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Abstract
Due to the lack of established real-world benchmark suites for static taint analyses of Android
applications, evaluations of these analyses are often restricted and hard to compare. Even in
evaluations that do use real-world apps, details about the ground truth in those apps are rarely
documented, which makes it difficult to compare and reproduce the results. To push Android
taint analysis research forward, this paper thus recommends criteria for constructing real-world
benchmark suites for this specific domain, and presents TAINTBENCH, the first real-world
malware benchmark suite with documented taint flows. TAINTBENCH benchmark apps
include taint flows with complex structures, and addresses static challenges that are com-
monly agreed on by the community. Together with the TAINTBENCH suite, we introduce the
TAINTBENCH framework, whose goal is to simplify real-world benchmarking of Android taint
analyses. First, a usability test shows that the framework improves experts’ performance
and perceived usability when documenting and inspecting taint flows. Second, experiments
using TAINTBENCH reveal new insights for the taint analysis tools AMANDROID and FLOW-
DROID: (i) They are less effective on real-world malware apps than on synthetic benchmark
apps. (ii) Predefined lists of sources and sinks heavily impact the tools’ accuracy. (iii)
Surprisingly, up-to-date versions of both tools are less accurate than their predecessors.
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1 Introduction

Mobile devices store and process sensitive data such as contact lists or banking information,
which require protection against misuse. In case of Android, the most-used mobile oper-
ating system (statcounter 2019), and its app marketplaces such as Google Play Store, it is
crucial to protect users’ security and privacy. Hence, in case of most marketplaces, any app
trying to enter is automatically reviewed. Numerous malware detection mechanisms have
been developed to do so (Wei et al. 2014; Arzt et al. 2014; Enck et al. 2014; Gordon et al.
2015; Grech and Smaragdakis 2017; Youssef and Shosha 2017). Nonetheless, frequent news
reporting malware apps bypassing such mechanisms and lurking into marketplaces show
that this process sometimes fails (Soni 2020; Micro 2020).

Static taint analysis, in particular, is able to detect security threats, e.g., data leaks (as
in spyware which is a subset of malware), before they are actually exploited. It tracks data
flows from sensitive sources (e.g., API which reads the contact list) to sensitive sinks (e.g.,
API which posts data to the Internet). Such data flows between sources and sinks are called
taint flows. Note, multiple intentionally, accidentally or maliciously programmed data-flow
paths might result in the same taint flow as the example in Listings 1 shows, hence, a taint
flow is usually counted as detected once a connection consisting of a single or multiple
data-flow paths between the associated source and sink is found.

To be accurate, taint analyses must evolve along with the Android operating system with-
out losing accuracy when analyzing apps designed for older systems. Hence, each year novel
tools, or new versions of existing tools that realize taint analysis implementations become
available. To show the relative effectiveness of each new analysis prototype, its authors are
expected to evaluate it empirically. Fortunately, there exist a few well-established bench-
mark suites for this purpose, e.g., DROIDBENCH (Arzt et al. 2014), SECURIBENCH (Livshits
and Lam 2005) and ICC-BENCH (Wei et al. 2014).

The terms used in the context of such benchmark suites as well as their structure is visu-
alized in Fig. 1. The typical usage of these benchmark suites and the issues coming along
with it are described in the following. First, all the benchmark suites enumerated before
are sets of micro benchmark apps — small programs which are artificially constructed for
benchmarking purposes only.

Multiple expected or unexpected taint flows are defined for and implemented in each
benchmark app. In Listings 2, an expected flow from line 4 to line 5 is defined, as well as
an unexpected flow from line 4 to line 6. The expected flow in this example specifies a true
data leak, while the unexpected flow specifies a false-positive case on which an imprecise
tool might still report (e.g., a tool overapproximates for arrays and taints the whole array
once a tainted value is written into an array. ). Established benchmark suite often uses unex-
pected cases to assess the precision of a tool (e.g., BenchmarkTest00009 in the OWASP
Benchmark (OWASP 2021) and ArrayAccess1.apk in DROIDBENCH (DroidBench

Listing 1 Two data-flow paths
result in one taint flow from the
source to the sink
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Fig. 1 Left: a benchmark suite consists of a set of benchmark cases. Each benchmark case is a combination
of a benchmark app and a specified expected/unexpected taint flow. Right: a tool’s analysis result on a
benchmark app is a set of data-flow paths connecting sources and sinks. These data-flow paths are compared
to flows specified in the benchmark cases

3-0 2016)). Once an Android taint analysis tool finds an expected taint flow while bench-
marking, it is counted as a true positive (TP). A missed expected taint flow is counted as a
false negative (FN). Consequently, finding and missing unexpected taint flows are counted
as false positives (FP) and true negatives (TN) respectively. We call the combination of one
(un-)expected taint flow and one benchmark app a benchmark case (see Fig. 1).

Evaluations of Android taint analyses frequently use micro benchmark apps as represen-
tatives of real-world apps (Cam et al. 2016; Bohluli and Shahriari 2018; Pauck and Zhang
2019; Zhang et al. 2019; Wei et al. 2014; Arzt et al. 2014). To evaluate, the analysis result —
computed for each benchmark case — is compared against the associated taint flow which
was expected or not expected to be found. While doing so, TPs, TNs, FPs and FNs are
counted. For example, when the actual analysis result contains an expected taint flow it is
counted as a TP. Based on these countings, the benchmark outcome is then usually evaluated
with respect to accuracy in terms of the metrics precision, recall, and F-measure. Addition-
ally, the analysis time required per benchmark case or app is recorded in most evaluations
to argue about an implementation’s efficiency and scalability. This way analysis tools are
steadily adapted to achieve better accuracy scores and run more efficiently for established
micro benchmark suites. Multiple studies indicate that the scores achieved only hold for
micro benchmarks apps and cannot be achieved when analyzing real-world apps (Qiu et al.
2018; Pauck et al. 2018; Luo et al. 2019a). Thus, many tools show an over-adaption to
micro benchmark suites.

In contrast to evaluations on micro benchmark suites, evaluations on real-world apps are
uncommon and — due to missing or undocumented details — usually not reproducible. For
instance, the authors of DROIDSAFE (Gordon et al. 2015) evaluated both DROIDSAFE and
FLOWDROID (Arzt et al. 2014) on 24 real-world Android malware apps. However, informa-
tion about malicious taint flows is only documented in form of types of sources and sinks

Listing 2 Expected taint flow
(true leak at line 5) vs.
unexpected taint flow (no leak at
line 6)
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(e.g., source type is location and sink type is network). Missing details about code loca-
tions related to these flows makes it impossible to reproduce the results, which hinders the
measurement of research progress. Additionally, a documentation of all expected and unex-
pected taint flows (ground truth) for a set of real-world apps rarely exists since the only
tools which could be used as oracles to determine these flows are the tools to be evalu-
ated. Thus, the associated evaluation results often come unchecked and only comprise an
enumeration of countable findings (e.g., data-flow paths found) without guarantees that the
findings actually represent feasible taint flows (Avdiienko et al. 2015; Arzt et al. 2014).

The lack of publicly available real-world benchmark suites with a well-documented
ground truth hinders progress in Android taint analysis research. This paper fills this gap. It
first defines a set of sensible construction criteria for such a benchmark suite. It further pro-
poses the TAINTBENCH benchmark suite designed to fulfill these construction criteria. The
suite comes with a set of real-world malware apps and precisely hand-labeled expected and
unexpected taint flows, the so-called baseline definition. During a rigorous and long-lasting
construction process three field-experts agreed that this baseline definition forms a valid
subset of the ground truth. Along with the suite, this paper introduces the TAINTBENCH

framework, which allows a faster benchmark-suite construction, a reproducible evaluation
of analysis tools on this suite, and easier inspection of analysis results. Through a usability
test, we were able to confirm that the framework effectively assists experts in documenting
and inspecting taint flows. Last but not least, we compared TAINTBENCH to DROIDBENCH

and then used both benchmark suites to evaluate current and previously evaluated versions
of AMANDROID (Wei et al. 2014) and FLOWDROID (Arzt et al. 2014). While we were
able to reproduce results previously obtained on DROIDBENCH, using TAINTBENCH we
find that (1) AMANDROID and FLOWDROID have shortcomings — especially low recall —
on real-world malware apps, (2) predefined lists of sources and sinks heavily impact the
tools’ performance and there is no perfect list for TAINTBENCH, (3) surprisingly, up-to-
date versions of both tools are less accurate than their predecessors. Particularly they find
fewer actual taint flows. Regarding FLOWDROID this seems to happen due to a bug causing
sources and sinks that are actually irrelevant for specific taint flows to have a shadow effect
on FLOWDROID’s taint computation.

To summarize, this paper makes the following contributions:

– the first real-world malware benchmark suite with a documented baseline: TAINT-
BENCH (39 malware apps with 203 expected and 46 unexpected taint flows documented
in a machine-readable format),

– the TAINTBENCH framework, which allows tool-assisted benchmark suite construction,
evaluation and inspection,

– a usability test for evaluating the efficiency and usability of tools from the TAINT-
BENCH framework,

– a comparison of TAINTBENCH and DROIDBENCH, and
– an evaluation of current and previously evaluated versions of FLOWDROID and

AMANDROID using both DROIDBENCH and TAINTBENCH.

All artifacts contributed with this paper are publicly available:
https://TaintBench.github.io
The rest of the paper is organized as follows. We first discuss related work in Section 2.

We propose the criteria for constructing real-world benchmarks for Android taint analysis
and explain the concrete construction process in Section 3. We introduce the TAINTBENCH

framework which assists real-world benchmarking of Android taint analyses and show its

https://TaintBench.github.io
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effectiveness by presenting a usability test with experts in Section 4. The constructed TAINT-
BENCH suite, its evaluation and results of benchmarking Android taint analysis tools with
both DROIDBENCH and TAINTBENCH are presented in Section 6. Threats to validity and a
conclusion are given in Sections 8 and 9.

2 RelatedWork

In the area of Android taint analysis there exist many static (Arzt et al. 2014; Wei et al.
2014; Gordon et al. 2015; Li et al. 2015; Bosu et al. 2017), dynamic (Enck et al. 2014),
and hybrid (Benz et al. 2020; Pauck and Wehrheim 2019) analysis tools as well as a couple
of benchmark suites (Arzt et al. 2014; Wei et al. 2014; Mitra and Ranganath 2017). We
highlight the most prominent static analysis tools and benchmark suites with respect to taint
analyses.

FLOWDROID (Arzt et al. 2014), AMANDROID (Wei et al. 2014), ICCTA (Li et al. 2015)
and DROIDSAFE (Gordon et al. 2015) are the most cited static Android taint analysis tools.
AMANDROID, FLOWDROID and ICCTA use configurable lists of sources and sinks to be
considered during analysis. SUSI (Rasthofer et al. 2014) is a machine-learning approach
developed to automatically create such lists by inspecting the Android APIs. More com-
prehensive or precise lists were produced in more recent research (Piskachev et al. 2019).
DROIDSAFE’s list of sources and sinks is hard-coded in its source code, which makes it hard
to adapt for real-world apps. While DROIDSAFE and ICCTA are not maintained anymore,
FLOWDROID and AMANDROID still appear to receive frequent updates (Amandroid* 2018;
FlowDroid* 2019). Furthermore, all tools support different features and sensitivities that
influence the precision and soundness. FLOWDROID and AMANDROID, for example, are
context-, flow-, field-, object-sensitive and lifecycle-aware. Only ICCTA and AMANDROID

support the analysis of inter-component communication (ICC). None of the tools is path-
sensitive due scalability drawbacks and their static nature. Table 1 shows an overview of the
main characteristics of these tools. Evaluations of the abilities of each tool can be found in
previous studies (Qiu et al. 2018; Pauck et al. 2018).

The most used (cited) and hence most established benchmark suite in this field of
research is DROIDBENCH (Arzt et al. 2014). DROIDBENCH is a collection of artificial
apps that forms a micro benchmark suite. Its ground-truth description can be found in code
comments in the source code associated with each benchmark app. The up-to-date version
3.0 (DroidBench 3-0 2016) comprises 190 apps with benchmark cases in 18 different cate-
gories related to the features and sensitivities exploited. Subsets, variants and extensions of

Table 1 Overview of the main characteristics of relevant static taint analysis tools for android applications

∗static method only
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Table 2 Overview of the main characteristics of relevant android benchmark suites

DROIDBENCH have been used to evaluate certain features or more specialized taint analy-
sis tools (Wei et al. 2014; Bosu et al. 2017). For example, ICC-BENCH (Wei et al. 2014)
comprises benchmark cases to evaluate the abilities of analyses to handle inter-component
communication. A recent suite is DROIDMACROBENCH (Benz et al. 2020) — a collection
of 12 real-world commercial Android apps with annotated taint flows reported by FLOW-
DROID. However, the authors only labeled the taint flows as feasible (i.e., it is possible for
data to flow from a given source to a given sink) or infeasible without characterizing or giv-
ing details about the flows due to the high complexity of commercial apps. For example, it
remains unclear whether the tainted data is sensitive. Thus, regarding security aspects, many
feasible labeled taint flows might not be real security threats. Moreover, because DROID-
MACROBENCH comprises closed-source apps, the authors could not legally make the suite
publicly available as open source. Due to these two limitations, it cannot be used as publicly
accessible and comparable proving ground truth for taint analyses.

Ghera (Mitra and Ranganath 2017) is a repository of micro benchmark apps sorted into
different categories of Android vulnerabilities partially including taint flows. As of January
2021, Ghera contains 8 categories with 60 vulnerabilities where each one contains three
apps, a benign, a malicious and a secure one.1 The ground truth is documented in a text file
that hold a natural language description of the vulnerability within the specific app. Table 2
summarizes DROIDBENCH, DROIDMACROBENCH, and Ghera. The Ghera benchmark apps
were used in a recent study (Ranganath and Mitra 2020) that evaluated the effectiveness
of existing security analysis tools in detection of security vulnerabilities. They found out
that the evaluated tools could only detected a small number of vulnerabilities in the Ghera
benchmark apps. To that effect their findings support some findings provided by us during
evaluation (see Section 6). However, not all of their benchmark apps are suitable for bench-
marking taint analysis tools. For example, the apps in the Crypto catalog of Ghera contains
cryptographic misuses that require typestate analysis rather than taint analysis. Furthermore,
our study answers questions raised in their study such as whether these taint analysis tools
are actually effective in detecting real-world issues without extra configuration (see Open
Questions 3&4 in (Ranganath and Mitra 2020)).

Pauck et al. (Pauck et al. 2018) proposed REPRODROID to refine, execute, and evalu-
ate on benchmark suites. Among other suites they refined DROIDBENCH such that each
benchmark app now comes with a precisely defined, machine-readable ground truth in
AQL (Android App Analysis Query Language) format. We include and extend REPRO-
DROID for enabling automatic evaluation of analysis tools in our TAINTBENCH framework
as described in Section 4.2.

1https://bitbucket.org/secure-it-i/android-app-vulnerability-benchmarks

https://bitbucket.org/secure-it-i/android-app-vulnerability-benchmarks
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3 Construction Criteria

This section describes how we constructed a real-world malware benchmark suite for
Android taint analysis. Before doing so and since there exists no widely accepted real-world
benchmark suite for this purpose, we propose the following three criteria for benchmark
suite construction.

I) Ground-Truth Documentation: Mitra et al. proposed the Well Documented bench-
mark characteristic — benchmarks should be accompanied by relevant documenta-
tion (Mitra and Ranganath 2017). In context of our work, each benchmark app comes
with a documentation of the expected and unexpected taint flows for benchmarking.
Such documentation was provided by DROIDBENCH, however, only in form of code
comments that mostly hold natural language descriptions. It lacks information about
the exact code locations of the taint flows. Pauck et al. (Pauck et al. 2018) pointed out
that such documentation could lead to incorrect evaluation of analysis results. Thus,
on top of the “Well Documented” characteristic, the taint flows of each benchmark
app should be documented in a standard machine-readable format such as XML or
JSON. It should contain both high-level textual information which describes the pur-
pose of each taint flow (as in DROIDBENCH’s comments) and exact code locations of
the source, the sink, and the intermediate statements of each flow. Furthermore, since
different taint analysis tools may use different intermediate representations (IRs) the
format must support an encoding of code locations that can be converted into arbitrary
IR code locations.

However, to create such a ground truth is difficult in case of real-world apps. This
is particularly true for taint flows that even tools cannot detect. Thus, our goal here
is to create a baseline definition (i.e., a subset of all expected and unexpected taint
flows) for each benchmark app. Regarding expected taint flows, we focus on those
flows which are not only feasible (i.e., it is possible for data to flow from a given
source to a given sink) but also critical under security aspects, e.g., leaking sensitive
information. Our work aims to serve as a starting point towards a solid real-world
benchmark suite for Android taint analysis. The facilities we put in place should allow
(and possibly foster) extension and improvement of the suite.

II) Representativeness: Nguyen Quang Do et al. recommended representativeness with
respect to the target domain of the evaluated tool or analysis as an important aspect for
benchmark selection (Do et al. 2016). In this paper, we choose to focus on Android
apps identified as malware. There are several reasons for this decision. First, some
available Android malware datasets come with descriptions of the malicious behav-
iors, which are unavailable for open-source datasets (e.g., F-Droid (F-Droid 2020))
or commercial applications. Such descriptions accelerate the manual inspection pro-
cess, for example, when faced with the manual task of separating true from false
findings produced by automated tools, since the descriptions provide hints of the
malicious behavior. Labels such as malware families or types are insufficient to drive
this process. Second, well-known Android malware datasets have often been used in
evaluations in scientific papers (Wong and Lie 2016; Zheng et al. 2012; Rastogi et al.
2013; Huang et al. 2014) including Android taint analysis approaches (Huang et al.
2015; Yang et al. 2016). Last but not least, Android malware is less likely to cause
licensing issues. A benchmark suite must be open-source and publicly available, and
thus cannot legally include commercial apps. Because of including closed-source,
commercial apps in the DROIDMACROBENCH suite, the authors could not make
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the suite publicly available (Benz et al. 2020). The meaning of representativeness is
twofold in our paper:

– the expected taint flows in the benchmark suite should be representative of taint
flows that address static-analysis challenges. These challenges are commonly
agreed on by the community such as field-sensitivity or the necessity to model
implicit control flows through the application’s lifecycle. A good example is
DROIDBENCH, which groups its benchmark cases into 18 categories based on
such challenges, e.g., aliasing, callbacks and reflection.

– the benchmark apps should be representative of the dataset it is sampled from.
Reif et al. provide a tool to generate metrics for Java programs to assess repre-
sentativeness during benchmark creation (Reif et al. 2017). Similarly, we define
a set of metrics which are relevant for Android taint analysis benchmarking in
this paper. Details are introduced in Section 6.1.

III) Human-understandable Source Code: Source code availability has been widely
used in previous benchmark works (Blackburn et al. 2006; Prokopec et al. 2019;
Mitra and Ranganath 2017). Whenever possible, the benchmark suite should provide
human-understandable source code (either directly or by decompilation) in addition
to compiled executables. This criterion is important for the following three reasons.
First, it can help users of the benchmark suite to understand the documented taint
flows. Second, it allows the inspection of potential false positives produced by auto-
mated tools. Lastly, it enables the community to do source-code level analysis such
that the baseline definition can be checked, improved and extended. Considering our
focus on malware, source code is naturally hard to come by. In the following we will
elaborate how we address this challenge.

3.1 Concrete Construction of the TAINTBENCH Suite

For the suite’s construction, we decided to use available Android malware datasets, since
they are very likely to contain malicious taint flows that can and should be detected by
Android taint analysis tools. Note that malicious taint flows are not equal to taint-style
vulnerabilities. Malicious taint flows are intentionally built into the apps by malware writ-
ers, while vulnerabilities are weaknesses in benign apps that are unintentionally caused by
design flaws or implementation bugs. To obtain suitable malware samples to be included in
TAINTBENCH, we compared well-known Android malware datasets as shown in Table 3.
Considering manual inspection required for identifying the taint flows, we prefer datasets

Table 3 Comparison of android malware datasets

Dataset # App Malware Info Last Update

Contagio (Contagio Mobile 2012)a 344 Behavior descriptions 2018

AMD (Wei et al. 2017) 24,533 Behavior descriptions 2016b

VirusShare (VirusShare 2014) 34,265,389 Labels 2019

Drebin (Arp et al. 2014) 5,560 Labels 2012

aOnline source (Contagio Mobile Malware 2018) (accessed 02/18/2021)
bCurrently unavailable (02/18/2021)
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which have more detailed information such as behavior description, i.e., Contagio (Conta-
gio Mobile 2012) and AMD (Wei et al. 2017). From these two, we then chose the Contagio
dataset, since it was updated more recently and its size allows us to qualitatively study all
samples.

Because original source code is not available for the apps in Contagio, we opted to
decompile the Android malware apps. Modern Android decompilation technology has been
improved such that high-level source code files can be reconstructed successfully in most
cases. Decompilation is widely used in reverse engineering and validation of software anal-
ysis results for closed-source applications (Luo et al. 2019a; Benz et al. 2020). Another issue
was that some applications in the dataset were obfuscated (e.g., class/method/parameter
names were renamed to “a”, “bbb” etc.) such that the decompiled code was very difficult
for humans to understand . Considering the difficulty of formulating high-level descrip-
tions for discovered taint flows (as we stated in the documentation criterion) in obfuscated
applications and to ease the future validation of the baseline definition by other researchers,
we excluded obfuscated applications from our selection. Nonetheless we argue that our
selection is not biased for two reasons: (i) as later shown in Section 6, our selection is a
representative subset of the Contagio dataset and (ii) whether an app is obfuscated with
renaming or not should not make a difference for automated tools, since the semantics
remain unchanged.

Figure 2 shows our benchmark suite construction process. The Contagio dataset contains
344 apps, only 58 of them have references to behavior information. From these 58 apps,
42 apps that are not obfuscated became candidates for taint-flow inspection. Initially, we
planned to apply existing Android taint analysis tools to the apps and manually check the
analysis results, but we quickly gave up on this plan due to the following reasons:

– Too many flows to be checked. The three tools (AMANDROID, DROIDSAFE and
FLOWDROID) we initially tried already reported 21,623 flows.

– False negatives remain undetected by tools. We manually inspected a few malware apps.
As our inspection reveals, the tools frequently miss critical taint flows which are part of
the actual malicious intentions of the malware apps (e.g., leaking banking information),
i.e., yield false negatives. Often the sources and sinks that appeared in critical taint flows
are not in the tools’ configuration. These false negatives were described in the behavior
information written by security experts. Thus, they could be identified manually.

Fig. 2 Benchmark suite construction process
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– The tools also frequently report false positives that prolong code inspection. For the
Android malware fakebank android samp, for instance, FLOWDROID reported 23 taint
flows in its default configuration, but only 10 of them are true positives. Moreover, 8 of
these 10 only concern the logging of sensitive data using the Android Logging Service,
something that is considered secure since Android version 4.1, which protects such logs
from being read without authorization (Rasthofer 2013). All remaining 13 flows are
false positives.

Consequently, we opted for an alternative approach starting with manual inspection. We
manually inspected the 42 candidate apps along with their behavior information to identify
a set of expected taint flows. For example, if an app’s behavior information like “monitor
incoming SMS messages” is included, our inspection starts at sources which read incoming
messages.

The inspection for each app was performed by two people, both with background in
Android taint analysis research, working together as a pair in front of the same computer.
Whenever a taint flow was discovered and confirmed by both inspectors, it was added to
the documentation. After each inspection, a third inspector (a different person) reviewed the
documented taint flows. Only the taint flows confirmed by all three inspectors were retained
in the final suite. The percentage of agreement between the first two and the third inspector
was 96.82%. This resulted in 39 benchmark apps with 149 expected taint flows.

Next, we also used an automated tool (see TB-MAPPER in Section 4.2.1) to extract
sources and sinks from these 149 expected taint flows and used them to configure selected
Android taint analysis tools — those which we use during evaluation as well: FLOWDROID

and AMANDROID. We then applied the taint analysis tools under this configuration to
all benchmark apps. This way 100 taint flows were revealed which have not been docu-
mented during our initial manual inspection. We manually checked and rated these newly
discovered taint flows. Each flow was rated independently by two authors as expected or
unexpected. The results were compared and a consensus was established. This resulted in
further 100 additional benchmark cases — 54 expected and 46 unexpected taint flows. For
each expected taint flow, we also documented the intermediate steps of one data-flow path
as witness. At the end, the TAINTBENCH suite consists of 39 benchmark apps with 203
expected and 46 unexpected taint flows. We developed a few tools, introduced in the next
section, to support this process. More details about the selected Android taint analysis tools
and their configurations are given in Section 6.

4 The TAINTBENCH Framework

Along with the TAINTBENCH suite, we contribute the TAINTBENCH framework, which (as
our usability test in Section 5 shows) simplifies and speeds up real-world-app benchmark
suite construction (Part – Section 4.1) for Android taint analysis, allows automatic eval-
uation (Part – Section 4.2) of analysis tools, and supports source code inspection (Part

– Section 4.3) of taint flows. Figure 3 gives an overview of this framework, which is
structured into three parts. Every box in the figure refers to a tool extended or built for this
framework. All elements contributed along with this study are marked by a -symbol.

We describe the framework and all tools it comprises using a running example consist-
ing of an artificial app (example.apk) as depicted in Fig. 4. The first class is an Activity
component (MainActivity) which comprises one source (s1) and one sink (s5) in its
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Fig. 3 Overview of the TAINTBENCH framework

onCreate lifecycle method. The source extracts the device’s id (getIMEI) which is con-
sidered as sensitive data. Once it reaches the sink (sendTextMessage), it is leaked via
an SMS. The flow from s1 to the logging statement (s7) should not be recognized as a leak,
since only the value of the not-null check is logged. Class Foo contains only one method
(bar) which comprises a second taint flow from s8 (source) to s9 (sink). Details are omitted
to maintain the legibility of the example. In summary, the example contains two expected
taint flows (solid green edges) and one undocumented taint flow which could mistakenly be
identified as a third one (blue dashed edges):

4.1 Part – Construction

In Part , two tools come into play. The first tool, the textscjadx decompiler (JADX
2020), allows us to extract source code from Android application package (APK) files. We
extended JADX’s GUI by adding the TB-EXTRACTOR. It enables us to manually specify
source, sink, and intermediate assignments of taint flows by selecting the relevant source
code statements directly in the extended GUI. The extension also allows inspectors to add a
high-level description and attributes (i.e., special language or framework features) to each
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Fig. 4 Running example (example.apk)

taint flow. Once the taint flow specification is done, TB-EXTRACTOR outputs a JSON file
which stores the information logged for each taint flow.

The second tool used here is the TB-PROFILER. It takes both the APK and the JSON file
generated by TB-EXTRACTOR and outputs automatically detectable attributes which were
missed or incorrectly assigned by the inspectors. For example, if there is a statement on a
documented taint flow which involves reflection and the human inspectors forgot to assign
the attribute reflection, the TB-PROFILER will detect it automatically by checking the
API signatures and language features involved in the respective statements.2 To avoid false
attributes produced by TB-EXTRACTOR being documented, the human inspectors make the
final decision if the detected attributes should be assigned or not. The JSON file derived this
way can be stored as the baseline definition that specifies the taint flows for the associated
benchmark app. The TB-PROFILER extracts other static information from the APK, such as
the target platform version, a list of used permissions, sensitive API calls etc., and stores
them in a profile file.

We introduce our documentation of the baseline definition with the running example. To
that effect the baseline definition holds the taint flows illustrated as solid green edges in
Fig. 4. To store the baseline definition, a JSON file conforming our Taint Analysis Bench-
mark Format (TAF) is generated (output format of TB-EXTRACTOR). A shortened version
of the TAF-File for the running example is provided in Listings 3. We did not use the
Static Analysis Results Interchange Format (SARIF) (OASIS 2019) or similar formats (e.g.

2A list of all attributes considered is given in Table 7 in Section 6.1.
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Listing 3 The TAF-file for the running example

AQL 2020), since most of them are either too general or contain too many properties (e.g.,
the rule of a tool used to produce a finding) which are irrelevant in our domain. We wanted
to document the taint flows we manually specified with the Jadx decompiler. Thus, we did
not have the information of the rule of a specific tool or access path of a taint. Further-
more, SARIF does not support differentiating expected and unexpected taint flows, which is
important for benchmarking. If we would use the AQL to encode our baseline information,
we could only differentiate expected and not expected taint flows by attaching a generic
key-value pair (attribute). Additionally, encoding intermediate steps in AQL format would
make our baseline unnecessarily lengthy and hence impede human-readability and conse-
quently the manual documentation of taint flows. In contrast, TAF allows to encode all
relevant information in a clearly and precisely structured way. Thereby information given
in TAF can easily be converted into other formats such as the AQL.

Each element of the array findings describes one taint flow. It can be either expected
or unexpected, indicated by the attribute isUnexpected. When the value is equal to
true, the respective flow is unexpected and it means there is no data flow between the
source and the sink. Otherwise, it is an expected taint flow. In the listing, the expected taint
flow ( ) is visible. The second flow ( ) is hidden in Line 22. An example,
that shows how source, sink, and intermediate flows are described with code locations, is
given in Lines 5-18. If a statement contains multiple function calls, targetName and
targetNo specify which function call precisely is meant. Intermediate flows are assigned
with IDs which indicate the order of their appearances in the taint flow. The attributes
staticField and appendToString indicate that the tainted data flows through a
statically declared variable (s3) and is appended to a String (s2). The IRs-array holds the
intermediate representations (IR) associated to the statement, such as Jimple (Vallėe-Rai
et al. 1999; Lam et al. 2011). Jimple is the IR of the analysis framework SOOT on which
FLOWDROID is based, and it is supported by REPRODROID. We included Jimple in the
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baseline, but one could certainly fill this array with IRs from other frameworks. Jimple
statements are automatically added by TB-LOADER in Part .

4.2 Part – Evaluation

The harness we provide to evaluate Android taint analysis tools on the TAINTBENCH

suite is an extension to REPRODROID (Pauck et al. 2018). REPRODROID is a configurable
open-source benchmark reproduction framework to (i) refine, (ii) execute, and (iii) evalu-
ate analysis tools on benchmark suites. Considering the first step (i), REPRODROID allows
to create benchmark cases via a GUI. First, a set of benchmark apps can be imported.
Second, sources and sinks contained in these apps can be selected — manually or automat-
ically by comparison to a given list of source and sink APIs (e.g., the SUSI Rasthofer et al.
2014 list). By specifying sources and sinks, taint flows are implicitly specified too. Lastly,
REPRODROID allows to categorize these implicitly defined taint flows as expected or unex-
pected. We adapted REPRODROID to accept our baseline definition as additional input (see
TB-LOADER in Fig. 3). Thereby, the information of the baseline definition are used to auto-
matically select sources and sinks and categorize taint flows as expected or unexpected.
Once the benchmark suite is fully setup in REPRODROID it can be stored. Stored bench-
marks can then be loaded to be executed with or without using REPRODROID’s GUI. Our
extension can also be used to export tool-specific lists of the defined sources and sinks.
Currently, the format of AMANDROID and FLOWDROID is supported.

For the running example, assume the expected (green arrow) and unexpected (red arrow)
taint flows in the baseline are:

All taint flows are automatically converted into benchmark cases in the AQL format used in
REPRODROID. This format allows one to compose queries (AQL-Queries), to run arbitrary
analysis tools, and also standardizes the tools’ results (AQL-Answers). Hence, in case of
taint analysis tools such an AQL-Answer primarily contains a collection of data flow paths
that represent taint flows.

When executing an analysis tool on a benchmark suite (ii), REPRODROID creates one
AQL-Query per benchmark case. If the same query with respect to the same benchmark
app is asked in two or more cases, the analysis result is not computed again but loaded
and reused. The configuration of REPRODROID allows us to specify which set of tools
should be used to answer which type of query. By adapting the configuration or transforming
the query according to configurable strategies, various queries can be constructed. In our
comprehensive experiments we configured REPRODROID to use four analysis tools and
six different strategies (see Section 6.2). Once a tool is applied to a benchmark case, one
AQL-Answer is computed and stored as result for this specific case.

To evaluate a tool on a benchmark suite (iii), for each benchmark case REPRODROID

compares the expected and unexpected taint flow (constructed on the basis of the baseline
definition) with the actual AQL-Answer computed for the respective case. Expected cases
allow one to assess the recall of a taint-analysis tool, while unexpected cases allow one to
judge the tool’s precision. The total number of identified (resp. missed) expected taint flows
across all benchmark cases is used to determine the number of true positives (resp. false
negatives). Flows which match the unexpected taint flows are false positives. Flows that
neither match expected nor unexpected taint flows are not counted. Due to the construction



Empir Software Eng           (2022) 27:16 Page 15 of 41   16 

process of the TAINTBENCH suite (see Section 3.1) this was never the case considering the
experiments conducted in our evaluation (see Section 6).

To evaluate an analysis tool on our running example, let us assume that REPRODROID is
configured to solely employ one analysis tool. Thus, the following AQL-Query is posed:

Flows IN App(‘example.apk’) ?

Assume the actual AQL-Answer contains four flows:

REPRODROID’s evaluation only considers the first three flows: the first two are true posi-
tives and the third one is a false positive. A flow is evaluated as true positive (resp. false
positive) only if it matches a defined expected case (resp. unexpected case) (see above).
The last flow ( )s1 s7 is not specified as expected or unexpected case — it is not doc-
umented, yet. Whenever facing such an undocumented taint flow, manual inspections is
required to decide if it should be documented as an expected or unexpected case. This
way the 100 additional taint flows were added to TAINTBENCH’s baseline definition (see
Section 3.1). To support this inevitable manual inspection, the tool TB-VIEWER was created,
which will be introduced later in Section 4.3.

4.2.1 Evaluation-Support Tools

To further support empirical evaluations in the context of the TAINTBENCH framework,
REPRODROID was configured with three additional novel tools.

1) To reduce the complexity of TAINTBENCH apps with respect to each benchmark
case, we introduce the MINAPK-GENERATOR. As explained below, the MINAPK-
GENERATOR allows one to infer insights about the reason why an actual taint flow
may remain undetected by a tool (false negative). MINAPK-GENERATOR can be used
through AQL’s slicer interface although it is no classic slicer:

Slice IN App(‘example.apk’) !

The MINAPK-GENERATOR prunes the original APK and generates a minified APK for
each taint flow defined in the baseline. Considering a taint flow, any part in the code
that is not connected to the source, sink, or intermediate flows is removed. This task can
be performed more efficiently than slicing the app from source to sink, since the infor-
mation about intermediate flows is given. Considering the running example in Fig. 4,
the checkIMEI() method of class Logger is removed because it does not appear in
the baseline definition. However, this method would be kept by an ideal forward slicing
algorithm starting from s1, since the static field Logger.imei is used in the method.
MINAPK-GENERATOR only keeps the static field of this class. Since lifecycle methods
might be removed this way, a new analysis entry point is created. To do so, the com-
ponent that is launched on app start gets selected. Calls to all methods holding sources
are added to one of its lifecycle methods, e.g., a call to Foo.bar() (s10) is added to
the onCreate()-method of MainActivity in Fig. 4. In consequence, it is ensured
that the taint flow is reachable in the call graph of the minified APK.

As such, MINAPK-GENERATOR creates a minified version of the app that still con-
tains the original taint flow. The reduction may be unsound, causing an analysis to also
show false negatives on the minified version. However, whenever a taint flow — man-
ually labeled as expected taint flow but undetected in the original app — is detected in
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the minified app, one can consider an incomplete call graph to be the reason why the
analysis tool misses this flow in the original app.

2) The DELTAAPK-GENERATOR automatically generates variants of an input app in
which a single predefined taint flow, specified in the baseline definition, is killed.
DELTAAPK-GENERATOR can be used to check if the evaluated analysis tool has over-
approximated to detect a taint flow. It is used as a preprocessor in REPRODROID. The
following query asks for flows in our example app after killing ( ) with ID=1
(see Line 2 in Listing 3):

Flows IN App(‘example.apk’ | ’DELTA’) WITH ID = 1 ?

DELTAAPK-GENERATOR kills the flow from the source getIMEI by instrumenting
overriding assign statement. It inserts a new assign statement s = null directly
after the statement s1. Hence, the tainted variable s is immediately sanitized in the
generated delta APK. For a tainted variable which has primitive type, DELTAAPK-
GENERATOR inserts a statement that assigns a constant value to it. This way all
flows are killed from the source. A precise taint analysis tool should report the taint
flow ( ) for example.apk, but not for its preprocessed version created by
DELTAAPK-GENERATOR. If the taint flow is still detected in the delta APK, it is a false
positive.

3) TB-MAPPER answers AQL-Queries as the following one:

TOTS [ SourceAndSinks IN App(‘example.apk’) ? ] !

This query asks for an AQL-Answer which lists all the sources and sinks in the baseline
definition of example.apk and converts the detected sources and sinks into a tool
specific format (TOTS), e.g., a file that comprises a list of sources and sinks used by
FLOWDROID.

4.3 Part – Inspection

The TB-VIEWER, which is the main component of the third part ( ), comes in form of
a Visual Studio Code (VSC) (Microsoft 2020) extension using the MagpieBridge frame-
work (Luo et al. 2019b). It is used whenever manual inspection is needed. This tool displays
specified taint flows directly on the benchmark app’s source code in VSC. It allows us to
interactively inspect and compare the baseline definition (Part ) with the findings of an
evaluated analysis tool (Part ).

To do so, TB-VIEWER provides four lists in a tree view as shown for the running example
in Fig. 5: (A) a list of expected and unexpected taint flows with data-flow paths that are
specified in the baseline definition, (B) a list of flows which are reported by an analysis tool
during evaluation, (C) a list of matched and (D) a list of unmatched flows. List C contains
all those taint flows of List A that are detected during evaluation. The contrary holds for
List D: it comprises all flows that are reported during evaluation, but do not match any flow
in the baseline. These unmatched flows in list D cannot be evaluated automatically with
REPRODROID by Part , which is why TB-VIEWER supports their manual inspection. TB-
VIEWER enables the expert to navigate through an application’s source code along visually
highlighted taint flows defined in these lists, more precisely, to navigate step-wise from the
source to the sink of each taint flow. Considering the running example and the four flows
reported by the configured tool, List A and C would contain the two expected taint flows
depicted by solid green edges in Fig. 4 and an unexpected flow ( ). List D holds
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Fig. 5 Screenshot of TB-VIEWER w.r.t. running example

one flow: s1 s7( ) — dashed blue edges. Once this latter flow is added to the baseline
definition, list D will be empty.

We have installed TB-VIEWER in the Gitpod online IDE (Gitpod 2019) for GitHub, thus,
all benchmark cases of the TAINTBENCH suite can be viewed in a web browser.3

5 Evaluation of the TAINTBENCH Framework via a Usability Test

We conducted a controlled experiment with users to evaluate the effectiveness of the two
GUI-based tools in the TAINTBENCH framework, namely JADX with TB-EXTRACTOR and
Visual Studio Code (VSC) with TB-VIEWER. Thereby we wanted to answer the following
research questions:

3Find the access at https://taintbench.github.io/taintbenchSuite

https://taintbench.github.io/taintbenchSuite
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RQ1 Do users spend less time to inspect and document taint flows using TB-
EXTRACTOR and TB-VIEWER than using plain JADX and Visual Studio Code?

RQ2 Do users perceive TB-EXTRACTOR and TB-VIEWER to be more usable than plain
JADX and Visual Studio Code?

5.1 Participants

The TAINTBENCH framework is designed for experts and it is hard to find suitable users.
We sent emails to researchers who work in area of program analysis and developers who
have experience in developing static analysis tools. We were able to recruit five experts
to participate in our study. Four of them are researchers (PhD students). One of them is a
software engineer who has experience in developing static analyzers. All participants are
very familiar with taint analysis. We denote them with User 1–5 in the following.

5.2 Study Design

Due to the low number of participants, we designed a within-subjects study for each tool,
i.e., each participant tests all the conditions. We compare the condition with tool support
to without tool support. Table 4 shows the tasks we designed for the study. While tasks
VSC (control condition) and VSC+TB-Viewer (experimental condition) are used to test
TB-VIEWER, the tasks Jadx (control condition) and Jadx+TB-Extractor (experimental
condition) are for testing TB-EXTRACTOR. The independent variable in our study is which
tool a participant uses to perform a task we designed. The dependent variables we measured
were the time a participant used to complete a task and the perceived usability with the
System Usability Scale (SUS) (Brooke 1996). We measured the time, since we wanted to
know whether our extensions TB-Viewer and TB-Extractor help participants to work more
efficiently. The SUS scores reflect how usable the participants think our tools are.

5.2.1 Tasks for testing TB-Viewer

For TB-VIEWER, the two tasks are about the inspection of taint flows. These tasks simulate
the manual inspection one has to do when evaluating a tool’s precision. The participants
were asked to judge whether taint flows reported by a taint analysis tool are false positives or
not. We prepared six taint flows reported by FLOWDROID when applying it to an app from
our benchmark suite. To avoid unfair distribution, we intentionally chose six true-positive
taint flows that we think to be similarly complex. However, the participants are not aware
of this and they have to triage the taint flows by searching through and looking at relevant
code.

In task VSC, the participants were given Visual Studio Code and decompiled source
code of the app. We asked them to inspect three taint flows that are documented in an
XML file (in AQL-Answer format4). For each flow we provide information only about the
source and the sink but not about the data-flow paths, as this is also the case when dealing
with popular Android taint analysis tools.5 For each participant, these three taint flows are

4https://github.com/FoelliX/AQL-System/wiki/Answers
5Note that FLOWDROID does provide an option to compute and output data-flow paths in its current version,
not, however, in the version used for this study. To construct the ground truth, we preferred not to use the
current version but instead the version from the REPRODROID paper due to the many false negatives that the
current FLOWDROID version creates (see Section 6).

https://github.com/FoelliX/AQL-System/wiki/Answers
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Table 4 Descriptions of tasks

Task Description

VSC (control) The participant was given plain VS Code, decompiled source code
of an app X and 3 taint flows in X. The participant was asked to
judge whether these taint flows are true positives or false positives
in VS Code.

VSC+TB-Viewer (experimental) The participant was given VS Code with TB-Viewer installed,
decompiled source code of the app X and 3 taint flows in X (differ-
ent 3 than in task VSC). The participant was asked to judge whether
these taint flows are true positives or false positives in VS Code.

Jadx (control) The participant was given the Jadx decompiler, an apk Y from
our suite, and two expected taint flows specified for the apk. The
participant was asked to document these two flows in TAF-format.

Jadx+TB-Extractor (experimental) The participant was given the Jadx decompiler extended with TB-
Extractor, the apk Y from our suite, and two expected taint flows
(different 2 than in task Jadx) specified for the apk. The participant
was asked to document these two flows in TAF-format.

randomly chosen from the six taint flows. In task VSC+TB-Viewer, the participants are
asked to inspect the remaining three taint flows. In addition, they used Visual Studio with
the extension TB-VIEWER installed. TB-VIEWER can read the taint flows from this XML
file and display them directly in Visual Studio Code as described in Section 4.3.

To minimize the ordering/learning effects, we randomize the order of these two tasks for
the participants. We make sure that the participants do not always start with task VSC nor
VSC+TB-Viewer.

5.2.2 Tasks for testing TB-Extractor

For TB-EXTRACTOR, the participants are asked to document taint flows that are determined
in an Android app. Manual inspection and discovering taint flows is a skillful and time-
consuming task. To simplify the study, we give the participants taint flows found by us. In
other words, they do not need to search taint flows by themselves, but only documenting
them. We chose four taint flows from our baseline of an benchmark app. As described in
Section 4.3, in Visual Studio Code (including TB-VIEWER) each taint flow is displayed
with detailed information about source, sink, its attributes and its intermediate flows as
well as a general description. Note that we ensure the tasks VSC and VSC+TB-Viewer
to be conducted before the tasks for TB-EXTRACTOR. Thus, the participants already know
TB-VIEWER when conducting the tasks for TB-EXTRACTOR.

In task Jadx, the participants are given JADX together with the chosen app. They are
asked to document two randomly chosen taint flows from the four prepared taint flows with
a code editor. They are given a template JSON file using TAF-format in which they only
need to fill in the information (code, line number etc.) about taint flows copied from JADX.
The TAF-format is explained to the participants before they start the task. In task Jadx+TB-
Extractor, the participants are given JADX with TB-EXTRACTOR. We play a short tutorial
video (six minutes) to them. This video explains how to document taint flows with the
extended JADX. The participants are required to document the other two taint flows.

Similar to the tasks for testing TB-VIEWER, we also randomize the order of these two
tasks for the participants.
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Fig. 6 Experimental results

5.3 Data Collection

We conducted the experiment with participants remotely via a video conference tool. Partic-
ipants were asked to share their screen with us all the time. After a brief introduction to the
study and guide for installation of our tools, we gave our tasks to the participants in written
form and asked them to solve the tasks independently without our help. In each session, the
participants were given maximally 30 minutes to solve each task. We measured the actual
time each participant spent for each task. We asked the participants to give us a clear sig-
nal when they started and finished each task. After each task, the participants filled out an
exit-survey. In this survey, they were asked to evaluate the ten statements from the System
Usability Scale (SUS) and tell about their feeling when using the system to do the task. SUS
is a questionnaire that is designed to measure the usability of the a system (Brooke 1996).
The survey and the descriptions of all tasks used can be found on our website.6

5.4 Results

Figure 6 shows the results of our experiment. The measured time is used to answer RQ1
and the SUS score for answering RQ2.

6https://taintbench.github.io/userstudy

https://taintbench.github.io/userstudy
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5.4.1 RQ1 (Time)

All participants solved the tasks more efficiently with the support of TB-VIEWER and TB-
EXTRACTOR than the ones without. Averagely, the time used for task VSC+TB-Viewer
is reduced from 14.8 to 11 minutes in comparison to task VSC. With the support of TB-
EXTRACTOR, the average time for solving the task is even halved (from 21.6 to 10.8).

5.4.2 RQ2 (Usability)

Overall, the participants responded positively to both tools. Except User 2, all users gave
both TB-VIEWER and TB-EXTRACTOR high SUS scores ranging from 80 to 100, which
means the usability of both tools is excellent or at least good from their point of view.
User 2 explained to us why he rated VSC+TB-Viewer with low scores. He felt it was very
cumbersome to do the task without the data-flow path of a taint flow displayed in the editor.
However, this information is not given in the results of FLOWDROID, thus, TB-VIEWER

cannot provide this feature. Actually, if the information about the data-flow path is given in
the analysis results, TB-VIEWER can actually display this information as done for the taint
flows in our baseline (see Fig. 5). While User 2 complained more about the analysis results
missing data-flow path, other users felt well supported by the tool while solving the task.
For example, User 1 told us about his positive feeling about TB-VIEWER:

Not having to switch back and forth constantly between VS Code and the XML file
took away a lot of possible problem vectors. Like scrolling too far, misreading a line,
misunderstanding what a particular line in the XML means. Even though the tool
didn’t provide a lot more functionality (the ‘jump to’ feature is much appreciated)
than the XML-based solution, I still felt more secure with my results in the end.

Also User 4 had similar feeling when solving task VSC+TB-Viewer and wrote:

Finding the sources and sinks is much easier than without the system. Still it is not
always easy to find the path between source and sink. Overall, the task is much easier
to solve than without the system and gives higher confidence in giving the correct
evaluation.

In the documentation tasks, without TB-EXTRACTOR, all participants felt doing the task
was very tedious and error-prone. They all made some mistakes (e.g., wrong line number,
wrong method signature) in the documentation. In contrast, the taint flows documented with
TB-EXTRACTOR were all correct. The participants felt TB-EXTRACTOR was self explana-
tory and easy to use. Especially User 5 who had to document taint flows for other work
before, gave a full SUS score (100) to TB-EXTRACTOR and spent the least time (9 minutes)
for the task. User 3’s comments also show TB-EXTRACTOR eases the task:

Task Jadx: “Absolutely cumbersome to use. A lot of busy work. No support by the
tool at all.”

Task Jadx+TB-Extractor: “Easy to use! However, the description of the taint flow is
in a separate window. But the window is well designed.”

User 3’s comment on task Jadx reflects probably one of the main reasons for why in
previous evaluations of taint analysis tools the ground truth was rarely documented. In
summary, we see that TB-EXTRACTOR allows participants to document taint flows more
efficiently and correctly.
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Table 5 Summary of the TAINTBENCH benchmark suite

No.Name E. U. No.Name E. U.

1 backflash 13 11 21 proxy samp 17 3

2 beita com beita contact 3 0 22 remote control smack 17 0

3 cajino baidu 12 3 23 repane 1 0

4 chat hook 12 1 24 roidsec 6 0

5 chulia 4 0 25 samsapo 4 1

6 death ring materialflow 1 0 26 save me 25 6

7 dsencrypt samp 1 0 27 scipiex 3 0

8 exprespam 2 0 28 slocker1 5 0

9 fakeappstore 3 0 29 sms google 4 0

10 fakebank1 5 0 30 sms send locker qqmagic 6 2

11 fakedaum 2 0 31 smssend packageInstaller 5 0

12 fakemart 2 0 32 smssilience fake vertu 2 2

13 fakeplay 2 0 33 smsstealer kysn assassincreed1 5 0

14 faketaobao 4 0 34 stels flashplayer android update 3 0

15 godwon samp 6 0 35 tetus 2 0

16 hummingbad1 2 0 36 the interview movieshow 1 0

17 jollyserv 1 0 37 threatjapan uracto 2 0

18 overlay1 4 2 38 vibleaker1 4 0

19 overlaylocker21 7 12 39 xbot1 3 0

20 phospy 2 3 � 203 46

E.: Number of expected taint flows, U.: Number of unexpected taint flows, 1: Suffix ” android samp”

6 Evaluation of and with the TAINTBENCH Suite

Our TAINTBENCH suite contains 39 benchmark apps with 249 documented benchmark
cases in total as shown in Table 5. 203 of them are expected taint flows. 149 expected taint
flows were discovered by us manually as described in Section 3.1. During the evaluation
with the benchmark apps, we also inspected taint flows which were reported by both FLOW-
DROID and AMANDROID manually. Thereby additinal 54 expected and 46 unexpected taint
flows were added to the suite. We will introduce more details about this in Section 6.2. Each
benchmark app comes with the following assets in its own GitHub repository:

– the APK file,
– the decompiled source code project,
– the baseline definition (TAF-file),
– a profile file about the benchmark app containing statically extracted information including

target platform version, permissions, sensitive APIs, behavior description, etc.

Furthermore, we classified the taint flows based on their behaviors according to their source
and sink categories as shown in the Table 6.7 We reused the categories defined in the SUSI

paper (Rasthofer et al. 2014) and MUDFLOW paper (Avdiienko et al. 2015). We also added

7More detailed information of each flow can be found on https://taintbench.github.io/img/data/Sources
Sinks Category Stats.pdf

https://taintbench.github.io/img/data/Sources_{S}inks_{C}ategory_{S}tats.pdf
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Table 6 Overview of expected and unexpected taint flows according to source and sink categories

Source Category Sink Category E. U.

ACCOUNT INFORMATION NETWORK 11

ACCOUNT INFORMATION INTENT 1

ACCOUNT INFORMATION FILE 2

ACCOUNT INFORMATION LOG 1

ACCOUNT INFORMATION DATABASE 2

CONTACT INFORMATION NETWORK 11 11

CONTACT INFORMATION INTENT 2

CONTACT INFORMATION SMS MMS 1

CRITICAL FUNCTION * CRITICAL FUNCTION * 2

DATABASE SMS MMS 3

DATABASE FILE 24

DATABASE NETWORK 19

DATABASE DATABASE 2 3

DATABASE LOG 3

DATABASE CRITICAL FUNCTION 1

FILE NETWORK 13 2

FILE FILE 1 1

FILE CRITICAL FUNCTION 5

FILE INTENT 3

FILE LOG 1

INTERNET SOURCE * SMS MMS 2

INTERNET SOURCE OTHER STORAGE * 1

LOCATION INFORMATION FILE 4

LOCATION INFORMATION NETWORK 4 2

NETWORK INFORMATION EMAIL 1

NETWORK INFORMATION LOG 1 1

NETWORK INFORMATION FILE 1

NETWORK INFORMATION NETWORK 9

NETWORK INFORMATION SMS MMS 1

OTHER DATA * NETWORK 1

OTHER DATA LOG 7 1

OTHER DATA CRITICAL FUNCTION 6

OTHER DATA INTENT 2

SMS MMS SMS MMS 5

SMS MMS NETWORK 11

SMS MMS INTENT 6 2

SMS MMS LOG 1

SMS MMS FILE 1

SMS MMS CRITICAL FUNCTION 1

SYSTEM SETTINGS NETWORK 3

SYSTEM SETTINGS CRITICAL FUNCTION 1 1
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Table 6 (continued)

Source Category Sink Category E. U.

UNIQUE IDENTIFIER FILE 1

UNIQUE IDENTIFIER NETWORK 25 6

UNIQUE IDENTIFIER LOG 3

UNIQUE IDENTIFIER EMAIL 1

UNIQUE IDENTIFIER CRITICAL FUNCTION 3 6

UNIQUE IDENTIFIER SMS MMS 2

New categories we added are marked with * when appearing for the first time in the table

E.: Number of expected taint flows, U.: Number of unexpected taint flows

new categories such as INTERNET SOURCE and CRITICAL FUNCTION, since except
data leaks our suite includes other types of malicious taint flows such as Path Traversal
(CWE-22), Execution with Unnecessary Privileges (CWE-250) and Use of Potentially Dan-
gerous Function (CWE-676).8 The categorization of the sources and sinks was first done
by the lead author. To enhance the reliability, the third author checked and discussed the
assigned categories with the lead author whenever there were disagreements. Consensus
was achieved for the final categorization.

We present our evaluation of the TAINTBENCH suite (RQ3) and with it (RQ4 and RQ5)
by answering the following three research questions:

RQ3 How does TAINTBENCH compare to DROIDBENCH and Contagio?
RQ4 How effective are taint analysis tools on TAINTBENCH compared to DROIDBENCH?
RQ5 What insights can we gain by evaluating analysis tools on TAINTBENCH?

6.1 RQ3: How does TAINTBENCH compare to DROIDBENCH and Contagio?

With this question we wanted to evaluate the TAINTBENCH benchmark suite under two
aspects regarding representativeness: First, we evaluated the taint flows in TAINTBENCH

and compared them to those in DROIDBENCH in terms of language and framework features
involved in the flows. Second, using a set of metrics we compared the benchmark apps in
TAINTBENCH to the apps in DROIDBENCH and the whole Contagio dataset.

6.1.1 Comparison of Taint Flows

As introduced in the representativeness criterion in Section 3, one of our goals for
TAINTBENCH is to include taint flows which address different language and framework
features (attributes). The numbers of expected taint flows involving different language and
framework features are listed in Table 7.

The attributes of each taint flow are assigned by us and TB-PROFILER as mentioned in
Section 4.1. Through these attributes the taint flows can be categorized and also mapped to
the majority (11/18) of the DROIDBENCH’s categories as shown in Table 7. Categories of
DROIDBENCH such as “Android Specific” (DroidBench 3-0 2016) are not uniquely relatable.

8CWEs can be found on https://cwe.mitre.org

https://cwe.mitre.org
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Table 7 Attributes associated to expected taint flows in TAINTBENCH

Attribute Description DB Category # Flows

nonStaticField sensitive values stored in non-static fields Field and Object Sensitivity61

staticField sensitive values stored in static fields Field and Object Sensitivity31

reflection refection APIs called Reflection 5

array sensitive values stored in arrays Arrays and Lists 39

collections sensitive values stored in Java collection objectsArrays and Lists 67

threading threading mechanisms involved Threading 80

appendToString sensitive values appended to Strings General Java 99

callbacks callbacks for UI interactions Callbacks 23

lifecycle lifecycle methods involved Lifecycle 104

payload malicious payload is downloaded at runtime Dynamic Loading 5

ICC inter-component communication involved ICC 49

IAC inter-app communication involved IAC 2

implicitFlows∗ implicit flows Implicit Flows 6

pathConstraints+path conditions must be satisfied – 74

∗Cannot automatically be assigned by TB-EXTRACTOR

+No mapping category in DROIDBENCH (DB)

Moreover, most expected taint flows in TAINTBENCH address multiple (up to 8) features
at the same time as shown in the histogram in Fig. 7. This is not modeled in DROIDBENCH.
The majority (175/203) of expected taint flows in TAINTBENCH address multiple features
at the same time rather than a single one as designed in DROIDBENCH.

6.1.2 Comparison of Benchmark Apps

We compare the benchmark apps in TAINTBENCH to apps in DROIDBENCH as well as to
the entire Contagio dataset (from which TAINTBENCH apps are sampled) in three aspects:

Fig. 7 Distribution of attributes
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Table 8 Usage of sources and
sinks #Sources #Usage Sources #Sink #Usage Sinks

DROIDBENCH

min 0 0 1 1

max 8 27 13 22

geomean 2.2 2.4 2.8 3.3

TAINTBENCH

min 4 9 6 13

max 514 4284 369 3486

geomean 49 149 38.4 133.2

CONTAGIO

min 2 2 0 0

max 699 8044 495 7870

geomean 55.1 201.6 43.7 182.0

(i) the usage of sources and sinks, (ii) call-graph and (iii) code complexity. For each aspect,
we used a set of metrics for a quantitative evaluation.

Usage of Sources and Sinks The usage of sources and sinks is a predictor of how many
data-flow propagations starting from sources/sinks (depending on forward/backward anal-
ysis) are required to capture all possible taint flows. Thus, we quantify the usage of sources
and sinks with the following metrics:

– #Sources/Sinks: number of different source/sink APIs appeared in a benchmark app.
– #Usage Sources/Sinks: number of different code locations where source/sink APIs are

used in a benchmark app.

To measure these metrics, we first compiled a list of potential source and sink APIs. This list
consists of three parts: (i) sources and sinks from SUSI (Rasthofer et al. 2014) GitHub repos-
itory; (ii) sources and sinks detected by the machine-learning approach SWAN (Piskachev
et al. 2019) when applying it to Android platform jars (API level 3 to 29); (iii) sources
and sinks documented in both TAINTBENCH and DROIDBENCH. Based on this list, we
computed the values of above metrics for each app. The summarized results are shown in
Table 8. We report the minimum, the maximum, and the geometric mean9 of each suite and
the Contagio dataset. Clearly, TAINTBENCH employs more usages of sources and sinks than
DROIDBENCH, since all values of TAINTBENCH are at least six times higher than those of
DROIDBENCH. In addition, the geometric means of TAINTBENCH are in the same order
of magnitude as for the entire Contagio dataset. Especially regarding the number of differ-
ent sources and sink APIs appeared in an app, the difference between TAINTBENCH and
Contagio is less than 6. In conclusion, this indicates that a tool must be scalable to han-
dle more data-flow propagations on TAINTBENCH to achieve equally good results as on
DROIDBENCH.

Call-graph Complexity One of the most important tasks for inter-procedural analysis is
to construct the call graph. We use AndroGuard (Androguard 2011) to generate context-
insensitive call graphs. To compare fairly, we excluded call graph edges from Android

9When there are 0s in the dataset, we computed the geomean of all positive numbers.
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platform APIs to the actual application and edges between Android platform APIs them-
selves. Based on the resulting sub call graph, we compute:

– Call Graph Size (CG Size): Number of edges in the call graph.
– Maximal Call Chain Length (Max. CCL): Number of edges in the longest acyclic

call chain (Rountev et al. 2004; Eichberg et al. 2015).
– Longest Cycle Size (LC Size): Number of edges in the longest cycle in the call graph.

The call-graph comparison is shown in Table 9. The geometric mean indicates, that call
graphs in TAINTBENCH are much larger and more complex than in DROIDBENCH. In com-
parison to the entire Contagio dataset, the call graphs in TAINTBENCH are smaller. However,
as shown in Table 10, the minimum, maximum and geometric mean of analysis time used
by FLOWDROID for an app in TAINTBENCH is almost the same as the time required with
respect to the entire Contagio set.

While the call graphs in DROIDBENCH have no cycles (recursions), since the values of
LC size are all zeros, the call graphs in TAINTBENCH include even large cycles (LC size up
to 31). Recursion is considered as an important problem that needs to be solved in a context-
sensitive analysis. The absence of it in DROIDBENCH makes it impossible to evaluate the
implemented solution for handling recursions. Max. CCL can be seen as an indicator for
the choice of context string length (call string length) of a context-sensitive analysis. If the
context string length is chosen too small, the analysis can lose precision and soundness.
When the length is too big, the analysis may not scale. To build a scalable context-sensitive
analysis that produces proper results, the context string length for a best trade-off between
precision and scalability may be easy to find for DROIDBENCH with Max. CCL varying
from 1 to 4, however, it is much more difficult to find the best fit in TAINTBENCH, since
the maximum is up to 16.

Code Complexity We compare TAINTBENCH and DROIDBENCH by computing the fol-
lowing Chidamber and Kemerer (CK) metrics (Chidamber and Kemerer 1994): Coupling
between object classes (CBO), Depth of Inheritance Tree (DIT), Response for a Class
(RFC) and Weighted Method per Class (WMC). These were often used to evaluate soft-
ware complexity (Prokopec et al. 2019; Blackburn et al. 2006). Beside the CK metrics, we

Table 9 Call-graph complexity
CG Max. LC

Size CCL Size

DROIDBENCH

min 11 1 0

max 144 4 0

geomean 27.28 1.4 0

TAINTBENCH

min 112 1 0

max 83981 16 31

geomean 1895.68 4.79 3

CONTAGIO

min 43 0 0

max 139298 44 31

geomean 2599.6 6.3 2.5
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Table 10 Analysis Time(s) measured for FLOWDROID and AMANDROID

FLOWDROID AMANDROID

TAINTBENCH CONTAGIO TAINTBENCH CONTAGIO

min 2.5 2.3 16.2 0.6

max 361.6 361.6 762 6949.3

geomean 8.5 8.2 71.8 113.8

also compare number of fields and static fields in the benchmark apps. We used the ck
tool (Maurı́cio Aniche 2015) on the source code project of each benchmark app to calcu-
late the metrics. We also computed other common metrics such as number of methods and
number of classes. The in-depth results are listed on our website.10 In summary, all mea-
surements show that TAINTBENCH benchmark apps are more complex than DROIDBENCH

benchmark apps. While this is not surprising, we find it important to compute these numbers
for future reference.

6.2 RQ4: How effective are taint analysis tools on TAINTBENCH
compared to DROIDBENCH?

Tool and Benchmark Selection We evaluate two taint analysis tools, namely AMAN-
DROID and FLOWDROID. These two tools were chosen because they lately scored best in
two independent studies (Pauck et al. 2018; Qiu et al. 2018) when evaluated on DROID-
BENCH and they are based on distinct analysis frameworks. Two different versions of both
tools are employed: (1) the respective up-to-date version, and (2) the version used by Pauck
et al. (Pauck et al. 2018) in order to compare our reproduced values to theirs. In the follow-
ing, we mark the current tool versions by a *-symbol as shown in Table 11. TAINTBENCH

and DROIDBENCH (3.0) are selected as benchmark suites for all the experiments.
Note, because both tools cannot analyze inter-app communication scenarios, the related

benchmark cases of DROIDBENCH are not considered in our setup.

Evaluation Objectives In the context of TAINTBENCH, we focus on evaluating analysis
accuracy in terms of precision, recall and F-measure but less on analysis time.

Execution Environment The TAINTBENCH framework was setup on an Debian (9 –
Stretch) virtual machine with two cores of an Intel©Xeon®CPU (E5-2695 v3@2.30GHz),
128 GB memory and Java 8 (Oracle 1.8.0 231) installed. 96 GB memory were reserved for
the analysis tools.

Experiments Table 12 lists all conducted experiments. The first column ID refers to the
benchmark suite and experiment number (e.g., TB2 refers to Experiment 2 w.r.t. TAINT-
BENCH). This ID is used throughout the whole section. The second column provides a brief
description of each experiment. The last column indicates the comparability of experimen-
tal results. Accordingly, the results of all experiments except TB5 and TB6 are comparable
with one another.

10https://taintbench.github.io/evaluation

https://taintbench.github.io/evaluation
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Table 11 Tools evaluated
Tool Version

AMANDROID (Amandroid 2017) November 2017 (3.1.2)

AMANDROID* (Amandroid* 2018) December 2018 (3.2.0)

FLOWDROID (FlowDroid 2017) April 2017 (Nightly)

FLOWDROID* (FlowDroid* 2019) January 2019 (2.7.1)
*Up-to-date tool versions

We first conducted all experiments with the 149 expected taint flows identified by us
manually in the benchmark construction phase as described in Section 3.1. Afterwards, we
manually checked and rated newly discovered taint flows reported by all tools in TB3 and
added them as expected and unexpected taint flows into the baseline and re-run all experi-
ments. In the following, we report the results using the final baseline of the TAINTBENCH

suite presented in Table 5. The accuracy metrics are computed with the following equations:

Precision = T P

T P + FP
, Recall = T P

P
, F−measure = 2Precision · Recall

P recision + Recall

where T P is the number of true positives, FP the number of false positives and P the
number of expected cases in the benchmark suite.

6.2.1 Experiment 1 (DB1 & TB1):

The tools are executed in their default configuration. Fig. 8 presents precision, recall and
F-measure for DROIDBENCH and TAINTBENCH in column DB1 and TB1, respectively.

The results obtained for FLOWDROID and AMANDROID in configuration DB1 are iden-
tical to those in the REPRODROID study (Pauck et al. 2018), replicating the results
obtained there.

The metrics (shown in the bar charts) are calculated based on the table in Fig. 8, which
also shows the expected cases and unexpected cases defined for each benchmark suite. The
evaluation is based on these cases only. Although the baseline definition of TAINTBENCH

contains 203 expected and 46 unexpected taint flows, REPRODROID can only reflect 186
expected cases and 35 unexpected cases, since it does not distinguish different flows, when

Table 12 Descriptions of experiments

DB: DROIDBENCH, TB: TAINTBENCH



   16 Page 30 of 41 Empir Software Eng           (2022) 27:16 

163 186

41 35

TP FP TP FP TP FP TP FP TP FP TP FP TP FP TP FP

Amandroid 80 12 95 15 2 2 31 19 31 19 31 18 29 4 8 42

Amandroid* 41 10 46 10 5 1 6 7 6 7 6 6 7 1 1 12

FlowDroid 89 12 96 12 26 0 84 10 102 11 101 9 59 8 51 62

FlowDroid* 87 12 95 12 16 1 41 14 43 14 42 13 28 5 23 34

TP: True Positive, FP: False Positive

TB3 TB4 TB5 TB6DB1 DB2 TB1 TB2

TaintBench

Expected Cases:
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Fig. 8 Experiments 1-6 result-overview

the sources and sinks look exactly the same in Jimple. Jimple statements are not differen-
tiable (by their textual representation) if they are (1) occuring in the same method of the
same class, (2) use variables with the exact same names as well as constants with the same
contents, (3) and refer to the same source code line number. As the figure shows, the preci-
sion of AMANDROID is dramatically decreased to 50% when evaluated on TAINTBENCH. It
only found 4 flows in our baseline and 2 of them are false positives. The precision of AMAN-
DROID* stays almost unchanged, however, this is calculated only from 6 flows. In contrast,
the precisions of both FLOWDROID and FLOWDROID* are high (over 90%). However, on
TAINTBENCH all tools show a significantly lower recall and F-measure than for DROID-
BENCH. In the default configuration most taint flows in TAINTBENCH remain undetected.
With 14% (26/186), FLOWDROID’s recall is still the highest.

6.2.2 Experiment 2 (DB2 & TB2)

To understand if the low recall values for TAINTBENCH in Experiment 1 are mainly caused
by the tools’ source and sink configurations, we compared the different source and sink
sets involved. The results of this comparison are summarized in Table 13. Tool names refer
to source and sink sets defined in a tool’s default configuration. Benchmark suite names
refer to the sets occurring in their benchmark cases. While the upper part of the table row-
wise shows the intersections of these sets in terms of numbers of sources and sinks, the
lower part enumerates sources and sinks contained in one set A but not in another set B.
The two rows labeled with TAINTBENCH show that (i) the sets of sources and sinks used
by tools and DROIDBENCH have only minor intersections with the set of TAINTBENCH; (ii)
TAINTBENCH holds at least 32 different sources and 36 sinks (see column FLOWDROID).

In consequence, we generated a list of sources and sinks for each benchmark suite based
on the comprised taint flows, using TB-LOADER (see Section 4.2). These lists, generated



Empir Software Eng           (2022) 27:16 Page 31 of 41   16 

Table 13 Intersection (∪) and difference (\) of source and sink sets used by analysis tools (AMANDROID,
FLOWDROID) and involved in benchmark cases of DROIDBENCH and TAINTBENCH

AMANDROID FLOWDROID DROIDBENCH TAINTBENCH

Sources Sinks Sources Sinks Sources Sinks Sources Sinks

Intersection (|A ∩ B|)
AMANDROID 30 42 24 38 4 8 6 4

FLOWDROID 24 38 89 133 7 9 12 8

DROIDBENCH 4 8 7 9 15 23 7 4

TAINTBENCH 6 4 12 8 7 4 44 44

Difference (|A \ B|)
AMANDROID 0 0 6 4 26 34 24 38

FLOWDROID 65 95 0 0 82 124 77 125

DROIDBENCH 11 15 8 14 0 0 8 19

TAINTBENCH 38 40 32 36 37 40 0 0

on the suite-level, are configured to be used by the two tools. As shown in Fig. 8, when
re-configuring sources and sinks this way, the results for DROIDBENCH are affected only
slightly (DB1 vs. DB2) but the recall and F-measure values for TAINTBENCH are more than
doubled (TB1 vs. TB2). Nonetheless, even under this configuration the tools are still less
effective on TAINTBENCH than on DROIDBENCH. Closest is FLOWDROID, which achieves
a recall of 45% (84/186) for TAINTBENCH while reaching 59% (96/163) for DROIDBENCH.
While FLOWDROID reports 84 true positives, AMANDROID and AMANDROID* detect only
31 and 6 true positives in TAINTBENCH, respectively.

For FLOWDROID and FLOWDROID*, the difference is small (1 or 2 flows) regarding
DROIDBENCH. Considering TAINTBENCH, FLOWDROID* finds only half (41/84) of the
true positives that can be found by its old version even under the same source and sink
configuration. In addition, FLOWDROID* is less precise, since it reports more false positives
than FLOWDROID (14 vs. 10).

6.3 RQ5: What insights can we gain by evaluating analysis tools on TAINTBENCH?

6.3.1 Experiment 3 & 4 (TB3 & TB4):

Since the results of Experiment 2 show that source and sink configurations affect the recall
values heavily, we conduct two more experiments in which sources and sinks are configured
regarding not just each suite but even each benchmark app (Experiment 3) and each bench-
mark case (Experiment 4). To this end, we are now using smaller but more precise sets. We
expected that the results would be the same compared to Experiment 2, and this also holds
for AMANDROID(*).



   16 Page 32 of 41 Empir Software Eng           (2022) 27:16 

Furthermore, we made the following observation: One true-positive flow (A) is detected
by FLOWDROID* in Experiment 3, but not in Experiment 4. Instead, in Experiment 4 a
different true-positive flow (B) is detected.11

Considering flow (A), we found that FLOWDROID* sometimes does not find a taint flow
(source → Child.sink) when Parent .sink was not declared in the list of sources and
sinks, where Child is a subclass of the class Parent . By intuition the reason seems to be
that the flow is only detected when Parent .sink is configured as in Experiment 3. Thus,
when Parent .sink is not configured in the list, the flow to Child .sink remains undetected
as in Experiment 4.

Moreover, in case of (B) there are two flows (source1 → sink1) and
(source2 → sink1) with the same sink but FLOWDROID* reports only one of them in
Experiment 3. However, the internal analysis of FLOWDROID* is actually capable of find-
ing both flows in Experiment 4, namely, the new true positive (B) is detected. After a closer
investigation, we found out that when more sources and sinks than the source and sink of
the expected taint flow are configured for FLOWDROID* (Experiment 3) one sink overshad-
ows the other. The order of the relevant sources and sinks appear on two parallel paths in
the inter-procedural control-flow graph (ICFG). These path can be illustrated as follows:

path1: source1 → sink2 → sink1
path2: source2 → sink1

In Experiment 3, two flows are found: (source1 → sink2), (source2 → sink1).
However, the expected one (source1 → sink1) remains undetected which is not the case
in Experiment 4. Because sink1 appears later than sink2 in path1, we think that FLOW-
DROID* stops the propagation of taints from source1 when the taints reach sink2. We
reported our findings to the tool maintainers.

6.3.2 Experiment 5 (TB5)

With this experiment we seek to test if the call-graph complexity of real-world apps in
TAINTBENCH is a cause of some unsatisfactory results. To do so, irrelevant call-graph edges
are removed by MINAPK-GENERATOR (see Section 4.2.1). This leads to fewer timeouts
in all cases in Experiment 5 in comparison to Experiment 2 (cf. Table 14; −5 for AMAN-
DROID* and −1 for all other tools). Overall, 27 new true positives are uniquely detected
in Experiment 5. 12 of these by AMANDROID and 8 by FLOWDROID. The newer tools are
less affected with 3 and 4 newly found true positives in case of AMANDROID* and FLOW-
DROID*. The fact that Experiment 5 mostly simplifies the call graph indicates that the tools
likely miss these flows in the original benchmark apps due to incomplete call graphs.

As a side-effect of the changes made by MINAPK-GENERATOR, the tools were unable
to detect some previously detected true positives. AMANDROID also reported one new false

11A: Flow with ID=1 in overlay android samp. B: Flow with ID=7 in cajino baidu.
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Table 14 Timeouts, unsuccessful exits and analysis time in experiment 2

DROIDBENCH (DB2) TAINTBENCH (TB2)

AD AD* FD FD* AD AD* FD FD*

Timeouts 0 0 0 0 1 11 1 1

Unsuccessful Exits 0 0 0 1 0 0 0 9

Analysis Time (min) 58 61 20 13 98 41 17 5

↪→ incl. Timeouts 58 61 20 13 118 261 37 27

AD: AMANDROID, FD: FLOWDROID

positives. For example, when MINAPK-GENERATOR uses an ActionBarActivity
class for entry-point creation, this class does not appear in the dummyMain method
generated by FLOWDROID(*). Hence, the results of Experiment 5 look overall worse in
Fig. 8.

6.3.3 Experiment 6 (TB6)

With this experiment we check if the tools handle data sanitization properly. We use the
DELTAAPK-GENERATOR to kill each expected taint flow in the baseline definition (see
Section 4.2.1). If a previously detected true positive in Experiment 3 is still detected in the
respective delta APK (Experiment 6), this flow is a known false positive (TB3 vs. TB6).
If the tools were to fully handle the killing of flows, also known as “strong updates”, the
results of both experiments should be identical. This is not the case: both precision and recall
decreased (see TB6 in Fig. 8). To this effect, and because of the adapted interpretation, the
results should not be compared to the experiments above.

6.3.4 Further Important Insights

Timeouts and Unsuccessful Exits The maximal execution time per app is set to 20 min-
utes during all experiments. On DROIDBENCH (DB1, DB2), neither AMANDROID(*) nor
FLOWDROID(*) reach this timeout. On TAINTBENCH, though, AMANDROID* exceeds the
timeout on 11 apps. All other tools rarely do so (see Table 14). However, for one DROID-
BENCH and seven TAINTBENCH apps FLOWDROID* claimed to find no analysis entry
point, even though FLOWDROID was able to find those — a clear regression. In case of two
other TAINTBENCH apps FLOWDROID* failed its analysis, since it was unable to calculate
callbacks. Consequently, on TAINTBENCH FLOWDROID* finds fewer than half of the true
positives that can be found by FLOWDROID.
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Analysis Time In all scenarios, both versions of FLOWDROID are faster than any version
of AMANDROID. With respect to DROIDBENCH, FLOWDROID* is 35%12 faster than its
predecessor (see Table 14). Considering TAINTBENCH, FLOWDROID*’s speed-up is even
larger (71%13). AMANDROID* is not faster than AMANDROID on DROIDBENCH but 58%14

faster in case of TAINTBENCH. However, the amount of timeouts thrown by AMANDROID*
and unsuccessful exits of FLOWDROID* impede a fair comparison. While new tool versions
appear to be faster, the number of timeouts or unsuccessful exits has risen.

7 Continuous Benchmarking

From our experiments, we found out that newer tool versions perform worse than their pre-
decessors when evaluating on TAINTBENCH. To help the tool authors avoid such regressions
in the future, we aim to provide a way in which Android taint analysis tools can be evalu-
ated on TAINTBENCH on a continuous basis. We set up GitHub Actions (GitHub 2020) for
both versions of AMANDROID and FLOWDROID.15 Using the TAINTBENCH framework,
we were able to configure the evaluation of each tool as an automated workflow of Github
Actions. The source and sink configuration of each tool is at app-level as in Experiment
3 (see Section 6.3.1). The outcome of each workflow includes a benchmark file computed
by REPRODROID containing performance metrics (precision, recall, F-measure, analysis
time) and raw analysis results of the tool. Each workflow will be triggered on pushes or
pull requests to the TAINTBENCH GitHub repository. This way we can easily obtain perfor-
mance improvements and regressions of newer tool releases evaluated on the newest version
of the TAINTBENCH suite in the future. We also provide detailed instructions allowing
other Android taint analysis tools to be easily adapted for such continuous benchmarking
on TAINTBENCH.

8 Threats to Validity

The external validity of the TAINTBENCH suite itself is threatened by the fact that we were
forced to exclude obfuscated applications. Also, while all taint specifications have been
checked multiple times by at least three authors, there is the potential threat that the base-
line definition nonetheless misses some actual taint flows (expected cases). Regarding the
usability test, one external threat is embodied by the generalization of the presented results.
Given that the participants were invited by us and voluntary, it is possible that they are not
representative of the general population of experts in taint analysis.

The internal validity of the usability test is threatened by the fact that participants were
aware of the measurement of time used for each task. This may have influenced their behav-
ior during the study. The internal validity of the TAINTBENCH suite is impeded by the time
passed since the malware apps were created. These malware apps do not target the latest
Android API level. Nevertheless, we were able to install and execute almost all of the bench-
mark apps16 on a Nexus 4 Android emulator with API level 25. Many apps composed in the

1235%=(20-13)/20
1371%=(17-5)/17
1458%=(98-41)/98
15More information can be found on https://taintbench.github.io/ci
16Except the app cajino baidu

https://taintbench.github.io/ci
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TAINTBENCH suite are not functional anymore, since they have been communicating with
public servers which are not accessible anymore. Most-likely the servers were actively taken
down when the apps were identified as malware by researchers and field experts. Because
of this, only parts of TAINTBENCH can be used to benchmark dynamic taint analysis tools.
This in turn embodies another reason, why dynamic tools could not be used to verify our
baseline definition.

Note, this paper focuses on the construction and evaluation of our novel benchmark suite;
an in-depth investigation of reasons for our findings in the tools’ implementations exceeds
the scope of this paper. During our experiments we noticed that FLOWDROID’s results
are non-deterministic (two runs of FLOWDROID(*) with the same inputs produce different
results). This is a known issue first mentioned by Benz et al. (2020), which has not yet
been fixed. This issue is hardly notable in DROIDBENCH experiments but well recognizable
when analyzing larger apps as in TAINTBENCH.

Regarding our experiments using TAINTBENCH, we are aware of the internal threat
caused by the measurement used in REPRODROID. If there are two source or sink statements
at different positions in the source code (e.g., s=source() at line 5 and s=source() at
line 10 in a method foo()), which look identical in Jimple, REPRODROID cannot distin-
guish them due to missing exact code locations in the results produced by the taint analysis
tools. Thus, if one of them is detected, REPRODROID regards both flows as detected. In
consequence, the actual recall on TAINTBENCH might be lower than observed. This issue
could be mitigated if the analysis tools were to include unique statement identifiers e.g., line
numbers in their results. We added this functionality to FLOWDROID for future releases.
The related pull request is already merged.17

9 FutureWork and Conclusion

In future, we will update and maintain the TAINTBENCH suite. We also want to include
more modern apps targeting updated API levels into the TAINTBENCH suite to increase its
complexity and hope that the community will join us. In addition, we plan to reconstruct
the malicious taint flows in new apps targeting higher API levels. These new artificial apps
can be used for benchmarking dynamic approaches. To simplify the use of TAINTBENCH

in continuous benchmarking and in regressions tests, we will improve the TAINTBENCH

framework such that any benchmark constructed with it can be exported as a set of JUnit
test cases.

Regarding future work on improving Android taint analysis tools, we case studied some
false negatives that were not detected by FLOWDROID during our experiments. Our first
result reveals that many call sites of sources and sinks in those false negatives were not in
the call graphs used by FLOWDROID. In future, we plan to work on designing new call graph
construction algorithms that can improve the recall. We are also considering organizing
competitions for Android taint analysis tools with our benchmark suite to encourage further
improvement and development in this area.

To conclude, our novel real-world malware benchmark suite TAINTBENCH, constructed
with respect to the criteria determined for taint analysis benchmark suites, reveals insights
that could not be gained with the micro benchmark DROIDBENCH. The associated exper-
iments revealed surprising facts about taint analysis tools: (i) Android taint analysis tools

17https://github.com/secure-software-engineering/FlowDroid/pull/222
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have difficulties in detecting real-world taint flows in malware apps, yielding very low
recall. (ii) For AMANDROID the situation is particularly bad: the latest version detects almost
no taint flow. (iii) While FLOWDROID shows better recall, a configuration using superfluous
sources and sinks that are actually irrelevant for specific taint flows has a shadow effect on
its taint computation, causing it to miss some actual flows. (iv) For both AMANDROID and
FLOWDROID, new tool releases are less accurate than their predecessors: as we have shown
in Experiments 2, 3 and 4, new releases have lower precision, recall and F-measure. Hence,
we recommend to involve TAINTBENCH in future evaluations of Android taint analyses and
their regression tests.
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