrics
are based on the definition of true positives (TPs), false
positives (FPs), and false negatives (FNs). We consider
the dynamic CG as ground truth. The definitions of
these terms is then as follows.

A TPis a CG edge that is present in the static and the
dynamic CG. A FPis an edge that is only present in the
static CG. A FN is an edge that is only present in the
dynamic CG.

Using the above terms, the precision of a CG algo-
rithm is defined as the ratio of the total number of
static CG edges present in the dynamic CG (as shown
in Equation 1). The recall is defined as the ratio of the
total number of dynamic CG edges present in the static
CG (as shown in Equation 2).

[42 of 93]

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on July 28,2021 at 12:28:02 UTC from IEEE Xplore. Restrictions apply.

Qualitative and Quantitative Analysis of Callgraph Algorithms for PYTHON

. TP
recision e —
P CG= Tp+Fp (1)
, TP
reca =—
CG~ Tp+FN)

4 Experimental Setup

In this section, we discuss our experiments for the quali-
tative and quantitative analysis [32] of static callgraphs
(CG) for PyTHON programs. For both analyses, we used
EVAL_CG introduced in the previous section with dif-
ferent set of input programs. Three CG generation
frameworks are considered, namely, COoDE2FLOW [5],
Pyan [20], and WALA [29]. Table 1 shows the different
CG algorithms of each framework.

Table 1. CG algorithms supported by Cobpe2rLow,
PyaN, and WALA.

Framework CG algorithm

CODE2FLOW C2Fcg

Pyan PyANcG

WALA nCFA, VanillaZeroOneCFA, Ze-

roCFA, ZeroContainerCFA, Ze-
roOneCFA, ZeroOneContainer-
CFA

4.1 Qualitative analysis

For this analysis we performed an experiment named
SYNTHETIC TEST in which the input to EvaL_CG is a
benchmark suite as shown in the Figure 3. The bench-
mark suite consists of PYTHON programs where each
one showcases different PyrHON language construct.
For each program from the suite we create the static CG
and compare it against the dynamic CG. The dynamic
CG is generated using the tool, PyCALLGRAPH [21]. It
runs each file in the benchmark suite and records the
dynamic CG when the program is being executed. This
dynamic CG is considered as the ground truth in the
comparison. Next we discuss our benchmark suite.

4.2 Benchmark suite

Our benchmark suite consists of 49 PYTHON programs
segregated into 13 different categories, which we cre-
ated based on the literature [1, 11] and the PyTHON
specification [22]. Table 2 shows the different categories

(" Benchmark \

Suite

reflection II

_I Evaluation
duck typing Framework

SYNTHETIC TEST

decorators II

—

Figure 3. Process diagram of SYNTHETIC TEST.

in the benchmark suite along with the number of pro-
grams in each category.

Table 2. Benchmark categories with the number of
programs

Category

Runtime code generation
Decorators

Object changes

Static functions
Library loading
Reflection

Duck typing
Branching

Direct functions
Lambda functions
Nested code
Polymorphic functions
Recursion

Total

No. of programs

W U NN O WD R B GTW

=~
-]

In the following, we discuss some of the categories
that are unique to the PyTHON programming language
other than the ones presented in the motivation (Sec-
tion 2).

Duck typing. This gives the ability to treat an object
as if it is of the requested type without the knowledge
of the existence of object properties. Duck typing gives
more importance to the method an object defines than
the type of the object.

Listing 3 shows an example of duck typing. It con-
tains three classes Duck (at line 38), Mallard (at line 42),
Person (at line 46), and a function shoot (at line 50). Duck
typing is demonstrated in the function shoot (at line 51).

[43 of 93]

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on July 28,2021 at 12:28:02 UTC from IEEE Xplore. Restrictions apply.

38 class Duck:

39 def quack(self):

40 print ("Quack!")

41

42 class Mallard:

43 def quack(self):

44 print ("Quack quack!")

45

46 class Person:

47 def quack(self):

48 print("Help!")

49

50 def shoot(bird):

51 bird.quack()

52

53 if __name__ == '__main__":

54 for b in [Duck (), Mallard(),
Person()1]:

55 shoot (b)

Listing 3. Example of a PyrHON class in the duck
typing category.

It assumes that the parameter it receives will always
contain a method quack associated to it and invokes
it. One of the practical examples of this pattern is that
any object can become iterable in PyrHON if __iter
method is implemented.

Object changes. This is the ability of a variable to
mute its type at runtime. A variable in PYTHON can be a
number at a given execution point and can be an object
at another point during execution. Even more, new
attributes can be added to an object that the variable is
pointing to at some other point during execution. Such
implementations cause difficulties in identifying the
type of the variables and contribute to false positive
and negative edges in the static CG.

Static functions. In PyrHON, the declaration of
static functions is peculiar. A static function can be
defined using a decorator, @staticmethod (similar to the
decorator declaration at line 10) or using a function,
staticmethod. Listing 4 shows an example using a func-
tion call by passing the function name as the parameter
(as shown in line 60). As shown in line 63, the static
function is invoked without creating the object .

Other categories. Library loading includes programs
which contain calls to library functions. PyTHON pro-
grams belonging to this category makes use of __im-
port__ to fetch the libraries or classes dynamically.

Sriteja Kummita, et al.

56 class One:

57 def static_function():
58 return "hello"
59

60 static_function =

staticmethod (static_function)
61
62 if __name__ ==

__main__
63 One.static_function ()

Listing 4. Example of a PyTHON static function call
using decorator.

Branching includes PYTHON classes and modules that
demonstrate function calls inside the control-flow con-
structs such as for, while, and if-else. Direct functions
contain programs that include arbitrary calls to func-
tions in the same class or in the same module. Lambda
functions contain PYTHON programs whose implemen-
tation contain the usage of lambda functions. A lambda
function is defined without a name and accepts any
number of function arguments. The body of the lambda
function is a single statement which can also contain
function calls. Nested code contains PYTHON programs
whose implementation uses inner classes, inner meth-
ods, and contain the respective function calls. Polymor-
phic functions embed programs that use inheritance and
function overloading. Recursion has programs featuring
recursive function calls in PyTHON.

4.3 Quantitative analysis

In this experiment, called REAL-WORLD TEST, the input
to EvAL_CG is a real-world application. Figure 4 shows
different components of the experiment.

PyTHON projects are real-world applications from
GrTHuB.? We used three criteria to select the projects.
First, we considered the active maintenance, activities,
and support from the developer community, which is
depicted by the number of forks (at least 1,000) and
number of stars (at least 10,000) in the respective reposi-
tories. The second selection criterion is that the projects
should have a minimum of 85% branch coverage. The
branch coverage for most of the projects is identified
from coverage tools such as Coveralls®, and Codecov*,
which are integrated in to the corresponding GiTHUB
repositories. The last criterion is the coverage of the
language constructs. For this, we manually inspected

2https://github.com/
3https://coveralls.io
“https://codecov.io

[44 of 93]

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on July 28,2021 at 12:28:02 UTC from IEEE Xplore. Restrictions apply.

Qualitative and Quantitative Analysis of Callgraph Algorithms for PYTHON

the corresponding implementations and marked the
benchmark-suite categories covered by each real-world
application. Table 3 shows the list of real-world appli-
cations with the corresponding branch coverage and
the presence of benchmark suite categories.

Python
Project

Entry-
points
Extractor

Evaluation
Framework

REAL-WORLD TEST

Figure 4. Process diagram of REAL-WORLD TEST.

Our REAL-WORLD TEST consists of five applications.
Python robotics is a collection of robotics algorithms
implemented in PyTHON programming language fo-
cusing mainly on autonomous navigation [27]. mitm-
proxy is a free and open-source HTTP proxy tool im-
plemented in PyrHON [16]. Cookiecutter helps in cre-
ating PYTHON projects from the project templates [6].
YouCompleteMe (ycm) is a code-completion engine
for vim editor ® [30]. The Fuck is a command-line util-
ity tool that corrects the errors in the previous console
commands [9].

Branch coverage forms an important criterion to
dynamic CG generation. In this experiment, PYCALL-
GRAPH is integrated into the test suite of each real-
world application. When the test cases in the project
are executed, PYCALLGRAPH monitors the stack trace
and generates the dynamic CG. It is configured to record
edges only from the application source code. In the de-
fault configuration of the frameworks, the source code
of the libraries is excluded from the analysis. Providing
the source code of all the libraries will increase the CG
generation time. Also, the library source code might
not be publicly available. Hence, we decided to only
record the edges from the application source code and
to ignore the edges representing library function calls.
In each of the real-world applications, we generate a
dynamic CG for each test case, and in the end, com-
bine all the dynamic CGs into one using the set union

Svim editor is the text editor most used in Linux and Unix operating

systems.

relationship, which represents the dynamic CG of the
application.

The Entry-points Extractor is responsible for provid-
ing entry points to EvaL_CG. In SYNTHETIC TEST, each
file in the benchmark suite forms the entry point to
each static and dynamic CG algorithms. However, in
the case of a real-world application, the entry points
depend on that application. Instead, we generate a CG
for all the source files in each project individually and
ignore the files for which any of the three CG frame-
works throw an error. An error is thrown when the
source code contains a PyTHON feature that is not sup-
ported by the framework. Table 4 shows the reduction
in the number of source files (entry points) for each
real-world application as a result of entry-point extrac-
tor. Finally, we collect the common files for which a CG
is generated successfully from the three frameworks.
These extracted source files form the entry points to
the static and dynamic CG frameworks. This filtration
results in efficient comparison by using the same num-
ber of entry points in all the static and dynamic CG
generation frameworks. As we see, though, the tool
implementations fail on many input files, nCFA partic-
ularly so.

5 Experimental Results

We used EvalL_CG to evaluate the CG algorithms of
PyTHON programs in terms of soundness and precision.
Specifically, we address the following four research
questions:

RQ 1 Which CG algorithm has the highest precision?

RQ 2 Which CG algorithm has the highest recall?

RQ 3 What are the sources of unsoundness in each
CG algorithm?

RQ 4 What is the CG algorithms’ running time?

WaLa provides several algorithms. When evaluating
them in terms of precision and recall, we found that
nCFA performs generally better than other Wara CGs.
One of the WaLa authors also confirmed that nCFA
was tailored for PyrHON. Hence, in the following we
only compare C2Fcc (CopE2FLOW), PYAN(CG (PYAN),
and nCFA (WALA).

5.1 RQ 1: Precision

The precision in both experiments is calculated as de-
fined in Equation 1. Lower number of false positives,
i.e., edges present only in the static CG, yields higher
precision. Figure 5 shows the results from SYNTHETIC
TEST, Figure 6 the results from REAL-WORLD TEST. To

[45 of 93]

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on July 28,2021 at 12:28:02 UTC from IEEE Xplore. Restrictions apply.

Sriteja Kummita, et al.

Table 3. Branch coverage and benchmark-suite category presence in the real-world applications.

[=
.8 0
£
-+
|2 gl | B
S <) « 2 | o g | .9 =
=) Q & s | .8 .2 0
SIE .8 %% 2 AR
eS| ElS|2|8|s|E |2 lg|E|B|5 ¢
Cbeo Q -8 [3) = - Q & S r_a < © = Q
= > | B = ‘@
b £ s k3] = k3] - % - o o g 2
g =2 o b5 .2 < O | 4 c g | =5 s SY =
=] Q = - I~] Q < burt E 7] il o
X =] = o | 2 s | = O =] S B =] Q) 5]
Project O |lx | Al | xh|lA || AlMm | AlA|Z2|~ | &
Python robotics | 90 v VA VA VAN EVAR VAR V4
mitmproxy |V I VIV IV VIV IV IV IV IV I VIV
cookiecutter 100 v v | Vv v
YouCompleteMe | 89 | V' | V v v VAN VAR VAN VAN V4
The Fuck 93 v VAR VAN VAN BVAR IRVER VAR V4
Table 4. Number of entry points for each real-world application.
Application Total Successfully processed source files
source files
C2F ¢ PYANcG nCFA Common
Python robotics 92 92 92 32 32
mitmproxy 207 136 136 105 95
cookiecutter 18 18 18 14 14
YouCompleteMe (ycm) 24 24 24 19 19
The Fuck 197 180 180 170 157
Sum 538 450 450 340 317

compute the average, we used the geometric mean, as
recommended for normalized values.

In SYNTHETIC TEST, C2F¢ has better precision than
Pyancg and nCFA on average. For the categories such
as duck typing, nested code, object changes, and reflec-
tion it achieves 100% precision. Pyanc¢ follows C2F g
with 100% precision in duck typing, library loading, and
recursion categories of the benchmark suite. nCFA has
by far the worst precision among the three CG algo-
rithms: 27% on average. In REAL-WORLD TEST, C2F g
provides significantly better precision than the other
two algorithms, yet precision in general is rather poor.
nCFA in particular shows horrible precision: virtually
no edges of its static CG actually appear at runtime.

While Cope2rLow and PyanN show a useful level of
precision on SYNTHETIC TEST, on REAL-WORLD TEST
even the best algorithm Cope2rLow only shows a
precision of 33%.

5.2 RQ 2: Recall

In both experiments, the recall is calculated as defined
in Equation 2. The recall is higher the more edges of
the dynamic CG the static CG covers. Figure 7 shows
the results from SyNTHETIC TEST. Figure 8 shows the
results from REAL-WORLD TEST.

In SYNTHETIC TEST, while C2F ¢ gives precision of
72% on average, it provides poor results in terms of
recall (25% on average). A CG algorithm that has a
good precision but poor recall depicts that its CG tends
to under-approximate.

Similar to the precision, Pyancg follows C2Fc¢ in
terms of recall with 40% on average. While nCFA is
worst in terms of precision, it gives better recall (53%
on average) than C2Fcg and Pyancg—but as we will see,
only for SYNTHETIC TEST. nCFA provides 100% recall for
the duck typing, nested code, and recursion categories
of the benchmark suite.

[46 of 93]

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on July 28,2021 at 12:28:02 UTC from IEEE Xplore. Restrictions apply.

Qualitative and Quantitative Analysis of Callgraph Algorithms for PYTHON

C2Fcq Pyancg nCFA
panchine (093] 0RO 044
Runtime code... _
g Deonors INOBSI o6l 022
£ Lambda funcions [INOISO] 033
E Loy toutn: OISO 100 050
B Newcor DENIIIIINEENI00 IEEEEN0S2 NOSE
B Ovjectchanges 00! INON 040
Polymophic funciions [ININNNN0S0I OIS 036
Reticcion [IIIIIINE00] O 029
Aversee OS] 060 027
0.00 020 040 060 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00 0.00 020 040 0.60 0.80 1.00
Precision Precision Precision
Figure 5. Precision of CG algorithms from SYNTHETIC TEST
CZFCG Pyanc(; nCFA
g yem [0.68 034 10.02
N
F thenck [NOSZ o013
g cookicour IO 03
< mimproxy EIINN066] 10.07 10.00
§ Python robotics - -S |0,00
:% Average |0.33 [0.08 10.01
~ 0.00 0.20 0.40 0.60 0.80 1.00 0.00 020 040 0.60 0.80 1.00 0.00 0.20 040 0.60 0.80 1.00
Precison Precison Precison

Figure 6. Precision of CG algorithms from REAL-WORLD TEST

In REAL-WORLD TEST, PYANcG shows better recall
(33% on average) than nCFA and C2F . For the applica-
tions such as cookiecutter, and Python robotics, PYANcG
contains more than half of the dynamic CG edges (re-
call > 50%). While C2Fc¢ has the average precision of
33%, it has less recall when compared to Pyancg but
more than nCFA (on average, 27%). Unfortunately, also
in terms of recall, nCFA performs terrible for real-world
programs (2% on average).

Discussion. Overall one must conclude that, while
some algorithms perform okay on SYNTHETIC TEST,
when applied to real-world programs, the results of
all three algorithms are still far from perfect, which
really questions the practical utility of these current

implementations. WALA’s nCFA in particular shows sur-
prisingly bad results. In Section 5.3.2 we will investigate
more deeply in particular the prime reasons for low re-
call.

While nCFA and PyaN show at least somewhat useful
level of recall on SYNTHETIC TEST, on REAL-WORLD
TEST Pyan and Cope2rLow perform best, however,
also only with 33% and 27% recall, respectively.

5.3 RQ 3: Sources of Unsoundness

This section is divided into two research questions:

e RQ 3.1 What are the sources of unsoundness in
PyTHON language constructs?

[47 of 93]

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on July 28,2021 at 12:28:02 UTC from IEEE Xplore. Restrictions apply.

@]
N
-
o)
a

Branching
Runtime code..

Decorators

Direct functions

Duck typing

Lambda functions

Library loading

Benchmark Category

Nested code
Object changes
Polymorphic functions

Recursion
Reflection
Static functions

Average

Sriteja Kummita, et al.

Pyancg nCFA

0.00 0.20 0.40 0.60 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00 0.00 020 040 0.60 0.80 1.00

Recall

Recall Recall

Figure 7. Recall of CG algorithms from SYNTHETIC TEST

CZFCC PyanCG IICFA
H yem [000.44 045 10.03
£ neno 0B 023
T cookiccutier N0 o8s
S mimnproxy 021 029 10.01
 Python roborics IIIIN083] 086 10.03
3 Average [INOI27I 033 10.02
~ 0.00 0.20 0.40 0.60 080 1.00 0.00 020 040 060 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00
Recall Recall Recall

Figure 8. Recall of CG algorithms from REAL-WORLD TEST

e RQ 3.2 How does the type of real-world applica-
tion influence the edges in the static CG?

5.3.1 Influence of language constructs. We clas-
sify the edges of the dynamic CG of a PyTHON pro-
gram into three types, namely, initialization edges, di-
rect edges, and cardinal edges. We evaluate the CG al-
gorithms for these three types of edges. To understand
the three edge types, we revisit the Listing 1 and its cor-
responding dynamic CG in Figure 1. The initialization
edges refer to the edges in the CG that are generated
between the classes or methods and their namespaces,
such as the edge between main and the class Calculator.
The direct edges are the edges in the CG generated for
the function calls that are straightforward, such as the

edge between main and calculate_sum method. The car-
dinal edges refer to the edges generated for the function
calls that use special language constructs mentioned
in the benchmark suite categories. In our example, the
edge generated between calculate_scientific and calcu-
late_cos methods is a cardinal edge generated due to
runtime code generation. The direct and cardinal edges
for the direct functions and branching categories in the
benchmark suite are same.

The cardinal edges are the important edges that the
CG algorithms should support. These edges are directly
proportional to the level of support for the categories
in the benchmark suite.

We manually analyzed the FNs of each static CG
algorithm for all the programs in the benchmark suite to

[48 of 93]

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on July 28,2021 at 12:28:02 UTC from IEEE Xplore. Restrictions apply.

Qualitative and Quantitative Analysis of Callgraph Algorithms for PYTHON

categorize them and record the statistics. Table 5 shows
how the FNs are distributed over the three edge types
(initialization, direct, and cardinal edges) for each of the
three static CG algorithms. It also shows, how missing
recall percentages (Figure 7) for each benchmark suite
category is distributed over the three edge types.

Conclusions. Amongst the three edge types, most
of the FNs amount to initialization edges and cardinal
edges.

All the three static CG algorithms miss very few di-
rect edges as depicted by the total direct edges in the
Table 5 (three for C2Fcg, zero for PYAN(cg, and two in
the case of nCFA).

For the categories, that have 100% recall in the Fig-
ure 7 (nCFA for duck typing, nested code, and recursion),
the table shows that there are no FNs, which validates
the comparison.

C2Fcg computes all cardinal edges only for recur-
sion, whereas PYANcg does so for recursion and nested
code. In all the other categories for the three static CG
algorithms at least some cardinal edges are lacking.

Though only nCFA supports runtime code generation
(19% recall as shown in Figure 7), it only generates
initialization edges. Yet, in the case of lambda functions
nCFA shows only two missing cardinal edges, which is
less than C2F¢¢ (six), and PYAN(cg (nine).

In the case of static functions, though C2Fcs and
PyANc¢ have non-zero recall, they still miss to generate
cardinal edges.

Among the three static CG algorithms, nCFA has the
least number of total FNs (94) and FN cardinal edges
(49), and C2F¢ has the highest number of total FNs
(197) and FN cardinal edges (67). This is also depicted
from the Figure 7, which shows nCFA has the highest
average recall. The support to PYTHON programming
constructs is also less from the three static CG algo-
rithms as depicted by the non-zero FN cardinal edges.

5.3.2 Close-up on real-world applications. To
shed more light on the results on real-world applica-
tions, we inspected the number of CG edges generated
by each algorithm for the five real-world applications
used in the REAL-WORLD TEST. Figure 9 shows the sta-
tistics of CG edges using venn diagrams for each real-
world application.

The left side of each venn diagram shows the number
of edges in the dynamic CG (represented by green color).
The right side shows the number of static CG edges
(C2Fcg is represented by orange, PYaNcg with blue,
and nCFA with pink color). The intersection shows the

number of edges that are present in both the static CG
and the dynamic CG, i.e., number of TPs.

Within the intersection, for most of the applications,
PyaNcg has more edges than C2F g, and nCFA. C2Fcg
follows PyaNcg in CG generation for real-world ap-
plications. nCFA shows almost no TPs edges at all. In
fact it seems like its static CG reflect almost not at all
how the applications execute. Most edges the CG does
contain are synthetic edges. nCFA also filters more files
than PYaNcg and C2F g as observed from the Table 4.
Hence, it is not suitable to generate a better CG for
applications that include multiple source files.

For real-world programs, none of the three algorithms
produces a callgraph that closely mirrors these pro-
grams’ runtime execution. For nCFA, the static call-
graph has no resemblance to the dynamic callgraph
at all.

5.4 RQ 4: Runtime

We next compare the algorithms’ running times. Fig-
ure 10 shows the runtime of each CG algorithm from
SYNTHETIC TEST and REAL-WORLD TEsT. The left part
of the figure shows the arithmetic mean of time taken
by the static CG algorithms to generate a CG for the
benchmark suite and the right part shows the runtime
for real-world applications. PYANcg generates CG in
shorter time than C2Fcg and nCFA. Though C2F ¢ pro-
duces a better CG in terms of precision and recall for
real-world applications, it has far longer running times.

Conclusions. C2Fcg’s long running times can be ex-
plained by the fact that it iterates over its CG nodes
with the complexity of O(n?). Though the running time
of C2Fc¢ is less than nCFA in SYNTHETIC TEST, it in-
creases as the number of input files increase as shown
in the case of real-world applications. nCFA takes much
time in parsing the source file and walking through the
source code. It also uses the Jython® library to obtain
an abstract syntax tree (AST) of the source file. Though
nCFA takes less time than Pyan in the case of real-world
applications, it has virtually no TPs.

While Pyan and nCFA generally compute callgraphs
in under a second, for CopE2FLOW computation times
tend to be much higher.

5.5 Threats to Validity

The results of all three algorithms are much worse
than we had originally expected. Consequently, we took

Shttps://www.jython.org/

[49 of 93]

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on July 28,2021 at 12:28:02 UTC from IEEE Xplore. Restrictions apply.

Sriteja Kummita, et al.

Category C2Fcq PyANcG nCFA

#FNs| I D C | #FNs| I D C |#FNs| I D C
Branching 15 14 0 1 12 11 0 1 2 1 0 1
Runtime code generation | 17 8 0 9 17 8 0 9 14 5 0 9
Decorators 24 11 0 13 16 9 0 7 17 8 0 9
Direct functions 28 18 0 10 15 11 0 4 10 4 0 6
Duck typing 7 4 0 3 4 1 0 3 0 0 0 0
Lambda functions 12 6 0 6 16 7 0 9 2 0 0 2
Library loading 8 3 1 4 7 3 0 4 4 0 0 4
Nested code 8 4 1 3 3 3 0 0 0 0 0 0
Object changes 20 16 0 4 11 8 0 3 9 5 0 4
Polymorphic functions 24 18 0 6 15 9 0 6 12 5 1 6
Recursion 7 6 1 0 3 3 0 0 0 0 0 0
Reflection 16 10 0 6 8 4 0 4 9 5 0 4
Static functions 11 9 0 2 10 8 0 2 15 10 1 4
Total 197 | 127 3 67 137 | 85 0 52 94 43 2 49

Table 5. Categorisation of FNs into initialization (I), direct (D), and cardinal edges (C) from SYNTHETIC TEST.

Dynamic CG
C2F ¢ Pyancg nCFA

67 52 25 80 24 50 13 20 7 181 48 25 6 29 112

65 54 104 80 24 160 5 28 59 16366 822 530 174

116 3 174 104 593 33 74 227 2 520 34 1 400

YouCompleteMe thefuck cookiecutter mitmproxy Python robotics

Figure 9. CG edge statistics for real-world applications

great care to validate our experimental setup. This setup Nonetheless, we identified three remaining threats
is also openly available as a curated artifact. to validity in our approach to evaluating the CG algo-
rithms for PyrHON.

[60 of 93]

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on July 28,2021 at 12:28:02 UTC from IEEE Xplore. Restrictions apply.

Qualitative and Quantitative Analysis of Callgraph Algorithms for PYTHON

C2FCG
10000
1651.16
1000
103.52
100
©
S 10
=
=
S
@ 0.319.23
0.1 0.1
0.1
0.018
0.01 0.005
0.00.
0.001
Synthetic test | YouCompleteMe thefuck

PyanCG

=nCFA
930.64
206.19
5.9
0.8 0.64 1.05
0.29
0.070.07
cookiecutter mitmproxy Python robotics

Real-world applications

Figure 10. Runtime of CG algorithms for SYNTHETIC TEST and REAL-WORLD TEST.

First, a possible threat is the representativeness of
our benchmark suite. According to Nguyen et al. [8],
four aspects should be considered while designing a
benchmark: size, content, representativeness, and per-
manence. There is a threat to the representativeness
of the benchmark suite as there can be some missing
language constructs. To ensure an appropriate level
of representativeness we followed the official PyTHON
specification with the focus on constructs that are rele-
vant to function calls.

Second, in the REAL-WORLD TEST, we process only the
source files from each real-world application that can be
successfully processed by all the three CG frameworks.
As aresult, the total number of entry points to Evar_CG
reduces, which affects the metrics. If these files were
to be included, the overall results would be yet much
worse.

Third, the FPs are calculated as the number of static
CG edges that are not present in the dynamic CG. In
REAL-WORLD TEST, there is a possibility of labelling
a static CG edge as a FP because the dynamic CG ex-
tracted from the test cases may not include this edge
due to limited test coverage. Yet, exactly for this reason
we chose only python projects with a high test coverage
such that this threat is mitigated as much as possible.

6 Related Work

In the following, we discuss the related studies with
empirical nature that evaluate static callgraph (CG) al-
gorithms for different programming languages.

Yu evaluated three tools for Python CG construc-
tion [31], namely, Pyan [20], CopE2FLOW [5], and UN-
DERSTAND [28]. These were compared to a dynamic CG
created by PYCALLGRAPH [21]. The CGs are compared
based on metrics for centrality, connectivity, and the
PageRank algorithm. Additionally, the author manually
identified impactful nodes from the experimental data
to evaluate which tool creates the most accurate CG. In
this study, the commercial tool, UNDERSTAND showed
the best results. This study was performed on selected
PyTHON applications and did not consider the language
constructs. Moreover, no framework as evaL_CG is de-
signed, nor available.

Static analyses for the Java language are one of the
most mature, and hence, there are few studies that eval-
uate the CG algorithms for Java. Rountev et al. pub-
lished one of the first evaluations of static CGs based on
dynamically collected traces of the method calls [25].
They evaluated the rapid type analysis (RTA) imple-
mentation in SooT and identified the reasons for impre-
cision. Reif et al. published Judge [23], a CG evaluation
framework for Java which compared multiple algo-
rithms implemented in SooT, WaLA and OpaL, identify-
ing reasons for unsoundness. This study also showed
that the implementation of an algorithm among the
frameworks leads to different results. Grove et al. pre-
sented an evaluation framework [10] for the algorithms
implemented in WALA in which they evaluated Java
and CeciL programs. This study shows insights on the
relationship between the runtime and the precision of
the algorithms. Jasz et al. published comparative study

[61 of 93]

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on July 28,2021 at 12:28:02 UTC from IEEE Xplore. Restrictions apply.

on six Java CG construction tools [12] based on a self-
created application with different language features and
two real-world applications.

Lhotak proposed an algorithm for comparing
CGs [14] that additionally identifies important call
edges with high impact on the CG accuracy. He used a
case study with static and dynamic CG on one bench-
mark Java application to demonstrate the tool which
also includes a simple interactive component.

Murphy et al. explored nine tools that generated CGs
for C code [19] and is one of the first empirical study
in the area to stress out the importance of the choice of
CG algorithm with respect to the application.

Antal et al. explored the CGs of JAvAScripT pro-
grams [3]. In this comparative study they used five
tools. The results showed very high precision for most
of the tools. However, the number of missing edges is
relatively high, which is caused by the dynamic nature
of the language that makes static CG construction hard.

Finally, Ali et al. have published an extensive study on
multiple algorithms and programming languages [2]. In
the case of PYTHON, the authors converted the PyTHON
code to Java-bytecode and used the algorithms of Soot
and WAaLa for the evaluation. They showed that gen-
erating a CG using this method often leads to high
imprecision.

7 Conclusion

In this paper, we stressed out the importance of the call-
graph (CG) as a fundamental data structure for inter-
procedural static analyses and the need for empirical
evidence on the quality of the state-of-the-art CG algo-
rithms for PyTHON. We presented a reusable CG Eval-
uation Framework and used it to fully automatically
evaluate three existing CG algorithms for PyTHON. We
performed two experiments, evaluating the CG algo-
rithms both in terms of precision and recall, using both a
benchmark suite of synthetic, small PyTHON programs,
and real-world applications with high test coverage
from GrTHus.

The results surprised us because they clearly show
that, while the algorithms perform okay on the syn-
thetic micro-benchmarks, they provide both poor preci-
sion and recall for real-world programs. While Wara’s
nCFA algorithm and PyaNcg give the best recall when
executed on single, synthetic PyrHon files, nCFA is
not suitable for CGs generation of real-world applica-
tions: both its precision and recall are close to zero. The
CG from Pyan framework (PYANcG) and CODE2FLOW

Sriteja Kummita, et al.

(C2F¢g) give more sound results than nCFA when exe-
cuted on real-world applications but Cope2rLow has a
very long running time.

In conclusion, on real-world programs none of the
CG algorithms show a precision and recall that one
would deem acceptable in practice. In the case of
CobE2rLow, also performance optimizations seem ad-
visable. Consequently, there is much room in the devel-
opment of CG algorithms for the PYyTHON programming
language.

References

[1] Beatrice Akerblom, Jonathan Stendahl, Mattias Tumlin, and
Tobias Wrigstad. 2014. Tracing dynamic features in python
programs. In Proceedings of the 11th Working Conference on
Mining Software Repositories. ACM, 292-295.

[2] Karim Ali, Xiaoni Lai, Zhaoyi Luo, Ond “rej Lhotak, Julian
Dolby, and Frank Tip. [n.d.]. A Study of Call Graph Construc-
tion for JVM-Hosted Languages. IEEE Transactions on Software
Engineering. To Appear. (Accepted in 2019).

[3] Gabor Antal, Peter Hegedus, Zoltan Toth, Rudolf Ferenc, and
Tibor Gyimothy. 2018. Static javascript call graphs: A compar-
ative study. In Proceedings - 18th IEEE International Working
Conference on Source Code Analysis and Manipulation, SCAM
2018 (Proceedings - 18th IEEE International Working Conference
on Source Code Analysis and Manipulation, SCAM 2018). In-
stitute of Electrical and Electronics Engineers Inc., 177-186.
https://doi.org/10.1109/SCAM.2018.00028 18th IEEE Interna-
tional Working Conference on Source Code Analysis and Ma-
nipulation, SCAM 2018 ; Conference date: 23-09-2018 Through
24-09-2018.

[4] David F. Bacon and Peter F. Sweeney. 1996. Fast Static Analysis
of C++ Virtual Function Calls. SIGPLAN Not. 31, 10 (Oct. 1996),
324-341. https://doi.org/10.1145/236338.236371

[5] Code2flow. [n.d.]. Turn your Python and Javascript code into
DOT flowcharts. https://github.com/scottrogowski/code2flow

[6] Cookiecutter. [n.d.]. A command-line utility that creates
projects from cookiecutters (project templates), e.g. Python pack-
age projects, VueJS projects. https:/github.com/cookiecutter/
cookiecutter

[7] Jeffrey Dean, David Grove, and Craig Chambers. 1995. Op-
timization of Object-Oriented Programs Using Static Class
Hierarchy Analysis. In ECOOP’95 — Object-Oriented Program-
ming, 9th European Conference, Aarhus, Denmark, August 7-11,
1995, Mario Tokoro and Remo Pareschi (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 77-101.

[8] Lisa Nguyen Quang Do, Michael Eichberg, and Eric Bodden.
2016. Toward an Automated Benchmark Management Sys-
tem. In Proceedings of the 5th ACM SIGPLAN International
Workshop on State Of the Art in Program Analysis (Santa Bar-
bara, CA, USA) (SOAP 2016). Association for Computing Ma-
chinery, New York, NY, USA, 13-17. https://doi.org/10.1145/
2931021.2931023

[9] The Fuck. [n.d.]. Magnificent app which corrects your previous
console command. https://github.com/nvbn/thefuck

[62 of 93]

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on July 28,2021 at 12:28:02 UTC from IEEE Xplore. Restrictions apply.

Qualitative and Quantitative Analysis of Callgraph Algorithms for PYTHON

[10] David Grove and Craig Chambers. 2001. A Framework for
Call Graph Construction Algorithms. ACM Trans. Program.
Lang. Syst. 23, 6 (Nov. 2001), 685-746. https://doi.org/10.1145/
506315.506316

[11] Alex Holkner and James Harland. 2009. Evaluating the dy-
namic behaviour of Python applications. In Proceedings of the
Thirty-Second Australasian Conference on Computer Science-
Volume 91. Australian Computer Society, Inc., 19-28.

[12] Judit Jasz, Istvan Siket, Edit Pengo, Zoltan Sagodi, and Rudolf
Ferenc. 2019. Systematic comparison of six open-source Java
call graph construction tools. In ICSOFT 2019 - Proceedings
of the 14th International Conference on Software Technologies
(ICSOFT 2019 - Proceedings of the 14th International Confer-
ence on Software Technologies), Marten van Sinderen, Leszek
Maciaszek, and Leszek Maciaszek (Eds.). SciTePress, 117-128.
https://doi.org/10.5220/0007929201170128 14th International
Conference on Software Technologies, ICSOFT 2019 ; Confer-
ence date: 26-07-2019 Through 28-07-2019.

[13] Eleftherios Koutsofios and Stephen C. North. 1996. Draw-
ing Graphs With Dot. CiteSeerX (1996). https:/doi.org/
10.1.1.37.1582

[14] Ondfej Lhotak. 2007. Comparing Call Graphs. In Proceedings of
the 7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering (San Diego, California, USA)
(PASTE ’07). Association for Computing Machinery, New York,
NY, USA, 37-42. https://doi.org/10.1145/1251535.1251542

[15] Ondrej Lhotak et al. 2007. Comparing call graphs. In Proceed-
ings of the 7th ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering. ACM, 37-42.

[16] mitmproxy. [n.d.]. An interactive TLS-capable intercepting
HTTP proxy for penetration testers and software developers.
https://mitmproxy.org/

[17] Emily Morehouse. [n.d.]. AST and me.
emilyemorehouse.github.io/ast-and-me/

[18] Gail C. Murphy, David Notkin, William G. Griswold, and Er-
ica S. Lan. 1998. An Empirical Study of Static Call Graph
Extractors. ACM Trans. Softw. Eng. Methodol. 7, 2 (April 1998),
158-191. https://doi.org/10.1145/279310.279314

[19] Gail C. Murphy, David Notkin, William G. Griswold, and Er-
ica S. Lan. 1998. An Empirical Study of Static Call Graph
Extractors. ACM Trans. Softw. Eng. Methodol. 7, 2 (April 1998),
158-191. https://doi.org/10.1145/279310.279314

[20] Pyan. [n.d.]. Generate approximate call graphs for Python
programs. https://github.com/DavidFraser/pyan

[21] PyCaLLGrAPH. [n.d.]. Python Call Graph.
pycallgraph.readthedocs.io/en/master/

[22] Python. [n.d.]. Python documentation. https://docs.python.org/
3/

[23] Michael Reif, Florian Kiibler, Michael Eichberg, Dominik Helm,
and Mira Mezini. 2019. Judge: identifying, understanding, and
evaluating sources of unsoundness in call graphs. In Proceed-
ings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis. ACM, 251-261.

[24] H. G. Rice. 1953. Classes of Recursively Enumerable Sets and
Their Decision Problems. Trans. Amer. Math. Soc. 74 (1953),
358-366.

[25] Atanas Rountev, Scott Kagan, and Michael Gibas. 2004. Static
and Dynamic Analysis of Call Chains in Java. In Proceedings of

https://

https://

the 2004 ACM SIGSOFT International Symposium on Software
Testing and Analysis (Boston, Massachusetts, USA) (ISSTA "04).
Association for Computing Machinery, New York, NY, USA,
1-11. https://doi.org/10.1145/1007512.1007514

[26] Mooly Sagiv, Thomas Reps, and Susan Horwitz. 1996. Precise
interprocedural dataflow analysis with applications to con-
stant propagation. Theoretical Computer Science 167, 1 (1996),
131 - 170. https://doi.org/10.1016/0304-3975(96)00072-2

[27] Atsushi Sakai, Daniel Ingram, Joseph Dinius, Karan Chawla,
Antonin Raffin, and Alexis Paques. 2018. PythonRobotics:
a Python code collection of robotics algorithms. ArXiv
abs/1808.10703 (2018).

[28] Understand. [n.d.]. Understand - Visualise your code. https:
/Iscitools.com

[29] WALA. [n.d.]. Watson Libraries for Analysis.
github.com/wala/WALA

[30] YouCompleteMe. [n.d.]. A code-completion engine for Vim.
https://github.com/ycm-core/YouCompleteMe

[31] L. Yu. 2019. Empirical Study of Python Call Graph. In 2019
34th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE). 1274-1276. https://doi.org/10.1109/
ASE.2019.00160

[32] Yan Zhang and Barbara M Wildemuth. 2009. Qualitative anal-
ysis of content. Applications of social research methods to
questions in information and library science 308 (2009), 319.

https://

[63 of 93]

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on July 28,2021 at 12:28:02 UTC from IEEE Xplore. Restrictions apply.

