
CogniCryptgen

Generating Code for the Secure Usage of Crypto APIs

Stefan Krüger
Paderborn University

Germany

stefan.krueger@uni-paderborn.de

Karim Ali
University of Alberta

Canada

karim.ali@ualberta.ca

Eric Bodden
Paderborn University & Fraunhofer IEM

Germany

eric.bodden@uni-paderborn.de

Abstract

Many software applications are insecure because they mis-

use cryptographic APIs. Prior attempts to address misuses

focused on detecting them after the fact. However, avoiding

such misuses in the first place would significantly reduce

development cost.

In this paper, we presentCogniCryptgen, a code generator

that proactively assists developers in using Java crypto APIs

correctly. CogniCryptgen accepts as input a code template

and API-usage rules defined in the specification language

CrySL. The code templates in CogniCryptgen are minimal,

only comprising simple glue code. All security-sensitive code

is generated fully automatically from the CrySL rules that

the templates merely refer to. That way, generated code

is provably correct and secure with respect to the CrySL

definitions. CogniCryptgen supports the implementation of

the most common cryptographic use cases, ranging from

password-based encryption to digital signatures.

We have empirically evaluated CogniCryptgen from the

perspectives of both crypto-API developers and application

developers. Our results show that CogniCryptgen is fast

enough to be used during development. Compared to a state-

of-the-art template-based solution, implementing use cases

with CogniCryptgen requires only a fourth of development

effort, without any additional language skills. Real-world

developers see CogniCryptgen as significantly simpler to

use than the same template-based solution.

CCS Concepts · Software and its engineering → Soft-

ware development techniques; · Security and privacy

→ Software security engineering; Cryptography.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

CGO ’20, February 22–26, 2020, San Diego, CA, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-7047-9/20/02. . . $15.00

https://doi.org/10.1145/3368826.3377905

Keywords Cryptographic Misuse, Code Generation, Secu-

rity Specifications, Code Templates

ACM Reference Format:

Stefan Krüger, Karim Ali, and Eric Bodden. 2020. CogniCryptgen:

Generating Code for the Secure Usage of Crypto APIs. In Proceed-

ings of the 18th ACM/IEEE International Symposium on Code Gener-

ation and Optimization (CGO ’20), February 22–26, 2020, San Diego,

CA, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.

1145/3368826.3377905

1 Introduction

Previous studies have shown that 88%ś95% of Android apps

misuse APIs of cryptographic libraries [6, 7, 22, 40]. Such

misuses may result in dire consequences when badly imple-

mented cryptography is easily broken considering cryptog-

raphy’s role in securing sensitive information in almost all

digital devices and transactions [2, 13, 23, 38].

In response to these findings, a number of program-analysis

tools [6, 7, 22, 40] and program-repair tools [24, 41] have at-

tempted to combat the misuse of crypto APIs by analyzing a

given target program for the misuses and also trying to fix

them afterwards. While those attempts are a step forward,

such detection and mitigation techniques come at a cost:

developers first must integrate the API insecurely to thenÐ

hopefully, at some pointÐlearn how to fix the integration, a

request that seems questionable when taking into account

the results of a study by Nadi et al. [29]. The authors of

that study surveyed developers about their experience with

crypto APIs. Many of them struggle at least occasionally

with bad design (81%) and the knowledge that is required

to engage with them (35%). These main issues cannot mean-

ingfully be addressed solely by code-analysis or code-repair

tools. While a full re-design of the APIs might provide a more

long-term solution, such a step cannot be enforced by the

APIs’ users, which means that they will still have to struggle

with current API designs. To this end, participants in the

survey by Nadi et al. [29] also requested tools that would

provide secure implementations of common cryptographic

programming tasks.

To address these shortcomings, we presentCogniCryptgen,

a code generator for secure integrations of crypto APIs. The

tool operates on a Java project into which it generates code,

and accepts as input a template with interface and glue

185

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3368826.3377905
https://doi.org/10.1145/3368826.3377905
https://doi.org/10.1145/3368826.3377905

CGO ’20, February 22ś26, 2020, San Diego, CA, USA Stefan Krüger, Karim Ali, and Eric Bodden

code, as well as usage rules in the API-specification lan-

guage CrySL [22]. CrySL enables domain experts to specify

how to use a cryptographic API correctly and securely. Our

design of CogniCryptgen simplifies the used code templates,

causing the vast majority of the code to be generated fully

automatically from CrySL definitions. This code is provably

correct and secure (assuming a correct and secure specifi-

cation of CrySL rules by the domain experts). In addition,

as CogniCryptgen generates code from type- and syntax-

checked specifications, the generated code does not contain

syntax errors or produce type errors either.

Given a template that refers to a number of CrySL speci-

fications, through a series of model transformations, Cog-

niCryptgen translates these specifications into Java code and

generates the complete implementation into the provided

Java project. We have integrated CogniCryptgen into the

Eclipse-based crypto assistant CogniCrypt [21], in which

it replaces the existing code-generation solution, hereafter

referred to as CogniCryptold-gen. CogniCryptold-gen has

the drawback of using XSL templates that are disconnected

from any CrySL specifications, which frequently lead to in-

consistencies between those artefacts. With our integration

of CogniCryptgen, providers of crypto APIs instead need

to only develop and maintain a small and simple set of Java

code templates and the corresponding set of CrySL rules.

The CrySL rules also grant other kinds of tool support from

CogniCrypt:CogniCryptgen complements the existing tool

CogniCryptsast, which uses the very same CrySL specifi-

cations to find misuses in existing application code using

static analysis. The many existing CrySL specifications for

CogniCryptsast can be reused for CogniCryptgen.

We evaluate CogniCryptgen along four different dimen-

sions. First, to determine its expressiveness, we implement

templates for eleven common cryptographic use cases in

CogniCryptgen. Second, we measure runtime performance

and memory consumption of CogniCryptgen on all those

use cases. We then compare CogniCryptgen to the existing

XSL-based code-generation solution CogniCryptold-gen. In

this context, we compare the effort to create andmaintain the

artefacts for the eight use cases that CogniCryptold-gen sup-

ports with our own implementation of the same use cases in

CogniCryptgen. Lastly, we investigate the usability of Cog-

niCryptgen for a crypto-API developer, i.e., a domain expert

who may integrate new use cases or modify existing ones. To

this end, we conduct a user studywith 16 participants and ask

them to perform a series of modifications to artefacts of exist-

ing use-case implementations. In conclusion, we manage to

implement all common use cases we find in CogniCryptgen.

CogniCryptgen further outperforms CogniCryptold-gen in

terms of usability and maintainability, while showing neg-

ligible memory overhead and fast performance results of

below ten seconds.

1 public Key generateKey(String pwd) {

2 byte[] salt = {15, -12, 94, 0, 12, 3, -65, 73, -1,

-84, -35};

3 PBEKeySpec spec = new PBEKeySpec(

pwd.toCharArray (), salt , 100000 , 256);

4

5 SecretKeyFactory skf = SecretKeyFactory.

getInstance("PBKDF2WithHmacSHA256");

6 byte[] keyMaterial =

skf.generateSecret(spec).getEncoded ();

7

8 SecretKeySpec cipherKey = new

SecretKeySpec(keyMaterial , "AES");

9 return cipherKey;

10 }

Figure 1. An example illustrating the incorrect implementa-

tion of a password-based encryption (PBE) in Java.

2 Programming with Cryptography in Java

We now briefly describe how cryptography is implemented

in Java. We will also introduce the elements of the specifica-

tion language CrySL [22] that CogniCryptgen uses.

2.1 Java Cryptography

The most commonly used cryptographic library is the Java

Cryptography Architecture (JCA) [35]. The JCA serves both

as a set of APIs as well as a default implementation for these

APIs that is also shipped with the JDK. The underlying in-

frastructure is designed such that other implementations

(i.e., providers) may be easily plugged into the interfaces. In

our work, we focus on the default JCA implementation that

provides a wide range of cryptographic services, including

symmetric and asymmetric encryption, digital signatures,

and key management.

For the purpose of password-based data encryption (PBE),

the JCA offers the PBEKeySpec and CipherAPIs. The former

is used for the derivation of a cryptographic key from a

password, and the latter for the actual encryption. Figure 1

presents a potential use of PBEKeySpec that is widespread

in real-world applications. While the example avoids some

commonmisuses (e.g., using a low iteration count) [3, 6, 7, 22,

40], it is still insecure for the following non-trivial reasons.

The method generateKey() begins with the setup of the

encryption key by creating a PBEKeySpec object. The con-

structor of PBEKeySpec expects a password, a salt, an it-

eration count, and a key length. The PBEKeySpec object,

once created, is passed to a SecretKeyFactory that uses the

password-based key-derivation algorithm PBKDF2 to gen-

erate key material (Lines 5ś6). Based on this key material,

Line 8 generates a key for the symmetric cipher AES.

As intuitive as this snippet may look, it contains three mis-

uses thatmake the code insecure, all are related to PBEKeySpec.

Three of the four arguments to the constructor (Line 3) have

usage constraints, and the example breaks two of them. Let

186

CogniCryptgen CGO ’20, February 22ś26, 2020, San Diego, CA, USA

us first investigate the parameter that it sets correctly: the

iteration count. There is no general consensus on what a

secure iteration count is, but 100,000 is well above most rec-

ommendations [5, 10, 14]. The first misuse relates to the

constant salt that is passed to the constructor call. To avoid

the possibility of pre-computing rainbow tables [33], salts

must be generated through a cryptographically secure ran-

dom source. The second misuse is for the argument pwd. The

constructor of PBEKeySpec expects the password to be of

type char[], and it does so for a good reason. Passwords

should not remain accessible in memory any longer than

absolutely necessary. Unlike arrays, strings are immutable in

Java. Whenever a string is modified, a new string is created,

and the old one is kept in memory until garbage-collected.

To limit the password’s lifetime in memory, developers must

favour using char[] over String for passwords and clear

the array after passing it to the constructor. The third misuse

is related to the fact that PBEKeySpec does not automati-

cally clear the password soon after use. Instead, it expects

the developer to call clearPassword() after the object has

fulfilled its purpose, which the code in Figure 1 does not do.

Although the code contains these security-breaking mis-

uses, it nonetheless runs without throwing exceptions. Not

only must developers make sure to use the API in a function-

ally correct way, they also must consider the code’s security

properties. This scenario is especially concerning consider-

ing that Java does not provide any tool support to detect

insecure uses. Many developers reuse code snippets from

online resources such as StackOverflow that are frequently

functionally correct but insecure [9].

2.2 Specifying Secure Usage of Cryptographic APIs

CrySL is a domain-specific language that enables experts to

define how a certain API should be used. CrySL’s syntax is

close to Java. Krüger et al. [22] provide further information

about the design decisions that underly CrySL.

Generally speaking, CrySL specifications follow a white-

listing approach, treating all deviations from a specification

as misuses. In CrySL, each rule specifies the correct use of

one Java class or interface. A rule may comprise four sections:

(1) a calling-sequence pattern, (2) constraints on parameters

or combinations thereof, (3) forbidden methods, and (4) con-

straints on how the specified object may be composed with

objects of other types. None of these sections are mandatory.

To illustrate the capabilities of CrySL, let us consider

the CrySL rule for PBEKeySpec [20, 22], shown in Figure 2.

The rule starts off by stating the class it specifies. Subse-

quently, the OBJECTS section defines four objects that may

be referenced in the subsequent parts of the rule. One such

object is the char[] password. The EVENTS and ORDER sec-

tions specify the usage pattern. First, within EVENTS, one

defines all methods that may contribute to a successful use

of PBEKeySpec as method-event patterns (Lines 20ś21). The

ORDER section then defines valid execution sequences for the

11 SPEC javax.crypto.spec.PBEKeySpec

12 OBJECTS

13 char[] password;

14 byte[] salt;

15 int iterationCount;

16 int keylength;

17

18 ...

19 EVENTS

20 c1: PBEKeySpec(password , salt ,

iterationCount , keylength);

21 cP: clearPassword ();

22

23 ORDER

24 c1, cP

25

26 CONSTRAINTS

27 iterationCount >= 10000;

28 ...

29

30 REQUIRES

31 randomized[salt];

32 ENSURES

33 speccedKey[this , keylength] after c1;

34 NEGATES

35 speccedKey[this , _];

Figure 2. CrySL rule for using the JCA class

javax.crypto.spec.PBEKeySpec.

36 SPEC javax.crypto.SecretKeyFactory

37 OBJECTS

38 int keylength;

39 java.lang.String cipherAlg

40 ...

41 REQUIRES

42 speccedKey[keylength];

43 ENSURES

44 generatedKey[this , cipherAlg];

Figure 3. CrySL rule for using the JCA class

javax.crypto.SecretKeyFactory.

method calls defined this way. CrySL comes with a number

of syntax elements that support and simplify the specifica-

tion process such as placeholders to ignore certain parame-

ters, combining multiple calls in one line, labelling patterns,

and aggregating labels. The usage pattern for PBEKeySpec is

rather simple. It requires a call to the secure constructor la-

belled c1 followed by a call to clearPassword() to prevent

the third misuse in Figure 1. The CONSTRAINTS section adds

constraints over parameter values, i.e., the objects declared

in the OBJECTS section. The PBEKeySpec rule requires the

iterationCount variable to be at least 10,000.

To cover constraints between classes, CrySL offers two

keywords that implement a rely/guarantee reasoning. First,

187

CGO ’20, February 22ś26, 2020, San Diego, CA, USA Stefan Krüger, Karim Ali, and Eric Bodden

the ENSURES section defines predicates that serve as guaran-

tees a class provides if a given use of that class adheres to its

CrySL rule. In other words, an object is used securely, i.e.,

ensures its predicates, if and only if the use under analysis

follows the defined method sequence, does not violate any

parameters constraints, and avoids calling forbidden meth-

ods. The rule PBEKeySpec makes use of another keyword in

the ENSURES section: through the keyword after, it ensures

the predicate speccedKey only after the call to the construc-

tor c1. In addition, the rule defines another section NEGATES

(Line 35) to denote that the speccedKey predicate ought to

be invalidated after cP is called. This rule may look confusing

at first, but makes sense when put in context. The second

method clearPassword() nullifies the array, as described

above. Therefore, any given PBEKeySpec object can only ever

fulfil its purpose as a key specification after executing the

class’s constructor but before executing clearPassword().

While the predicate is ensured, other classes may in turn

rely on it using the REQUIRES section (Line 42 in Figure 3).

For a given use of SecretKeyFactory to be correct, the ob-

ject must adhere to the rule’s usage pattern and parameter

constraints. Additionally, any key specification flowing into

it must also ensure the speccedKey predicate, signalling its

secure generation. Class compositions are not a rare phe-

nomenon. PBEKeySpec in Figure 2 must rely on the proper

use of another class, too. In Line 31, the rule requires the

object salt to come with the predicate randomized. At the

time of writing, only SecureRandom can grant this predicate.

Overall, the CrySL rule for PBEKeySpec mitigates against

all three misuses that we have identified above. Thanks to

its largely white-listing approach and the already developed

comprehensive CrySL rule set for the JCA [20], we opted to

take CrySL as a building block for CogniCryptgen.

3 Generating Secure Code from CrySL

In this section, we present CogniCryptgen. First, we dis-

cuss the goals and considerations of our design. We then go

further into its API, the code templates that interface Cog-

niCryptgen, and the underlying code-generation algorithm.

3.1 Design Considerations

CogniCryptgen targets a very practical problem: the wide-

spread misuse of crypto-APIs. To this end, we put usability

at the center of the design effort. Usability first and foremost

refers to usability for regular Java developers. To truly help

those developers, CogniCryptgen must support the most

common cryptographic use cases. It must also integrate into

the development workflow of a regular developer, which

puts limitations on the running time of CogniCryptgen.

On top of these aspects, prioritizing usability, for us, also

means to have a usable development and maintenance pro-

cess of the artefacts in the backend of CogniCryptgen (i.e.,

CrySL rules and code templates). The target audience on

45 public SecretKey generateKey(char[] pwd) {

46 byte[] salt = new byte [32];

47 javax.crypto.SecretKey encryptionKey = null;

48

49 CrySLCodeGenerator.getInstance ().

50 considerCrySLRule("java.security.SecureRandom").

51 addParameter(salt ,"salt").

52 considerCrySLRule("java.security.PBEKeySpec").

53 addParameter(pwd , "password").

54 considerCrySLRule("javax.crypto.SecretKeyFactory").

55 considerCrySLRule("java.security.SecretKey").

56 considerCrySLRule("javax.crypto.SecretKeySpec").

57 addReturnObject(encryptionKey).generate ();

58 return encryptionKey;

59 }

Figure 4. CogniCryptgen template that generates a correct

Java implementation for PBE from Figure 2.

the backend of CogniCryptgen are crypto experts who have

either developed a library that they want to integrate into

CogniCryptgen or have some experience with one. To keep

things simple, we opted for Java code templates as opposed

to other template languages that Java crypto experts are

not likely familiar with. In addition, CrySL has a Java-like

syntax as Krüger et al. [22] have previously argued. While

CrySL is an additional artefact that may not be needed by

other template engines in particular, or code-generation ap-

proaches in general, developing rules in CrySL comes with

the additional advantage of gaining other tool support from

the CogniCrypt ecosystem. The result of our design is a

code generator combining code templates with CrySL rules.

Thanks to this setup, CogniCryptgen, in conclusion, guar-

antees to generate code code that (1) is free of syntax errors,

(2) type-checks in Java, and (3) does not violate CrySL rules.

3.2 Configuring Solutions with Java Code

Templates

CogniCryptgen’s code templates are regular Java classes.

They allow crypto experts to (1) include use-case-specific

wrapper code, (2) specify CrySL rules that make up the given

use case, and (3) pass objects from the wrapper code to Cog-

niCryptgen. Figure 4 shows the code template for implement-

ing the PBE example from Figure 2 correctly and securely.

Figure 5 shows how the generated code uses this template.

The first line of the template defines a salt. This explicit

definition is necessary because the involved APIs require a

byte array, but do not create one themselves. The line after

defines a cryptographic key called encryptionKey, which

the generated code uses to store the generated key (Line 74).

Starting at Line 49, the template calls CrySL rules and in-

stantiates their parameters using a fluent API [11]. The call

to getInstance() instantiates the code generator. Line 50

includes the class java.security.SecureRandom into the

code generation through a call to considerCrySLRule().

188

CogniCryptgen CGO ’20, February 22ś26, 2020, San Diego, CA, USA

61 public class TemplateClass {

62 public SecretKey generateKey(char[] pwd) {

63 byte[] salt = new byte [32];

64 SecretKey encryptionKey = null;

65

66 SecureRandom secureRandom =

SecureRandom.getInstance("SHA1PRNG");

67 secureRandom.nextBytes(salt);

68 PBEKeySpec pBEKeySpec = new PBEKeySpec(pwd , salt ,

27799, 128);

69

70 SecretKeyFactory secretKeyFactory =

SecretKeyFactory.getInstance

71 ("PBEWithHmacSHA512AndAES_128");

72 SecretKey secretKey =

secretKeyFactory.generateSecret(pBEKeySpec);

73 byte[] keyMaterial = secretKey.getEncoded ();

74 encryptionKey = new SecretKeySpec(keyMaterial ,

"AES");

75

76 pBEKeySpec.clearPassword ();

77 return encryptionKey;

78 }

79 }

80 public class OutputClass {

81 public void templateUsage(char[] pwd) {

82 TemplateClass tc = new TemplateClass ();

83 SecretKey key = tc.generateKey(pwd);

84 }

85 }

Figure 5. Code Generated by CogniCryptgen using the tem-

plate in Figure 4.

In the next line, the call to addParameter() associates the

byte array salt in the template with the variable salt in the

CrySL rule for SecureRandom. Lines 50ś51 properly random-

ize salt before using it during key generation. Lines 52ś56

then create a java.security.PBEKeySpec key and trans-

form it into a javax.crypto.SecretKeySpec key. Finally,

the call to addReturnObject() assigns encryptionKey the

role of a return object. During the generation, the return

value of the constructor of javax.crypto.SecretKeySpec

is stored in encryptionKey. CogniCryptgen selects the con-

structor because it is the last method of that class that needs

to be called according to the CrySL rule. As a result, the

key based on the password is assigned to encryptionKey.

Line 58 returns the key as part of the boilerplate code.

3.3 Generating Secure Code from Templates

Figure 6 shows the workflow of CogniCryptgen. In the fol-

lowing, we describe how it works and will refer to the in-

dividual steps using their corresponding numbers in the

figure. For each call to the code-generator API in a template,

CogniCryptgen first collects all rules and their parameters

from an API call chain 1 . The chain in Line 49 in method

generateKey() requires rules for java.security.Secure

Random, java.security.PBEKeySpec, javax. crypto.Sec

retKeyFactory, and javax.crypto.SecretKeySpec. In ad-

dition, the CrySL rules for java.security.SecureRandom

and java.code.PBEKeySpec get attached the objects salt

and pwd to their in-rule variables salt and password, respec-

tively. Lastly, the rule for SecretKeySpec yields the object

encryptionKey as a return object.

CogniCryptgen then iterates through the rules to assem-

ble a list of predicates that link rules to one another 2 . These

links form a path that CogniCryptgen uses to select appro-

priate method sequences for a given class 3 . If two classes

are connected through a predicate, CogniCryptgen may, for

the class that should ensure the predicate, only select method

sequences that eventually grant this predicate. Similarly, for

the class that requires the predicate, CogniCryptgen picks

method sequences thatmake use of the predicate. For the PBE

example in Figure 4, PBEKeySpec can generate the predicate

speccedKey on itself. SecretKeyFactory, in turn, requires

this predicate on the key specification object that it uses to

generate a key (Line 42 in Figure 3). Hence, CogniCryptgen
connects both rules using the predicate speccedKey on the

PBEKeySpec object. If CogniCryptgen were unable to estab-

lish a path between PBEKeySpec and SecretKeyFactory, it

would not have taken the former into account when gener-

ating code for the latter.

Next, CogniCryptgen iterates through all rules again to

assemble the code, which includes (1) generating method

calls 3 for all involved classes and (2) finding appropriate

values for their parameters 4 . For each CrySL rule, Cog-

niCryptgen first compiles a list of correct paths of method

calls according to the specified calling-sequence pattern 3 .

To this end, CogniCryptgen translates a rule’s pattern into

a finite state machine. The tool then classifies any path of

method calls that leads to an acceptable state in the state ma-

chine as correct.When assembling such paths,CogniCryptgen
has to deal with methods that, according to the state machine,

may be called multiple times.CogniCryptgen translates such

methods into two different paths: one where the method is

not called and one where it is. CogniCryptgen does not

currently support repeated calls. However, in our experi-

ments with the JCA, this lack of support has not proven

to be a problem. In scenarios where more than one cor-

rect path is found, CogniCryptgen applies a set of filters

to reduce the number of sequences. Paths that do not in-

clude objects required by the code template through calls

to addParameter() cannot implement the use case and are,

therefore, eliminated. For PBEKeySpec, its CrySL rule in Fig-

ure 2 prescribes one specific constructor (c1) and the method

clearPassword() to be called in that order. Therefore, for

this class,CogniCryptgen finds only this one possible path to

an accepting state. Similarly, CogniCryptgen discards paths

that may lead to different predicates than the ones associ-

ated with it. In the case of PBEKeySpec, the only possible

189

CGO ’20, February 22ś26, 2020, San Diego, CA, USA Stefan Krüger, Karim Ali, and Eric Bodden

Figure 6. The General Workflow of CogniCryptgen.

path grants the correct predicate speccedKey. Consequently,

CogniCryptgen does not remove this path from the list of

possible paths to take. Instead, CogniCryptgen generates

the call to the PBEKeySpec constructor in Line 68 of Figure 5.

The second call, the call to clearPassword(), Cog-

niCryptgen appends to the block of API statements in Line 76

before the return statement because the method invalidates

the speccedKey predicate of the object. Instead of generating

calls to such invalidating methods directly, CogniCryptgen
collects them and generates them at the end of the method.

For eachmethod call on the remaining paths,CogniCryptgen
applies several heuristics to resolve possible parameter val-

ues 4 . First, it attempts to match parameters required by

the template through calls to addParameter() to a given

parameter in a method call. Two objects match when the

CrySL variable mapped to an object in the addParameter()

call is the one used in the method call. At Line 68 of Fig-

ure 5, CogniCryptgen matches password, the first param-

eter in the constructor c1 of PBEKeySpec, to the argument

pwd of the method generateKey(). It does so because the

call to addParameter() maps pwd to the CrySL variable

password in PBEKeySpec (Line 53). In case of no match, Cog-

niCryptgen further attempts to match a parameter to objects

in the generated code that have received a matching predi-

cate. For the PBE example, CogniCryptgen generates code

for SecureRandom that ensures the predicate randomized for

salt. CogniCryptgen then matches the second parameter

in the call to the PBEKeySpec constructor to this salt object

because it has the same type and requires the same predi-

cate. CogniCryptgen conducts one further step to resolve

remaining method parameters that may not be matched to

any existing objects from the code template or the generated

code. For those, it queries constraints from the respective

CrySL rule and fetches secure values from the first appropri-

ate constraint that it finds. For value constraints of the form

var in {Literal1, ..., LiteralN}, it selects the first

option Literal1. This type of constraint usually comes into

play for algorithms and key sizes (e.g., in KeyGenerator or

Cipher [20]). From a security perspective, since all values in

a CrySL rule ought to be correct, it does not matter which

value CogniCryptgen chooses. Another type of constraints

becomes relevant for the third parameter of the PBEKeySpec

constructor. According to the rule in Figure 2, the iteration

count must be ≥ 10,000. CogniCryptgen generates the clos-

est value that satisfies this constraint, which is 10,000 (Line 68

in Figure 5).

For cases in which this attempt to resolve the parame-

ter fails as well, we decided to prioritize compilability of

the generated source code over completeness. That is, Cog-

niCryptgen adds the unresolvable parameter to the wrapper

method that the call belongs to. During the development of

our code templates, this feature has proven useful for debug-

ging. We have first specified which CrySL rules should be

included in the generation and after runningCogniCryptgen,

the generated code showed which parameters needed addi-

tional specification. We believe this feature will also help

crypto experts in similar situations. For the final code tem-

plate, however, this step is meant as a fallback solution be-

cause it changes the wrapper method as defined in the code

template and de-facto complicates the use of the method. In

practice, CogniCryptgen did not have to take this final step

for any of the use cases we have implemented.

190

CogniCryptgen CGO ’20, February 22ś26, 2020, San Diego, CA, USA

If, at the end of this process, CogniCryptgen needs to

choose between multiple method paths with fully-resolvable

parameters, it selects the shortest one. That is,CogniCryptgen
opts for the method path with the fewest method calls as

well as the smallest number of parameters. When all calls are

selected and all parameter objects have been assigned values,

CogniCryptgen generates the produced code into the target

program 5 . This process is then repeated for all calls to

CogniCryptgen’s fluent API within a given template. Once

CogniCryptgen has processed a template, it also generates a

method that showcases the usage of the generated code. To

this end, it creates a new class and method, in which it first

instantiates an object of the template class. For our running

example, Line 81 in Figure 5 marks the first statement of

the corresponding method. In that method, CogniCryptgen
iterates through all methods of the template class that con-

tains calls to the fluent API and generates calls for them.

For generateKey() in the template, the generated call is at

Line 83. Other methods are assumed to be internal helper

methods. CogniCryptgen further attempts to match param-

eters by type-matching a given parameter to return values

of previous calls. To ensure compilability, CogniCryptgen
pushes up parameters where no matching is possible, e.g.,

pwd of generateKey(), to become parameters of method

templateUsage(). For pwd, this is indeed the correct be-

haviour, as the password should be an input rather than a

hard-coded value. In conclusion, we view this method as use-

ful for developers, because they do not need to engage with

the generated code, but only with this summary method. We

drew inspiration for this feature from CogniCrypt’s pre-

vious code-generator CogniCryptold-gen, in which such a

method is hard-coded into the tool’s templates.

4 Implementation Details

We developed CogniCryptgen on top of the existing infras-

tructure for CogniCrypt. We had to first modify CrySL in

one aspect. For encryption, the JCA offers one API for both

asymmetric and symmetric encryption: Cipher. So far, the

rule for Cipher included one long list of secure algorithms

indiscriminately of whether they are performing the former

or the latter. For the purpose of program analysis, such a dis-

tinction does not necessarily need to be made (although it im-

proves precision to do so). However, implementing use cases

involving hybrid encryption (see Section 5) requires differen-

tiating between them. For that purpose, we introduced a new

built-in predicate instanceof(cryslVariable, javaType).

By means of this predicate, the CrySL rule for Cipher now

only allows symmetric-encryption algorithms when a key

used for encryption is of type SecretKey or subtypes(i.e.,

instanceof(key, java.security.SecretKey). Asymmet-

ric encryption algorithms may only be used when the key is

either a private or a public key, indicating that the Cipher

object implements an asymmetric encryption.

We have further re-used the CrySL parser that Krüger

et al. [22] had developed for CogniCryptsast. However, we

needed to modify the existing JCA rule set in the following

ways. For some rules (e.g., Signature and KeyGenerator),

we changed the position of arguments in the constraints

var in {Literal1, ..., LiteralN} to better reflect

the preferences in algorithm selection that CogniCryptgen
should follow. We have also added a new parameter to some

predicates (e.g., Signature), where the first parameter was

not the return value of a cryptographic operation (e.g., the

boolean return value of Signature.verify()). In all respec-

tive cases, CogniCryptgen requires the return value to store

it in the correct variable as assigned in the template through

a call to addReturnObject().

We implemented our own custom solution to template

parsing, the traversal of CrySL rules, and code modification.

This solution builds on top of the Eclipse Java Development

Toolkit (JDT). To parse the templates and apply changes to

them in the target project, we have followed a visitor pattern

using the JDT’s abstract-syntax-tree (AST) APIs.

Prior to ourwork,CogniCrypt used aCrySL-independent

code-generation tool, CogniCryptold-gen [21]. Using XSL

templates, use-case specific code and points of variability

are defined. An algorithm model in the variability-modelling

language Clafer [18] supplies correct values (i.e., algorithms)

based on user input [28].We further compareCogniCryptgen
to CogniCryptold-gen in Sections 5 and 6. To improve Cog-

niCrypt, we have replaced CogniCryptold-gen with Cog-

niCryptgen which implements the eight JCA use cases that

CogniCrypt supports: password-based encryption for the

data types (1) file, (2) string, and (3) byte array, hybrid en-

cryption for the data types (4) file, (5) string, and (6) byte

array, (7) digital signing, and (8) secure password storage.

5 Evaluation

To evaluate CogniCryptgen, we aim to answer the following

research questions:

• RQ1: Can CogniCryptgen implement common cryp-

tographic use cases?

• RQ2: DoesCogniCryptgen produce code quickly enough

to be used in everyday software development?

• RQ3: What is CogniCryptgen’s memory consump-

tion?

• RQ4: What is the effort to create and maintain the

artefacts for CogniCryptgen to implement common

cryptographic use cases?

• RQ5: Do contributors to CogniCryptgen perceive a

usability gain compared to a state-of-the-art solution

using XSL?

With the first three research questions, we aim to deter-

mine whetherCogniCryptgen may actually support develop-

ers. If CogniCryptgen is incapable of implementing the most

191

CGO ’20, February 22ś26, 2020, San Diego, CA, USA Stefan Krüger, Karim Ali, and Eric Bodden

common cryptographic use cases (RQ1), it cannot meaning-

fully reduce cryptographic misuse. Similarly, if its memory

consumption and runtime exceed the average capabilities

of workstations (RQ2 + RQ3), application developers will

not use it. RQ4 and RQ5 then focus on crypto developers

who wish to implement use cases for their own APIs. If Cog-

niCryptgen requires too much effort (RQ4) or developers do

not find it intuitive to use (RQ5), it is unlikely that a crypto de-

veloper will integrate their APIs with CogniCryptgen, even

if they they get access to other tool support in CogniCrypt.

5.1 Implementation of Common Use Cases (RQ1)

Setup To answer RQ1, we have first gathered common

cryptographic use cases from multiple sources. The first

author of this paper then attempted to implement them with

CogniCryptgen. To check the validity of the generated code

with respect to compilability and security, we have further

run the Java compiler and CogniCryptsast on them.

Results We first collected eight of eleven cryptographic

use cases that CogniCryptold-gen [21] supports and that use

the JCA. We discard the three remaining ones because no

CrySL rules exist for them. In their study, Nadi et al. [29]

compiled a list of common usage scenarios by (1) analyzing

the implemented use cases of 100 randomly selected GitHub

projects that implement Java cryptography and (2) asking

participants for cryptographic programming tasks that they

commonly have to implement. We have also collected the

responses often found in projects and popular with partici-

pants. Lastly, Mindermann and Wagner [27] have collected

an online repository that aims at providing secure imple-

mentations for common cryptographic use cases. We have

included those use cases into our list as well. Table 1 shows

all use cases that CogniCryptgen supports as well as their

respective sources.

We have successfully implemented all eleven use cases.

The implementations of use cases 1ś3 are virtually the same

in CogniCryptgen, because they involve the same classes,

which leads to having the exact same calls toCogniCryptgen’s

fluent API . Only the wrapper code around the fluent-API

calls changes depending on the data type (i.e., File, String, or

Byte Array) that is encrypted. The same is true for use cases

5ś7 that all deal with hybrid encryption but on different data

types. None of the generated code snippets cause compiler

errors or true misuses identified by CogniCryptsast.

5.2 Performance (RQ2 and RQ3)

Setup To answer RQ2, we measure the average running

time for each use case in Table 1. To compute the average, we

ran each use case ten times, and collect the measurements

using java.lang.System.currentTimeMillis().

To answer RQ3, we ran CogniCryptgen for each task

again. We capture the memory consumption of the Eclipse

process through the systemmemorymonitor both before and

during theCogniCryptgen’s run.We then subtract the before

value from the highest value during the run. Please note, in

pre-experiments, we ran several use cases multiple times, but

found the fluctuation in memory usage as negligible (within

half a megabyte). We hence decided to take the memory

consumption from only a single run.

We ran the experiments on a Windows 10 machine with

four CPUs running at 2.6GHz and 16 GB of RAM. We exe-

cuted all runs on an Eclipse 2019-06 for RCP and RAP devel-

opers using Java 8.

Results We list the results for RQ2 and RQ3 in the last two

columns of Table 1. CogniCryptgen takes between 6.6 and

8.1 seconds. Therefore, all runs are well below ten seconds,

making CogniCryptgen easily integratble into a developer’s

programming workflow.

In terms of memory consumption, CogniCryptgen con-

sumes between 2.5 and 66.6 MB on top of the regular Eclipse

process. During our experiments, the latter oscillated be-

tween 900 MB and 1.2 GB of RAM. We conclude that Cog-

niCryptgen’s memory overhead is negligible.

5.3 Artefact Creation and Maintenance (RQ4)

Setup To approximate the effort of rule creation and main-

tenance, we compare the artefacts needed to implement the

eight cryptographic use cases in CogniCryptold-gen to their

implementations in CogniCryptgen. In particular, we com-

pare the total number of lines of code a crypto expert would

have to write as well as the language skills required by a de-

veloper to implement a use case using both code generators.

We have only investigated artefacts that are specific to the

respective code generator. That is, for CogniCryptold-gen,

we looked at Clafer model and XSL code templates. For Cog-

niCryptgen, on the other hand, we only investigated the code

templates, not the involved CrySL rules. CrySL rules, in our

case, had been developed independently of this work and

have only been changed marginally by us. In general, they

are not CogniCryptgen specific, but are instead developed

to receive general support for an API by CogniCrypt.

Results Table 2 shows the sizes of the different artefacts for

the eight use cases thatCogniCryptold-gen supports. Overall,

a developer needs to write at least 111 lines of XSL code and

43 lines of Clafer model to support any of those use cases in

CogniCryptold-gen. On average, each use case implements

136 lines of code in XSL and 91 lines in Clafer. In contrast,

a developers needs to write an average of only 60 lines of

Java code in CogniCryptgen to implement those use cases.

Writing less code has two advantages. First, artefacts main-

tainers need to only keep track of around 25% of the lines

of code. Second, crypto experts who have implemented a li-

brary in Java do not need to learn extra languages (i.e., Clafer

and XSL) to implement their use cases in CogniCryptgen.

Instead, they may define their security code entirely in Java,

a language they must be familiar with to implement their

192

CogniCryptgen CGO ’20, February 22ś26, 2020, San Diego, CA, USA

Table 1. Common Cryptographic Use Cases

Use Case Source
Runtime in

CCgen (in s)

Memory Consumption

in CCgen (in MB)

1 PBE on Files [21] 7.0 14.1

2 PBE on Strings [21], [27] 6.7 13.5

3 PBE on Byte-Arrays [21] 7.1 66.6

4 Symmetric-Key Encryption [27], [29] 6.8 6.0

5 Hybrid File Encryption [21] 6.7 2.5

6 Hybrid String Encryption [21] 6.6 4.2

7 Hybrid Byte-Array Encryption [21] 6.9 56.7

8 Asymmetric String Encryption [27] 6.8 34.1

9 Secure User-Password Storage [21], [27] 8.1 22.7

10 Digital Signing of Strings [21], [27], [29] 7.5 7.1

11 Hashing of Strings [27] 6.7 14.2

Table 2. Comparing the required lines of code (LOC) to

implement the use cases of CogniCryptold-gen in both Cog-

niCryptold-gen and CogniCryptgen.

LOC in LOC in

CogniCryptold-gen CogniCryptgen

XSL Clafer Java

1 140 117 57

2 138 117 57

3 111 117 51

5 158 90 74

6 156 90 74

7 129 90 68

9 139 67 55

10 115 43 40

cryptographic library in the same language. When defining

code templates in an IDE such as Eclipse, the crypto experts

receive the more advanced development support for Java

(e.g., type checking and auto-compiling) compared to what

editors or IDEs provide for XSL or Clafer. Those advantages

carry over to scenarios where experts may use CrySL in

domains other than cryptography.

5.4 Usability (RQ5)

Setup To answer RQ5, we conducted a small-scale user

study with 16 participants. We recruited the participants

among graduate students at our local university. Each partic-

ipant is given two tasks, both of which we based on common

cryptographic use cases in Table 1, one with CogniCryptgen

and one with CogniCryptold-gen.

We choose to compare against CogniCryptold-gen for

two reasons. First, it is the tool with closest aim as Cog-

niCryptgen. Second, XSL, as an approach to template-based

code generation, provides the ideal setting to compare against.

Templates are defined in an extra language with extra fea-

tures, but still providing a way to write Java code directly.

Domain experts might find the additional layer of abstrac-

tion this extra language provides useful because it produces

a clear cut between code template and generated code. We,

however, assume this to not be the case, at least for cryptog-

raphers, because, from our prior experience working with

cryptographers, we can report that they often do not know

any template languages. If participants of our study, who

by and large also lack experience with template languages,

nonetheless preferred CogniCryptold-gen despite the extra

language, we would expect domain experts also favouring

the old code generator rather than the new one.

Consequently, we designed the tasks such that they rely

heavily on modifying code templates, instead of Clafer and

CrySL rules. Task 1, based on use case ten in Table 1, asks par-

ticipants to (1) change a solution that hashes strings to one

that hashes files and (2) fix the name of the chosen algorithm

that the code generator produces. Task 2, based on use case

four in Table 1, asks participants to (1) add proper random-

ization of an initialization vector for symmetric encryption

and (2) prohibit the code generator from using an outdated

algorithm. To avoid learning and other carry-over effects,

we follow a latin-square approach [12] when randomly as-

signing tasks and code generators to participants. We give

participants 30 minutes to complete each task. Before partic-

ipants start solving the tasks, the respective instructor gives

a 25-minute introduction to both code-generation tools per-

forming the same two modifications on use case eleven in

Table 1. After participants have completed their work on the

tasks, we ask them to fill a short survey about the perceived

usability of the two approaches. We also conducted 5-minute

interviews with participants after they have completed the

tasks and the survey.

To determine the effectiveness of both code generators,

we measure the time that participants need to complete each

task. To measure preference for one approach over the other,

193

CGO ’20, February 22ś26, 2020, San Diego, CA, USA Stefan Krüger, Karim Ali, and Eric Bodden

we employ the System Usability Scale (SUS) [4] and Net

Promoter Score (NPS) [39]. The former determines usability,

while the latter rather targets user satisfaction with a system.

Both scales transform answers to a questionnaire given by

users of a system into a single number. In SUS, a system

receives a score between 0 and 100 such that higher values

indicate higher usability. Tools that surpass 68 are seen as

usable [4]. NPS may range from -100 to +100. Systems that

score below 0 are considered unsatisfactory, while results

above 50 are viewed as having excellent satisfaction [39].

By means of the post-study survey, we collected more di-

rect feedback and suggestions for improvements for both

CogniCryptgen and CogniCryptold-gen.

Results All 16 participants successfully completed both

tasks in the given time window. On average, the encryption

task was completed 38% slower with CogniCryptgen than

withCogniCryptold-gen. In contrast, participants were 63.2%

faster to complete the hashing task using CogniCryptgen

than CogniCryptold-gen. Investigating the overall comple-

tion times, we found no statistical significancewith aWilcoxon

signed-rank test for paired data (p > 0.05). Initially, the mixed

results came as a surprise to us. However, after evaluating

the post-study interviews, we are able to attribute them

to the steep learning curve for CogniCryptgen. Seven out

of 16 participants mentioned this issue unprompted, all of

whom explained that they had not remembered all details

from the introduction for either tool. However, since Cog-

niCryptold-gen requires more hard-coding, participants man-

aged to get faster to implementing the requested changes.

For CogniCryptgen on the other hand, they had to re-read

the respective existing code to remember the underlying

concepts. All seven participants mentioned that a written

example-driven documentation that covered what was dis-

cussed in the introduction would likely solve this issue.

In terms of usability, CogniCryptgen fares signifi-

cantly better (SUS: 76.3 and NPS: 56.3) compared to Cog-

niCryptold-gen (SUS: 50.8 and NS: -43.7). Applying a

Wilcoxon signed-rank test, we found the differences between

CogniCryptgen and CogniCryptold-gen in both SUS and

NPS to be statistically significant (p = 0.005). Overall, partici-

pants appreciated the purpose and design of CogniCryptgen.

In particular, participants enjoyed being able to develop code

templates in Java and the structural clarity of CrySL. In the

post-study interview, all but one participant preferred Cog-

niCryptgen over CogniCryptold-gen. This preference fur-

ther reflects how significantly more usable CogniCryptgen
is compared to CogniCryptold-gen.

Although participants generally enjoyed using Cog-

niCryptgen, there is still room for improvementÐsomething

that is underlined by the post-study interviews. Participants

proposed several enhancements to the CogniCryptgen API

(e.g., abandoning the call-chain design of fluent APIs, short-

ening the API method names, and providing content assist

for class names in the considerCrySLRule() call). Three

participants also suggested to give the code template a dif-

ferent name from the generated class and to add a comment

to templateUsage() that indicates it was generated.

5.5 Discussion

Putting everything together, CogniCryptgen proves to fulfil

the goals we set in the design phase. With CogniCryptgen,

we were capable of implementing eleven common crypto-

graphic use cases, all of which are more compact than with

CogniCryptold-gen. Our experiments have shown that Cog-

niCryptgen does not take longer than ten seconds for any of

the eleven use cases with negligible memory overhead. Our

user-study participants appreciated CogniCryptgen signif-

icantly more than CogniCryptold-gen, but requested more

proper documentation and made several suggestions to fur-

ther improve the tool’s usability.

5.6 Threats to Validity

Our experiments exhibit several threats to validity. Since we

selected graduate students as study participants, the inter-

nal validity of the study is threatened as students are not

necessarily cryptography experts. Therefore, they may take

longer for a given task, because they lack the knowledge for

a particular cryptographic API and not as a result of the code

generator. We mitigated this threat in two ways. First, the

task descriptions included the cryptographic APIs and meth-

ods that participants were asked to use. Participants were

only asked to implement this solution into the given code

generator. Second, we also asked participants to rate their

cryptography experience on a 1ś10 scale. On average, partic-

ipants rated themselves at 5.2, with the median self-ascribed

experience level of 5. While self-ratings come with their own

caveats [1, 16, 25, 31], we did not find statistically signifi-

cant differences between participants who rated themselves

higher than average with those lower than average.

The unequal familiarity of participants with CrySL and

XSL threatens the internal validity of the study results as well.

When asked to self-rate their experience with each on a 1ś10

scale,CrySL scored an average of 5.2, while XSL only reached

1.3. To mitigate this threat, we (1) gave an introduction to

both code generators in the beginning and (2) designed the

study tasks such that the involvement of CrySLwas minimal

and modifications to CrySL could be made by anyone who

had followed the introduction part of the study. Indeed, we

found no significant correlation between the knowledge of

CrySL and liking CogniCryptgen or being more effective

and efficient with it.

In terms of external validity, the relatively low number

of participants poses a threat. We addressed this threat by

choosing participants from diverse backgrounds regarding

experience with Java, Eclipse, and cryptography. We have, in

addition, chosen statistical tests appropriate for the number

of participants that indeed showed statistical significance.

194

CogniCryptgen CGO ’20, February 22ś26, 2020, San Diego, CA, USA

6 Related Work

Leaving CogniCryptold-gen aside, no previous work aims

at avoiding cryptographic misuses by generating secure im-

plementations of cryptographic use cases. However, there is

indeed work that has attempted to address the widespread

misuse through other means. Other work has also presented

approaches for generating security code based on specifica-

tions. In the following we discuss both kinds of work.

6.1 Detecting and Fixing Cryptographic Misuse

through Program Analysis

Previous research on preventing cryptographic misuse has

focused on program analysis and repair. Program analysis

tools for this purpose [3, 6, 7, 30, 37, 40] are usually equipped

with a set of hard-coded rules which they then use to search

for rule violations. CryptoLint [7] comes with six rules that

address misuses related to encryption. FixDroid [30] and

CryptoGuard [37] detect misuses of TLS APIs. Crypto Mis-

use Analyzer [40] expands on CryptoLint’s rule set such that

it also includes misuses of hashing, TLS, and key manage-

ment. CogniCryptsast [22] is the firs tool that does support

the supply of external specifications through CrySL rules.

CogniCrypt’s existing rule set [20] covers all cryptographic

services of the JCA, ranging from encryption, key manage-

ment, hashing, mac-ing, and digital signing. Similar tools for

other security APIs have been proposed as well [8, 13, 15, 34].

Two tools go beyond detecting misuses and attempt to fix

them as well. CDRep [24] applies a by-one-rule-extended

version of CryptoLint to a target program. For each of the

seven kinds of misuses CryptoLint finds, the authors have de-

vised a fix template. In a second phase, CDRep applies this fix

by instrumenting the program’s bytecode. In an evaluation

on 8,592 Android apps, the tool manages to repair around

95% of the misuses it has detected. FireBugs [41] follows a

similar goal. The tool’s authors have defined code patterns

that contain API misuses. Bootstrapped with these patterns,

FireBugs analyzes a target program through program slicing,

and repairs it using a series of AST operations. To finally ap-

ply a patch, FireBugs employs aspect-oriented programming

to weave it into the target program.

In contrast, CogniCryptgen does not analyze the target

program for misuses. Instead, it uses CrySL rules and code

templates to generate secure code into the target program.

While its support is limited to the implemented use cases,

it prevents misuses from happening in the first place, thus

complementing the analysis-based approaches.

6.2 Generating Secure Code

Code generators aiming to produce secure code amount

to a huge body of research. There are, for example, code-

generation approaches for implementations of cryptographic

algorithms [17], security controllers [26], and security pro-

tocols [32, 36]. However, only Kane et al. [19] suggest an

approach that specifically addresses cryptographic misuses.

The authors do not devise and implement a use-case-based

code generator like CogniCryptgen. Instead, they imple-

ment several high-level cryptographic protocols like Ker-

beros or TLS on top of existing low-level cryptographic APIs

in Python. Effectively, their protocol implementations are

wrapper code similar to whatCogniCryptgen generates. The

two approaches differ in (1) the use cases they support (high-

level protocols vs. common cryptographic use cases) and

(2) the way use cases may be implemented (hard-coded vs.

generated through declarative specifications).

CogniCryptold-gen is the closest tool to CogniCryptgen.

CogniCryptold-gen combines an algorithm model in the

variability-modelling language Clafer [18] with hard-coded

XSL templates. Using a constraint solver, CogniCryptold-gen
fetches secure algorithms from the model. Through a wiz-

ard in CogniCrypt, users may configure soluctions for the

eight supported cryptographic use cases. CogniCryptold-gen
stores this user input as well as the selected algorithms in an

XML file and uses it to resolve the variability points in the

corresponding XSL code template through an XSL transfor-

mation.CogniCryptgen trumpsCogniCryptold-gen in terms

of usability by facilitating code templates to be in Java. Its

code templates are also smaller and, by definition, provably

secure with respect to to CrySL specifications ś a property

hard-coded templates cannot provide. However, our study

also revealed a steeper learning curve for CogniCryptgen.

7 Conclusion

In this work, we presentedCogniCryptgen, a code-generation

tool for cryptographic APIs that facilitates the generation

of secure and compilable code through code templates and

CrySL rules. We have integrated CogniCryptgen into the

development environment Eclipse to facilitate its use in ev-

eryday development. To this end, CogniCryptgen covers the

most common cryptographic use cases, executes in a few

seconds regardless of the use case, and can easily be run

on a typical workstation. Our evaluation also revealed low

maintenance effort and generally high usability ratings from

participants of our user study, especially compared to an

XSL-based solution that implements similar use cases.

In future work, we plan to improve the usability of the

fluent API. Participants in our user study criticized that

class-name parameters are specified as strings instead of,

for example, enumerations. They have also suggested to

use shorter API-method names and requested more proper

documentation. We are grateful for their insights and in-

tend to improve CogniCryptgen, accordingly. Thanks to

CogniCryptgen, there is now a code-generation engine that

allows for implementing more cryptographic use cases. We

plan to implement more use cases for other APIs in Cog-

niCryptgen and, if necessary, extend its expressiveness.

195

CGO ’20, February 22ś26, 2020, San Diego, CA, USA Stefan Krüger, Karim Ali, and Eric Bodden

A Artifact Appendix

A.1 Abstract

In this artefact, we present CogniCryptgen, a code genera-

tion approach that allows for the generation of functionally

correct, type-safe, and secure Java code that implements

common use cases of cryptographic APIs. To implement a

given use case, CogniCryptgen requires two artefacts: a) a

set of API-usage rules in the specification language CrySL

and b) a Java code template specifying which CrySL rules

are to be used and how.

The artefact comes with an Eclipse environment, in which

CogniCryptgen may be executed with all eleven use cases

from the original paper. It further contains the artefacts to

all use cases to allow for modification and extension. We

finally include a tutorial on how CogniCryptgen is used.

A.2 Artifact Check-List (Meta-Information)

• Program: Java bytecode, Java, Java libraries

• Compilation: Java 1.8

• Data set:CogniCryptgen artefacts of eleven com-

mon cryptographic use cases

• Run-time environment: Eclipse 2019-06 in Java

1.8

• Output: Java Code implementing cryptographic

use cases

• Experiments: RQ1 to RQ3 of CogniCryptgen re-

search paper

• Howmuchdisk space required (approximately)?:

6.4 GB

• How much time is needed to prepare workflow

(approximately)?: Fifteen minutes

• How much time is needed to complete experi-

ments (approximately)?: Ten minutes.

• Publicly available?: Yes.

• Code licenses (if publicly available)?: EPL 2.0

• Data licenses (if publicly available)?: EPL 2.0

A.3 Description

A.3.1 How Delivered

The artefact is available at https://zenodo.org/record/3597725.

We supply the artefact as a VirtualBox image (.ova). Cog-

niCryptgen itself may be cloned from Github: https://github.

com/eclipse-cognicrypt/CogniCrypt

Both the artefact as well as CogniCryptgen are provided

under EPL 2.0 license.

A.3.2 Hardware Dependencies

There are no extraordinary hardware dependencies.

A.3.3 Software Dependencies

To run the artefact, the virtualisation software VirtualBox

(https://www.virtualbox.org/) is needed. Virtualbox is avail-

able for all common Desktop computer operating systems.

A.3.4 Data Sets

Along with the executables for CogniCryptgen, we provide

the artefacts for the eleven use cases that were part of our

evaluation (see Table 1 on Page 9 of the original research

paper). This, on the one hand, includes theCrySL [22] rule set

for the Java Cryptography Architecture(JCA) [20]. By means

of the usage specifications in these rules, CogniCryptgen
determines which methods from a given class are to be called

in which order and how instances of different classes may

be chained (i.e., they define def-use chains). All rules, we

provide with this artefact are also publicly available in their

respective latest version at

https://github.com/CROSSINGTUD/Crypto-API-Rules/tree/

master/JavaCryptographicArchitecture/src.

We also provide the Java code templates that first and

foremost specify which classes are required to implement

the given use case. As cryptographic use cases may not nec-

essarily solely consist of code relating to cryptography (e.g.,

file handling in PBE on Files), code templates usually define

glue code directly in Java.

In Section A.7, we explain where these artefacts can be

found within the artefact and how they may be modified.

A.4 Installation

To run the artefact, first downloadVirtualBox for your oper-

ating system of choice from https://www.virtualbox.org/wiki/

Downloads and install it on your machine. Second, you need

to download the artefact from https://zenodo.org/record/

3597725. Launch VirtualBox and import the artefact through

clicking žFilež and selecting žImport Applicancež. In the file-

selection window that pops up, navigate to the location of

the artefact and select it.

After VirtualBox has imported the image, launch the

VM in VirtualBox. When the VM has booted, log into the

user account žcognicryptž using the password žcognicryptž.

A.5 Experiment Workflow

The artefact facilitates replication of RQ1 to RQ3 of the orig-

inal evaluation. Please note that we conducted the original

evaluation not in a VM, but instead a regular laptop with

specs as described in Section 5.2 of the research paper. The

results for RQ2 regarding performance and RQ3 regarding

memory consumption that the artefact produces may there-

fore deviate from the original numbers.

In the VM environment, first launch Eclipse by double-

clicking the Eclipse icon on the desktop. We provide the im-

plementation of CogniCryptgen within this Eclipse’s work-

space. To then run CogniCryptgen, launch the run configu-

ration žCogniCryptž. You may do so by selecting the down-

wards arrow next to the green play button in the in the tool-

bar and selecting žCogniCryptž in the menu. This launches

196

https://zenodo.org/record/3597725
https://github.com/eclipse-cognicrypt/CogniCrypt
https://github.com/eclipse-cognicrypt/CogniCrypt
https://www.virtualbox.org/
https://github.com/CROSSINGTUD/Crypto-API-Rules/tree/master/JavaCryptographicArchitecture/src
https://github.com/CROSSINGTUD/Crypto-API-Rules/tree/master/JavaCryptographicArchitecture/src
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://zenodo.org/record/3597725
https://zenodo.org/record/3597725

CogniCryptgen CGO ’20, February 22ś26, 2020, San Diego, CA, USA

another Eclipse. To distinguish the two Eclipse environem-

nts, we will hereafter refer to the former as Eclipse and the

latter as CogniCrypt.

InCogniCrypt, we provide a test project with a class Main,

which you may generate code into. To run CogniCryptgen,

click on the CogniCrypt icon, which is located in the tool

bar, right under the "Refactor" menu entry. A wizard pops

up that allows you to select any of the eleven use cases

from Table 1 in RQ1 (i.e. PBE on Files) by clicking on the

corresponding button. Click on žNextž and, on the following

page, select class Main. By clicking the žGeneratež button,

CogniCryptgen is triggered and generates the code for the

chosen use case. The generation may take a few seconds.

The wizard closes once CogniCryptgen has finished.

To run the experiments for RQ2 and RQ3, measure time or

memory consumption, respectively. To facilitate time mea-

surements, the wizard contains a checkbox, the enabling of

which triggers the same time-measurement mechanism we

have used in the original evaluation. The result is shown in

both the error log of CogniCrypt and the command line of

Eclipse.

A.6 Evaluation and Expected Result

After CogniCryptgen has completed the code generation,

you may find the result in the test project. CogniCryptgen
has generated two pieces of code. First, in the package de.

crypto.cognicrypt, it has generated the implementation

of the use case. Assuming PBE on Files was chosen, Cog-

niCryptgen has generated a class SecureEncryptor. This

class implements the use case through its three methods.

The first one, getKey(), generates a key based on the pass-

word it receives as an argument. The other two implement

en- and decryption of java.io.File objects. The second

piece of code that CogniCryptgen has generated is a single

method templateUsage() whose purpose is to showcase

how to use the implementation, i.e., in the case of PBE on

Files, the three aforementioned methods. CogniCryptgen
generates this method into the class that was selected on the

file-selection page of the wizard.

You may also run the generated code by calling the

templateUsage() method in the main() method of the

Main class. To simplify running the generated code, we have

enriched the templateUsage() method with variables that

may serve as arguments for the call. We provide further, in

comments, how the method should be called, depending on

each use case.

A.7 Experiment Customization

You may customize the experiment in three ways. First, the

artefact enables you to modify CogniCryptgen’s implemen-

tation in Eclipse any way you like.

Second, you may change the templates for each of the use

cases. To do so, navigate to the package java.de.cognicrypt.

codegenerator.crysl.templates in the plugin de.cogni

crypt.codegenerator in Eclipse. In this package, you can

find the code templates and edit them as regular Java files.

For a detailed discussion of the templates and their content,

we refer to Section 3.2 in the paper.

Third, youmay alsomodify theCrySL rules,CogniCryptgen
makes use of. Within the artefact, the he rules are available

in resources/CrySLRules in the plugin de.cognicrypt.core.

For a detailed discussion of components of CrySL, we refer

to Section 2.2 in the research paper and Krüger et al. [22].

Acknowledgments

This work was supported by the Deutsche Forschungsge-

meinschaft (DFG, German Research Foundation) - SFB 1119

- 236615297, by the Natural Sciences and Engineering Re-

search Council of Canada, and the Heinz Nixdorf Foundation.

We would like to thank Lisa Nguyen Quang Do for her help

with the statistics and André Sonntag for his support with

the paper-accompanying artefact.

References
[1] Alyce S. Adams, Stephen B. Soumerai, Jonathan Lomas, and Dennis

Ross-Degnan. 1999. Evidence of self-report bias in assessing adherence

to guidelines. International Journal for Quality in Health Care 11, 3 (06

1999), 187ś192.

[2] Eric Bodden, Stefan Krueger, Johannes Spaeth, Karim Ali, and Mira

Mezini. 2018. CVE-2018-12240. Available from Symantec, CVE-ID CVE-

2018-12240.. https://support.symantec.com/us/en/article.SYMSA1460.

html

[3] Alexandre Melo Braga, Ricardo Dahab, Nuno Antunes, Nuno Laran-

jeiro, and Marco Vieira. 2017. Practical Evaluation of Static Analysis

Tools for Cryptography: Benchmarking Method and Case Study. In

28th IEEE International Symposium on Software Reliability Engineering,

ISSRE 2017, Toulouse, France, October 23-26, 2017. 170ś181.

[4] John Brooke. 1996. SUS-A quick and dirty usability scale. Usability

Evaluation in Industry 189, 194 (1996), 4ś7.

[5] National Cyber Security Centre. 2018. Password administration for

system owners. Technical Report. National Cyber Security Centre.

[6] Alexia Chatzikonstantinou, Christoforos Ntantogian, Georgios

Karopoulos, and Christos Xenakis. 2016. Evaluation of Cryptogra-

phy Usage in Android Applications. In International Conference on

Bio-inspired Information and Communications Technologies. 83ś90.

[7] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher

Kruegel. 2013. An empirical study of cryptographic misuse in android

applications. In ACM Conference on Computer and Communications

Security. 73ś84.

[8] Sascha Fahl, Marian Harbach, Thomas Muders, Matthew Smith, Lars

Baumgärtner, and Bernd Freisleben. 2012. Why Eve and Mallory love

Android: an Analysis of Android SSL (In)security. In ACM Conference

on Computer and Communications Security. 50ś61.

[9] Felix Fischer, Konstantin Böttinger, Huang Xiao, Christian Stransky,

Yasemin Acar, Michael Backes, and Sascha Fahl. 2017. Stack Overflow

Considered Harmful? The Impact of Copy&Paste on Android Appli-

cation Security. In 2017 IEEE Symposium on Security and Privacy, SP

2017, San Jose, CA, USA, May 22-26, 2017. 121ś136.

[10] German Federal Office for Information Security (BSI). 2017. Crypto-

graphic Mechanisms: Recommendations and Key Lengths. Technical

Report BSI TR-02102-1. BSI.

[11] Martin Fowler. 2005. FluentInterface. https://martinfowler.com/bliki/

FluentInterface.html.

[12] Lei Gao. 2005. Latin Squares in Experimental Design. (2005).

197

https://support.symantec.com/us/en/article.SYMSA1460.html
https://support.symantec.com/us/en/article.SYMSA1460.html
https://martinfowler.com/bliki/FluentInterface.html
https://martinfowler.com/bliki/FluentInterface.html

CGO ’20, February 22ś26, 2020, San Diego, CA, USA Stefan Krüger, Karim Ali, and Eric Bodden

[13] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan

Boneh, and Vitaly Shmatikov. 2012. The most dangerous code in

the world: Validating SSL certificates in non-browser software. In

Conference on Computer and Communications Security (CCS). 38ś49.

[14] Paul Grassi, Michael Garcia, and James Fenton. 2017. Digital identity

guidelines. Technical Report. National Institute of Standards and

Technology.

[15] Boyuan He, Vaibhav Rastogi, Yinzhi Cao, Yan Chen, V. N. Venkatakr-

ishnan, Runqing Yang, and Zhenrui Zhang. 2015. Vetting SSL Usage in

Applications with SSLINT. In IEEE Symposium on Security and Privacy.

519ś534.

[16] James R Hebert, Lynn Clemow, Lori Pbert, Ira S Ockene, and Judith K

Ockene. 1995. Social desirability bias in dietary self-report may com-

promise the validity of dietary intake measures. International journal

of epidemiology 24, 2 (1995), 389ś398.

[17] Ekawat Homsirikamol and Kris Gaj. 2014. Can high-level synthesis

compete against a hand-written code in the cryptographic domain? A

case study. In 2014 International Conference on ReConFigurable Com-

puting and FPGAs, ReConFig14, Cancun, Mexico, December 8-10, 2014.

1ś8.

[18] Paulius Juodisius, Atrisha Sarkar, Raghava Rao Mukkamala, Michal

Antkiewicz, Krzysztof Czarnecki, and Andrzej Wasowski. 2019. Clafer:

Lightweight Modeling of Structure, Behaviour, and Variability. Pro-

gramming Journal 3, 1 (2019), 2.

[19] Christopher Kane, Bo Lin, Saksham Chand, and Yanhong A. Liu. 2018.

High-level Cryptographic Abstractions. CoRR abs/1810.09065 (2018).

[20] Stefan Krueger, Johannes Spaeth, Karim Ali, Eric Bodden, and Mira

Mezini. 2019. CrySL Rule Set for JCA. https://github.com/

CROSSINGTUD/Crypto-API-Rules.

[21] Stefan Krüger, Sarah Nadi, Michael Reif, Karim Ali, Mira Mezini, Eric

Bodden, Florian Göpfert, Felix Günther, Christian Weinert, Daniel

Demmler, and Ram Kamath. 2017. CogniCrypt: Supporting Devel-

opers in Using Cryptography. In Proceedings of the 32nd IEEE/ACM

International Conference on Automated Software Engineering, ASE 2017,

Urbana, IL, USA, October 30 - November 03, 2017. 931ś936.

[22] Stefan Krüger, Johannes Späth, Karim Ali, Eric Bodden, and Mira

Mezini. 2018. CrySL: An Extensible Approach to Validating the Cor-

rect Usage of Cryptographic APIs. In European Conference on Object-

Oriented Programming (ECOOP).

[23] David Lazar, Haogang Chen, Xi Wang, and Nickolai Zeldovich. 2014.

Why does cryptographic software fail?: a case study and open prob-

lems. In ACM Asia-Pacific Workshop on Systems (APSys). 7:1ś7:7.

[24] Siqi Ma, David Lo, Teng Li, and Robert H. Deng. 2016. CDRep: Au-

tomatic Repair of Cryptographic Misuses in Android Applications.

In Proceedings of the 11th ACM on Asia Conference on Computer and

Communications Security, AsiaCCS 2016, Xi’an, China, May 30 - June 3,

2016. 711ś722.

[25] Khalid Mahmood. 2016. Do people overestimate their information liter-

acy skills? A systematic review of empirical evidence on the Dunning-

Kruger effect. Communications in Information Literacy 10, 2 (2016),

3.

[26] Fabio Martinelli and Ilaria Matteucci. 2012. A framework for automatic

generation of security controller. Softw. Test., Verif. Reliab. 22, 8 (2012),

563ś582.

[27] Kai Mindermann and Stefan Wagner. 2018. Usability and Security

Effects of Code Examples on Crypto APIs. In 16th Annual Conference

on Privacy, Security and Trust, PST 2018, Belfast, Northern Ireland, Uk,

August 28-30, 2018. 1ś2. https://www.cryptoexamples.com/index.html.

[28] Sarah Nadi and Stefan Krüger. 2016. Variability Modeling of Cryp-

tographic Components: Clafer Experience Report. In Proceedings of

the Tenth International Workshop on Variability Modelling of Software-

intensive Systems, Salvador, Brazil, January 27 - 29, 2016. 105ś112.
[29] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. 2016. Jump-

ing through hoops: why do Java developers struggle with cryptogra-

phy APIs?. In International Conference on Software Engineering (ICSE).

935ś946.

[30] Duc-Cuong Nguyen, DominikWermke, Yasemin Acar, Michael Backes,

Charles Weir, and Sascha Fahl. 2017. A Stitch in Time: Supporting

Android Developers in Writing Secure Code. In Proceedings of the 2017

ACM SIGSAC Conference on Computer and Communications Security,

CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017. 1065ś1077.

[31] David A Northrup. 1997. The problem of the self-report in survey

research. Institute for Social Research, York University.

[32] Rick Nunes-Vaz, Steven Lord, and Jolanta Ciuk. 2011. A More Rigorous

Framework for Security-in-Depth. Journal of Applied Security Research

6, 3 (2011), 372ś393.

[33] Philippe Oechslin. 2003. Making a Faster Cryptanalytic Time-Memory

Trade-Off. In Advances in Cryptology - CRYPTO 2003, 23rd Annual

International Cryptology Conference, Santa Barbara, California, USA,

August 17-21, 2003, Proceedings. 617ś630.

[34] Lucky Onwuzurike and Emiliano De Cristofaro. 2015. Danger is my

middle name: experimenting with SSL vulnerabilities in Android apps.

15:1ś15:6.

[35] Oracle. 2016. Java Cryptography Architecture (JCA).

https://docs.oracle.com/javase/8/docs/technotes/guides/security/

crypto/CryptoSpec.html.

[36] Davide Pozza, Riccardo Sisto, and Luca Durante. 2004. Spi2Java: Auto-

matic Cryptographic Protocol Java Code Generation from spi calculus.

In 18th International Conference on Advanced Information Network-

ing and Applications (AINA 2004), 29-31 March 2004, Fukuoka, Japan.

400ś405.

[37] Sazzadur Rahaman, Ya Xiao, Ke Tian, Fahad Shaon,Murat Kantarcioglu,

and Danfeng Yao. 2018. CryptoGuard: Deployment-quality Detection

of Java Cryptographic Vulnerabilities. CoRR abs/1806.06881 (2018).

[38] Siegfried Rasthofer, Steven Arzt, Robert Hahn, Max Kohlhagen, and

Eric Bodden. 2015. (In)Security of Backend-as-a-Service. In BlackHat

Europe 2015.

[39] Frederick F Reichheld. 2003. The one number you need to grow.

Harvard Business Review 81, 12 (2003), 46ś55.

[40] Shuai Shao, Guowei Dong, Tao Guo, Tianchang Yang, and Chenjie Shi.

2014. Modelling Analysis and Auto-detection of Cryptographic Misuse

in Android Applications. In nternational Conference on Dependable,

Autonomic and Secure Computing. 75ś80.

[41] Larry Singleton, Rui Zhao, Myoungkyu Song, and Harvey P. Siy. 2019.

FireBugs: finding and repairing bugs with security patterns. In Proceed-

ings of the 6th International Conference on Mobile Software Engineering

and Systems, MOBILESoft@ICSE 2019, Montreal, QC, Canada, May 25,

2019. 30ś34.

198

https://github.com/CROSSINGTUD/Crypto-API-Rules
https://github.com/CROSSINGTUD/Crypto-API-Rules
https://www.cryptoexamples.com/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html

	Abstract
	1 Introduction
	2 Programming with Cryptography in Java
	2.1 Java Cryptography
	2.2 Specifying Secure Usage of Cryptographic APIs

	3 Generating Secure Code From CrySL
	3.1 Design Considerations
	3.2 Configuring Solutions with Java Code Templates
	3.3 Generating Secure Code from Templates

	4 Implementation Details
	5 Evaluation
	5.1 Implementation of Common Use Cases (RQ1)
	5.2 Performance (RQ2 and RQ3)
	5.3 Artefact Creation and Maintenance (RQ4)
	5.4 Usability (RQ5)
	5.5 Discussion
	5.6 Threats To Validity

	6 Related Work
	6.1 Detecting and Fixing Cryptographic Misuse Through Program Analysis
	6.2 Generating Secure Code

	7 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Result
	A.7 Experiment Customization

	Acknowledgments
	References

