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Abstract—Static code analysis is widely used to support the
development of high-quality software. It helps developers detect
potential bugs and security vulnerabilities in a program’s source
code without executing it. While the potential benefits of static
analysis tools are beyond question, their usability is often criti-
cised and prevents software developers from using static analysis
to its full potential. In the past decade, researchers have studied
developer needs and contrasted them to available static analysis
tool functionalities. In this paper, we summarize the main design
challenges for building usable static analysis tools, and show
that they revolve around the notion of explainability, which is
a subarea of usability. We present existing analysis tools and
current research in static analysis usability, and detail how they
approach those challenges. This leads us to proposing potential
lines of future work in explainability for static analysis, namely
turning static analysis tools into assistants and teachers.

Index Terms—Program analysis, Static analysis, Explainability,
User experience, Program understanding

I. INTRODUCTION

In practice, static analysis tools are often used to support
software developers to detect and resolve software bugs and
security vulnerabilities. In recent years, static analysis research
has introduced increasingly complex analysis methods and
tools that support a growing number of programming lan-
guages, libraries, and coding concepts, returning results faster
and with better precision. After analyzing the code, warnings
are reported during coding, nightly builds, or as automatically
generated comments in the code review phase, pointing out po-
tential weak spots to the developer. Such results are promising
for potential uses in industry. However, end-user experience
has shown a constant set of usability issues throughout the last
decade, such as ill-explained warning messages, motivating the
need for understanding how to design tools that satisfy the
developers, and overcome the gap between the academically
perceived potential of static analysis and its use in practice.

In this paper, we briefly summarize the usability issues en-
countered by static-analysis users identified by recent research.
We group them into six main challenges that revolve around
more understandable static analysis warnings, actionable mes-
sages to fix those warnings, and the integration of static anal-
ysis tools in the developer’s workflow. Those challenges point
towards the direction of a better explainability, by explaining
why the warnings are reported and what should be done to fix
them, in a way that is as effortless as possible to the developer.

We then turn to the current state-of-the-art with seven static
analysis tools used in industry and seven research prototypes,

and show how they address those challenges. We thus highlight
the limitations of current tools (e.g., non-responsive tools, or
generic warning messages) and potential avenues for research
in the area of explainable static analysis. We take the last point
further by proposing several directions for future research, in
particular through lifting the analysis into a real-time assistant–
teacher system that learns from the developer and the code
base, and provides appropriate explanations about analysis
warnings and how to fix them, when needed.

II. EXPLAINABILITY CHALLENGES

Recent research in static-analysis usability indicates com-
mon usability issues that cause warning misunderstandings and
mishandlings and bad user-experience of current static analysis
tools [1]. We have surveyed research publications in the past
decade on the topic, and summarize the usability issues they
report, grouped into six challenges: C1–C6.

C1 Understandable Warning Messages: The goal of
warning messages is to provide the developer with enough
information to judge whether or not they care about the
warning, and if yes, to determine how to fix it. As the
analysis rules can be complex and sometimes counter-intuitive,
warning messages should explain what the bug or vulnerability
is and why the tool reports it [2]–[4]. Many tools present
generic messages, e.g., “SQL injection from line 326 to line 459”.
Other tools provide more detailed explanations, giving more
information of the relevant analysis steps, e.g., “SQL injection
from line 326 to line 459 along path X if the value of t is 3”.
Research advocates for more descriptive warning messages,
in particular, information adapted to the coding context and to
the analyzed code [1].

C2 Fix Support: Analysis warnings often involve
security-specific knowledge developers may not have. As a
result, after explaining the warning, a useful static analysis
tool should support the developer in resolving it [4], [5].
In many cases, not knowing how to fix a warning leads to
wrong fixes and developer frustration. A commonly requested
solution lies in offering quick fixes [1]. Alternative approaches
consist in finding fitting solutions for the specific context of
each warning, for example, with slow fixes [6], which apply
the fix step-by-step and enable customization.

C3 False Positives: A major reason of tool abandonment
lies in the large amount of false positives generated by static
analyses [1], [3], [5], which require intensive manual work
from the developer. Potential solutions include suppression



mechanisms [5] or confidence indications [7]. In many cases,
false positives are due to missing knowledge about the coding
context [8]. Integrating specific context information could
reduce the amount of false positives.

C4 User Feedback: User knowledge is valuable to pro-
vide correct analysis results. Processing and integrating user
feedback can thus improve user-experience [1], [9], by, for ex-
ample, learning false positive patterns and removing potential
false positives from the reports. User feedback can be gath-
ered through warning rejection (suppression), ignorance, or
confirmation (fixing), or more explicitly through dialogues [8].
Learning more from the user and the coding context can lead
to more fitted analysis results, less false positives, and a better
overall user-experience.

C5 Workflow Integration: If the analysis is a disjoint
process from the developer’s main tasks, they tend to not
use it [1]. Therefore, it is crucial to integrate the analysis
into the development process and the developer’s working
environment [1], [2], [10]. Workflow integration raises further
challenges about when analyses should be executed, where
and how the results should be, or tool responsiveness [5], [7].

C6 Specialized User Interface: User interfaces support
users in communicating with the tools. Determining when and
how to display or query information from the user without
overwhelming or boring them is a major challenge [4].

We see that the six challenges revolve around user-tool
communication, with the analysis explaining warnings and
fixes to the user (C1–C2), and the user explaining coding
context and providing feedback to the analysis (C3–C4), in
a non-disruptive, useful way (C5–C6).

III. STATE-OF-THE-ART STATIC ANALYSIS TOOLS

In this section, we present different types of static-analysis
tools: command-line tools (CLI), standalone tools, IDE tools,
and tools with multiple interfaces. We present examples of
such tools used in industry, which we refer to as T1–T7, and
in research, referred to as T8–T14. Table I lists the tools, their
types, and how they address the six challenges from Section II.

Command-line tools: give the least support with respect
to the challenges, since they do not provide a graphical user
interface (GUI). The only way to communicate with those
tools lies in basic commands, and their output tends to be
sparse, for readability purposes. Developers thus need to rely
on external sources to understand the tool’s output and the
potential options for action. Therefore, command-line tools
are more suited to reporting simple rules (e.g., linters), which
warnings and fixes can be explained easily. While this design
does not weaken the theoretical value of the analysis, it
definitely restricts its practical use.

Standalone tools: overcome few of these boundaries
because they provide a GUI, offering more options for action
and providing a clearer representation of the warnings and the
developer’s current working status. Warning messages can be
longer and more easily illustrated, and the tool can provide
fix support. Still, the fixing process is separated from the
coding process as the standalone is outside the IDE. Custom

visualizations such as dashboards and statistics provide an
overview over the current state of the code base, and illustrate
progress. However, in industry tools, warning messages tend
to be generic. The user interface also allows more interaction
between user and the tool, but user interaction is generally
limited to disabling warnings.

IDE tools: improve the workflow integration, since the
analysis becomes part of the developer’s coding environment.
FindBugs in particular introduces a confidence factor. In con-
junction with the IDE integration, this mechanism introduces
a direct interaction with the developer, who can directly see
that their feedback is taken into account. Providing more
specialized views directly in the coding environment upgrades
the workflow integration.

Tools with multiple interfaces: combine the mentioned
forms (standalone, IDE, CLI). This group of tools is mainly
comprised of commercial tools, which often provide advanced
visualizations, statistics, navigation options, and dashboards.
In particular, CodeSonar can provide non-generic warning
messages, which efficiently supports the developer and helps
them resolve warnings (e.g., "The issue occurs if the high-
lighted code executes. See related events 2 and 4."). Similarly
to standalone tools, some of these tools limit user interaction
to disabling warnings and customizing analysis rules, which
can only be done by dedicated teams who have the required
rule knowledge.

Overall, static-analysis tools used in industry show three
main weak points:

1) Warning messages are generic and do not provide ade-
quate fix support (in the case of complex warnings).

2) Mechanisms against false positives and user feedback are
mainly limited to disabling warnings and customization
of the analysis rules.

3) Many tools are not completely integrated into the IDE,
which interrupts the developer’s workflow.

IV. EXPLAINABILITY IN STATIC ANALYSIS RESEARCH

In our recent research, we have explored different ways of
designing usable static analysis tools, to address the short-
comings of current industry tools. In particular, we explored
two directions for explaining analysis warnings and security
concepts to software developers. In one direction (T9 Cheetah,
T11 Mudarri), we elected to expose the inner workings of the
analysis to the developer, to enhance their understanding of
how the analysis works, and why the analysis reports certain
warnings [7], [20]. In the case of T9, we ensured that the
warnings were updated immediately after a change in the code
editor, adding to the responsiveness of the tool. In addition, the
tools also allow the developer to edit the analysis rules, to a
certain extent. In our user studies, we showed that this system
was particularly efficient in helping developers understand and
fix analysis warnings, and gave them a better experience of the
tool.

In the opposite direction (T8 CogniCrypt), we sought to
hide the complexity of the warnings by simplifying the ex-
planations and generating secure code for specific security



Table I: Static-analysis tools used in industry (T1–T7) and research (T8–T14), and how they address the six challenges.

Tool Type C1 C2 C3 C4 C5 C6 Target user

T1 Codacy [11] Standalone Generic msg. Generic msg. User feedback Disable
warning/rule

CI integration Custom interface Developer

T2 cppcheck [12] Standalone Generic msg. Generic msg. Simple rules — IDE plugin Custom interface Developer
T3 RIPS [13] Standalone Generic msg. Generic msg. — — IDE plugin Custom interface Developer
T4 FindBugs [14] IDE Generic msg. Generic msg. User feedback Disable warning,

confidence factor
IDE integration,
instant updates

Simple interface Developer

T5 Fortify [15] Multi-Interface Generic msg. Generic msg. Customizable rules — IDE plugin Custom interface Developer
T6 Checkmarx [16] Multi-Interface Generic msg. Generic msg. User feedback,

Customizable rules
Disable warning IDE plugin Custom interface Developer

T7 CodeSonar [17] Multi-Interface Specific msg. Specific msg. User feedback,
Customizable rules

Disable warning IDE plugin Custom interface Developer

T8 CogniCrypt [18] IDE Specific msg. Generic msg. Performant solver — IDE integration,
instant updates

Custom interface Developer

T9 Cheetah [7] IDE Generic msg. — Customizable rules — IDE integration,
instant updates

Simple interface Developer

T10 VisuFlow [19] IDE — — — Live debugging IDE integration Custom interface Analysis dev.
T11 Mudarri [20] IDE Specific msg. — — — IDE integration Simple interface Configurer
T12 SWAN [21] IDE — — User feedback Disable warning IDE integration Custom interface Configurer
T13 Soot-based [22] CLI Generic msg. — — — — CLI options Developer
T14 FlowDroid [23] CLI Generic msg. — Performant solver — — CLI options Developer

tasks, such as to spare the developer the overhead of learning
about the analysis tool and making common mistakes [24]. Our
preliminary user study also showed a significant improvement
in the coding experience. The first tool aims at giving the
developer control over the analysis by teaching them about
the analysis and its security rules, while the second one goes
into the opposite direction of assisting the developer in their
coding task, and hides the analysis’ details.

We also extended our research to include different types
of users. While a majority of static-analysis research focuses
on software developers [7], [24], we also research how to
help analysis developers [19], [25], or security teams that
configure static analysis tools [20], [21]. The complexity of
understanding why static analysis warnings are (or are not)
reported, and whether or not they are relevant to the end-
user are consistent problematics across all three user groups.
Through our prototypes and user studies, we have observed
the importance of the six explainability challenges detailed
in Section II, in particular, providing understandable warning
messages, integrating our tooling into the user’s workflow, and
designing dedicated functionalities (e.g., graph visualizations
for analysis developers) [7], [19]–[21].

While those results are promising, they also open new areas
for research, especially in the domain of helping the user
understand the analysis, and helping the analysis understand
how to properly assist the user, following the six explainability
challenges from Section II.

V. FUTURE LINES OF RESEARCH

In Section II, we saw that the main challenges with the
usability of static analysis tools revolve around an understand-
ability gap between the analysis and the developer, where the
developer struggles in understanding the warnings, and the
analysis does not have all of the information the developer
knows.

To enhance explainability in static analysis, we thus zoom
out of the analysis itself, and envision an interactive system
between the analysis tool and its user. Based on user input,
the analysis tool could help the user perform their tasks, as an
assistant, while at the same time building their knowledge of
the tasks and of how the tool works, as a teacher.

For the assistant, we can build on top of the current research
that hides the complexity of the analysis from the user, as
is done in different domains, such as compilation errors,
which often consist in short, actionable messages “Undeclared
variable x”. Spell checkers push the abstraction to the extreme
by not explaining the warning at all, and directly proposing
fixes. A potential research area would thus be to analyze and
generate potential fixes from the analysis rules, and to report
warnings based on such fixes rather than explanations of the
warning itself. Taking this a step further, the analysis tool
could also learn from the user’s past fixes and reuse them.
Another approach would be to prevent the warning from being
generated in the first place, similarly to T8 [24] where the tool
generates secure code from the start.

When it comes to teaching complex concepts to the user, we
can turn to human-centric applications such as StackOverflow
or GitHub issues, where “warning” messages are answered
by humans and yield adapted solutions. Many solutions are
inaccurate but in the case of static analysis, the automated
tool is less prone to errors than humans. The important
factor for analysis tool design is the discussion between the
different members of the community, who propose different
solutions, ask for more details, and elect the correct answer.
Learning how to address the user and engage in a human-like
manner is an interesting research area for a teacher analysis
tool, especially considering that in industry, developers rarely
work alone, and the community aspect of teamwork can be
leveraged to build a reliable knowledge base. In this system,
the user would be able to learn from the tool in a more
engaging way, and the tool would learn from the community



and could apply that knowledge when detecting vulnerabilities.
Another way of teaching complex concepts is shown in

video games, which use different tricks to engage the player
and involve them in quests through stories, difficulty calibra-
tion, positive feedback, and interactive graphical interfaces.
Integrating elements of gamification into the analysis tool
would allow for a more engaging experience.

The more the analysis knows about the code base, and
the user’s requirements and knowledge, the more precise
and relevant its warnings. As a result, it is important to
take into account the user’s knowledge and assumptions of
the code, and also what has already been taught to them,
in order to provide warning messages that are relevant to
particular users, in contrast to current tools that display the
same message for everyone. In past research, we have started
to investigate how to use machine learning to adapt static
analysis to particular code bases (T12) [21], and propose to
extend this work to particular users and tasks. We advocate for
collaborations between the domains of artificial intelligence
and static analysis, to study how to provide static-analysis
users with adapted messages to both teach and assist them.

An important aspect of such a tool is knowing the user
and their needs. Depending on the type of user (e.g., software
developer, analysis developer, manager, etc.), their goals might
fundamentally differ. As a result, there is a need to first
understand the user requirements and how they influence their
interaction with the tool, to determine the aspects that the
analysis tool should take into account. Furthermore, it is
important for the user’s experience to know when to provide
what kind of message, to avoid, for example, entering a long
teaching-heavy session if the user has no time on their hands.
Along with building a usable, engaging interface that allows
them to use the tool to its full potential, this falls under the
scope of human-computer-interaction, a domain with which
we also encourage collaborations.

VI. CONCLUSION

Research on the usability static-analysis tools has identified
a large body of usability issues, which we have grouped in six
main challenges that center around the notion of explainability.
While recent analysis tools address some of those challenges,
the usability problems persist. We argue that their root cause
lies in the currently unclear two-way communication between
the analysis and the user. Therefore, we suggest the concepts
of teaching and assisting systems. The assistant undertakes
specific tasks and hides the need for explanation as it satisfies
the user’s requests. In contrast, the teacher provides tailored
explanations required for the user’s understanding of a specific
task or warning. To this end, we encourage collaborations with
experts from other domains such as human-computer inter-
action, gamification, and artificial intelligence, which share
similar challenges or provide transferable approaches.
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