A Large-Scale Study of Usability Criteria Addressed by
Static Analysis Tools

Marcus Nachtigall Michael Schlichtig Eric Bodden
Heinz Nixdorf Institute, Paderborn Heinz Nixdorf Institute, Paderborn Heinz Nixdorf Institute, Paderborn
University University University & Fraunhofer IEM
Germany Germany Germany

marcus.nachtigall@uni-paderborn.de

michael.schlichtig@uni-

eric.bodden@uni-paderborn.de

paderborn.de

ABSTRACT

Static analysis tools support developers in detecting potential cod-
ing issues, such as bugs or vulnerabilities. Research on static anal-
ysis emphasizes its technical challenges but also mentions severe
usability shortcomings. These shortcomings hinder the adoption of
static analysis tools, and in some cases, user dissatisfaction even
leads to tool abandonment.

To comprehensively assess the current state of the art, this paper
presents the first systematic usability evaluation in a wide range
of static analysis tools. We derived a set of 36 relevant criteria
from the scientific literature and gathered a collection of 46 static
analysis tools complying with our inclusion and exclusion criteria—
a representative set of mainly non-proprietary tools. Then, we
evaluated how well these tools fulfill the aforementioned criteria.

The evaluation shows that more than half of the considered tools
offer poor warning messages, while about three-quarters of the
tools provide hardly any fix support. Furthermore, the integration
of user knowledge is strongly neglected, which could be used for
improved handling of false positives and tuning the results for
the corresponding developer. Finally, issues regarding workflow
integration and specialized user interfaces are proved further.

These findings should prove useful in guiding and focusing fur-
ther research and development in the area of user experience for
static code analyses.
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Software usability.
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1 INTRODUCTION

Static analysis tools analyze program code without executing it.
They are used in different contexts and for different purposes, rang-
ing over different complexities. For instance, there are rather simple
tools considering code quality [18, 73], more complex bug find-
ers [47, 71], and even more sophisticated security scanners search-
ing for exploitable vulnerabilities [23, 64]. Research in static analysis
has made much progress, allowing a more diverse application of
static analysis.

While the central task of static analysis is detecting respective
code problems, the tool also has to inform the developer about these
issues, support them in resolving issues, and offer all of its features
in a usable way:. If the tool is not able to support the developer in
these aspects, they will not be able to solve or even understand
the issue—they might not even believe the tool and regard correct
warnings as a false positive [8]. If it is too difficult to access the
tool’s features in a user-friendly way, the developer will simply not
use it. Hence, previous research has shown that it is insufficient
to only study the technical perspective of static analyses and that
research should rather also take into focus the users’ perspective,
and support users accordingly [12, 20, 34, 66]. Over the past decade,
this perspective has been supported by several publications, point-
ing to specific flaws and weaknesses when it comes to the user
experience with static analysis tools [25, 29, 61, 74, 78].

This paper is the first to provide a comprehensive view on the
current state of Static Analysis Tools (SAT) from the user’s perspec-
tive. While prior studies drew anecdotal evidence from surveys,
interviews, or the authors’ own experiences, this paper takes a com-
plementary view on reported issues by instead considering a broad
range of existing tools and evaluating them directly. This paper
thus presents the first such direct assessment of user interactions
offered by a large fraction of the SAT landscape. Importantly, it
paints a current picture of this landscape—after all, some of the
previous studies are several years old and many tools might well
have evolved since then.

To evaluate the current state of SATs from this perspective, we
executed an assessment of current tools. We searched the current
related literature in detail and extracted 36 relevant criteria, which
we used for the evaluation. We discussed and defined these criteria
with their assessment grades in advance. Furthermore, we collected
243 tools and evaluated a representative set of 46 tools that met
our inclusion and exclusion criteria. Our evaluation yields central
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open challenges in the current state of SATs: Overall, the tools
present their warnings rather poorly, which causes a high risk
that developers may not understand or even care for the warning.
Furthermore, in most cases neither the warning messages, nor
any other feature in the tool, supports the developer in fixing the
issue. Next, current tools neglect the potential of asking for the
developer’s knowledge and integrating this information to provide a
more tailored user experience. Last but not least, the tool integration
into developers’ workflow remains an open challenge in many tools.
To summarize, this paper makes these original contributions:

e It presents a catalog of 36 usability-evaluation criteria drawn
from the scientific literature.

o It evaluates the current state of SATs by applying these cri-
teria to 46 current SATs.

e For each criterion, the paper discusses why it is relevant,
and what fraction of current tools offers features to fulfill
the respective criterion.

o It reports open challenges and neglected aspects, which
might be starting points for further research.

All raw data we collected is being made available online as a
curated artifact at: https://sites.google.com/view/datatoolsurvey/

The remainder of the paper is structured as follows: In section 2
we describe our general methodology on how we collected tools,
defined criteria, and executed the evaluation. Section 3 discusses our
criteria in more detail and presents our evaluation results. Section
4 discusses potential threats to validity. Section 5 presents some
related work. Finally, section 6 concludes with our main findings.

2 METHODOLOGY

We first explain the most important parameters to our usability
survey of SATs: Which SATs to evaluate? What evaluation criteria
to use? And what exact evaluation procedure to use for each tool?

Collection of Tools. While it is infeasible to compile a complete
set of all existing SATs, we aimed at gathering a representative set
of tools. Therefore, we searched several prominent websites giving
recommendations for which SAT to use.! We found these lists from
the scientific literature [66] and by snowballing from these lists, as
they also recommend further lists. This process resulted in a very
substantial set of tools, even after removing duplicates.

As it would not be realizable to evaluate all these tools, and
neither give a realistic view on the current state of the art, we
decided to apply reasonable inclusion and exclusion criteria to the
collected set.

First, we included only tools that consider code of the languages
C, C++, Java, JavaScript, C#, and Python, since these appear to
be the most used languages [75], also being more relevant in the
related literature than the excluded languages. After applying this
criterion, we obtained a set of 243 tools in total, which were consid-
ered in more detail in the next steps. Second, we included only such
SATs that are in some way giving warning messages and hinting at
!We used the following websites:
https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
https://security.web.cern.ch/security/recommendations/en/code_tools.shtml
http://projects.webappsec.org/w/page/61622133/StaticCodeAnalysisList
https://github.com/mre/awesome- static-analysis#multiple-languages- 1
https://en.wikipedia.org/wiki/List_of tools_for_static_code_analysis

https://dwheeler.com/essays/static-analysis-tools.html
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coding issues. This includes different analysis types, such as simple
linters, bug finders, and more complex security checkers, but not
libraries or model checkers. 51 tools do not fulfill this criterion.
Third, we excluded four tools for which we were unable to find
their executable (nor source code), or even a related website. Fourth,
we excluded most proprietary tools as we were unable to access
them, which accounts for 81 tools. As an exception, to broaden
our evaluation results, we contacted the leading companies of pro-
prietary tools mentioned in the Gartner Magic Quadrant [76]. In
the end, though, only one of these tools was considered, as the
remaining reported tools did not match our inclusion criteria or we
were not able to access them after all. Fifth, we excluded 41 tools
that were not maintained in the previous two years, as these tools
would not represent the current state of the art. In this step, we
excluded a tool when following the documentation did not lead to a
successful installation and when we did not have any further ideas
on how the installation might succeed. At last, we had to exclude
20 tools that we were unable to install as described below.

Table 1 gives an overview of the number of overall collected,
excluded, and included tools. Full information on each considered
tool is provided in our artifact.

Some of the considered lists recommending SATs contain a Multi-
Language section. If tools from this section have been included in
the evaluation, they are mapped to the language we evaluate it
in. Accordingly, all tools were mapped to only one programming
language even though they might support several languages. For
excluded tools, we did not consider them further or map them to
a specific language. The miscellaneous exclusions row includes
libraries and frameworks, model checker, IDEs, tools without static
analysis, and tools without any kind of warning messages. Overall,
46 tools are included in the evaluation. In this, Java and Python
account for the biggest share. In comparison to the amount of
included tools, the number of tools we have not been able to install
appears somewhat high. This hints at first usability issues of poor
documentation which is not considered further in this study, but
still is a major perceived pain point in this study.

Evaluation Criteria. The main goal of our evaluation is to assess
the usability of current SATs. To conduct such an assessment objec-
tively, one requires clear criteria. We considered different aspects
to derive such criteria: we considered specific features, how the
user might interact with the tool, what information is given to the
user, and how this information is presented to the user. While some
criteria are strongly connected to specific features, other criteria are
rather abstract and might be fulfilled in different ways. Regarding
the former, our approach is somewhat related to a feature analysis
as in DESMET [37], yet regarding the latter it extends further. We
aim at defining clear criteria to objectively evaluate the tools’ us-
ability, but unlike DESMET are not constrained to the context of
an organization and its culture. Furthermore, our main focus is not
on the features itself and on the process of deciding what tool to
use, but rather on using these features as a device to evaluate the
overall usability of SATs.

Nachtigall et al. [42] have grouped recurrent usability issues into
six categories, which are connected to understandable Warning
Messages, Fix Support, False Positives, Integration of User Feedback,
Workflow Integration, and a specialized User interface. To expand on
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Table 1: Overview of tools considered, excluded, and included overall

Cand C++ Java Python C# JavaScript Multi-Language Overall
All considered tools 69 52 28 18 23 53 243
Excluded: Proprietary 29 19 0 4 3 26 81
Excluded: Not maintained 15 8 2 4 7 5 41
Excluded: Unable to install 8 4 2 0 3 3 20
Excluded: Other reasons 12 8 7 4 5 19 55
Included 5 13 17 6 5 0 46

this categorization, we searched the related literature and compiled
a set of usability issues related to SATs. For collecting criteria, we
were inspired by the approach of systemic literature reviews [36]
but did only adhere to in a lightweight form. Particularly, we started
with central papers from this area and further used snowballing.
After collecting the usability issues reported by the related lit-
erature, we mapped the identified issues to these six categories.
Furthermore, we discussed for each issue whether we find rea-
sonable assessment grades. For instance, it would be desirable for
warning messages to be clearly understandable [8, 20] or to use nat-
ural language [34]. However, it might be very difficult to objectively
evaluate whether a tool fulfills these aspects, as this would require
a dedicated user study with every single tool. If we could not find
objective definitions for a criterion and its assessment grades, we
excluded it from our study. For all remaining criteria, we defined in
advance what exactly has to be evaluated, and we predefined assess-
ment grades. In most cases, these assessment grades are composed
of yes, partially, and no, indicating to what extent the corresponding
criterion is fulfilled. The next section explains the criteria in detail.

Setup and Evaluation. Regarding the evaluation of one specific
tool, we used the following protocol. First, we searched for the
related website or github repository. The websites we collected our
tools from usually refer to some of these. On the resulting site, we
checked the documentation on the setup of the tool and also on
how the tool should be used. We try to set up the tool on a standard-
ized Windows or Linux VM, depending on which platform the tool
supports. If the installation (following the documentation) did not
succeed, we checked for alternative solutions until either the tool
was successfully installed or we ran out of ideas on how to complete
the installation. Due to the high workload involved, usually the
installation was done by the first author, and only if this did not suc-
ceed the second author also tried to install it, again according to the
documentation and potential solution ideas. If both failed, the tool
was excluded from the study. Since both authors are experts regard-
ing SATs, it is plausible that others would fail here, too, making this
exclusion process appropriate. If the installation succeeded, the tool
was evaluated using a multiple-raters approach [60]: The first and
second author evaluated the tool independently from each other,
according to the predefined evaluation criteria. For this purpose,
we explored the available documentation and attempted to find
relevant features and information in the installed tool. Afterwards,
both evaluations were compared. For coinciding evaluations, we
set this evaluation as the final evaluation. In case of disagreement,
both authors discussed the source of disagreement until agreement
on a final evaluation was reached. For every tool we used real world
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projects and took care to use a project where the respective tool
detects many issues. We also used comparable input projects within
the same programming languages and analysis scopes.

3 RESULTS

In this section, we discuss the used criteria, tool evaluations, and
resulting implications in more detail. Table 2 provides an overview
of all included tools and a summarized view of the evaluation for
each tool in each category. The table is divided into command line
interface (CLI) tools and graphical user interface (GUI) tools. For
this rough evaluation, it is easier to receive partial fulfillment in
some cases. For instance, some basic criteria from the workflow
integration and user interface are fulfilled by many tools. Full results
are available in our online artifact. Since the main differences in the
evaluations are mainly related to whether the tool is a CLI or a GUI
tool, we will repeatedly compare these types of tools. As we found
that there is no significant influence by the analyzed programming
language, we will not further discuss the language in the following.
In the remainder, we will focus on the evaluation criteria, discuss
their relevance, and then present our evaluation results.

3.1 Warning Messages

Warning messages are the main approach of SATs to point potential
code issues to developers. Therefore, they have to direct the devel-
oper’s attention to the detected issue and give information on what
might be wrong, why it should be fixed, and how it could be fixed.
This information has to be presented in a clear way [8]. Johnson et
al. show in their survey [34], that most of their participants criticize
the poorly presented tool output and that it should be presented
more user-friendly and intuitive. To analyze this area in more detail,
we gathered criteria from the literature and evaluate collected tools.

Internal Reasoning. Barik et al. [6] show that warnings only
present the final result of the analysis but do not give any insight
into the underlying reasoning so that the developer has to mentally
duplicate this process. Barik further argues that SATs are able to
computationally expose the internal reasoning [4]. Rule graphs are
one way to achieve this [19].

In our evaluation, only three tools give at least some insight into
the reasoning process. This indicates that related concepts are not
as highly prioritized by tool developers as it is by the scientific
literature. While it might need quite some implementation effort
and is not that relevant for simple linting tools, this aspect is quite
relevant for tools that seek to signal complex findings in the code.
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O virtually not fulfilled
© : somewhat fulfilled
@ : clearly fulfilled
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Bandit [3]
Cpplint [15]
CScout [16]
Dlint [18]
Flawfinder [24]
Hegel [28]
InferSharp [30]
McCabe [39]
NodeJSScan [45]
Dependency Check [10]
Pycodestyle [49]
Pydocstyle [51]
Pyflakes [52]
Pyre-Check [54]
Pytype [56]
Radon [57]
Semgrep [65]
Vulture [81]

Wemake-Python-Style [82]

Wily [83]
Xenon [84]
Xo [86]

Checkstyle [11]
CogniCrypt [13]
Commercial Tool
CppCheck [14]
DevSkim [17]
ErrorProne [48]
Eslint [21]

Fb-Contrib [22]
FindSecurityBugs [23]
Standard [73]

Mypy [41]

PMD [47]

Puma Scan [63]
PyDev [50]

Pylint [53]

Pyright [55]

Reshift [58]
Roslynator [59]
Security Code Scan [64]
SonarLint [69]
SonarQube [70]
SpotBugs [71]
VisualCodeGrepper [79]
VSDiagnostics [80]

e0®00 22200000 0®®000®O00| 00000V OOOOVOO®®OOO®™O O O ®| Warning Msg.

®0000®0®2000®00000O®OOO®O|OOOOOOOOOOOOOOOOOOOOOO)| FixSupport

eeeee80008080008880000LOBO|I0OO0O0OOOOOOOOOOOOOOOOO O ®| False Positives

0000002000000 0®0C®0000 OOOBOBOOVOOBOOOOOOOOOO®| User Feedback

OsseOOSessssOocassass a0 cacsssassocsssssaseee® O®| WokiowIntegr
occecccecseeeee200®0®® OOBOOOOOOOOOOLOO®O®O® O O User Interface
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Clickable Trace or Path Projection. Johnson et al. mention the par-
ticipants’ demand for visual outputs supporting the warning [34].
Approaches for this would be clickable traces of the relevant in-
termediate steps or path projections. Similar to internal reasoning,
these approaches hint at the main points of the issue and how they
are connected with each other. One general approach is presented
by Phang et al. [35]. In their study with FindBugs and Fortify SCA,
Ayewah et al. [1] point to the benefits of path projection for the
understanding and evaluation of a reported bug but also point to
its shortcomings in potentially confusing the users.

Our evaluation shows that most of the considered tools do not
support any related features. Two tools fulfill this criterion and
three tools give at least little support in this regard, while 41 tools
do not point to any intermediate steps in their warning messages.
All CLI tools are evaluated negatively in this criterion. Again, this
feature is not required for simple linting tools but is of high value
in the evaluation of warnings of complex issues.

Explaining Consequences of an Issue. Intuitively, if developers are
not informed about the consequences of a detected issue, they will
probably care less about it, as the importance of the problem may
remain unclear. In their interview and observation-based study,
Thomas et al. [74] evaluate their interactive analysis tool ASIDE
and discuss the necessity of explaining the issue’s consequences.
Before approaching a detected issue, it appears to be highly relevant
to evaluate whether a found issue is indeed causing problems or
exploitable. If this appears not to be the case, developers tend to
ignore the issue. Therefore, explaining the consequences of an issue
is not only important for understanding the issue, but also for the
evaluation of whether the developer considers fixing it.

In our evaluation, the kind and degree of the expected explana-
tion highly depend on the analysis type. For linters considering
code style, the consequences are rather trivial. Bug finders or secu-
rity scanners require more explanation since the context usually
is more complex. While the majority of the considered tools (33
of 46) still does not explain the consequences of detected issues,
13 tools mention potential consequences (five partially, eight yes
evaluations). Comparing CLI tools with the GUI tools shows that
the fraction of tools not explaining the consequences is higher in
CLI tools (86.3% compared to 71.7%).

Explaining by Example. Another approach in explaining a prob-
lem concept lies in illustrating it with examples. These examples
might consider the formation of the issue, its type, consequences,
or fix. Explaining the underlying issue with relevant background
information using the example helps the developer to get a better
understanding of the issue and how to fix it [34]. In a next step,
Smith et al. [66] argue that providing any example is better than not
doing it at all, but also that mismatched examples are another us-
ability issue. When the hard-coded example differs too much from
the original code, the developer has to figure out the transferable
similarities between them.

In our evaluation, we mainly consider whether there is any
example given for the explanation of the issue and the fix. We
find that five tools offer reasonable and complete examples, two
tools give at least some kind of example for illustration, whereas
39 tools do not use any kind of supporting example. This is worse
for CLI tools, where only one tool offers a partial solution. While
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we agree with Smith et al. [66] that tool developers should aim for
matching examples, our evaluation shows that as first step even
more examples should be included in warning messages.

Offer Further Information. One pain point of insufficient warning
messages often lies in the issue of presenting insufficient infor-
mation [34, 66, 68]. Smith et al. [66] consider missing information
regarding vulnerability prioritization and fix information, but also
mention that the solution would not be to overload the notification
with too much information. Johnson [31] argues that offering insuf-
ficient information leads to the developer searching other resources,
while processing too much information is too time-consuming.
Since the context and the developer’s expertise are relevant as
well [33], solution approaches might need to offer additional in-
formation to more details e.g. via links [34] or else adapt to the
corresponding developer, e.g. using machine learning [32].

Almost one-third of the considered tools offer more information
in warning messages (three partially, eleven yes evaluations). In
many cases, a link to their website offers explanations about their
different warning categories, more detailed information about the
detected issue. Still, the ratio of tools offering more information is
a little worse in CLI tools (one partially, three yes evaluations).

Warning Connection to Code. As mentioned above, Smith et
al. [66] report issues related to reports that are disconnected from
the code. Warnings often consist of mismatched examples or a main
template text, where only names of the variables, method, etc. are
changed. As errors from the same warning category with the same
warning message still might be unique, the developer still has to
process the message further, in addition to the other challenges
the developer faces while understanding the warning. Thomas et
al. [74] find that developers wish to integrate the warnings within
the code and contextualize them further. Other developers desire for
the use of more natural language [34]. To pursue natural explana-
tions, Barik et al. [5] analyzed the communication on StackOverflow
to find out how human developers explain code issues.

We consider a message as generic if the tool always states the
same error message for a specific error or only adapts the names of
parameters or methods. Accordingly, we only found three tools to
really fulfilling a closer connection to the code base, while 43 tools
are more generic. In many cases, the content of such messages is
also very short, which makes it even more complicated to under-
stand and apply the warning message to the code base. In these
cases, the developer is roughly informed about the issue and knows
where to find the issue. However, such generic messages often lack
information and context and hinder the developer in understanding
what exactly is wrong with the code.

Unique Weakness Identifier. If the developer would like to learn
more about a specific code issue outside the SAT, a unique weakness
identifier is valuable as it helps the developer recognize it or search
for information. Security vulnerabilities are usually categorized
according to the Common Weakness Enumeration (CWE).? In other
contexts such categorization is not that clear, for instance in code
style linters or non-security bug finders. Still, such categorization
according to globally unique identifiers would improve the search
for further information for specific issues outside the used tool.

Zhttp://cwe.mitre.org
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Our evaluation validates this description on unique identifiers:
security SATs (ten tools) categorize issues according to the CWE,
while this is difficult to achieve in other contexts. Three tools find
partial solutions for unique identifiers, which are not as well-defined
as CWEs but still helped with clear identifiers. Again, this aspect
is not as often implemented in CLI tools as in other tools. This is
probably connected to the higher amount of simpler tools (e.g., code
style linter) in CLI tools as in more powerful and complex tools.

Error Information. In our last aspect related to warning messages,
we evaluated whether the tools answer some of the central infor-
mation categories that are relevant to understand, evaluate, and fix
the issue. Therefore, we consider the categories of the description,
existence of a general warning categorization, localization of the
found issue, and whether there is a severity evaluation. The latter
belongs to the most relevant factors while selecting warnings [78].

Though the implementation of an error description in the warn-
ing message might appear trivial, we find that there are quite some
tools using very unclear warning messages. In these cases, there is
a general warning text, but no description of what is wrong with
the code or what the developer might want to change. Sometimes
there is a description of a part, but no explanation of what is wrong
about it (e.g., code style linting tools describing the length of a code
line or outputting a number related to code complexity). In ten tools
we did not find a description of a code issue and in eight cases the
description is insufficient. Again, CLI tools stand out with a higher
fraction of no descriptions or partial descriptions. Only about 40%
give a satisfying error description in CLI tools, while this fraction
lies around 60% for GUI tools.

Next, we evaluate whether the tool associates a unique warning
category with every warning message. Compared to the unique
identifier, no global unique identifier is required, but a rough classi-
fication of the issue types the SAT considers. Such categorization
helps in our evaluation as it roughly hints to the error type and
helps the developer to recognize and connect experienced warning
messages over time. 32 of the considered tools apply clear error
categories, as opposed to twelve tools not categorizing errors accord-
ingly (two partially evaluations). The share of CLI tools fulfilling
this criterion is somewhat smaller, but still more than half of the
CLI tools use error categories (about 59% compared to about 69%).

In the next criterion, we evaluate whether the warning messages
hint at the place of the issue. In case of issues covering several
intermediate steps, we ignore intermediate steps as this is already
covered above. Instead, we only consider the main location of the
error and evaluate its granularity, using the evaluation grades line
of code, method, class, and project. 40 tools hint at the exact line
of code. Since there are some issue types that are not related to
one specific line but rather to methods or classes (e.g., dependency
checker), there are good reasons for a rougher localization.

Last, we check severity evaluations of warning messages. Sever-
ity supports the developer in the evaluation of a notification and
for the prioritization of fixing errors. The distributions of tools
fulfilling this criterion is somewhat balanced since 21 tools do not
use severity classifications whereas 20 tools do (five partially eval-
uations). In CLI tools, the distribution is very different, where four
tools fulfill this criterion and 18 do not.
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Summary. Overall, our evaluation of the SATs’ warning mes-
sages very much confirms the usability issues presented in the
literature. For most of the categories, the majority of tools do not
support the required features. Warning messages in CLI tools tend
to be worse compared to GUI tools. We found too many tools with
very short warning messages and hardly any documentation about
detected issues and what might be wrong with the code. Then
again, there are also good examples for all considered aspects. This
leads to the assumption that there are known approaches to ad-
dress most usability issues but only a few implementations of these
approaches.

Main Findings: (1) More than half of the tools have too poor
warning messages (30 of 46, see Table 2). (2) Three tools give
good warning messages, which might inspire more tool devel-
opers. (3) Hardly any tools give information about why they
evaluate something as an issue (giving traces or paths, internal
reasoning). (4) Explaining the code issue with details exceeding
the most basic aspects also remains a common problem.

\ J

3.2 Fix Support

The fix support category is related to warning messages as a good
explanation already leads to potential fix ideas. Heckman et al. [26]
try to classify alert messages as actionable and unactionable using
machine learning techniques and continue to synthesize available
research results about main approaches for actionable alert identi-
fication techniques in a systematic literature review [27]. Accord-
ingly, SATs should not only inform the user about potential issues
but also add further information on how to fix the issue. Sadowski
et al. [61] affirm the challenge of unactionable alerts: One of their
main lessons learned is that tools should not just find bugs, but
also fix them. Smith et al. [66] evaluate four security-oriented SATs
and conclude that SATs do not support the developer well enough
to fix the issues, which even might lead to the abundance of SATs.
Therefore, we sought to analyze the fix support features of the
considered tools.

Quick Fix. Regarding quick fixes, the scientific literature points
to two main issues: the lack of implemented quick fixes and the
lack of trust in existing quick fixes. Nguyen Quang Do et al. [20]
state that quick fixes are one of the most popular features of SATs,
based on their survey of developers. Johnson et al. [34] find the lack
of or ineffectively implemented quick fixes as the most frequently
mentioned difficulty in their study. This lack of effectively imple-
mented quick fixes may diminish trust: some developers trust their
own solutions more than solutions offered by the tool [74].

We considered it too difficult in our context to evaluate whether
offered quick fixes are implemented too ineffectively. Hence, we
only check whether the tool offers quick fixes at all. We find that 36
tools do not offer any fixes to the developer (see again Table 2). Only
one of 22 CLI tools offers quick fixes. While this shows that the
overall number of tools not offering quick fixes is too high, almost
half of GUI tools offer some partially or fully satisfying quick fixes.
While it is technically challenging to offer quick fixes, especially for
more complex issues, these numbers show that it is still possible to
offer some help to the developer, but also that we can still do better
by offering more fix support.
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Alternative Solutions. In many cases, there is not only one pos-
sible solution for a detected issue. Depending on the developer’s
preferences, the development contexts, and other aspects, one so-
lution might be better fitting than other solutions. Therefore, un-
derstanding alternative fixes and approaches is one of the main
questions, developers ask while diagnosing potential security vul-
nerabilities [67, 74]. Instead of quick fixes, Barik et al. [7] propose
the idea of slow fixes, in which the developers are supported in
exploring different solutions and balancing the benefits of manual
and automated fixing.

In our evaluation, we find that only four tools consider alterna-
tive solutions. Two of these tools are evaluated as partially fulfilling
as they offer alternative solutions in some cases and only one op-
tion for other issues. None of the CLI tools consider alternative
solutions. This shows that even though there is an interest from
the developers to consider alternative solution approaches, this is
not implemented by hardly any tool developers.

Fix Preview. Connected to the need of exploring the space of
possible solutions is the question of whether offered fixes are ap-
plicable in the given code context. Due to mentioned trust issues
towards quick fixes, developers might be afraid that the fix might
break the code in other parts [74]. Therefore, a fix preview helps
evaluate whether the fix causes undesired side-effects and to as-
sess the application of the fix in the given context [67]. Johnson
et al. [34] also support that developers would prefer fix previews
instead of directly applying the fix.

Just like the previous criterion, none of the CLI tools offers a fix
preview. While there are few other tools implementing this feature
(one partially, four yes evaluations), this only constitutes a small
fraction of the overall considered tools (about 11%).

Fix Example. Corresponding to the explanation of the issue in
warning messages using examples, examples also might be used to
explain and illustrate solution approaches. Similar to fix previews,
Johnson et al. [34] report that some participants of their study would
prefer the use of examples to get a better understanding of how
to fix the problem. Hartmann et al. [25] state the hypothesis that
relevant solution examples help novices to interpret and correct
error messages.

In our evaluation, we find that 21 of 22 CLI tools do not present
any fix examples to the developer. Similar to Fix Preview, five of the
remaining GUI tools provide fix examples to the developer, but this
represents a small fraction as well.

Fix Tutorial. From the perspective of a warning message, explain-
ing all necessary steps the developer has to take to fix the issue
appears to be relevant and useful. Nachtigall et al. [42] present
the idea of an interactive system between the SAT and the user, in
which the tool takes the role of an assistant and of a teacher. The
teacher guides the developer through fixing all detected issues and
gives all necessary information at every state of the fix. Johnson et
al. [32] aim to model the user’s knowledge and adapt the tool. The
tool would present the required knowledge accordingly and might
support the user with the next steps to fix an issue.

Asbefore, only one CLI tool gives partially satisfying instructions
on how to fix the reported issue. With regard to the remaining
GUI tools, there are five more tools (one further partially, four yes
evaluations) giving more detailed guidance on how to fix the issue.
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However, those tutorials are not comparable to for instance the
assistant discussed before.

Summary. The Fix Support category appears to be a much ne-
glected area. This may be due to technical challenges in the imple-
mentation of corresponding features. Yet, the literature shows that
giving more fix support is a highly relevant task for tool developers.
Only reporting potential issues is insufficient, if the developer is
not able to fix them afterwards. Throughout our considered criteria,
CLI tools offer almost no support. GUI tools reach somewhat better
results. Nonetheless, the numbers of tools fulfilling these criteria
are very low. Not every tool needs to fulfill every aspect since these
approaches aim for the same goal. Overall, our evaluation exposes
definitive challenges for future work.

Main Findings: (1) With 37 tools giving almost no fix support,
this appears to be the most neglected category. (2) Three tools
give sufficient fix support. (3) Only ten (partially) offer quick
fixes. Even fewer tools support this with alternative solutions
Or previews.

3.3 False Positives

One major reason why developers do not use SATs is the high
amount of false positives. Johnson et al. [34] discuss the conse-
quences of when there are too many false positives. Accordingly,
false positives outweigh true positives and lead to dissatisfaction.
Christakis et al. [12] stress that high false positives rates lead to
disuse of the analysis. Furthermore, an analysis of static analysis
tool alerts related questions on StackOverflow reports that false
positives belong to the most prevalent topics [29]. As the existence
and occurrence of false positives mainly is a technical problem
related to the implementation and we focus on usability aspects,
we consider how developers might deal with false positives.

Suppression of False Positives. One mechanism to avoid some
false positives lies in suppressing false positives. By telling the tool
that a specific warning is a false positive, the tool might ignore
reporting the same issue again or even use this information for a
user feedback-based ranking of warnings [40]. The high relevance
of suppression mechanisms for false positives is stressed in several
publications [2, 12, 34].

In the evaluation of this criterion, we only consider explicit ways
of reporting false positives to the tool. Using implicit mechanisms
like code annotations are valid as well as desired by developers, but
will be considered in the temporal suppression criterion as code
annotation is used in more contexts than for false positives. We
find that overall twelve of the considered tools offer the possibility
to explicitly report false negatives, see again Table 2. Only two of
these twelve tools are CLI tools.

Confidence Evaluation. SATs often add further metrics to the
warning message for the evaluation whether it is a false positive,
one of which is a confidence evaluation [20]. Tools such as FindBugs
associate a confidence factor to each warning [2], which allows the
developer to filter by confidence and hence support the developer
in focusing on relevant warnings.

In our evaluation, we find that six tools offer such confidence
evaluation, including three CLI tools. Three of these six tools are
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extensions of FindBugs, which already offers confidence evaluation
before extending it. This emphasizes how rarely this mechanism is
considered overall.

Ask for User Knowledge. Sometimes the analysis has incomplete
knowledge about the context, in which the analyzed code is exe-
cuted and erroneously reports an issue due to the analysis’ over-
approximation. To avoid this, Zhu et al [87] propose to explicitly
ask for the developer’s knowledge in the context of access con-
trol. This approach might also be transferable to different contexts.
Furthermore, asking for user knowledge might help in modeling
the user’s knowledge and use this information to adapt the tool to
the developer’s preferences [32]. Tripp et al. [77] present a similar
approach, where the tool applies feedback and statistical learning
to improve reports. As mentioned above, a SAT also might collect
the user’s feedback on whether a report is a false or true positive
for future reports [40].

We evaluate eight tools to partially fulfill this criterion, while all
remaining 38 tools offer no related features. Again, the evaluation
is worse for CLI tools, where no tool asks for the user’s knowledge.
While this feature might be less prioritized than other features, our
results indicate that this concept idea is rather in early steps and is
hardly used in practice.

Summary. Our observations in the category of false positives
indicate that usability-related mechanisms are hardly used to avoid
false positives. For each of the considered criteria, there are tools
considering them, but overall these mechanisms are implemented
too rarely. Considering the high impact of false positives on the
developers’ satisfaction, this poses many tasks for future work.

Main Findings: (1) Only twelve tools let the developers explic-
itly report a warning as a false positive. (2) Overall, 15 tools
fulfill the considered criteria partially or better, while 31 are
weak in this aspect.

3.4 User Feedback

The category of how false positives might be handled from the
perspective of usability is related to the perspective of the user’s
feedback. Hence, some examples of how user feedback might be
integrated in SATs are mentioned above. In this section, we consider
some further, more general use cases, in which the integration of
the user’s feedback is relevant. The more the analysis adapts to
specific users, the more useful it will appear to them [31, 32].

Customizability of Analysis Rules. Johnson et al. [34] point out
that customizability, in general, is a problem why developers do
not use SATs, including analysis rules but not restricted to them.
Nguyen Quang Do et al. [20] confirm this demand for the customiza-
tion of analysis rules. Not all rules should be turned on by default
and the process of selecting rules should be made easy [12].

In our evaluation, we check whether the tools allow the developer
to turn specific analysis rules off, modify existing rules, or introduce
own rules. These options are not mutually exclusive and allow for
multiple selections. By doing this, we find that 19 tools do not offer
any customization of the analysis rules. With 14 tools the majority
of these tools are CLI tools. The remaining 27 of all considered tools
offer the option to switch off specific rules. 19 of these 27 tools also
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allow to modify existing rules and 17 of them allow to introduce
own rules. These fractions indicate a positive tendency towards
allowing customizability of analysis rules.

Validation of True Positives. As seen above, it is not only useful
to report false positive to the tool, but also the validation of true
positives for user feedback-based self-adaptive ranking [40]. Ac-
cordingly, warning types with a higher fraction of true positives
and fewer false positives might be higher prioritized.

Regarding the 46 selected tools, only two tools offer explicit
validation of true positives, none of which are CLI tools. In other
cases, this might only be done implicitly by fixing the error or
by assigning a responsible developer for fixing it. However, this
information is not used for validation purposes in any further tools,
according to the corresponding tools’ documentation.

Temporal Suppression. The relevance of suppression mechanisms
for false positives is described above. Many developers prefer to
do this via code annotations [12, 34]. Code annotations allow for
temporal suppression, which is relevant when the corresponding
code part is still under development and warnings would rather
be distracting than supporting [34]. The implemented code anno-
tations usually do not refer to false positives, but just generally
ignore a line of code or a whole code section.

In our evaluation, we find 19 tools to find described features,
while 27 tools do not offer temporal suppression, see again Ta-
ble 2. Eight of these 19 tools are CLI tools, which makes up for a
comparable share between CLI tools and GUI tools.

Filter Alerts. An evaluation of Stack Overflow questions about
SAT alerts shows that ignoring / filtering alerts is the most discussed
issue [29]. This shows that developers try to use these features but
also that there are challenges in using these features.

In ten tools we find the option to filter alerts. Four further tools
partially support this feature, which means that these tools gener-
ally offer filters but are limited to very few filter options. In contrast
to this overall result, 21 of 22 CLI tools do not offer filtering alerts.

Summary. Overall, we find different results in this category. On
the one hand, there are hardly any tools offering implicit validation
of true positives, which would allow for adapted error reports. On
the other hand, the majority of tools allows customization of analy-
sis rules, with different options. The fraction of tools supporting
alert filters and temporal suppression is somewhere in the middle,
neither too small nor high enough.

Main Findings: (1) Eight tools strongly support the integration
of user knowledge, while ten tools partially fulfill it. (2) The
majority of tools allows to switch off rules, while 19 tools also
allow further modification of the analysis rules. (3) 19 tools
support temporal suppression of warnings. (4) Filtering alerts
and validating true positives are implemented in a clear minority
of tools.

\ J

3.5 Workflow Integration

The integration of the SAT’s support into the developer’s natural
workflow is one of the main challenges of usable tool support and
one of the main reasons why many users are dissatisfied [9, 34, 46].
As workflow integration is a key aspect for the use of SATs [62],
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Sadowski et al. [61] conclude that workflow integration should be
pushed as early as possible.

Warning Prioritization. The larger the analyzed code base, the
more warnings might be reported. In real-world projects, the amount
of warnings often is too high to process for a human developer.
Hence, developers demand automatic warning prioritization by the
tool [12, 20], so that they know which bug to select. Many tools fail
in providing enough information in this aspect [66], which again
leads to the user’s dissatisfaction.

Twelve tools report the detected issues in a prioritized order.
Two more tools also consider prioritization but are rather rough
by just offering a few priorities. The remaining 32 do not priori-
tize their warnings. Regarding CLI tools, three are tools fulfilling
this criterion, while 19 do not. As warning prioritization requires
some kind of evaluation of priorities, this requires more complex
processing. Still, this should be worth the effort as it makes the SAT
effective [34].

IDE Integration. The IDE or more powerful editors are the stan-
dard development environment. As this might be the closest con-
nection to the developer’s workflow, SATs should be integrated in
IDEs to offer better workflow integration [20, 61].

Almost half of the considered tools (20 of 46) offer plugins for
one or more IDEs in the respective programming language, see
again Table 2. The one reported CLI fulfilling this criterion offers
some plugins, which we were unable to install. Some IDEs offer
unified tool integration (like IntelliJ), while other IDEs allow more
options in offering and accessing the tool’s features (like Eclipse).

Standalone Tool. In this criterion, we evaluate another type of
tool’s accessibility and check whether it is possible to use it as a
standalone tool. Therefore, we inspect whether it is possible to
install, configure, and execute the analysis on its own. We find
that nearly all tools work as standalone tools as well. Only six
tools do not fulfill this criterion, for instance, tools that can only be
integrated with maven or other build functions.

Browser Access. Furthermore, there are tools accessible in typical
browsers, which includes only services as well as locally hosted
analysis servers, accessible via browser. Four of the evaluated tools
offer this access type. While this option is not directly integrated
into the workflow, this setting usually allows for more presentation
possibilities of the analysis.

Disjoint Process of Understanding and Fixing. Offering different
access types is of advantage as the developer might choose ac-
cording to their own preferences. However, options that are not
directly available in the developers’ coding environment lead to a
disjoint process of understanding and fixing reported issues [34].
This means that the developer has to open tool reports to see and
understand the warnings, while they have to switch to the coding
environment afterwards to see and work on the corresponding code.
As this process is ineffective and disruptive, developers tend to not
use such tools [34].

Overall, the evaluation of this criterion completely overlaps with
the question of whether the tool supports IDE integration, including
respective editors. Since all evaluated IDE integrations allow to
display the warning message and the corresponding code part at
the same time, the process of understanding and fixing the issue
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is not disjoint. In all remaining tools, this process is disjoint as the
warnings are reported outside the coding environment.

Runtime of the Analysis. The longer the runtime of the analysis
the more difficult it is to integrate the analysis into the developer’s
workflow. Johnson et al. [34] report in their study that developers
complain about analyses taking too much time, which disrupts
the flow. Accordingly, analyzing a larger code base is even more
problematic as it requires more time. These problems might be
slightly avoided by running the analysis at different stages of the
software development lifecycle, like during nightly builds or at
major project milestones [20]. While these options are valid, they
are also not integrated into the developer’s workflow as well as
running the analysis at coding time.

In our evaluation, we tried to use comparable projects within
each considered language. For some tools, we were not able to run
the analysis on the complete project but only on one directory or
even one file, because of the otherwise too high runtime. While
this makes comparison harder, it points to another usability issue.
Independent from the exact size of the analyzed code, the resulting
runtime still allows for an evaluation of whether a corresponding
tool might be useful during coding time or only during nightly
builds or at major project milestones. Around half of the tools
required less than a minute for their analysis (22 tools). This time
most likely makes sense to be executed during coding time. Twelve
tools require more than one minute, nine tools more than five minutes,
and one tool each for more than ten, 15, and 30 minutes. Five tools
were not evaluated in this criterion as we were unable to execute
the analysis on the whole project.

Feedback on Fixed Issue. After spending some time fixing re-
ported issues, the developer might require feedback about whether
these issues are really solved. Giving specific feedback about fixed
issues gives confirming and motivating information to the devel-
oper, which might keep them engaged and more satisfied with
tool’s overall experience [44].

In our evaluation we only find two tools giving explicit feedback
about fixed issues. For all remaining tools, the developer has to
remember the warning, rerun the analysis, and check whether the
issue is still reported. Hence, these results show that this idea is
hardly used in practice and rather less prioritized by tool develop-
ers, even though such feedback would support and motivate the
developer’s work.

Summary. Concluding the category of the SAT’s Workflow Inte-
gration, our evaluation confirms several challenges from the litera-
ture. Offering different ways to access a tool is a good way to adapt
to the developer’s preferences. Our results show that a high amount
of tools is only available as CLI tool. As shown through our whole
evaluation, CLI tools are weaker than the other options in most
usability-related aspects. It should be the goal to get as close to the
developer’s natural workflow as possible, which is reached through
IDE integration. This is done by roughly half of the considered
tools. Also, the aspects of warning prioritization and feedback on
fixed issues pose open challenges for SAT developers.
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Main Findings: (1) 22 of 46 tools are only available via CLI,
which is highly problematic for the workflow integration. (2) 22
of the tools also need more than one minute for the analysis,
which might already be too long for the integration into the
normal coding process. (3) Overall, we evaluate 36 tools to
partially allow workflow integration, while only two tools stand
out positively.

. J

3.6 User Interface

In this final main category, we evaluate how the tool generally
presents all of its interaction options to the developer. While the
user interface is not the core of static analysis, it might still distract
or support the developer. To support developers in their work with
SATs, there are different approaches for improving the user inter-
face [40]. In the following, we evaluate central aspects of supportive
user interfaces.

Highlighting in Code and Warning Icons. Highlighting the error
in the code view and adding warning icons are commonly known
mechanisms to draw the developer’s attention to code issues. While
only highlighting code would not be enough, it is still useful for
many developers as are warning icons [43]. Apart from error loca-
tions, highlighting and icons might also be used for other related
code locations, such as intermediate steps of how the error evolves
through the code, locations where the analysis might require the
developer’s knowledge or wherever the tool might want to guide
the developer’s attention [38, 85].

16 of the considered tools highlight errors in the code and twelve
tools integrate warning icons, see again Table 2. At first sight,
these fractions might appear small, but they are downgraded by
the observation that no CLI tool supports either code highlighting
or warning icons. Hence, the fraction of GUI tools supporting code
highlighting is two-thirds, while this fraction is little lower for
warning icons.

IDE or CLI Conformity. In their handling of SATs, developers
have specific expectations based on experience and on other tools
communicating in similar contexts [33]. Accordingly, developers
expect the tool to behave similarly to how they know it. Therefore,
we evaluate whether the considered tools report their finding in
a similar way like other tools or compilers. While doing this, we
also try to maintain the context of IDE or CLI presentation of
warnings. We evaluate that overall eight tools deviate from the
typical communication patterns, five of which are CLI tools.

Overview of Warnings. In huge code bases with many detected
issues, it is difficult for the developer to get an overview of main re-
sults of the analysis. To support the developer in doing this, several
SATs process the overall results in dashboards or similar warning
overviews [61]. Nguyen Quang Do et al. [20] support the demand
and value of dashboards and report that the developers often look
at it to understand the project’s health before considering the single
warnings.

Eight of the evaluated tools offer a dashboard or a comparable
overview. The remaining tools only present the list of all warnings
to the developer, sometimes adding a few simple metrics. Though
CLI tools are limited in their graphical expressiveness, still, five CLI
tools offer comparable overviews.
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Tracks Progress. Many tools only report currently existing issues
found in the code base, but do not refer to older analysis runs to
report fixed issues [66]. Hence, developers demand features keep-
ing track of the progress, which also give a clear view of what is
achieved [20].

In our study, we only find two tools offering such features, while
this is not the case for the remaining 44 tools. In the latter case, the
developer needs to manually keep track of the progress.

Search through Warnings. When the list of reported issues is too
long to be overlooked by developers, they might want to search
through the warnings. Using different metrics, the search might
support the developer in finding relevant issues to fix, for instance
issues the developer has specific knowledge about. Based on compa-
rable use cases, developers confirm the demand of features search-
ing through warnings. We find ten tools offering searching features,
none of which are CLI tools.

Summary. Overall, our evaluation of user interface-related crite-
ria yields mediocre to weak results. Most of the GUI tools guide the
developer’s attention using code highlighting and warning icons,
while this is ignored by CLI tools. Most tools also present their re-
sults in typically used patterns. Still, the last three criteria also pose
several tasks for future work since only few tools offer sufficient
warning overviews, progress tracking, and search functions.

Main Findings: (1) Three tools stand out with good and sup-
portive user interfaces. (2) Code highlighting and warning icons
are completely neglected in CLI tools. (3) Searching through
warnings and tracking progress are highly neglected over all
tools (ten and two tools fulfill them, respectively). (4) 26 tools
support at least few of the considered criteria, while three tools
get a good overall evaluation in this category.

4 THREATS TO VALIDITY

We are aware, and sought to mitigate, the following threats to the
validity of our study.

For tools supporting multiple operating systems, there is a bias
towards the Windows version. Only if we were unable to install a
tool on Windows did we try to install it on the Linux VM (where
Linux versions were available). We see this bias as unproblematic,
however, because Windows still has, by a large margin, the largest
market share on desktop systems [72].

Overall, the evaluation process of all tools took more than one
year. We always tried to evaluate the most current version of the
tool, depending on the time of when we considered respective
tools. This might lead to the issue that some tools we considered
earlier might have been updated in the meantime. If these updates
affected features that have been evaluated in an earlier version, our
evaluation might slightly become obsolete in respective criteria.
We see no way to avoid this.

Although the evaluation criteria and grades were established in
advance of the study, the exact delineation between grade levels can
be debatable in individual cases. Hence, it might happen that we
assigned different grades to comparable fulfillment of a respective
criterion in some cases. To mitigate this problem to the largest
extent possible, we used a multiple-raters approach (see section 2).
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While we try to evaluate the current state of SATs, it appears
infeasible to collect a complete set of all relevant tools. As described
above, we attempted to collect a representative set of tools in order
to be able to obtain the most meaningful results possible. Neverthe-
less, our collection might miss a few relevant tools.

The same also holds for our selection of evaluated criteria. Liter-
ature surveys with a different methodology might result in further
relevant aspects related to usability. When determining the list of
criteria, we sought to find a good trade-off between feasibility and
a meaningful representation of relevant usability aspects.

As described above, several tools have been excluded from the
evaluation as we were unable to install the respective tool. We
tried to install the tools with reasonable effort, depending on the
documentation and our own knowledge. While we were unable to
install these tools this does not generally mean that it is impossible
to install them.

5 RELATED WORK

Much related work was already discussed above. Overall, many
publications mention usability issues with SATs, yet some seek to
give a wider and more complete view on the usability of SATs. We
focus on such studies here.

Johnson et al. [34] research why SATs are not widely used by
developers and how this might be improved, also discussing further
implications. Their results are based on interviews with developers.

Christakis et al. [12] discuss what developers want and need
from program analysis by surveying developers across Microsoft.
They mainly focus on the following three aspects: 1) barriers and
reasons, why developers stop using analysis, 2) functionality the
developers want in analysis, and 3) non-characteristic functional
characteristics a program analyzer should have.

Based on a survey within Software AG, a leading international
software company, Nguyen Quang Do et al. [20] analyze the anal-
ysis tools integration in the development environment, the usage
context of analysis tools, developers strategies in working with
analysis tools, and features the analysis tool should provide.

These publications are related in that they seek to find usability
issues and reasons why developers would use or reject SATs. This
paper, however, rather seeks to use criteria mentioned in these
papers to evaluate the current state of usability in SATs.

Nachtigall et al. [42] summarize the main design challenges for
building usable SATs and very roughly evaluate 14 tools on the
introduced six main challenges. While we revolve around their six
main challenges, we split these categories up into more detailed
criteria and also execute a more thorough evaluation of 46 tools.

Smith et al. [66] execute a heuristic walkthrough evaluation
of four tools. In this approach, they familiarize themselves with
the tools, like in a cognitive walkthrough. In the next step, they
explore the system using a set of usability heuristics, like in heuristic
evaluations. They reveal several usability issues and group them
into six themes. While their work is restricted to four tools, we
evaluate a larger set of tools.

6 CONCLUSION

This paper presented a large-scale assessment of user interactions
offered by SATs. As the scientific literature points to many usability
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issues related to SATs, we sought to evaluate to what extent these
aspects generally apply to the current state of the art. Therefore,
we defined a set of relevant criteria, collected relevant SATs, and
applied the criteria to the tools. Our tool-based perspective is com-
plementary to the mainly survey- and interview-based view from
previous work, yet empirically confirms many previous findings
and suspicions.

Therefore, our results state a huge future work for SAT builders
but also reveals the need for further research in the area of static
analysis. Overall, the areas of explaining warning messages, fix
support, handling of false positives, consideration of user feedback,
integration into the developer’s workflow, and supporting user in-
terfaces are still much neglected. For CLI tools these challenges are
even more problematic in all categories. This leads to the devel-
oper’s dissatisfaction and might make them abandon support from
static analysis.
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