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Abstract—Soot is a successful framework for experimenting
with compiler and software engineering techniques for Java
programs. Researchers from around the world have implemented
a wide range of research tools which build on Soot, and Soot has
been widely used by students for both courses and thesis research.
In this paper, we describe relevant features of Soot, summarize
its development process, and discuss useful features for future
program analysis frameworks.

I. INTRODUCTION

The Soot framework for Java program analysis was first
released in 2000. Soot enables its users to develop static anal-
ysis tools for Java programs. Researchers have implemented a
wide range of research tools1 which build on Soot, describing
their work in numerous international conference and workshop
publications. In particular, Soot has been widely used by
students for both courses and thesis research. This paper
summarizes our experience developing the Soot framework,
describes its key features, and contributes our thoughts about
program analysis frameworks in general.

At its core, Soot is a compiler; it accepts Java Virtual
Machine bytecode or Java source code, and it (mainly)
emits Java bytecode. Figure 1 depicts the main parts of the
Soot workflow. Researchers extend Soot by implementing
additional compiler passes which analyze or transform Soot
intermediate representations. The key features of Soot include
a simplified three-address intermediate representation of Java
bytecode; a number of pointer analysis and call graph con-
struction algorithms; and the ability to produce executable Java
bytecode as output.

Soot has been used for a broad range of applications,
including numerous program transformation tools, research in
pointer analysis, analysis of concurrent programs, symbolic
execution, and the static analysis portion of hybrid static and
dynamic analysis approaches.

The remainder of this paper is structured as follows. We
begin by summarizing Soot’s features in Section II, and
continue by explaining how Soot users can hook their analyses
into Soot in Section III. We continue with a discussion of
the Soot development process and community in Section IV;
in particular, Section V describes notable changes that we
made to Soot throughout its evolution, and outlines specific
features that we would like to see in future versions of Soot

1Many uses of Soot are documented at: https://svn.sable.mcgill.ca/wiki/
index.cgi/SootUsers.

or other program analysis frameworks. Finally, we conclude
with some reflections on Soot and reasons for its success, as
well as suggestions for future program analysis frameworks in
Section VI.

II. SOOT FEATURES

We continue by discussing relevant intraprocedural and
interprocedural features of the Soot framework, as well as
Soot’s provisions for outputting analysis and transformation
results. We also mention some applications of these features.

A. Intraprocedural Features

Soot’s fundamental intermediate representation is Jimple, a
typed three-address code. The creation of Jimple was moti-
vated by the difficulty of directly analyzing Java bytecode:
although it is possible to construct a control-flow graph for
Java bytecode, the implicit stack masks the flow of data
and thus makes the bytecode quite difficult to analyze. In
particular, at a given bytecode instruction s, it is not at all
obvious which previous s′ produced the stack-based inputs of
s. Storing data in named local variables, rather than on the
implicit stack, makes the local flow of data (along Jimple’s
Control-Flow Graph) much more obvious. The local variables
in Jimple are split according to definition-use chains. Soot
also has other intermediate representations: Shimple [Uma06]
is an SSA-based version of Jimple; Baf and Grimple are used
to output bytecode; and Dava is an abstract syntax tree-based
intermediate representation produced via decompilation of the
Jimple IR.

Many Soot users would like to connect the results of their
analysis to the original Java source code. Because Java byte-
code includes the class and method structure of the original
source code, Soot analyses can always leverage class and
method name information. Soot can also provide line number
and variable name information for the methods it is analyzing.
In particular, when Soot is executed with the appropriate
command-line flag, and if the source code was compiled with
debug information, Soot will attach line number information
to relevant Jimple statements. Soot can also make original
variable names available to analyses on a best-effort basis; this
is obviously possible for Jimple generated from Java source
code, but more difficult when generating Jimple from Java
bytecode, due to the required local variable manipulations in
creating Jimple from stack code.
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Fig. 1. Overview of Soot workflow.

A key feature of the Soot framework is its support for
implementing intraprocedural data-flow analyses, a central
technique in compilers research. Soot users can create a data-
flow analysis by specifying the abstraction and implementing
transfer functions for that analysis. The Soot framework also
provides useful data structure implementations for common
abstractions.

Many Soot users have implemented data-flow analyses.
Some examples include an analysis to statically approxi-
mate heap reference counts and thus generate annotations
informing the runtime system about objects that are safe to
deallocate [CR06]; an analysis on constraint graphs to find
unnecessary array bounds checks [QHV02]; and an analysis
to evaluate the adequacy of test suites for database-driven
applications [KS03].

B. Interprocedural Features

Sophisticated static analyses require call-graph and pointer
information, which is fundamentally an interprocedural prob-
lem. Soot includes the Spark pointer analysis toolkit [LH03],
[Lho02], and also supports the BDD-based PADDLE pointer
analysis framework, which adds context-sensitivity.

Call Graphs. The Soot framework provides call graph
information. Static analyses (particularly interprocedural ones)
need to know, for each call site, all possible targets of that call
site. Java’s object-oriented nature complicates this problem,
since the identity of the callee, or target, depends on the run-
time type of the receiver object for virtual calls, and most calls
in Java programs are virtual calls.

Spark’s call graph construction algorithms compute an over-
approximation of the set of calls that may occur at runtime.
Call graph edges connect sources, which are represented as
(method, statement) pairs, and targets, which are always the
first statement in a method. Overapproximation means that any
call which could occur in any execution of the program must
appear in the call graph.

Spark implements a number of different call graph construc-
tion methods, including Class Hierarchy Analysis and Rapid
Type Analysis; however, we found that the most effective call
graph construction method proceeds on-the-fly and builds the
call graph at the same time as it computes points-to sets,
starting with the CHA call graph as an initial approximation
for the set of reachable methods.

The resulting call graphs can be queried by callsite; by call-



ing method; or “backwards”, by target method. For efficiency
reasons, Spark returns iterators as the results of callgraph
queries. Spark also makes the set of transitive targets for any
method or statement available to clients. Finally, Spark also
exposes the set of reachable methods for a program—the set
of methods transitively reachable from the program’s entry
points (which include class initializers, etc., in addition to the
program’s main() method).
Pointer Analyses. Many static analyses require pointer
information: they need to know if two variables p and q may
refer to the same heap object at runtime. Spark implements a
context-insensitive subset-based points-to analysis (Andersen-
style, in the notation of [HP00]). An analysis may query a
points-to analysis and obtain an abstraction of the objects
pointed to by a local variable or object field, represented by a
PointsToSet. The PointsToSet supports two queries:
1) the set of possible types for the objects in that set; and
2) whether two PointsToSet objects have non-empty in-
tersection. The possible types give information about possible
receivers for method calls to the variable whose values the
points-to set models. If variables p and q have points-to sets
with non-empty intersection, then they may point to the same
object.
Side Effects. Soot includes a side effect analysis, which
builds on top of (any Soot-based) points-to and call graph
analyses. The side effect analysis can determine whether a
statement s has a possible dependence on statement s′. It
works by defining read-write sets for each statement and
then comparing their intersection; two statements with disjoint
read-write sets are independent, while a statement that writes a
value followed by another statement that reads the same value
follow a dependency relation.
Alternatives and Extensions to Spark. While Spark is the
basic call graph and pointer analysis producer for Soot, it is not
the only option. Manu Sridharan has contributed a demand-
driven pointer analysis [SGSB05], which can answer non-
empty-intersection queries for variables using limited amounts
of context-sensitivity; this analysis is part of the main Soot
distribution. PADDLE [LH08a], [Lho06] provides a BDD-
based context-sensitive pointer analysis; however, it requires
extra dependencies, both at build time (because it is written
using a domain-specific language [LH08b]) and at run time
(to efficiently compute on the binary decision diagrams).

While the pointer analyses we have described so far are
all may-alias analyses, Soot also contains an intraprocedural
must-alias analysis. Object representatives [BLH08b] integrate
this must-alias analysis with both intraprocedural and whole-
program may-alias analysis; Spark is one source of whole-
program may-alias analysis.
Reflection. Many Java programs use reflection to access
classes or their members by name. Such reflective accesses
are hard to analyze statically: class and method names can
be computed at runtime or loaded from files that the static
analysis does not have access to. One partial workaround is to
record information about reflection usage at runtime (during

training runs) and to use this information when performing
call-graph and points-to analysis. The latest version of Soot
integrates with the TamiFlex tool chain [BSS+11], which
follows the described approach.

C. Soot Output

Soot supports a number of mechanisms for making analysis
results available. Developers’ options include: 1) outputting
transformed class files; 2) outputting error messages; 3) gen-
erating HTML or graphs containing analysis results; or 4)
creating (potentially transformed) class files annotated with
results obtained from program analysis.

An example of a tool that uses Soot to transform classfiles
is the DUSC tool by Orso et al [ORH02]. This tool implements
dynamic software updating for Java programs by first carrying
out a semantics-preserving transformation of an application to
enable dynamic updating, and then creating Java classes for
new versions of the application, which can be swapped in at
runtime.

Soot has been used as the backend of the AspectBench
abc compiler for AspectJ [ACH+06]. In this context, Soot
performs the necessary bytecode transformations (weaving)
as specified in a program’s aspect declarations. The Jimple
three-address code representation helps simplify the weaving
process. Furthermore, Soot can clean up the naı̈ve code
generated as output from weaving, both using its standard
optimizations as well as through specialized optimizations for
aspect-oriented programs [ACH+05], mitigating the burden on
Java Virtual Machines as they run AspectJ programs.

Soot can also implement non-semantics-preserving transfor-
mations. Tkachuk and Dwyer [TD03] used Soot to generate
non-executable summaries of a system environment’s be-
haviour, simplifying subsequent model checking of the system.
The generated environment summaries include all of the possi-
ble effects of the actual environments, and are expressed using
Java bytecode augmented with special modeling primitives
(written using method calls).

Error messages are appropriate when a Soot-based tool is
looking for violations of safety properties; for instance, the
tool described in [BLH08a] statically detects likely tracematch
violations and reports them to the user. This tool also works
with the highlight tool2 to generate annotated Java source
code in HTML format, enabling users to browse these viola-
tions and to visualize the relevant finite-state machines.

Attributes are, in practice, most useful for viewing
statement-level flow analysis results (using the Soot Eclipse
plugin [LLH04]). We initially incorporated attributes to
communicate static analysis information to runtime sys-
tems [PQVR+01]. Attributes are especially useful for com-
municating the results of expensive analyses, like side-effect
information [LLH05], and we can indeed encode this infor-
mation in attributes.

2http://www.andre-simon.de



III. WORKING WITH AND EXTENDING SOOT

It is possible to interact with Soot at many levels. We
designed Soot such that the typical user would add some
passes to Soot and then run their augmented version of Soot.
Running Soot. Simply running Soot on the command line
is the simplest way to interact with Soot. Jimple code is
useful for humans as a cleaned-up version of Java bytecode.
In fact, we created the Jimp dialect of Jimple specifically for
this purpose; it sacrifices completeness for readability, e.g. by
omitting full names of fields. Full Jimple can be recompiled
into Java bytecode, while Jimp is most useful for manual
inspection.

Soot can also optimize bytecode. However, modern Java
virtual machines and just-in-time compilers do an excellent
job of optimizing code (using information available only at
run time), so that Soot’s optimizations do not improve the
performance of normal bytecode. The optimizations are useful
for non-standard bytecode, such as that generated by the abc
AspectJ compiler.

Another way of running Soot is through its Eclipse plu-
gin [LLH04]. The Eclipse plugin allows users to invoke Soot
(or augmented versions thereof). More importantly, however,
it also allows users to view Jimple CFGs and static analysis
results. In particular, the Soot Eclipse plugin enables develop-
ers to see flow analysis results as they are being computed.
Also, the plugin can display attributes summarizing analysis
results.
Building on top of Soot. To use Soot for program
analysis research, users must write compiler passes extend-
ing Soot’s functionality. Soot provides two basic types of
passes: BodyTransformers and SceneTransformers.
The BodyTransformer is most suitable for intraproce-
dural analyses, and is executed on each method in a pro-
gram. The SceneTransformer executes once and may
analyze and manipulate the entire program as it sees fit.
These Transformers belong to Packs, which correspond
to collections of compiler passes. We have documented the set
of Packs that Soot ships with out-of-the-box, and researchers
are free to add to a provided Pack, if it runs at the appropriate
phase, or to create their own Packs.

Different Transformers may communicate by sharing
Maps containing analysis results, or by using attributes. We
explicitly chose to disallow analysis passes from storing
information on IR statements (for instance, by subclassing
Jimple Stmts), as that makes it difficult to compose different
analyses.

We recommend that users add passes to Soot by creating
their own custom main class which manipulates Soot’s Packs
by adding appropriate Transformers, and then invoking the
Soot main() method. Soot’s Eclipse plugin can be used to
generate templates for this use case (File→New→Example).
It is also possible to manually call the different methods that
Soot’s main() method invokes in one’s own code. While this
is a more flexible way of using Soot, we do not recommend
it for most users.

While the primary way to extend Soot is by adding new
analyses, it is also possible to add new intermediate repre-
sentations and output formats; the SSA-based intermediate
representation Shimple [Uma06] is one such example.

Unfortunately, we failed to include a good mechanism for
research groups to share their Soot extensions (without getting
them checked into the main Soot distribution). We return to
this topic in Section VI.

IV. SOOT DEVELOPMENT PROCESS AND COMMUNITY

Soot was originally developed by Raja Vallée-Rai for his
MSc thesis [VR00]. The initial development took place during
the initial surge of interest in analyzing Java. This happened in
1999–2000 and culminated in the release of Soot 1.0, a viable
intraprocedural Java analysis framework. Soot confirmed that
it was possible to carry out sophisticated analyses of Java
programs, starting from the bytecode (rather than source code)
for these programs. Since its initial release, Soot has added
numerous features, as previously described in Section II.

Often, important features were added to Soot and then
refined by later contributors. Two examples are: 1) the local
variable type inference system, which first used a technique
by Gagnon et al [GHM00], and was later replaced by Bellamy
et al’s fast type inference [BAdMS08]; and 2) call graph
information, which was initially prototyped by Sundaresan
et al using Variable Type Analysis [SHR+00], and later
subsumed by Spark (and PADDLE, to some extent).

Soot’s core development has centered around the Sable lab
at McGill University. The role of primary Soot maintainer has
rotated around a number of McGill students and alumni. Soot
maintenance involves integrating external patches, responding
to questions on the Soot mailing list, and periodically releasing
new versions of Soot. Soot’s continuing development would
surely have benefitted from a full-time systems programmer,
but we did not have the resources for such a position.

We have integrated significant external contributions into
Soot. Notable external contributions include a fast type as-
signer for local variables by Ben Bellamy [BAdMS08], a
JastAdd-based parser for Java 5 source code by Torbjörn
Ekman [EH07], and a demand-driven pointer analysis by
Manu Sridharan [SGSB05].

A. Support and Community

The most active meeting place for the Soot community is its
mailing list, which receives about 30 messages in an average
month, with some spikes up to 120 messages. The list is
the primary support channel for Soot users. Most questions
are answered promptly by Soot developers, and the publicly-
available mailing list archive is a useful resource for Soot
users. In a laudable trend, we have noticed that the Soot
community has evolved to the point that Soot users sometimes
respond to each others’ questions on the Soot mailing list.

We have experimented with other collaboration tools, but
they have generally been less successful than the mailing list.
A public bug-tracking system (Bugzilla) exists, as well as a
wiki. The wiki is useful for recording certain specific types of



information, such as a list of Soot users, but does not build
a sense of community. The bug tracking system can record
Soot bugs; however, the Soot team does not generally have the
resources to fix non-critical Soot bugs. We always welcome
bug reports that come with patches. Such bugs are most likely
to be fixed quickly.

We have licensed Soot under the GNU Lesser General
Public License (LGPL). This license is appropriate for many,
but not all, users; it is permissive enough to allow Soot
users to incorporate Soot into arbitrarily-licensed client code,
but can trigger alarm from overly-conservative institutional
lawyers. We understand that some additional users might have
been able to use Soot had it been released under a more
permissive license, such as the Apache or BSD licenses. As
a strong supporter of free software (in the GNU sense), Raja
selected the GNU LGPL as the Soot license; future authors of
compiler frameworks ought to consider which license is most
compatible with their ideology and their desire for the adoption
of their software. Note that McGill’s Sable group will release
the McLab compiler framework for MATLAB [CLD+10]
under the Apache 2.0 license.

Soot’s Subversion repository is publicly readable. While
the core Soot code has not attracted external committers, we
have welcomed documentation commits from the authors of
the Soot survivor’s guide, described below. A server produces
nightly builds based on the contents of the repository.

During its early development, Soot came with a test suite
verifying its functionality and testing for regressions. This test
suite has been lost to the mists of time. Our current verification
strategy for Soot is to ensure that it passes the abc tests, which
exercise significant portions of Soot’s functionality.

B. Documentation

Soot has extensive documentation in a variety of formats.
Documentation is critical to Soot’s usefulness as a research
tool, and we (and others) have expended significant effort to
create documentation for Soot. (Documentation is an obvious
potential use case for the Soot wiki.)

The most basic form of documentation is the API design.
The first author recalls extended discussions with Raja about
Soot API design. We believe that the core internal Soot API
is reasonably self-documenting and easy to use. Soot also has
some Javadoc documentation comments to elucidate the API,
but it is quite tedious to provide complete Javadoc coverage.
Unless such documentation was somehow crowdsourced, it
would not be reasonable to expect research compiler frame-
works to come with complete Javadoc documentation com-
ments. We believe that we have provided the best that one
could hope for in a research compiler: good API design
coupled with occasional Javadoc comments.

The Soot team has also created a set of documents ex-
plaining how to carry out various tasks using Soot. These
documents walk the reader through tasks such as implementing
dataflow analyses and adding attributes to Java class files.
Also, the Soot community has contributed additional docu-
mentation, notably in the form of the excellent Soot Survivor’s

Guide by Einarsson and Nielsen [EN08].
One form of Soot help that we would like to point out

lies in error messages. Two common tripping points are the
OutOfMemoryError and incomplete-classpath errors. Out-
of-memory errors occur because Java virtual machines’ default
memory allocation is insufficient for running whole-program
pointer analyses. Soot therefore catches this error and displays
an error message telling the user how to increase the memory
allocation. The incomplete-classpath error occurs because Soot
needs all of a program’s libraries to carry out pointer analysis;
when it cannot find needed classes, it recommends that the user
include the jce.jar and jsse.jar files, which are most
likely to be missing.

A final form of Soot documentation has been half-day
tutorials at the PLDI and CASCON conferences. We have
summarized the contents of these tutorials in the present
paper, but the tutorial slides provide full details about how
to actually carry out required tasks using Soot. In particular,
the Soot tutorials explained Soot’s basic structure; how to
implement intraprocedural analyses and to add these analyses
to Soot; how to use the call graph and pointer analysis
information produced by SPARK; and how to add attributes to
code outputted by Soot. While the tutorials were not heavily-
attended, we believe that they helped some aspiring Soot users,
and the tutorial slides probably helped more Soot users.

V. SOOT’S PAST EVOLUTION; FUTURE WORK ON SOOT

This section explains relevant major changes and extensions
that we have made to Soot in the past, and proposes future
extensions to Soot. We would gladly welcome any external
contributors that are interested in working on these extensions.
Soot has also incorporated hundreds of minor improvements,
which are not mentioned here.
Singletons and multiple Soot runs. Soot’s initial design
used the Singleton design pattern in a number of places.
This was quite inconvenient for users who wished to invoke
Soot multiple times from their own client code. We refactored
Soot to eliminate most of the singletons and global variables,
consolidated the remaining global variables in a G singleton,
and implemented a static analysis to detect singletons and
globals that did not live in G. We also added the G.reset()
method to reset Soot’s state.
Partial programs. Soot requires the entire program to com-
pute sound results for whole-program analyses, such as pointer
analysis. However, many applications (particularly Eclipse-
based software engineering ones) do not have or need the
whole program. Using an external tool by Dagenais [DH08], it
is possible to parse Java source code for incomplete programs.
We also recently fixed Soot’s support for analyzing Java
bytecode without all referenced libraries; Soot will warn the
user that the results are probably unsound, but it will then
continue the analysis on a best-effort basis.
Java front-end parsers. Soot originally did not include a Java
front-end parser. Fortunately, this problem attracted quite a bit
of interest, and Soot gained both a Polyglot-based [NCM03]



Java front-end, and later on, a Java 1.5-compatible JastAdd-
based front-end, as previously mentioned.
Increased efficiency. On a demand-driven basis, we have
improved the performance of selected parts of Soot. We have
noticed that it would have been impossible to predict which
parts should have been optimized from the outset. Soot has
benefitted from improved implementations of the class hierar-
chy, strongly-connected components, local type inference, and
local defs/uses calculators.

A. Future Directions for Soot

We identify three directions for future improvements on
Soot: faster startup and computation time; interprocedural
analysis support; and support for Java language extensions.

Any analysis which uses whole-program analysis results
must wait for Soot to parse thousands of classfiles. The
problem is that even the smallest Java program contains
dependencies on the Java class library, which has extensive
cross-references between library classes. The result is that,
once an analysis calls for pointer analysis results, Soot’s
running time shoots up from under 10 seconds to over a
minute. We believe that it would be worthwhile to serialize the
generated Jimple code for the Java class libraries once and for
all, perhaps using the techniques of Gligoric et al [GMK11].
This should enable much faster startup time for Soot analyses.
Performance improvements could also come from rewriting
the Jimple creation code and from using multiple threads to
create Jimple code, which has been a nice-to-have project since
2000.

While Soot has excellent support for intraprocedural anal-
yses, developers of interprocedural analyses are left much
more to their own devices. As described above, Soot pro-
vides the SceneTransformer for authors of novel in-
terprocedural analyses. Unfortunately for such authors, the
SceneTransformer does not provide any help with struc-
turing an analysis. In particular, a Soot user needs to figure
out how to traverse the analyzed program’s classes and how
to combine the analysis results from different methods. Some
design work in defining the common case and making it easy
to program could help a lot of analysis authors.

Finally, it has historically been difficult to evaluate language
extensions (such as type system extensions) using Soot. While
Soot carries out extensive type inference on bytecode, it
has not been easy to get source code annotations (e.g. type
annotations) into Soot’s IRs. Such research should now be
easier using the JastAdd front-end; however, we are not aware
of any projects investigating Java language extensions where
Soot analyzes programs given in an extended Java source
language.

VI. REFLECTIONS ON SOOT

In this section, we mention some difficulties we had in
developing Soot, suggest desirable features for future compiler
frameworks, and conclude with some reflections on reasons for
Soot’s success.

Our experience is that, in the large, Soot now does what
we thought it would do. One unexpected application of Soot
was for unsound and incomplete program analyses. When we
were initially designing Soot, such analyses were unknown in
the research community; however, in the intervening 12 years,
they have become quite popular. Soot can implement such
analyses without any problems.

Difficulties. We would like to highlight two difficulties:
keeping Soot up to date in the presence of external changes,
and encouraging Soot users to contribute their changes.

The Java language has changed heavily since the initial
release of Soot; Java 1.3 was the newest version of Java when
Soot 1.0 was released in 2000, and it did not include generics,
invokedynamic, annotations, or foreach loops, among
other changes. Fortunately, the changes to the virtual machine
have been more limited. Nevertheless, it has been difficult
for the Soot team to keep up with the changes in the Java
virtual machine (for bytecode inputs) and particularly in the
Java language (for the Java front-end). Changes to Eclipse
have also been a (much more serious) problem for the Soot
Eclipse plugin.

While we have highlighted a number of contributed changes
in this paper, we would have liked to incorporate many more
Soot contributions from non-McGill users. This is particularly
true given that others have developed Soot extensions that
would be of general interest.

Ways to Improve. We have discussed some Soot-specific
potential improvements in Section V. In this section, we
discuss ideas for improving compiler frameworks that we
believe would be of interest to the broader community.

We believe that there are several reasons for Soot ex-
tensions not getting merged back into the main Soot code.
First, compiler frameworks should be designed to make it
easier to independently release framework extensions. While
the Eclipse plugin system may be needlessly complex for a
research compiler, it may still be useful to have a simple
extensions system. Soot could be much-improved in this area,
as we did not think of this problem at the time. Second, releas-
ing software is time-consuming and unrewarding. Conferences
should value software and data releases more highly when
evaluating papers; they are an integral part of the scientific
process. Some conferences, such as ESEC/FSE, are starting
to encourage the release of more complete information along
with papers, and we applaud this trend.

We have also noticed that it is difficult to publish framework
papers; there is no real refereed paper which describes Soot as
a system. In Soot’s case, the best paper to cite is [VRGH+00],
which describes how Soot converts Jimple back into bytecode.
We encourage conferences to accept more framework papers.

On a more technical level, Soot recomputes a lot of data
between passes. It has to recompute the data because it does
not know how much of the data was invalidated by intermedi-
ate computations. Incremental [BLS+11] or reactive [DFR11]
computation would help improve the performance of compiler
frameworks.



Finally, quasiquoting is an extremely useful feature for com-
piler frameworks. In this context, quasiquoting [Baw99] allows
writers of transformation passes to specify code templates (and
the relevant values to populate those templates) for inclusion
in the outputted code. It is certainly quite inconvenient to
manually create Jimple AST nodes in a transformation pass.
We were not aware of quasiquoting while we were initially
designing Soot, but it could easily be added at any time.

Reasons for Success. We believe that Soot succeeded because
it provided the right features at the right time and was easy
enough to use. We discussed Soot’s features in Section II.
The most important features include: 1) Soot’s support for
Java; 2) the handy Jimple intermediate representation; and
3) the Spark pointer analysis toolkit. The pointer analysis
was especially important, because most nontrivial analyses
of Java code must soundly reason about the behaviour of
pointers. Any compiler framework is going to be somewhat
difficult to use, but it seems that Soot was usable enough,
given sufficient determination. Ease of use also includes Soot’s
software license, nightly builds and preparation of occasional
Soot releases (incorporating patches from the community), and
responsiveness on the Soot mailing list.
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