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Johannes Lerch∗, Johannes Späth†, Eric Bodden∗† and Mira Mezini∗‡

∗Technische Universität Darmstadt, †Fraunhofer SIT, ‡Lancaster University
∗†Darmstadt, Germany, ‡Lancaster, United Kingdom

∗{lastname}@cs.tu-darmstadt.de, †{firstname.lastname}@sit.fraunhofer.de

Abstract—Precise data-flow analyses frequently model field
accesses through access paths with varying length. While us-
ing longer access paths increases precision, their size must be
bounded to assure termination, and should anyway be small to
enable a scalable analysis.

We present Access-Path Abstraction, which for the first
time combines efficiency with maximal precision. At control-flow
merge points Access-Path Abstraction represents all those access
paths that are rooted at the same base variable through this base
variable only. The full access paths are reconstructed on demand
where required. This makes it unnecessary to bound access paths
to a fixed maximal length.

Experiments with Stanford SecuriBench and the Java Class
Library compare our open-source implementation against a
field-based approach and against a field-sensitive approach that
uses bounded access paths. The results show that the proposed
approach scales as well as a field-based approach, whereas the
approach using bounded access paths runs out of memory.

I. INTRODUCTION

Static program analyses and especially data-flow analyses
usually have to consider values being assigned to and read
from local variables and fields. While local variables are often
simple to track, the systematic handling of fields can be complex.
Techniques for modeling fields can be distinguished into field-
based and field-sensitive approaches. Field-based techniques
model a field access a.f simply by the field’s name f, plus
potentially its declaring type—a coarse grain approach that
ignores the base object a’s identity. Field-sensitive techniques,
on the other hand, include the base variable a in the static
abstraction, potentially increasing analysis precision as fields
belonging to different base objects can be distinguished.

While many existing analyses restrict their field-sensitivity
to a single level, more precise analyses represent static infor-
mation through entire access paths – a base variable followed
by a finite sequence of field accesses [1]–[3]. For instance,
assume a taint analysis determining whether (and where) the
example shown in Figure 1a might print the password. Here the
analysis must distinguish access paths of length k ≥ 2 (k is the
maximal length of the finite sequence) to determine that a leak
can occur only at the first print statement. While the use of
access paths can increase precision, one must generally bound
k to a finite maximum, as otherwise loops or recursive data
structures such as linked lists might cause abstractions such as
l.next.prev.next... to grow indefinitely, which would
cause the analysis not to terminate.

A common approach to deal with infinite chains of field
accesses is k-limiting [4], which includes in the abstraction

only the first k nested field accesses, abstracting from all
others. If fields are read, the analyses frequently assume that
any field accessible beyond the first k fields may relate to
the tracked information. Hence, k-limiting introduces an over-
approximation that becomes less precise for smaller values of k.
In contrast, a high k value means the analysis will distinguish
more states. In this work, we present experiments, which show
that analyses can run out of gigabytes of main memory when
analyzing real-world programs even with small k values.

To address the problems raised above, we present Access-
Path Abstraction, a novel and generic approach for handling
field-sensitive analysis abstractions without the need for k-
limiting. To keep access paths finite and small, at control-
flow merge points Access-Path Abstraction represents all those
access paths that are rooted at the same base variable through
this base variable only. In a summary-based inter-procedural
analysis this leads to fewer and yet highly reusable summaries,
which can speed up the analysis significantly: A procedure
summary for a base object a can represent information for all
access paths rooted in a. To maintain the precision of field-
sensitive analyses, Access-Path Abstraction reconstructs the
full access paths on demand where required.

We present Access-Path Abstraction as a novel extension to
the IFDS framework for inter-procedural finite distributive sub-
set problems [5] and hereafter use IFDS-APA as an acronym
for this extension. We provide an open-source implementation
on top of the IFDS/IDE solver Heros [6].1

In experiments using Stanford SecuriBench and the Java
Class Library as benchmarks, we compare IFDS-APA against
a field-based approach and against a field-sensitive approach
using k-limiting, both in terms of scalability and analysis time.
The results show that IFDS-APA scales as well as a field-based
approach, whereas a field-sensitive approach using k-limiting
runs out of memory.

To recap, this work presents the following original contri-
butions:

● a novel extension to the IFDS framework enabling
scalable and precise field-sensitive analysis without the
need for k-limiting,

● a full open-source implementation, and

● extensive experiments comparing the performance of
the proposed approach to a field-based and a field-
sensitive approach with k-limiting.

1Heros is hosted on GitHub: https://github.com/sable/heros Our implemen-
tation is available there.



a.g = password();
b.f = a;
print(b.f.g);
print(b.f.h);

(a)

x = source();
A a1 = new A();
A a2 = new A();
a1.f = x;
y = a2.f;
sink(y);

(b)

Fig. 1: Precision of Field-Based and Field-Sensitive Models

The remainder of this paper is structured as follows. In
Section II we give a short summary of the IFDS framework,
while Section III explains common ways to model field accesses.
In Section IV we describe our changes and extensions to the
IFDS framework. Section V covers the evaluation, while we
discuss related work in Section VI and conclude in Section VII.

II. BACKGROUND ON IFDS

Due to its efficiency, many data-flow analyses [2], [7], [8]
are implemented as instantiations of the IFDS framework [5].
We next briefly summarize important background information
on IFDS, necessary to understand our extension IFDS-APA.
The IFDS framework is capable of solving inter-procedural
finite distributive subset problems. At every call, the framework
computes callee summaries on the fly. These summaries are
highly reusable as (1) they are independent of the calling
context and (2) due to the distributivity of the analysis problem
can be reused on an element-by-element basis. Internally, IFDS
transforms the original analysis problem into a reachability
problem over the so-called exploded super graph.

A definition of an IFDS problem consists of a data-flow
domain D and a set of flow functions. The data-flow domain is a
set of data-flow facts. A solution to the IFDS problem provides
information whether a given fact holds at a certain statement.
One special fact is the 0-fact, a tautological fact that always
holds. Other facts can be generated unconditionally by deriving
them from this 0-fact. To guarantee termination, IFDS requires
the data-flow domain to be a finite set. To express an IFDS
problem, one defines the flow functions which describe how
data-flow facts are transferred from one statement to its (intra
and inter-procedural) successors. A requirement for IFDS is
that each flow function, say f , needs to be distributive w.r.t. set
union, thus f(A∪B) = f(A)∪f(B) for A,B ⊆D. This allows
the framework to define flow functions on single elements of
D. The evaluation of the flow function for any such element
yields a subset S ⊆D.

A. Path Edges

IFDS computes a callee’s procedure summary incrementally
through so-called path edges. A path edge is written as
⟨s, d1⟩→ ⟨t, d2⟩, where t is an arbitrary target statement and
s is the start statement of the method of t. This makes a path
edge always local to one method. The elements d1 and d2 are
data-flow facts: d2 is the target fact and d1 the start fact of the
edge. Semantically, a path edge expresses: If d1 is reachable
(and therefore holds) at statement s, so is d2 at statement t. The
purpose of the flow functions is to successively deduce new
path edges to bridge longer and longer paths. The appropriate
flow function for the target statement t, say ft, receives the

data-flow fact d2 as arguments. The result of the application
of the flow function is a set of data-flow facts S = ft(d2). For
each element d3 of the set S and each statement t′ succeeding
t a path edge is derived: ⟨s, d1⟩→ ⟨t′, d3⟩.

B. Incoming Set And Summaries

An important part of the IFDS framework is its incoming set.
For each method and data-flow fact which enters the method
through a call site, the incoming set stores the information (1)
through which call site(s) the method is entered and (2) which
path edges reach those call site(s). Consider a method m is
called at a call site c and the path edge p = ⟨s, d0⟩ → ⟨c, d1⟩
reaches c. Further assume, that the call’s flow function maps
fact d1 to d2 on the side of the callee m. Once entering the
method, the path edge p is added to the incoming set Id2m for
the callee method m and fact d2, so p ∈ Id2m .

IFDS seeks to construct procedure summaries that are
independent of any particular calling context. It thus bootstraps
the analysis of any callee m by propagating an initial self
loop edge ⟨v, d2⟩ → ⟨v, d2⟩ from the start statement v of m.
This expresses that d2 holds at v if d2 holds at v, i.e., without
any further condition. From this edge, new path edges are
successively derived via the application of the flow-functions.
The flow-functions maintain the start statement and start node
of the derived edges. Whenever a derived path edge, say
⟨v, d2⟩→ ⟨t, d3⟩, reaches an exit statement t of the method m,
this path edge becomes a (partial) procedure summary. The
framework must now apply this summary’s effect to all callers
of m. It traverses the incoming set Id2m to extract all call sites
at which path edges inside callers have to be continued. A
return-flow function maps d3 back to a fact d4 in the caller
scope. Here, assuming the path edge p is in the incoming set,
IFDS continues with the path edge ⟨s, d0⟩ → ⟨c′, d4⟩ for any
successor statement c′ of c.

The path edge ⟨v, d2⟩ → ⟨t, d3⟩ is stored as a intra-
procedural summary for method m. The summary can be re-
applied for any other call site which is interested in analyzing
the method m with the same input fact d2.

III. MODELING FIELDS IN DATA-FLOW ANALYSIS

In this section, we discuss two alternatives for modeling
field accesses in data-flow analyses. We use taint analysis as an
example client, however, the described techniques are applicable
to data-flow analyses in general. A taint analysis reasons about
possible data flows from a given source to a given sink and
can decide privacy as well as integrity problems [6].

A. Field-Based Models

Field-based analyses treat fields independently of the objects
they belong to. They track a field as soon as a tracked value
is assigned to it, independent of the object instance the field
belongs to. Thus, any subsequent read from the field must be
tracked no matter which object the field belongs to. A possible
analysis domain D for a field-based analysis comprises all local
variables L of all program’s methods and all fields F declared
in the program, so D = L ∪ F . While a field-based analysis
can be sound, not considering the base object will often lead
to imprecision, as illustrated by the following example.



foo(){
A a = new A();
a.f = source();
A b = id(a);

}
bar(){
A a = new A();
a.g = source();
A b = id(a);

}
id(A p){

return p;
}

(a) Multiple Summaries

foo(A a) {
while(unknown()) {
A b = new A();
if(unknown())
b.f = a;

else
b.g = a;

a = b;
b = null;

}
return a;

}

(b) State Explosion

Fig. 2: Examples of Threats to Scalability

Example 1: In Figure 1b, field a1.f is assigned the tainted
value of x. Field a2.f never gets tainted. Nevertheless, the
analysis will report it as tainted, because it models both field
accesses as A.f, resulting in a false positive.

B. Field-Sensitive Models

A more precise alternative is to model field accesses as
access paths. An access path consists of a base variable – a
local variable visible in the current method’s scope (including
its parameters and the receiver this) – followed by a sequence
of field accesses. In a taint analysis, an access path typically
models an access path through which a tainted memory location
can be reached. Field-sensitive models are more precise than
field-based ones. In Figure 1b a field-sensitive analysis would
taint the access path a1.f but not a2.f. When processing
the read y = a2.f, no taint will be reported for y, avoiding
a false warning.

Unfortunately, the described data-flow domain is unbounded.
Assume a further assignment a3.g = a1 somewhere in the
code in Figure 1b. To maintain precision the analysis must
propagate the taint from a1.f to a3.g.f, resulting in an
access path of length 2. If proper care is not taken, loops can
yield access paths of an unbounded length. Also analyzing
recursive data structures, e.g., doubly-linked lists, may yield
unbounded access paths such as l.next.prev.next....
Although l.next and l.next.prev.next statically refer
to the same object, most analyses are unable to identify this
equivalence.

Formally, for a field-sensitive taint analysis the data-flow
domain is identifiable as the set

D ∶= {(x1, . . . , xk) ∣ k ∈ N, x1 ∈ L, xi ∈ F ,∀i ≥ 2}.

This domain of infinite size contradicts the requirements of
IFDS and other data-flow analysis frameworks that guarantee
termination only for finite data-flow domains.

To obtain a finite domain, it is common practice to
artificially bind the sequence of field accesses to a fixed length
by limiting k in the domain definition to a given natural
number. This is known as k-limiting [4]. Analyses then have
to suitably alter the processing of bounded access paths to
retain soundness. Limiting k obviously introduces an over-
approximation. Decreasing the selected k value increases the

over-approximation and lowers the precision. Increasing the k
value enables the analysis to distinguish more states, however,
at the cost of defeating its scalability due to state explosion.
Our experiments—presented in Section V—show that even
for small k values analyses can run out of gigabytes of main
memory when analyzing real-world programs.

There are two main root causes for the scalability problems:
(a) due to the way applicability of method summaries is defined,
even methods that represent an identity function w.r.t. an input
tainted value must be re-analyzed for each access path rooted
at that tainted value, (b) due to an explosion of different states
to be considered. The following two examples illustrate the
root causes.

Example 2: Methods that represent an identity function
w.r.t. the tainted value must be re-analyzed for each possible call
site. For illustration, consider the code in Figure 2a. Assume a
class A with two fields f and g. Method foo taints a.f, which
a field-sensitive analysis will model by the access path a.f.
Next, this access path flows as a parameter into method id.
Typical summary-based analyses will translate the abstraction
a.f to the scope of the callee, yielding p.f. Next, the analysis
will create a procedure summary for id, indicating that it taints
retVal.f if p.f was tainted. Now, consider the second
calling context for id within bar, which passes a tainted
value a.g. Again, this value is translated into p.g. Since
the computed summary for p.f is not applicable to p.g, the
analysis will process the id-procedure again, although id
returns the parameter unchanged. While the analysis effort is
trivial in this example, the method id could in reality have
many more statements and may call many other methods, while
remaining an identity function, i.e., opaque, w.r.t. the tainted
value. Such methods can be quite frequent in an application.

Example 3: Each unique access path must be propagated
resulting in an explosion of the propagated facts. For illustration
consider the code in Figure 2b. Assume that the parameter a of
method foo is tainted and that we cannot statically decide the
values to which the while and if conditions will evaluate,
i.e., both branches are possible for each condition. Each loop
iteration thus propagates from a to b.f and b.g. Hence, foo
may return tainted access paths a (no loop iteration), a.f
and a.g (one iteration), a.f.f, a.f.g, a.g.f, and a.g.g
(two iterations), and so on. Given a maximum access path
length of k and A the set of fields written inside the loop,
this yields ∑kn=0 ∣A∣n different access paths. In IFDS the merge
operator at control-flow merge points is restricted to set union.
Thus, the analysis cannot merge facts and must propagate each
unique access path.

In our experiments we observed that constructs similar to
those illustrated by this example defeated the scalability of
our field-sensitive client analyses. The most common construct
was actually not a loop, but methods invoked on an interface
type with many concrete implementations. If it is undecidable
to which concrete implementation the method call must be
resolved, analyses typically assume that any of them may be
called. If one of them recursively invokes the same interface
method, we observe the same effect as in the example – the loop
manifests itself at an inter-procedural level through recursion.



IV. APPROACH

We propose Access-Path Abstraction, a sound and scalable
framework for field-sensitive data-flow analysis. Access-Path
Abstraction obviates the need for over-approximations like k-
limiting for keeping the domain finite and hence also the need
to tradeoff between precision and scalability.

The key ideas underlying Access-Path Abstraction are:

1) Abstract summaries are constructed that abstract over a
whole set of access paths, e.g., if a method is invoked
with an access path a.f, Access-Path Abstraction
creates a summary for a.* instead.

2) Abstract summaries, such as a.* are reused for all
callers invoking the respective method with any access
path covered by the abstraction, e.g., a.g or any other
access path sharing the common prefix a. Yet, the
application of summaries is designed such that the
result reflects specific access paths of specific callers.

3) Access-Path Abstraction ensures that only those parts
of the application are analyzed that would be analyzed,
if concrete access paths were used instead of abstract
summaries. For example, a taint analysis processing
an assignment b = a.g should continue for b if
and only if a.g is tainted, but not because any other
tainted field of a, e.g., a.f, was abstracted to a.*.

Next, we describe the changes and extensions to the IFDS
framework that are required to achieve 1) and 2), then we
elaborate on changes for 3). Subsequently, we discuss how
the extensions can be adapted to loops and return sites to
solve the state-explosion problem described in Example 3
and why Access-Path Abstraction obviates the need for over-
approximations like k-limiting keeping the domain finite. IFDS-
APA, the variant of Access-Path Abstraction we describe here,
extends the IFDS framework [5].

A. The Analysis Domain

IFDS-APA uses an efficient abstraction that encodes sets
of access paths in a concise, symbolic representation.

Access Path: Given the set of all local program variables
L and the set of all field declarations F , an access path α
is a sequence of a local variable followed by a sequence of
field accesses: α = (α1, . . . , αn) with α1 ∈ L and αi ∈ F for
2 ≤ i ≤ n and n = ∣α∣.

Access-Path Bundles: To realize the idea of constructing
abstract summaries 1), we formulate an analysis domain that
implicitly encodes sets of access paths.2 In this domain, a fact
is called an access-path bundle and consists of an access path
α and a set of exclusions E, E ⊆ F . Exclusions are the key to
avoid unnecessary analysis steps due to over-approximation 3),
as we explain later. The tuple ⟪α,E⟫ represents a whole set
of access paths, formally defined as:

⟪α,E⟫ = ⟪(α1, . . . , α∣α∣),E⟫
∶= {(x1, . . . , xm) ∣ xi = αi,1 ≤ i ≤ ∣α∣,

m ≥ ∣α∣,
x∣α∣+1 ∉ E}

2A client analysis may include specific information into facts. Our imple-
mentation anticipates this. However, to ease the exposition, throughout this
paper, we restrict facts to just a pair of an access path and the set of exclusions.

Hence, the bundle ⟪α,E⟫ represents all access paths of
length greater or equal to ∣α∣, which start with the sequence
α, and whose field x∣α∣+1 is not in E, if the length of the path
is greater than ∣α∣. We say that a bundle ⟪α,E⟫ belongs to
the local l ∈ L, iff α1 = l. For brevity, we write α̃ to denote a
bundle ⟪α,Eα⟫.

In the following, we define some operations on access-path
bundles, which are used in the process of constructing and
applying summaries.

Partial Order on the set of All Bundles: The relation
⟪α,Eα⟫ ⊇ ⟪β,Eβ⟫ holds, iff the following conditions (given
α = (α1, . . . , αk) and β = (β1, . . . , βl)) are fulfilled:

1) ∣α∣ ≤ ∣β∣
2) αi = βi, 1 ≤ i ≤ ∣α∣

3) {β∣α∣+1 ∉ Eα, if ∣α∣ < ∣β∣
Eα ⊆ Eβ , if ∣α∣ = ∣β∣

Intuitively, α is a prefix of β and β is not excluded through the
exclusion set Eα, if the length of β is greater than α; if they
have the same length, Eβ excludes at least the fields excluded
by Eα.

If two access-path bundles only differ in their exclusions,
we write ⟪α,Eα⟫ ≈ ⟪β,Eβ⟫, formally defined as:

1) ∣α∣ = ∣β∣
2) αi = βi, 1 ≤ i ≤ ∣α∣ = ∣β∣.

For two access-path bundles α̃ and β̃ such that α̃ ≈ β̃ or
α̃ ⊇ β̃, we define their delta, denoted by ∆(α̃, β̃) ∈ (F)∗ × 2F

as

∆(α̃, β̃) ∶= {((β∣α∣+1, . . . , β∣β∣),Eβ) if ∣α∣ < ∣β∣
(ε,Eα ∪Eβ) if ∣α∣ = ∣β∣

ε here refers to the empty sequence. Note that a delta is
not an access-path bundle and never contains a local variable.

Concatenation of an Access-Path Bundle and a Delta: Given
a bundle α̃ and an arbitrary delta ∆ = (δ,Eδ), we define the
concatenation, α̃ ∷∆, which yields a new bundle, as follows:

α̃ ∷∆ ∶= {⟪(α1, . . . , α∣α∣, δ1, . . . , δ∣δ∣),Eδ⟫ if δ ≠ ε
⟪(α1, . . . , α∣α∣),Eα ∪Eδ⟫ if δ = ε.

If δ is non-empty, then its elements are used to refine the
access-path α (by extension). As exclusions always refer to
the position after the end of the access path, in this case one
retains only the exclusions Eδ . In the other case, both sets of
exclusions are retained.

B. Abstract Summaries

At specific statements, called abstraction points, IFDS-APA
abstracts over a given access-path bundle to compute an abstract
summary. Abstraction points are all merge points of intra or
inter-procedural control flows: (a) start points of methods, (b)
entries to loops, and (c) return sites. In the following, we will
focus first on (a) as the most intuitive of those cases.

The key to the efficiency of IFDS-APA is that in cases
where an access-path bundle α̃ = ⟪(α1, . . . , αn),E⟫ is passed
to a callee c, IFDS-APA will bootstrap c’s analysis with an



initial self-loop path edge not of α̃ but of an abstracted version
of α̃ that represents all access paths rooted in the same local
variable as α̃, i.e., ⟪(α1),∅⟫. For instance, in a situation, where
a callee would normally be analyzed for ⟪a.f.g,∅⟫, IFDS-
APA initiates an analysis for ⟪a,∅⟫ instead. If a summary for
the abstracted bundle already exists, IFDS-APA applies this
summary without further computation.

While the application of summaries to avoid computations
is equal to IFDS, IFDS-APA requires a different definition of
both (i) when a summary is applicable, and (ii) how it is applied.
In line with IFDS terminology [5] summaries are of the form
⟨spcallee, d3⟩ → ⟨epcallee, d4⟩: “d4 holds at end point epcallee
in any context in which d3 holds at the start point spcallee“.
A summary ⟨spcallee, d3⟩ → ⟨epcallee, d4⟩ is applicable to an
incoming fact d2 = ⟪α,Ea⟫ iff d3 ⊇ d2. The summary is applied
by computing the delta between d3 and d2 and concatenating
it to d4. Thus, for a start point spcaller at the caller for which
the fact d1 resulted in d2 being propagated to the callee, we
generate the path edge ⟨spcaller, d1⟩→ ⟨rs, d4 ∶∶ ∆(d3, d2)⟩ to
the return site rs.3

Example 4: Referring back to Example 2 and Figure 2a,
IFDS-APA analyzes method id only once for the access-
path bundle ⟪p,∅⟫. Method foo calls id with an incoming
fact ⟪p.f,∅⟫ and method bar with ⟪p.g,∅⟫. The summary
for id maps ⟪p,∅⟫ to ⟪retV al,∅⟫ and is applicable to both
incoming facts. The application computes the deltas (f,∅) and
(g,∅) and their concatenation to the returned value yields the
facts ⟪b.f,∅⟫ for method foo and ⟪b.g,∅⟫ for method bar.
In other words, concatenating the deltas restores the calling
context that was abstracted away before the callee was analyzed.

C. Field-Read and Field-Write Statements

Next, we explain how IFDS-APA handles cases, where
callee procedures read from or write to access paths that were
abstracted on entry to the callee.

Field-Read Statements: Assume that we are analyzing a
callee c with a taint represented by an abstracted access-path
bundle ⟪x,∅⟫. If c reads x.f, the analysis cannot know
which of x, x.f, or x.g etc. are tainted, as ⟪x,∅⟫ effectively
represents all access paths x.*.

IFDS-APA addresses this problem by computing the
required information on the fly. It checks c’s incoming set
for callers that explicitly requested the analysis with respect
to x.f before the abstraction occurred: For a path edge
⟨sp,⟪(α1, . . . , αn),Eα⟫⟩ → ⟨b=x.f,⟪x,Eβ⟫⟩ IFDS-APA
checks whether the incoming set contains a fact γ̃ such that
⟪(α1, . . . , αn,f),∅⟫ ⊇ γ̃. If this is the case, the analysis
continues with a path edge to each successor t′ of the statement
b=x.f with a refined start fact: ⟨sp,⟪(α1, . . . , αn,f),∅⟫⟩→
⟨t′,⟪b,∅⟫⟩. The intuition for this refinement is: Iff any access
path starting with (α1, . . . , αn,f) flows into statement sp, it
will flow to an access path starting with b at statement t′. Note
that IFDS-APA proceeds as just described only, iff f was not
excluded, i.e., f ∉ Eα and f ∉ Eβ .

3We omitted mapping the actual parameter to the formal parameter and
the return value of the callee to the assigned value at the caller to keep the
explanation brief. Mappings of local variables through call and return edges
are actually performed as in the original IFDS framework.

main(){
A a = new A();
a.f = source();
z = wrapper(a);

}

wrapper(A b){
y = bar(b);
return y;

}

bar(A c){
x = c.f
return x;

}

Fig. 3: Callbacks Created for a Field-Read Statement

Path Edge:
Call Edge:
Generated by:

0

⟪a.f,∅⟫

⟪b,∅⟫
⟪b,∅⟫

⟪c,∅⟫
⟪c,∅⟫

⟪b.f,∅⟫

⟪c,∅⟫

IFDS

⟪b.f,∅⟫

⟪c.f,∅⟫

⟪x,∅⟫

⟪c.f,∅⟫

Callbacks

If no caller requested the analysis with respect to x.f yet,
the analysis must soundly cater for the fact that this could
happen in later rounds of the fixed-point iteration. To handle
this, IFDS-APA creates a callback that creates the path edge(s)
upon future invocation. The callback is registered with the
incoming set and is invoked if a caller provides an incoming
fact x.f. Technically, we always create the callback, but this
callback is invoked immediately if the condition is already
fulfilled. Section IV-D discusses callbacks in more detail.

Field-Write Statements: Assume that we are analyzing a
callee c with access paths represented by the bundle ⟪x,∅⟫, and
c overwrites x.f with an un-tainted value, e.g., x.f=null.
This assignment kills flows to x.f. Therefore, the analysis
should only continue if a caller exists that calls c with an access
path rooted in x but different from x.f. Field exclusions
are used to express this. For a path edge ⟨sp,⟪α,Eα⟫⟩ →
⟨x.f=null,⟪x,Eβ⟫⟩ the framework refines the start fact by
adding the field f to the exclusion set, yielding the refined
fact ⟪α,Eα ∪ {f}⟫. If the incoming set of c contains a fact γ̃,
such that ⟪α,Eα ∪ {f}⟫ ⊇ γ̃, the analysis will continue with a
path edge ⟨sp,⟪α,Eα ∪ {f}⟫⟩ → ⟨t′,⟪x,Eβ ∪ {f}⟫⟩ to each
successor t′ of statement x.f=null. If there is no incoming
fact satisfying the constraint, the framework creates a callback
that will create the path edge(s) on invocation. This is analogue
to field reads.

D. Callbacks

Callbacks can be registered with abstraction points, e.g.,
the start point of a method together with trigger conditions that
guard their invocation. A trigger condition specifies a predicate
on an access-path bundle σ̃. For example, the trigger condition
for the callback registered with the method’s starting point
of the example in the sub-section about field-read statements,
required an incoming fact γ̃ for which ⟪(α1, . . . , αi,f),∅⟫ ⊇ γ̃
holds. In this case, the access-path bundle associated with the
callback condition is σ̃ = ⟪(α1, . . . , αi,f),∅⟫. The callback is
then invoked if a fact γ̃, for which σ̃ ⊇ γ̃ holds, is passed to
the abstraction point with which the callback is registered.

Example 5: Consider the method bar in the example in



Figure 3, while ignoring the methods main and wrapper
for now. The method bar will be analyzed with an access-
path bundle ⟪c,∅⟫ at the start point. Field f is read at
statement x=c.f. This causes a callback cb to be registered
with the start point spbar of bar that will create the path edge
⟨spbar,⟪c.f,∅⟫⟩ → ⟨return x,⟪x,∅⟫⟩ upon invocation.
The access-path bundle associated with cb as the trigger
condition is σ̃ = ⟪c.f,∅⟫. The incoming fact γ̃ = ⟪c,∅⟫
is checked against this condition: σ̃ ⊇ γ̃ does not hold – hence,
no path edge is created. If the analysis processes another call
that passes a taint α̃ = ⟪c.f,∅⟫ to the start point spbar, the
callback is triggered, because σ̃ ⊇ α̃ holds. The trigger condition
also holds for α̃ = ⟪c.f.g,∅⟫, but not for α̃ = ⟪c.g,∅⟫.

The semantics of callback registration and invocation
defined so far is simplistic. It ignores the fact that several
abstractions can happen along different invocation chains:
Callback trigger conditions so far only consider the local view
on access paths of methods that contain field reads or writes.
This may cause unsoundness of the analysis, as illustrated by
the example below.

Example 6: Consider the methods main and wrapper in
in Figure 3. The method main generates a taint ⟪a.f,∅⟫
and passes it to wrapper. On wrapper’s entry, this taint is
abstracted to ⟪b,∅⟫ and then passed to bar, which reads the
field c.f. This field read results in the callback installation with
the trigger σ̃ = ⟪c.f,∅⟫ as discussed before. The callback’s
condition cannot be fulfilled, as it is registered for the start
point of bar, which was only passed the abstracted access
path c, not c.f. As a result, the analysis will miss a tainted
edge, hence be unsound.

The example not only illustrates how unsoundness can occur,
if we leave things as described. It also suggests what needs to
be done to avoid unsoundness: IFDS-APA must reiterate the
registration and evaluation of callbacks in callers.

To ensure that callbacks are also triggered transitively, the
framework replicates callbacks along the incoming sets. When
the framework attaches a callback to a method start point, it
iterates over the incoming edges, the path edges within the
incoming set, and checks whether any of the edge’s target facts
potentially satisfies the condition of the callback. Assume an
incoming edge ⟨spcaller, α̃⟩ → ⟨t, γ̃⟩ for a callee start point
spcallee. The incoming fact γ̃ potentially satisfies the callback
condition σ̃ in two cases: (a) if γ̃ ⊇ σ̃ or (b) if γ̃ ≈ σ̃. In any
of the two cases, the framework performs the following steps:
(a) it computes the delta δ between the incoming fact γ̃ and
the condition σ̃, δ = ∆(γ̃, σ̃); (b) the delta is concatenated to
the start fact α̃ of the incoming edge; (c) the result σ̃′ = α̃ ∶∶ δ
is installed as the trigger condition for the replicated callback,
and (d) the latter is registered with the start point spcaller of
the incoming edge. On invocation of the replicated callback,
the framework registers a new incoming fact to the start point
spcallee, constructed by concatenating the original incoming γ̃
fact and the computed delta δ. This new incoming fact satisfies
the trigger condition of the original callback at spcallee, which
therefore will be executed.

Note that when the framework registers the replicated
callback with the start point of the incoming edge, this may
result in other replicated callbacks being created as the same
steps are performed recursively for callers of callers. This

recursion may happen until the analysis reaches an initial seed
(0-Fact). This process may seem expensive at first sight, but
it is not. Consider that the framework only needs to traverse
path edges. Each path edge skips over all the internal nodes of
the respective methods, such that in the worst case one needs
to traverse only as many path edges as there are frames on the
current abstract call stack.

The following example illustrates how the transitive regis-
tering of callbacks avoids the unsoundness that would occur
otherwise.

Example 7: Reconsider Example 6 and Figure 3. The
field-read statement in method bar will generate a callback.
This callback creates the path edge ⟨spbar,⟪c.f,∅⟫⟩ →
⟨return x,⟪x,∅⟫⟩. The trigger condition σ̃ of the call-
back is not satisfied by the incoming fact ⟪c,∅⟫, because
σ̃ = ⟪c.f,∅⟫ ⊉ ⟪c,∅⟫. But, this incoming fact potentially
satisfies the condition transitively, because ⟪c,∅⟫ ⊇ ⟪c.f,∅⟫.
Consequently, the framework replicates a transitive callback
for the incoming edge, reflecting the call edge from wrapper
to bar. Using the path edge into the call site, the framework
can retrieve the start-point statement and the start fact at that
statement. The transitive callback is registered with this start-
point statement using as condition the start fact concatenated
with the delta ∆(⟪c,∅⟫,⟪c.f,∅⟫). Therefore, the condition
is ⟪b,∅⟫ ∶∶ ∆(⟪c,∅⟫,⟪c.f,∅⟫) = ⟪b.f,∅⟫. This condition
is immediately satisfied by the incoming fact ⟪b.f,∅⟫ that
is passed from main to wrapper. Hence, the transitive
callback is invoked immediately, and creates the call edge,
which registers ⟪c.f,∅⟫ as incoming fact to bar. This new
incoming fact triggers the first callback, which in turn creates
the path edge ⟨spbar,⟪c.f,∅⟫⟩→ ⟨return x,⟪x,∅⟫⟩, with
which the analysis will continue.

E. Loops

To solve the termination problem caused by recursive
constructs such as loops and recursive data structures without
bounding the size of access paths, Access-Path Abstraction
introduces additional abstraction points beyond method calls.
Here we explain the handling of other control-flow merge
points. This includes, in particular, entries to loops. First,
we illustrate by an example, how the termination problem is
solved by introducing loops as abstraction points. Subsequently,
we discuss the algorithmic changes required to accommodate
additional abstraction points.

Example 8: For the loop shown in Figure 2b the framework
will proceed as follows. It first creates an initial self-loop at the
start point of foo with the access-path bundle ⟪a,∅⟫. Then
it passes this bundle to the beginning of the loop, i.e., the
abstraction point. The framework abstracts the bundle, which
in this case has no effect, yielding the same bundle again.
The loop causes the bundle ⟪b.f,∅⟫ to be created along one
branch and ⟪b.g,∅⟫ along the other. Then, b is assigned to
a, such that ⟪a.f,∅⟫ and ⟪a.g,∅⟫ are passed back to the
entry of the loop, i.e., back to the abstraction point. At the loop
abstraction point, the framework proceeds just as it does at the
entry to a called procedure. It stores both bundles as incoming
facts and continues the next iteration with abstracted access-
path bundles. In this example, no additional iteration will be
computed, because both access-path bundles are abstracted to
⟪a,∅⟫, i.e., to a fact that the analysis already processed.



sp

c=a b.g=a

c.f=b

ap

d=c.f

e=d.f

. . .

⟪a,∅⟫→
⟨⟪a,∅⟫,−, ε,∅⟩

⟪a,∅⟫→
⟨⟪a,∅⟫,−, ε,∅⟩

⟪a,∅⟫→
⟨⟪a,∅⟫,−, ε,∅⟩

⟪a,∅⟫→
⟨⟪b.g,∅⟫,−, ε,∅⟩

⟪a,∅⟫→
⟨⟪c,∅⟫,−, ε,∅⟩

⟪a,∅⟫→
⟨⟪c.f.g,∅⟫,−, ε,∅⟩

⟪a,∅⟫→
⟨⟪c,∅⟫, ap, ε,∅⟩

⟪a.f,∅⟫→
⟨⟪d,∅⟫, ap,f,∅⟩

⟪a,∅⟫→
⟨⟪d,∅⟫, ap,f,∅⟩

⟪a.f.f,∅⟫→
⟨⟪e,∅⟫, ap,f.f,∅⟩

Fig. 4: Handling of Arbitrary Nodes as Abstraction Points
⟪α,∅⟫ → ⟨⟪β,∅⟫, ap, γ,∅⟩ is used here as abbreviation for a path edge
⟨sp,⟪α,∅⟫⟩→ ⟨s,⟪β,∅⟫, ap, γ,∅⟩, whereby s is the respective CFG node at which
the path edge is drawn.

To summarize, the additional abstraction points solve the
termination problem without the need to restrict the size of
access paths. However, the additional abstraction points require
an algorithmic change to correctly handle callbacks. When a
field-read or field-write statement is processed, the framework
must register a callback with the latest abstraction point it
passed. If that abstraction point is a method entry, it is easily
identified, because every path edge starts at a method start
point by definition.

To identify the latest abstraction point in other situations,
we modify the definition of path edges to also use a reference to
the latest non-start-point abstraction point if such an abstraction
point has been passed. In addition, we include a sequence of
fields, to reflect which field accesses have been resolved via
the abstraction point already, and a set of exclusions. We will
explain their need in the next example. From now on, we
will write path edges as ⟨sp, α̃⟩ → ⟨t, β̃, ap, γ,Eγ⟩, whereby
sp, α̃, t, and β̃ are—as before—the start point, access-path
bundle at the start point, a target statement, and an access-
path bundle at the target, respectively. New are ap, γ, and Eγ
representing an abstraction point, a sequence of field accesses
γ = (γ1, . . . , γn), γi ∈ F , and a set of excluded fields Eγ ⊂ F .

Example 9: For this example, consider Figure 4. The figure
shows a control-flow graph supplemented by artificial nodes
for the start point sp and an abstraction point ap. Each node
is annotated with the path edge targeting that node, whereby
we use an abbreviated form that omits the statements, as they
are easily inferred from the graph. We show only those path
edges that are of interest for the example. Note that path edges
are aligned at the left side of the figure if a path edge results
from the left branch taken, aligned at the right side if the right
branch is taken, respectively. The path edge is drawn close to
the node, if the path edge results from both branches.

The path edges in the upper part of the figure, drawn in

blue, are straightforward. The analysis propagates through both
branches resulting in facts ⟪c,∅⟫ and ⟪c.f.g,∅⟫ passed to
the abstraction point ap. Both are registered as incoming facts,
together with their respective path edges. After the abstraction
point, the analysis continues with an abstracted access-path
bundle ⟪c,∅⟫ only, and stores in the path edge succeeding
ap a reference to ap. Now, at statement d=c.f the field f is
read, resulting in a callback being generated. The callback is
not registered with the start point sp, but with the abstraction
point ap, because in the path edge an abstraction point was
referenced, i.e., the start point is not the latest passed abstraction
point. The callback’s condition is checked against the incoming
facts at ap. The condition can be immediately fulfilled via the
right branch providing ⟪c.f.g,∅⟫. This yields the path edge
⟨sp,⟪a,∅⟫⟩→ ⟨e=d.f,⟪d,∅⟫, ap,f,∅⟩.

Note that the framework includes the field f in the path
edge, reflecting that a condition was fulfilled consuming a field
access f of some incoming edge at ap. This is because the
analysis satisfied the callback’s condition via the incoming fact
⟪c.f.g,∅⟫ “consuming f” such that for succeeding field-
read statements the analysis must take into account that f has
been read already and the incoming fact can now only be used
to read field g. Proceeding in the example, IFDS-APA uses
this information to know at statement e=d.f that the callback
generated here cannot be fulfilled by ap via the right branch.
To store information about which fields have already been
excluded, the set Eγ of the new path edge is used analogously.

So far, we have ignored that the callback generated at
statement d=c.f could be potentially satisfied transitively
through the start point sp. This is the case, because the incoming
fact via the left branch potentially satisfies the condition. As
discussed in Section IV-D, IFDS-APA therefore replicates the
callback for transitively preceding abstraction points, i.e., for
the start point sp. When this replicated callback can be fulfilled,
which in this case depends on the incoming facts provided by
callers, IFDS-APA registers an incoming fact ⟪c.f,∅⟫ at
ap, which triggers the creation of path edge ⟨sp,⟪a.f,∅⟫⟩→
⟨e=d.f,⟪d,∅⟫, ap,f,∅⟩.

F. Return Sites

By introducing loops as additional abstraction points, we
solve the state explosion problem for the intra-procedural case.
But, state explosion may still occur inter-procedurally.

For illustration, consider the example in Figure 5. Assume
Foo to be an interface declaring a method foo with a parameter
x to be tainted. Classes A and B both implement this interface
and provide similar implementations of foo: Both recursively
call foo. Assume that the precise type of f is statically
undecidable, therefore, the call is resolved to A.foo and
B.foo. In addition, both wrap the tainted value in another
object’s field and return the object: A writes to field a and B
to field b. Assume the analysis is computing a summary for a
tainted parameter x. Without the recursive call, the summary of
foo yields a mapping from x to y.a, respectively y.b. For
the branch performing the recursive call, the analysis applies
the summaries for both A.foo and B.foo, which will in
turn generate the additional summaries from x to y.a.a, and
y.a.b for A.foo and from x to y.b.a, and y.b.b for
B.foo. This results in a similar state explosion as for loops.



class A impl. Foo {
Foo f = aOrB();
foo(X x) {
if(unknown())

x = f.foo(x);
y.a = x;
return y;

}
}

class B impl. Foo {
Foo f = aOrB();
foo(X x) {
if(unknown())
x = f.foo(x);

y.b = x;
return y;

}
}

Fig. 5: State Explosion through Access Paths

Note that an analog case, in which the taint is wrapped in
a field before passing it as parameter to the recursive call, is
already solved. As IFDS-APA abstracts at method start points,
the analysis encounters the previously seen fact ⟪x,∅⟫ and
stops. By also applying abstraction at return sites, in the same
way as in the treatments for loops, the state explosion problem
can be solved here as well. Hence, at the return sites of call
foo the framework does abstract that the returned facts are
⟪x.a,∅⟫ and ⟪x.b,∅⟫ and continues with the fact ⟪x,∅⟫.
⟪x.a,∅⟫ and ⟪x.b,∅⟫ are registered as incoming facts with
the return site. As before, a reference to the return site as last
passed abstraction point is included in subsequent path edges
allowing to reconstruct the abstracted field accesses.

G. Termination in Presence of an Unbounded Domain

In theory, the analysis domain consisting of access-path
bundles has an infinite size. One thus might wonder why
IFDS-APA guarantees termination. Termination would be
threatened in cases where the framework would create access-
path bundles of ever-growing size. But this is impossible, as
such unlimited growth can only occur due to loops or recursion.
Since IFDS-APA abstracts access-path bundles at every entry
into a procedure or loop, the length of the access-path portion of
an access-path bundle is thus bounded by the maximal length
of the access paths used within a single procedure or loop
iteration. This guarantees termination.

V. EVALUATION

We performed experiments to compare the proposed ap-
proach against two baseline approaches: A field-based approach,
denoted FB, and a classic field-sensitive approach that uses k-
limiting, as described in Section III, denoted FSk. Specifically,
the experiments address the following two research questions:

RQ1: Given a fixed heap size, which analyses can
successfully analyze our benchmark subjects?

RQ2: How fast is IFDS-APA compared to the baseline
approaches?

A. Setup

Our implementation of IFDS-APA is based on Heros [6],
an open-source implementation of an IFDS/IDE solver; we
contributed our adaptations back to the Heros project. The two
baseline approaches also use the IFDS implementation provided
by Heros. The experiments carry out taint analyses, for which
we use the implementation of FlowTwist [8]. FlowTwist uses
Heros and is based on the Soot code-analysis framework [9].
Originally designed to address confused-deputy problems in

the Java Class Library, FlowTwist can be used to conduct
general-purpose data-flow analysis [10].

We use FlowTwist for three different experimental setups.
In the first two setups we use an adaptation of FlowTwist to
detect SQL injection, command injection, path traversal, and
unchecked redirection vulnerabilities. We apply the analysis
to the Stanford SecuriBench [11] dataset consisting of seven
web applications. In the first setup we use only the bare web
applications, while we include their dependencies (and the Java
Class Library) in the second setup. For the first two setups a pure
forward analysis is conducted. In a third setup we use the origi-
nal FlowTwist implementation, which conducts a synchronized
forward and backward taint-analysis to detect confused-deputy
vulnerabilities within the Java Class Library (JCL) 1.7.0, e.g.,
any call to the method Class.forName(String cls),
where (1) the String cls is user-controlled, and (2) the return
value flows back to the user. These flows are problematic and
are commonly used in exploits [8]. This setup uses a call graph
starting at all of the JCL’s public methods, leading to a much
larger coverage of the JCL’s methods than with SecuriBench.

The applications within the SecuriBench suite vary from 32
to 445 classes and 4,191 to 52,089 lines of code per project. We
found it much more relevant, though, to characterize the projects
by the number of edges of their respective inter-procedural
control flow graphs (ICFGs), which are shown in the second
column of Table I. The ICFGs are relatively small if the web
applications are considered in isolation, but their size grows
significantly if all dependencies are also considered. We counted
only those control-flow edges that are contained in methods
that are transitively reachable from within the web applications.

All experiments were conducted on a machine running
OS X 10.10 with a 4-core Intel Xeon E5 3.0 GHz processor
and 32 GB memory. As Java Runtime Environment, we used
the Oracle Java 1.8.0u40 release, with a heap size set to a
maximum of 25 GB.

B. Results

RQ1 seeks to answer the questions which approaches
can at all analyze which benchmarks within the allotted
25 GB of maximum heap size. To address this question, we
ran all approaches on all benchmarks. Table II shows those
configurations that ran out of memory as OoM. Results for all
three setups are shown separated by horizontal lines. As long
as the dependencies were excluded, all approaches were able
to analyze all of SecuriBench. If dependencies are considered,
however, only IFDS-APA and FB were able to analyze all
SecuriBench applications. FSk was only able to analyze all
of SecuriBench when k is set to zero. blueblog and webgoat
could be analyzed for k-limiting with FSk=1 or FSk=2, but
no application could be analyzed with any higher value for k.
None of the configurations was able to successfully complete
the FlowTwist analysis of Java 1.7.0 with the available memory.

To gain a better understanding of the relative scalability,
we measured two metrics while running all subject analyses
on the web applications of SecuriBench. First, we measured
the fraction of the statements each analysis must traverse, i.e.,
how many ICFG-edges it traverses. We also measured how
many times flow functions are being evaluated. The results
of these measurements are shown in Table I. The fraction of



TABLE I: Measures of Efforts Spent by each Analyses
Vis.: ICFG edges visited during the analysis; Eval.: Number of flow-function evaluations; OoM: Out of memory

Project ICFG
Edges

IFDS-APA FB FSk

k = 0 k = 1 k = 2 k = 3
Vis. Eval. Vis. Eval. Vis. Eval. Vis. Eval. Vis. Eval. Vis. Eval.

blueblog 8 529 11% 2 652 29% 10 438 33% 10 441 32% 20 133 33% 30 981 33% 39 823
jboard 14 154 2% 524 1% 660 2% 614 2% 614 2% 614 2% 614
pebble 67 488 26% 61 676 25% 74 395 27% 66 626 26% 73 126 26% 73 643 26% 74 104
personalblog 11 391 13% 8 956 14% 11 376 14% 7 036 14% 7 024 14% 7 024 14% 7 024
roller 82 264 2% 4 069 3% 9 156 3% 7 942 2% 6 658 2% 6 658 2% 6 658
snipsnap 137 532 6% 22 799 7% 29 234 10% 35 571 7% 23 651 7% 25 500 7% 26 249
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l.
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ep
en

de
nc

ie
s

webgoat 15 122 26% 13 694 22% 12 927 27% 13 526 27% 13 083 27% 13 083 27% 13 083

blueblog 692 483 3% 101 302 8% 174 713 46% 3 460 269 29% 5 751 330 29% 7 131 355 OoM OoM
jboard 2 353 761 14% 1 610 077 30% 6 287 863 61% 21 644 040 OoM OoM OoM OoM OoM OoM
pebble 1 769 459 13% 1 112 081 27% 3 237 303 62% 17 128 299 OoM OoM OoM OoM OoM OoM
personalblog 2 194 345 15% 1 664 999 28% 4 839 828 62% 27 837 129 OoM OoM OoM OoM OoM OoM
roller 2 891 553 15% 2 286 229 27% 6 999 622 56% 15 536 275 OoM OoM OoM OoM OoM OoM
snipsnap 2 683 739 14% 1 935 187 28% 17 207 797 63% 26 382 020 OoM OoM OoM OoM OoM OoM

In
cl

.D
ep

en
de

nc
ie

s

webgoat 734 345 16% 692 080 20% 1 349 476 52% 4 612 198 41% 11 615 079 44% 29 299 712 OoM OoM

JCL 1.7.0 12 069 342 OoM OoM OoM OoM OoM OoM OoM OoM OoM OoM OoM OoM

TABLE II: Run Times of the IFDS Framework in Seconds

Project IFDS-APA FB FSk

k = 0 k = 1 k = 2 k = 3

blueblog 0.22 0.32 0.44 0.29 0.26 0.34
jboard 0.02 0.02 0.04 0.01 0.01 0.01
pebble 0.99 0.70 0.81 0.53 0.48 0.49
personalblog 0.14 0.07 0.07 0.05 0.05 0.05
roller 0.07 0.06 0.07 0.05 0.05 0.05
snipsnap 0.32 0.24 0.35 0.21 0.26 0.22

E
xc
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en

de
nc

ie
s

webgoat 0.16 0.10 0.15 0.10 0.10 0.10

blueblog 1.21 1.05 27.15 43.54 54.56 OoM
jboard 322.70 40.81 228.84 OoM OoM OoM
pebble 108.38 17.13 138.40 OoM OoM OoM
personalblog 202.08 24.92 236.65 OoM OoM OoM
roller 478.81 35.19 102.83 OoM OoM OoM
snipsnap 307.65 113.01 203.16 OoM OoM OoM

In
cl

.D
ep

en
de

nc
ie

s

webgoat 57.75 6.70 30.86 98.14 253.56 OoM

JCL 1.7.0 OoM OoM OoM OoM OoM OoM

ICFG-edges each analysis traverses is shown as a percentage
of all the application’s ICFG edges in columns denoted as
Vis. The frequency of evaluating flow functions is shown as
an absolute number in columns denoted as Eval. While the
percentage of visited ICFG edges is similar for all approaches
when analyzing the web applications in isolation, we can clearly
see a trend when dependencies are considered: IFDS-APA
visits fewer ICFG edges than the other approaches. The same
trend is visible for the number of flow-function evaluations.
For FSk, with increasing k the analysis must compute more
flow functions (for more contexts) but can sometimes restrict
itself to a slightly smaller fraction of the ICFG, due to the
added precision.

To address the second research question, we measured the
execution time of the IFDS framework, excluding the time taken
to load and pre-process the bytecode as well as to compute a
call graph. This pre-computation time is shared by all three
approaches. The results are shown in Table II. All approaches
are able to analyze the web applications in isolation in less than
a second. When dependencies are considered, we can observe
differences in execution times ranging from one second up to
8 minutes for a single approach, depending on the benchmark.
We can see that the FB is faster than IFDS-APA. FSk=0 is
faster than IFDS-APA on some applications and slower on
others. For k > 0, FSk is slower than IFDS-APA.

C. Discussion

Regarding RQ1 we conclude that memory wise IFDS-APA
scales clearly better than FSk and as well as FB. FSk fails for
higher k values when analyzing SecuriBench with dependencies.
All approaches are not able to terminate successfully within
the given memory when analyzing the Java Class Library.

The answer to RQ2 is not as clear. Especially when
including dependencies IFDS-APA is faster than FSk for some
benchmarks but slower for others. It is also worth noting that
IFDS-APA is always slower than FB, although FB typically
computes more flow functions and traverses larger portions
of the ICFG due to its rather imprecise abstraction that leads
to over-tainting. However, while FB can traverse the entire
application in a single fixed-point iteration, IFDS-APA must
reconstruct abstracted access-paths on demand and must pro-
actively register callbacks to allow for incoming access paths
computed in later phases of the fixed-point iteration. Our
experiments indicate that the cost of these operations seem to
outweigh savings due to the more precise abstraction.

Before concluding this section, we briefly consider precision.
By nature, a field-sensitive approach can yield more precise
results than a field-based approach (see Figure 1b). In k-limiting,
over-approximation is controlled by the value for k. In theory,
k-limiting would achieve the same precision as IFDS-APA,
if k is chosen to be at least the length of the longest access
path in the application to be analyzed. This is, considering an
application which does not generate access paths of infinite
length through loops or recursion as shown in Example 3.
Note that, in contrast, IFDS-APA terminates and achieves
optimal precision (with respect to field sensitivity) even for
such programs.

As our experiments further show, choosing a high value for
k will severly degrade scalability of a k-limiting based approach
in practice. On the other hand, selecting small k-values not only
degrades precision, but may as well be a threat to the scalability,
as more data flows have to be considered that are caused by
the over-approximation. This is indicated by the results shown
in Table I. For example, the application snipsnap excluding
dependencies has more flow-function evaluations for FSk=0 than
for FSk=1. In addition, the number of flow-function evaluations
increases again for k values set to two or three. Further, a too



small k-value can even give up soundness. Using IFDS-APA
relieves analysis designers of all those considerations.

We conclude that IFDS-APA implements an analysis that
in terms of precision is at least as precise as FSk and scales
better than FSk for all values of k ≥ 0.

VI. RELATED WORK

Despite the existence of many data-flow frameworks, we
are not aware of any other framework explicitly handling field-
sensitivity and bounding the data-flow domain. Both is usually
left to the clients of the framework. Therefore, we here relate to
field-sensitive data-flow analyses and how they model data-flow
domains, and to existing work on abstract summaries.

A. Field-Sensitive Data-Flow Models

The access-path model is broadly used within analyses,
such as alias analyses [3] or taint analyses [1], [2].

One attempt by Deutsch [12] to circumvent the limit of the
access-path model was to use a symbolic representation of an
access path in which reoccurring field accesses are grouped
into a single symbolic one. The symbolic notation is close
to a regular expression over the fields. For example, if two
aliased values are both repeatedly written to a field f in the
same loop, Deutsch’s approach is able to learn that a.fn and
b.fn may be aliased, whereas n is some arbitrary number
of times the aliased values are nested. The advantage of the
approach is that it is known that the nesting has happened the
same times for both values and that only the n-th nesting is
aliased with each other. While this is a solution to overcome
k-limiting in this special case, it does not solve the general
case. If only one value is considered, n has no more meaning.
This results in a simple over-approximation comparable to a
variant of k-limiting as it is applied in FlowDroid.

FlowDroid [2] is a taint analysis for Android applications.
In addition to limiting the access path to be at most of size k,
FlowDroid collapses sub-paths between two equal field accesses
in an access path. If a sub-path is collapsed, FlowDroid flags
that this sub path may be repeatedly read. This is an over-
approximation and may result in fields being read for which a
taint has never been written.

Geffken et al. [13] propose an inter-procedural side-effect
analysis. To ensure field-sensitivity, they extend Deutsch’s
symbolic access path to a generalized access graph, which
models field accesses as a directed graph; reappearing field
accesses by the same statement correspond to cycles in
the graph. This ensures termination without requiring over-
approximations like k-limiting. So far, they only tested their
analysis on a small benchmark. They do not completely solve
the state explosion problem shown in Figure 5, which is why
we expect scalability issues on benchmarks that include similar
program constructs.

In alias analyses it is also common [14]–[16] to express
the alias relation within a context-free language (CFL) and
therefore solve a reachability problem over that language. Fields
are part of the language and recursive field accesses are grouped
into arbitrary accesses using a wildcard leading to an over-
approximation.

B. Abstract Summaries

In [17] Chandra et al. introduce a technique of general-
ization to produce summaries which are applicable to many
data-flow facts. As the proposed tool Snugglebug reasons about
weakest preconditions along the control flow to reach a certain
statement, their data-flow domain consists of conditions. Hence,
their generalization technique differs from ours.

The framework proposed by Yorsh et al. [18] is a more
theoretical approach on how to gain more concise summaries
by composing the flow-functions and their preconditions. As
examples they conduct a typestate analysis and constant
propagation. Within their typestate analysis they reason about
fields by using 1-limiting, within constant propagation they do
not handle fields.

Landi and Ryder [19] used in their alias analysis an
approach for which they abstracted access paths as non-visible
inside callees. Using this technique the analysis results for the
procedure become reusable across multiple calling contexts.
When evaluating returns they restore access paths according to
the respective calling contexts. Our approach was independently
developed, but the abstraction at method start points is very
similar to their approach. Yet, the previous work lacks general
support for arbitrary abstraction points, which is why it still
requires over-approximations to limit the size of access paths
and does not address the state-explosion problem.

Jensen et al. [20] represent in their abstraction the whole
state of the heap. As they point out, this makes summaries
nearly impossible to be reused. To obtain more reusable
summaries, they therefore represent properties of the heap as
unknown and recover properties as soon as they are accessed.
They call this concept lazy propagation as properties are
propagated into callees on-demand. When applying summaries
they replace unknown properties by the values available in the
calling context. The idea of abstracting at calls and recovering
abstracted state is very similar to ours. Yet, we are the first to
show that if applying it at loops and return edges as well one
can remove the need of over-approximations through k-limiting,
thus solving the state-explosion problem.

VII. CONCLUSION

Within this work we have presented Access-Path Abstrac-
tion, our extension to the IFDS framework to support field-
sensitivity within an arbitrary data-flow analysis. Without much
effort, any analysis using IFDS-APA can easily yet precisely
reason about fields. As our experiments have shown the analysis
will largely gain in terms of efficiency through the precise and
abstract summaries IFDS-APA uses internally: For the first
time, we managed to scale the tough FlowTwist analysis on the
whole Java Class Library with field sensitivity – so far even
the field-based approach did not scale. Finally, introducing the
more abstract summaries, we also managed to abandon any
need for k-limiting within the access-path model, herein we
see a huge profit for existing and future analyses.
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