
Faculty for Computer Science, Electrical Engineering and Mathematics

Computing on Encrypted Data
using Trusted Execution Environments

Andreas Fischer

Dissertation

submitted in partial fulfillment
of the requirements for the degree of

Doktor der Naturwissenschaften (Dr. rer. nat.)

Advisors

Prof. Dr. Eric Bodden
Prof. Dr. Florian Kerschbaum

Paderborn, November 11, 2020

Abstract

Cloud services provide on-demand access to cost-efficient computer resources such
as data storage and computing power. However, when using these services, data
is at risk of being stolen by attackers observing the cloud, e.g., malicious admin-
istrators or external intruders. To ensure the confidentiality of sensitive data,
encryption can be applied prior to transferring it to the cloud. However, in order
to use the cloud’s computing power without compromising data confidentiality,
the cloud must compute on encrypted data.

Secure and efficient computation on encrypted data is difficult. Common sym-
metric encryption schemes can be used to achieve confidentiality for outsourced
data but prevent untrusted cloud service providers from computing on cipher-
texts. Fully homomorphic encryption (FHE) can perform arbitrary computations
on ciphertexts, but suffers high computational costs. Hardware-based trusted ex-
ecution environments such as Intel Software Guard Extensions (SGX) entail only
little computational overhead but are vulnerable to side-channel attacks which
can completely dismantle their security guarantees.

This dissertation presents a novel architecture combining cryptographic primi-
tives with hardware-based security to compute on encrypted data. Compared to
a solution solely relying on SGX, our approach provides a program-independent
trusted code base implemented in a small trusted module, which can be reused
across programs and hardened against side-channels. Thus, our approach signif-
icantly reduces the surface for attacks exploiting software vulnerabilities in the
protected application. Compared to only using FHE, our approach provides high
efficiency due to fast ciphertext operations and support for control flow.

We consider active attackers controlling the cloud server capable of altering
the control flow of the outsourced program and maliciously interacting with the
trusted module. We show that, if the attacker is allowed to arbitrarily inter-
act with the trusted module, it can amplify leakage using adaptive queries. As
a defense for this dataflow modification attack, we introduce dataflow authen-
tication (DFAuth), which we implement using the complementary concepts of
homomorphic authenticated symmetric encryption (HASE) and trusted authen-
ticated ciphertext operations (TACO).

We also address the concern that information revealed through control flow
might be inacceptable from a security perspective. To avoid sacrificing perfor-
mance for security, we analyze the trade-off between the two in more detail.
We use quantitative information flow to measure leakage, running time to mea-
sure performance and program transformation techniques to alter the trade-off
between the two. Combined with information flow policies, we formalize the
problem of policy-aware security and performance trade-off (PASAPTO) analy-
sis, prove its NP-hardness and present two algorithms solving it heuristically.

iii

Zusammenfassung

Cloud-Dienste bieten Zugang zu kostengünstiger IT-Infrastruktur wie Speicher-
platz und Rechenleistung. Bei der Nutzung dieser Dienste besteht jedoch die
Gefahr, dass Daten von Angreifern gestohlen werden. Um die Vertraulichkeit
sensibler Daten zu gewährleisten, können sie vor der Übertragung verschlüsselt
werden. Um jedoch die Rechenleistung der Cloud zu nutzen, ohne die Vertrau-
lichkeit zu beeinträchtigen, muss die Cloud mit verschlüsselten Daten rechnen.

Sicheres und effizientes Rechnen mit verschlüsselten Daten ist eine Heraus-
forderung. Herkömmliche Verschlüsselungsverfahren verhindern, dass ein nicht
vertrauenswürdiger Dienstanbieter mit Chiffraten rechnet. Vollhomomorphe Ver-
fahren erlauben beliebige Berechnungen mit Chiffraten, verursachen jedoch hohe
Rechenkosten. Auf Hardware-basierter Sicherheit beruhende Ansätze wie Intel
SGX verursachen nur geringen Rechenaufwand, sind jedoch anfällig für Seiten-
kanalangriffe, die die Sicherheitsmechanismen außer Kraft setzen können.

Diese Dissertation präsentiert eine Architektur, die kryptografische Verfahren
mit einem Hardwaresicherheitsmodul kombiniert, um mit verschlüsselten Daten
zu rechnen. Im Vergleich zu einer rein auf Hardware-basierter Sicherheit beru-
henden Lösung bietet der vorgestellte Ansatz eine minimale und programmun-
abhängige Softwarebasis, die über alle Anwendungen hinweg wiederverwendet
werden kann. Somit kann die Angriffsfläche für Softwareschwachstellen in der
geschützten Anwendung erheblich reduziert werden. Im Vergleich zu einer aus-
schließlich auf vollhomomorpher Verschlüsselung basierenden Lösung wird eine
hohe Effizienz erreicht, da Kontrollflussentscheidungen unterstützt werden und
Chiffrat-Operationen erheblich effizienter sind.

Einerseits werden aktive Angreifer betrachtet, die den Cloud-Server kontrol-
lieren und den Kontrollfluss des ausgelagerten Programms manipulieren sowie
böswillig mit dem Sicherheitsmodul interagieren können. Kann ein Angreifer be-
liebig mit dem Sicherheitsmodul interagieren, so kann er die Verschlüsselung
durch adaptive Anfragen an das Sicherheitsmodul brechen. Um diesen Angriff
der Datenflussmodifikation zu verhindern, wird in dieser Arbeit das Konzept der
Datenflussauthentifizierung vorgestellt.

Andererseits wird betrachtet, dass die Offenlegung von Kontrollfluss aus Si-
cherheitsgründen unerwünscht sein kann. Um nicht leichtfertig Leistung für Si-
cherheit zu opfern, wird der Kompromiss zwischen den beiden Eigenschaften ge-
nauer analysiert. Die vorgestelle Analyse quantifiziert sowohl die Laufzeit eines
Programms als auch den aus Kontrollfluss resultierenden Informationsfluss und
verändert den Kompromiss über Programmtransformationstechniken. In Kombi-
nation mit Informationsflussregeln formuliert diese Arbeit die resultierende Ana-
lyse als Optimierungsproblem, zeigt die NP-schwere des zugehörigen Entschei-
dungsproblems und präsentiert zwei Heuristiken zur effizienten Lösung.

v

Contents

Abstract iii

Zusammenfassung v

List of Figures xi

List of Tables xiii

List of Definitions xv

List of Theorems xvii

List of Constructions xix

List of Algorithms xxi

Abbreviations xxiii

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution of this Work . 3
1.3 Structure of this Work . 5

2 Preliminaries 7
2.1 Notation . 7
2.2 Common Cryptographic Principles 8

2.2.1 Game-Based Security . 8
2.2.2 Encryption Schemes . 8
2.2.3 Message Authentication Codes 12
2.2.4 Building Blocks for Message Authentication Codes 13
2.2.5 Authenticated Encryption 14

2.3 Probability and Information Theory 15
2.4 Optimization Problems . 15

2.4.1 Multi-Objective Optimization Problems 16
2.4.2 The Hypervolume Indicator 17

3 Related Work 19
3.1 Encryption Schemes with Computation Support 19

3.1.1 Property-Preserving Encryption 19
3.1.2 Searchable Encryption . 20
3.1.3 Functional Encryption . 21

vii

Contents

3.1.4 Homomorphic Encryption 22

3.2 Other Cryptographic Primitives 23

3.2.1 Secure Multi-Party Computation 24

3.2.2 Primitives for Access Pattern Hiding 24

3.2.3 Obfuscation Primitives . 25

3.3 Program Transformation Techniques 25

3.4 Trusted Execution Environments 26

3.4.1 Intel Software Guard Extensions (SGX) 27

3.4.2 Attacks on Intel SGX . 28

4 Methodology 31
4.1 Solution Requirements . 31

4.2 Solution Design . 32

4.3 Practicality and Efficiency Assessment Methodology 32

4.4 Security Assessment Methodology 33

5 DFAuth: Dataflow Authentication 35
5.1 Introduction . 35

5.2 Definitions . 37

5.2.1 Adversary Model . 37

5.2.2 Homomorphic Authenticated Symmetric Encryption . . . 38

5.3 Dataflow Authentication . 41

5.4 HASE Constructions . 45

5.4.1 Multiplicative HASE . 46

5.4.2 Additive HASE . 47

5.4.3 Security Reductions . 48

5.5 Trusted Authenticated Ciphertext Operations 52

5.5.1 Syntax and Correctness 53

5.5.2 Security Definitions . 54

5.5.3 Construction . 55

5.5.4 Security Reductions . 56

5.6 Implementation . 59

5.6.1 Setup Phase . 59

5.6.2 Runtime Phase . 61

5.7 Evaluation . 62

5.7.1 Secure Sales Application 63

5.7.2 Additive HASE Benchmark 66

5.7.3 Secure Neural Networks in the Cloud 66

5.7.4 Secure Electric Vehicle Charging Scheduling 71

5.8 Related Work . 76

5.9 Summary . 78

6 PASAPTO: Policy-Aware Security and Performance Trade-off Analysis79
6.1 Introduction . 79

6.2 Definitions . 81

6.2.1 Programs and Computation 81

viii

Contents

6.2.2 Adversary Model . 82
6.2.3 Information Flow Policy Compliance 82
6.2.4 Security-Performance Trade-off Analysis 83

6.3 Control Flow Leakage Quantification 83
6.3.1 Two Program Security Measures 84
6.3.2 Variable-Specific Information Flow 86

6.4 Policy-Aware Security and Performance Trade-off Analysis 88
6.4.1 The PASAPTO Optimization Problem 88
6.4.2 GreedyPASAPTO: A greedy heuristic 92
6.4.3 GeneticPASAPTO: A genetic algorithm 94

6.5 A PASAPTO Analysis for Dataflow Authentication 99
6.6 Implementation . 100
6.7 Evaluation . 101

6.7.1 Electronic Sealed-Bid Auction 101
6.7.2 Decision Tree Evaluation 103

6.8 Related Work . 108
6.9 Summary . 109

7 Conclusion 111
7.1 Summary . 111
7.2 Outlook . 113

Publications and Contributions 115

ix

List of Figures

5.1 Dataflow Authentication system overview 38
5.2 HASE syntax overview . 39
5.3 Final game of Multiplicative HASE-IND-CPA security proof . . . 49
5.4 Final game of Multiplicative HASE-UF-CPA security proof . . . 50
5.5 Application transformation during DFAuth setup phase 59
5.6 Application execution during DFAuth runtime phase 61
5.7 Mean running times of shopping cart experiment 65
5.8 Mean running times of Additive HASE benchmark 67
5.9 Mean running times of neural network experiment using HASE . 68
5.10 Mean running times of neural network experiment using TACO . 69
5.11 Mean running times of neural network experiment in comparison 70
5.12 Schedule-guided smart charging heuristic 72
5.13 Running times of EV simulations 74
5.14 Number of trusted module calls in EV simulations 75
5.15 Detailed running times for TACO in EV simulations 75
5.16 Maximum event response time for TACO in EV simulations . . . 76

6.1 Two semantically equivalent variants of a program 80
6.2 Control-flow graphs for proof of non-monotonicity of leakage . . . 91
6.3 Median leakage and running time of auction program variants . . 103
6.4 Greedy algorithm applied to auction program 104
6.5 Genetic algorithm applied to auction program 104
6.6 Median leakage of decision tree program variants 106
6.7 Median running time of decision tree program variants 106
6.8 Greedy algorithm applied to decision tree program 107
6.9 Genetic algorithm applied to decision tree program 107

xi

List of Tables

5.1 Comparison of DFAuth to the most relevant alternative approaches
computing on encrypted data . 37

5.2 Number of untrusted and trusted operations in the secure sales
application experiment . 65

5.3 Number of untrusted and trusted operations for a single neural
network evaluation . 69

6.1 Overview on variables and our information flow policy 105

xiii

List of Definitions

1 Symmetric Encryption Syntax . 9

2 Symmetric Encryption Correctness 9

3 Asymmetric Encryption Syntax 9

4 Asymmetric Encryption Correctness 9

5 SE-IND-CPA . 10

6 SE-IND-CCA . 11

7 Group Generation Algorithm . 12

8 Decisional Diffie-Hellman Problem 12

9 Message Authentication Code Syntax 12

10 Message Authentication Code Correctness 13

11 MAC-UF-CMA . 13

12 Hash Function . 13

13 Collision Resistance . 13

14 Pseudorandom Function . 14

15 SE-UF-CPA . 14

16 Authenticated Encryption . 14

17 Random Variable . 15

18 Probability Mass Function . 15

19 Shannon Entropy . 15

20 Conditional Shannon Entropy . 15

21 Conditional Minimal Entropy . 15

22 Multi-Objective Optimization Problem 16

23 Pareto Dominance . 16

24 Pareto Dominance For Sets . 16

25 Pareto Optimality . 16

26 Non-Dominated Set . 16

27 Attainment Function . 17

28 Hypervolume Indicator . 17

29 Property-Preserving Encryption Syntax 19

30 Property-Preserving Encryption Correctness 20

31 Searchable Symmetric Encryption Syntax 20

32 Searchable Symmetric Encryption Correctness 21

33 Functional Encryption Syntax . 21

34 Functional Encryption Correctness 22

35 Asymmetric Homomorphic Encryption 22

36 HASE Syntax . 39

37 HASE Correctness . 40

xv

List of Definitions

38 HASE-IND-CPA . 40
39 HASE-UF-CPA . 40
40 TACO Syntax . 53
41 TACO Partial Correctness . 53
42 TACO Ciphertext Validity . 53
43 TACO Correctness . 54
44 TACO-IND-CPA . 54
45 TACO-UF-CPA . 54

46 Quantitative Information Flow Policy 82
47 Policy Compliance . 82
48 Control-Flow Removal Algorithm 82
49 Program Security Measure . 83
50 Program Performance Measure 83
51 Policy-Aware Security-Performance Trade-off Analysis 83
52 Average Information Flow . 85
53 Maximum Information Flow . 85
54 Variable-Specific Information Flow 87
55 Polynomial-Time Linear Expandability 89
56 PASAPTO Decision Problem . 89

xvi

List of Theorems

1 Elgamal IND-CPA Security . 12

2 Multiplicative HASE-IND-CPA 48
3 Multiplicative HASE-UF-CPA . 50
4 Additive HASE-IND-CPA . 52
5 Additive HASE-UF-CPA . 52
6 TACO-IND-CPA . 56
7 TACO-UF-CPA . 56

8 NP-Hardness of PASAPTO Decision Problem 89
9 Non-Monotonicity of Control Flow Leakage 91

xvii

List of Constructions

1 Elgamal Asymmetric Encryption 12

2 Multiplicative HASE . 46
3 Additive HASE . 47
4 TACO . 55

xix

List of Algorithms

1 GreedyPASAPTO: Greedy Heuristic 93
2 GeneticPASAPTO: Genetic Algorithm 96

xxi

Abbreviations

0-1-ILP 0-1 integer linear programming

AE authenticated encryption

AES Advanced Encryption Standard

CPU central processing unit

CRT Chinese remainder theorem

CSP cloud service provider

DDH decisional Diffie-Hellman

DFATA DFAuth trade-off analyzer

DFAuth dataflow authentication

DNF disjunctive normal form

EV electric vehicle

FE functional encryption

FHE fully homomorphic encryption

GCM Galois/counter mode

HASE homomorphic authenticated symmetric encryption

HE homomorphic encryption

HVI hypervolume indicator

IND-CCA indistinguishable encryptions under a chosen ciphertext attack

IND-CPA indistinguishable encryptions under a chosen plaintext attack

iO indistinguishability obfuscation

IT information technology

MAC message authentication code

xxiii

Abbreviations

MOP multi-objective optimization problem

MPC multi-party computation

OPE order-preserving encryption

ORAM oblivious RAM

ORE order-revealing encryption

PASAPTO policy-aware security and performance trade-off

PDG program dependency graph

PEKS public-key encryption with keyword search

PHE partially homomorphic encryption

PIR private information retrieval

PPE property-preserving encryption

PPT probabilistic polynomial time

PRF pseudorandom function

QIF quantitative information flow

RAM random access memory

ROP return-oriented programming

SDK software development kit

SGX Software Guard Extensions

SIV synthetic initialization vector

SSA single static assignment

SSE searchable symmetric encryption

SWHE somewhat homomorphic encryption

TACO trusted authenticated ciphertext operations

TCB trusted code base

TEE trusted execution environment

UF-CPA unforgeability under a chosen plaintext attack

xxiv

1 Introduction

This dissertation presents a novel architecture combining cryptographic primi-
tives with hardware-based security to compute on encrypted data. Section 1.1
discusses the motivation of our work. Section 1.2 summarizes our scientific con-
tributions and Section 1.3 describes the structure of the remainder of this work.

1.1 Motivation

At the end of the 20th century the basis of our global economy started to rapidly
shift from traditional industries such as oil and steel towards information tech-
nology (IT). In 2020, data is regarded as “the new oil” and companies either
are in the IT business or heavily rely on IT for everyday operation. At the
same time, businesses are increasingly trying to reduce operational costs for IT
infrastructure by outsourcing to third parties.

This outsourcing trend is in particular fueled by the widespread availability
of modern cloud infrastructure. Essentially, cloud computing allows computer
resources such as data storage and computing power to be consumed over com-
puter networks similar to other standardized commodities like electricity, water
and gas. Benefits for cloud customers include consumption-based billing and
rapid elasticity, that is, the resource allocation can be continuously adjusted
to work load demand. Cloud service providers (CSPs) on the other hand can
leverage economies of scale in data center operation and hardware acquisition.

Similar effects of scale apply to IT security mechanisms utilized by CSPs. For
example, the knowledge of security experts can be used to improve the cloud
infrastructure at large and to defend against attacks for all cloud customers.
Frequently deployed tools include security information and event management
systems, virus scanners, network firewalls and program analysis. However, none
of these security mechanisms protect against attackers operating from inside the
CSP. For example, a malicious employee may attempt to obtain trade secrets of
cloud customers and sell them to competitors. In case provider and customer do
not share the same jurisdiction, the customer may also fear involuntary sharing
of data with foreign governments caused by legal requirements in the jurisdiction
of the provider.

To ensure the confidentiality of sensitive data, customers can encrypt their
data prior to transferring it to the cloud. For encryption to protect against
insider attacks, as a minimum requirement it must be ensured that the CSP
does not have access to the decryption key at any time. Consequently, if a
customer wants to use the cloud’s computing power without compromising data
confidentiality, the cloud must compute on encrypted data. However, secure and
efficient computation on encrypted data is difficult.

1

1 Introduction

The structure of common encryption schemes such as the Advanced Encryption
Standard (AES) [Aes] inherently prevents computations on ciphertexts. Thus,
these schemes can only be used in cloud storage use cases in which the CSP stores
data but does not perform any other operations on it. The CSP then only has to
be trusted with regards to availability, whereas confidentiality is achieved using
encryption. Secure file stores can further improve availability by incorporating
redundancy techniques allowing data to be distributed over multiple CSPs. Still,
no operations other than storage and retrieval are supported on encrypted data.

Homomorphic encryption (HE) is a class of encryption that supports compu-
tations on ciphertexts. Constructions allowing limited operation on ciphertexts,
e.g., only integer multiplication, have been known since the late 1970s [RSA78].
The concept of fully homomorphic encryption (FHE), i.e., encryption schemes
supporting arbitrary computations on ciphertexts, essentially has been proposed
approximately at the same time [RAD78], but the first construction was not
discovered before 2009 [Gen09]. Although FHE is sometimes called “the holy
grail of cryptography” because it allows computation on encrypted data without
revealing any information about the processed data, its applicability to general
purpose computing remains limited. This is primarily the case for two reasons.
First, in comparison to operations on plaintext, operations on FHE ciphertexts
entail extraordinarily high memory and computation overhead [GHS12]. This
is crucial because computing on plaintexts using limited computing power on
trusted customer premises may be economically more efficient than computing
on FHE-encrypted data using powerful resources in the cloud. Second, FHE
schemes compute on encrypted data by evaluating circuits rather than execut-
ing programs as in prevailing general purpose computing. A circuit can only be
evaluated completely or not at all. There is no notion of control flow which could
be used to skip some computations. This in turn prevents the efficient execution
of algorithms with high worst case complexity, but low average case complexity.
Any execution will exhibit the same worst case behavior.

Hardware-based trusted execution environments (TEEs) such as Intel Software
Guard Extensions (SGX) [Ana+13; Hoe+13; McK+13] promise to provide a se-
cure environment for operating on encrypted data. Essentially, SGX enclave pro-
grams compute on encrypted data by decrypting the data in a protected area of
the processor, performing all operations on plaintexts, and encrypting the results
before they exit the processor. The security assumption is that attackers cannot
observe the plaintexts in the secure processor during computation. However, it
has been demonstrated that software vulnerabilities in the enclave program give
attackers ample opportunity to execute arbitrary code in the enclave [Lee+17a].
These attacks can modify the control and data flow of the program and leak any
secret in the program to an observer in the cloud via SGX side-channels [Bra+17;
Lee+17b; Sch+17]. Since the number of software vulnerabilities grows with the
size of the code base, it is advisable to keep the trusted code base (TCB) of the
enclave as small as possible. Hence, it is not a good idea to outsource entire
programs to an SGX enclave.

In this dissertation, we combine the described techniques for computing on
encrypted data to overcome some of their limitations and drawbacks.

2

1.2 Contribution of this Work

1.2 Contribution of this Work

The primary research question investigated in this dissertation can be stated as
follows:

How can homomorphic encryption and trusted execution
environments be combined into a practical architecture enabling

efficient and secure computation on encrypted data?

We use practical to refer to the property of allowing an implementation and
deployment on commercially available computer systems. With efficient we refer
to low running time overhead in comparison to plaintext operations. Using secure
we refer to provably secure cryptography and a small trusted code base.

Throughout this dissertation, we consider an outsourcing scenario between a
trusted cloud customer (client) and an untrusted cloud service provider (cloud
server). The server, however, is equipped with a trusted (hardware) module,
which may be implemented using a TEE. The client wishes to execute a program
at the cloud server with sensitive input data. The server then needs to compute
on encrypted data with the assistance of the trusted module.

The efficiency of the architecture proposed in this work is based on two key
ideas. The first is executing control-flow driven programs instead of computing
circuits as in FHE. Doing so reveals control-flow information to the cloud server,
but allows the execution of efficient algorithms without incurring the complexity
penalty as in FHE. The second is performing homomorphic operations on en-
crypted data using multiple partially homomorphic encryption (PHE) schemes
rather than FHE. Homomorphic operations of PHE schemes are much faster, but
ciphertexts of one scheme are not compatible with ciphertexts of another scheme.
For example, one scheme may only support homomorphic integer addition and
another may only support homomorphic integer multiplication. To address the
incompatibility, the trusted module is used to translate between incompatible
schemes.

In our first contribution [Fis+17; Fis+20a], we study control-flow leakage un-
der active attacks. We consider an attacker controlling the cloud server who is
capable of maliciously interacting with the trusted module and altering the con-
trol and data flow of the outsourced program. We show that, if the attacker is
allowed to arbitrarily interact with the trusted module, it can amplify leakage
using adaptive trusted module queries. To prevent the adversary from deviat-
ing from the dataflow of the outsourced program, we introduce the concept of
dataflow authentication (DFAuth). Using DFAuth, we extend the state of the
art of programs executable on encrypted data to those performing control-flow
decisions based on intermediate variables. DFAuth ensures only the informa-
tion about the program inputs that can be inferred from the program’s intended
control flow are revealed to the cloud server. DFAuth computes on encrypted
data using our own homomorphic authenticated symmetric encryption (HASE)
scheme, which allows each control-flow decision variable to be instrumented, such
that only variables with a pre-approved dataflow can be used in the decision.

3

1 Introduction

In our second contribution [Fis+], we complement DFAuth and HASE with
an alternative concept for operating on ciphertexts. Our trusted authenticated
ciphertext operations (TACO) scheme makes use of a common authenticated
symmetric encryption scheme which does not support homomorphic operations
on ciphertexts. As a result, ciphertext operations have to be performed in the
trusted module which hence needs to be invoked more often. However, our ex-
periments show that the higher number of invocations is easily compensated by
the use of a more efficient encryption scheme. This, in turn, allows DFAuth to
be applied to applications requiring fast response times.

In our third contribution [Fis+20b], we address the concern that control-flow
leakage might be inacceptable from a security perspective. To avoid simply sacri-
ficing performance for security, we analyze the trade-off between the two in more
detail. We use quantitative information flow techniques to measure leakage, run-
ning time to measure performance and program transformation techniques to
alter the trade-off between the two. Combined with information flow policies,
which allow developers to define varying sensitivity levels on data, we perform a
policy-aware security and performance trade-off (PASAPTO) analysis. We for-
malize the problem of PASAPTO analysis as an optimization problem, prove the
NP-hardness of the corresponding decision problem and present two algorithms
solving it heuristically.

Based on the concepts of DFAuth and PASAPTO, we implemented a program
transformation for Java programs. Our DFAuth trade-off analyzer (DFATA)
takes Java Bytecode operating on plaintext data and an associated information
flow policy as input. It outputs semantically equivalent program variants oper-
ating on encrypted data which are policy-compliant and approximately Pareto-
optimal with respect to control-flow leakage and running time.

We evaluated our implementation in a commercial cloud environment using an
SGX enclave as the trusted module. In our DFAuth evaluation, we for example
transformed a neural network performing machine learning on sensitive medical
data and a smart charging scheduler for electric vehicles (EVs). Our transforma-
tion yields a neural network with encrypted weights, which can be evaluated on
encrypted inputs in 12.55 ms. Our protected EV scheduler adjusts an encrypted
day-ahead charging schedule in real-time as new information arrives. Events
providing new information (e.g., EV arrival, EV departure and price changes at
energy markets) are processed in 1.06 s on average. In our PASAPTO evaluation,
we for example applied DFATA to a decision tree program performing machine
learning on medical data. The program variant with the worst performance is
357% slower than the fastest variant. Control-flow leakage varies between 0%
and 17% of the input.

In comparison to a solution solely relying on SGX, our architecture provides
a program-independent TCB implemented in a small trusted module, which can
be reused across applications and hardened against side-channels. Thus, our
approach significantly reduces the surface for attacks exploiting software vulner-
abilities in the protected application. Compared to a solution solely relying on
FHE, our approach provides high efficiency and actually practical performance
due to fast ciphertext operations and support for control flow.

4

1.3 Structure of this Work

In summary, our contributions are:

• We present an architecture for computation on encrypted data based on
the novel concepts DFAuth, HASE and TACO.

• We formalize the problem of PASAPTO analysis and present two heuristic
algorithms approximating a solution.

• We implemented a program transformation for Java programs producing
programs computing on encrypted data.

• We evaluated our implementations in a commercially available cloud envi-
ronment.

1.3 Structure of this Work

The remainder of this work is structured as follows:

Chapter 2 presents foundational concepts. We introduce the notation used
throughout this work, common cryptographic principles and definitions related
to information theory and optimization problems.

Chapter 3 provides an overview on approaches allowing computation on en-
crypted data and related concepts. We discuss encryption schemes capable of
computing on encrypted data, other related cryptographic primitives, techniques
transforming programs such that they compute on encrypted data, and hardware-
based TEEs.

Chapter 4 describes the methodology followed to investigate the research ques-
tion proposed above. We first derive requirements from the research question and
explain how our solution fulfills some of them by design. Then, we introduce our
practicality and efficiency assessment methodology. Finally, we present our se-
curity assessment methodology.

Chapter 5 presents the foundation of our architecture and studies control-
flow leakage under active attacks. We first introduce the concept of dataflow
authentication (DFAuth) and show its interference equivalence property in a
program dependency graph. Then, we present two constant time implementa-
tions of DFAuth: homomorphic authenticated symmetric encryption (HASE)
and trusted authenticated ciphertext operations (TACO). Finally, we describe
a bytecode-to-bytecode program transformation for computation on encrypted
data using DFAuth. We implemented and evaluated transformed programs, for
example smart charging scheduling of electric vehicles, using Intel SGX as the
trusted module.

Chapter 6 addresses the concern that control-flow leakage might be inaccept-
able from a security perspective. We first formalize the problem of policy-aware
security and performance trade-off (PASAPTO) analysis as an optimization prob-
lem and prove the NP-hardness of the corresponding decision problem. Then, we
present two heuristic algorithms computing an approximation of the Pareto front
of the optimization problem: a greedy heuristic providing fast convergence and a

5

1 Introduction

genetic algorithm providing well distributed trade-offs. We use established quan-
titative information flow (QIF) techniques to measure security, running time to
measure performance and program transformation techniques to alter the trade-
off between the two. We adjust an existing QIF analysis to capture the adver-
sarial information flow for each variable of a program such that we can support
variable-based information flow policies. We implemented our algorithms and
evaluated them on programs computing on encrypted data using DFAuth in a
commercially available cloud environment.

Chapter 7 concludes this dissertation. We first summarize our achievements
and relate them to the primary research question. Then, we discuss open prob-
lems and directions for future work.

Reading Guide This dissertation can be read in many ways. The primary
reading path is to proceed with Chapter 2 and to read through all chapters
consecutively.

Chapters 5 and 6 only present new concepts and are the main chapters of this
dissertation. The fundamentals for these chapters are provided in Chapters 2
and 3, and referenced from the main chapters.

Readers familiar with foundational concepts, especially cryptographic princi-
ples, may wish to skip Chapter 2 and only come back as necessary. Readers
additionally knowledgeable in computation on encrypted data and trusted exe-
cution environments, especially Intel SGX, may wish to also skip Chapter 3.

Readers primarily interested in DFAuth may wish to proceed with Chapter 5
and come back to preceding chapters as necessary. Likewise, readers primarily
interested in PASAPTO may wish to proceed with Chapter 6. Although PAS-
APTO can be applied in other contexts, we evaluate PASAPTO in the context
of DFAuth and hence recommend first reading Chapter 5.

6

2 Preliminaries

This chapter presents foundational concepts. Section 2.1 introduces the nota-
tion used throughout this work. Section 2.2 presents common cryptographic
principles used in Chapters 3 and 5. Section 2.3 provides various information
theory definitions used in Chapter 6. Section 2.4 provides concepts related to
optimization problems used in Chapter 6.

2.1 Notation

We use the dot notation to access object members, for example O.A() refers to
an invocation of algorithm A on object O. We use := for deterministic variable
assignments and = for comparisons. To indicate that an output of some algorithm
may not be deterministic we use ← instead of := in assignments.

We write x←$X to sample x uniformly at random from a set X. |X| denotes
the cardinality of X. For m,n ∈ N,m < n we use [m,n] to refer to the set of
integers {m, . . . , n}. For a k-tuple x = (x1, x2, . . . , xk) we refer to the projection
of x onto its i-th (i ∈ [1, k]) component as πi(x) := xi. Similarly, for a set of
k-tuples S we define πi(S) := {πi(x) | x ∈ S}.

We follow the established convention of writing the group operation of an ab-
stract group multiplicatively. Consequently, exponentiation refers to a repetition
of the group operation. We may refer to a group (G, ·) simply as G if the group
operation is clear from the context.

Throughout the document λ denotes a security parameter and 1λ refers to
the unary encoding of λ. A function f : N → R+ is called negligible in n if for
every positive polynomial p there is an n0 such that for all n > n0 it holds that
f(n) < 1/p(n).

To indicate that some algorithm A is given black-box access to some function
F we write AF . Each parameter to F is either fixed to some variable or marked
using · denoting that A may freely choose this parameter.

We denote the i-th unit vector by ei. By 0m,n we denote the m×n matrix with
all entries equal to zero. For a vector v we write vi to select the i-th component
of v and for a matrix A we write Ai,: to select the i-th row and A:,j to select
the j-th column. For two matrices A,B ∈ Rm×n we write A ◦ B to denote the
Hadamard product of A and B, i.e., the componentwise multiplication.

With s1‖s2 we denote the concatenation of bit strings s1 and s2.

We assume the base of the logarithmic function to be 2.

7

2 Preliminaries

2.2 Common Cryptographic Principles

In this section, we introduce various cryptographic principles. First, we explain
the concept of game-based security for precise security definitions. Then, we
introduce encryption schemes providing confidentiality and message authentica-
tion codes (MACs) providing authenticity. Next, we present building blocks for
MACs. Finally, we introduce authenticated encryption, a type of encryption
scheme providing confidentiality and authenticity. Our presentation is based on
the standard work by Katz and Lindell [KL14].

2.2.1 Game-Based Security

Modern cryptography considers security definitions consisting of a precise speci-
fication of what constitutes a break of security as well as a precise specification
of the capabilities of the adversary. An established approach to provide such
definitions is through security experiments, also called games [BR06]. A secu-
rity experiment is performed between two probabilistic polynomial time (PPT)
algorithms, a challenger and an adversary A.

A’s advantage is defined as the probability of A winning the game minus the
probability of trivially winning the game (e.g., by guessing blindly). Security
holds if all adversaries have only negligible advantage. The security proof is
achieved by reducing the winning of the game to some problem that is assumed
to be hard.

2.2.2 Encryption Schemes

Encryption is the process of encoding plaintext messages into ciphertexts such
that only authorized parties can access them. Broadly speaking, only parties
in possession of the appropriate decryption key are authorized and supposed to
be able to restore the original message from the ciphertext. Two common types
of encryption schemes are symmetric encryption and asymmetric encryption. In
the following, we will formally define their syntax, correctness and security.

Symmetric Encryption

In this setting, the same key is used by the party encrypting the plaintext message
and the party decrypting the ciphertext.

The classic use case involves two distinct parties who want to communicate
secretly over an untrusted communication channel. Consider for example military
personnel communicating via radio transmission using a key which was shared
beforehand.

Another use case involves a single party who wants to communicate over an
untrusted communication channel with itself over time. Consider for example
the cloud storage scenario mentioned in Section 1.1. In this scenario, a cloud
customer first encrypts plaintext data before transferring it to the untrusted CSP.
At a later point in time, the same customer retrieves ciphertext data from the
CSP and decrypts it to obtain the original plaintext data. The communication

8

2.2 Common Cryptographic Principles

channel in this case consists of the transfer to the CSP, writing to and reading
from storage, and transferring the ciphertexts back to the customer.

Definition 1 (Symmetric Encryption Syntax). A symmetric encryption scheme
for key space K, message space M and ciphertext space C is a triple of PPT
algorithms (Gen,Enc,Dec) such that:

• The key-generation algorithm Gen takes as input the security parameter 1λ

and outputs a key k ∈ K.

• The encryption algorithm Enc takes as input a key k ∈ K and a plaintext
message m ∈M and outputs a ciphertext c ∈ C.

• The decryption algorithm Dec takes as input a key k ∈ K and a ciphertext
c ∈ C and outputs a message m ∈M.

Definition 2 (Symmetric Encryption Correctness). Let Π = (Gen,Enc,Dec) be
a symmetric encryption scheme. We say that Π is correct if for any key k output
by Gen(1λ) and every m ∈M, it holds that

Dec(k,Enc(k,m)) = m.

Symmetric encryption schemes are also called private-key encryption schemes
or secret-key encryption schemes because the encryption key must be kept se-
cret to achieve security. This is in contrast to asymmetric encryption schemes
or public-key encryption schemes in which the encryption key may be public
knowledge.

Asymmetric Encryption

In this setting, the key generation algorithm outputs a pair of keys consisting of a
public key used for encryption and a private key or secret key used for decryption.

Definition 3 (Asymmetric Encryption Syntax). A public-key encryption scheme
or asymmetric encryption scheme for message space M and ciphertext space C
is a triple of PPT algorithms (Gen,Enc,Dec) such that:

• The key-generation algorithm Gen takes as input the security parameter 1λ

and outputs a pair of keys (pk, sk). We refer to pk as the public key and
sk as the secret key.

• The encryption algorithm Enc takes as input a public key pk and a message
m ∈M and outputs a ciphertext c ∈ C.

• The decryption algorithm Dec takes as input a secret key sk and a cipher-
text c ∈ C and outputs a message m ∈M.

Definition 4 (Asymmetric Encryption Correctness). Let Π = (Gen,Enc,Dec) be
an asymmetric encryption scheme. We say that Π is correct if for any key pair
(pk, sk)← Gen(1λ) and every m ∈M, it holds that

Dec(sk,Enc(pk,m)) = m

except with negligible probability over (pk, sk) output by Gen(1λ).

9

2 Preliminaries

Security Definitions

Numerous definitions for what constitutes a break of an encryption scheme have
been proposed throughout history. For encryption schemes the security defini-
tions of indistinguishable encryptions under a chosen plaintext attack (IND-CPA)
and indistinguishable encryptions under a chosen ciphertext attack (IND-CCA)
are in prevailing use. As their names suggest, the adversary goal is to distinguish
between the output of encryptions in order to achieve a break and the adversary
is capable of choosing plaintexts or ciphertexts.

The IND-CPA experiment for symmetric encryption proceeds as follows: First,
the challenger generates a key k using Gen(1λ). Then, the challenger invokes the
adversary with input 1λ. The adversary is given oracle access to Enc(k, ·). That
means, the adversary may choose plaintexts and request their encryption from
the challenger. The challenger answers each query by encrypting the requested
plaintext using key k and returning the resulting ciphertext to the adversary.
The adversary does not have to make all oracle queries at once, but may adap-
tively adjust queries depending on the ciphertexts received from the challenger.
At some point, the adversary outputs a pair of plaintext messages m0,m1 of the
same length. The challenger chooses a random bit b←$ {0, 1} and encrypts the
plaintext mb as c ← Enc(k,mb). Then, the challenger invokes the adversary a
second time and provides the challenge ciphertext c as input. The adversary
continues to have oracle access to Enc(k, ·). Eventually, the adversary outputs
a bit b′. The output of the experiment is 1 if b′ = b and 0 otherwise. Since
the experiment outputs 1 with probability 1

2 if the adversary is guessing blindly,
the advantage is defined as the probability of the experiment outputting 1 mi-
nus 1

2 . We now provide the full definition, including the security experiment in
algorithmic notation.

Definition 5 (SE-IND-CPA). A symmetric encryption scheme Π = (Gen,Enc,
Dec) has indistinguishable encryptions under a chosen-plaintext attack, or is
CPA-secure, if for all PPT adversaries A there is a negligible function negl(λ)
such that:

AdvIND-CPA
A,Π (λ) := Pr

[
ExpSEIND-CPA

A,Π (λ) = 1
]
− 1

2
≤ negl(λ)

with the experiment defined as follows:

ExpSEIND-CPA
A,Π (λ)

k ← Π.Gen(1λ)

(m0,m1, st)← AΠ.Enc(k,·)(1λ)

b←$ {0, 1}
c← Π.Enc(k,mb)

b′ ← AΠ.Enc(k,·)(1λ, c, st)

return b = b′

Note that the state variable st is a technicality required to transport data from
the first invocation of the adversary to the second invocation, because A is not
assumed to have persistent memory between the two invocations.

10

2.2 Common Cryptographic Principles

The definition of IND-CPA covers many real world attack scenarios. For ex-
ample, it considers the case where an attacker can obtain ciphertexts by eaves-
dropping on a public communication channel. It also covers the case where an
attacker knows that a certain ciphertext corresponds to a certain plaintext. It
even considers the case where an attacker can get the victim to encrypt chosen
plaintext without the victim noticing. However, the adversary in the IND-CCA
definition is even more powerful.

The IND-CCA experiment proceeds like the IND-CPA experiment and the ad-
versary goal again is to distinguish between two ciphertexts. The key difference
is that in the IND-CCA experiment the adversary has access to an additional
decryption oracle. The adversary may use the decryption oracle adaptively in its
first and its second invocation. However, in the second invocation the challenger
refuses to provide the correct answer when asked to decrypt the challenge cipher-
text c. Without this restriction, an adversary could trivially win the experiment.

We now provide the full definition of IND-CCA security for symmetric encryp-
tion. The security definitions for asymmetric encryption are identical, except
that instead of providing an encryption oracle, the public key is provided to the
adversary such that the adversary can perform any encryptions on its own.

Definition 6 (SE-IND-CCA). A symmetric encryption scheme Π = (Gen,Enc,
Dec) has indistinguishable encryptions under a chosen-ciphertext attack, or is
CCA-secure, if for all PPT adversaries A there is a negligible function negl(λ)
such that:

AdvIND-CCA
A,Π (λ) := Pr

[
ExpSEIND-CCA

A,Π (λ) = 1
]
− 1

2
≤ negl(λ)

with the experiment defined as follows:

ExpSEIND-CCA
A,Π (λ)

S := ∅
k ← Π.Gen(1λ)

(m0,m1, st)← AΠ.Enc(k,·),D(k,·)(1λ)

b←$ {0, 1}
c← Π.Enc(k,mb)

S := {c}
b′ ← AΠ.Enc(k,·),D(k,·)(1λ, c, st)

return b = b′

D(k, c)

if c ∈ S then

return ⊥
else

m := Π.Dec(k, c)

return m

The Elgamal Encryption Scheme

A well-known example of an encryption scheme is the asymmetric scheme due to
Taher Elgamal [Elg85]. The Elgamal scheme operates on a cyclic group and pro-
vides IND-CPA security under the assumption that the decisional Diffie-Hellman
(DDH) problem is hard. In the following, we present the DDH problem, the con-
struction of the Elgamal scheme and its security theorem.

11

2 Preliminaries

Definition 7 (Group Generation Algorithm). A group generation algorithm is
a PPT algorithm which takes 1λ as input and outputs (G, q, g) where G is (a
description of) a cyclic group, q is the order of G and g is a generator of G.

Definition 8 (Decisional Diffie-Hellman Problem). Let G be a group generation
algorithm. We say that the Decisional Diffie-Hellman (DDH) problem is hard
relative to G if for all PPT algorithms A there is a negligible function negl(λ)
such that:∣∣∣Pr

[
A(G, q, g, gα, gβ, gγ) = 1

]
− Pr

[
A(G, q, g, gα, gβ, gαβ) = 1

] ∣∣∣ ≤ negl(λ)

where in each case the probabilities are taken over the experiment in which G(1λ)
outputs (G, q, g), and then α, β, γ←$Zq.

Construction 1 (Elgamal Asymmetric Encryption). Let G be a group generation
algorithm. The Elgamal asymmetric encryption scheme consists of the following
PPT algorithms:

• Gen: on input 1λ obtain (G, q, g) ← G(1λ). Choose x←$Zq and compute
h := gx. The public key is (G, q, g, h), the private key is (G, q, g, x).

• Enc: on input a public key pk = (G, q, g, h) and a message m ∈ G. Choose
r←$Zq, compute c1 = gr as well as c2 = hr · m. Return the ciphertext
c = (c1, c2).

• Dec: on input a private key sk = (G, q, g, x) and a ciphertext c = (c1, c2) ∈
G×G. Output the plaintext m′ = c1

−x · c2.

Theorem 1 (Elgamal IND-CPA Security). Let Π = (Gen,Enc,Dec) be Construc-
tion 1 and let G be the group generation algorithm in Gen. If the DDH problem
is hard relative to G, then Π is CPA-secure.

2.2.3 Message Authentication Codes

Encryption schemes provide confidentiality, but do not necessarily prevent ci-
phertexts from being manipulated without detection. This aspect is separately
captured by the authenticity security property, which can be achieved using mes-
sage authentication codes (MACs). In the following, we define the syntax and
correctness of MACs and present the prevailing security definition.

Definition 9 (Message Authentication Code Syntax). A message authentication
code (or MAC) is a triple of PPT algorithms (Gen,Mac,Vrfy) such that:

• The key-generation algorithm Gen takes as input the security parameter 1λ

and outputs a key k with |k| ≥ λ.

• The tag-generation algorithm Mac takes as input a key k and a message m
and outputs a tag t← Mac(k,m).

12

2.2 Common Cryptographic Principles

• The verification algorithm Vrfy takes as input a key k, a message m and
a tag t. It outputs a bit b, with b = 1 indicating that t is a valid tag for
message m under k and 0 otherwise.

Definition 10 (Message Authentication Code Correctness). Let Π = (Gen,Mac,
Vrfy) be a message authentication code. We say that Π is correct if for any key
k and every m ∈ {0, 1}∗, it holds that

Vrfy(k,m,Mac(k,m)) = 1

except with negligible probability over k output by Gen(1λ).

Definition 11 (MAC-UF-CMA). A message authentication code Π = (Gen,
Enc,Dec) is existentially unforgeable under an adaptive chosen-message attack,
or just secure, if for all PPT adversaries A there is a negligible function negl(λ)
such that:

Pr
[
ExpMACUF-CMA

A,Π (λ) = 1
]
≤ negl(λ)

where the experiment is defined as follows:

ExpMACUF-CMA
A,Π (λ)

M := ∅
k ← Π.Gen(1λ)

(m, t)← AM(k,·)(1λ)

return Vrfy(k,m, t) = 1 ∧m /∈M

M(k,m)

t← Π.Mac(k,m)

M := M ∪ {m}
return t

2.2.4 Building Blocks for Message Authentication Codes

Secure message authentication codes can for example be constructed from col-
lision resistant hash functions or pseudorandom functions. We introduce these
building blocks since they can also be applied outside the scope of MACs.

Definition 12 (Hash Function). A hash function (with output length l) is a pair
of PPT algorithms (Gen, H) such that:

• Gen takes as input the security parameter 1λ and outputs a key s.

• H takes as input a key s and a string x ∈ {0, 1}∗ and outputs a string
y ∈ {0, 1}l(λ) where λ corresponds to the security parameter used by Gen to
generate s.

Definition 13 (Collision Resistance). A hash function Π = (Gen, H) is called
collision resistant if for all PPT adversaries A there is a negligible function
negl(λ) such that:

Pr[HashCollA,Π(λ) = 1] ≤ negl(λ)

with the experiment defined as follows:

13

2 Preliminaries

HashCollA,Π(λ)

s← Π.Gen(1λ)

(x, x′)← A(s)

return x 6= x′ ∧H(s, x) = H(s, x′)

Definition 14 (Pseudorandom Function). Let X and Y be two finite sets and
denote the set of all functions from X to Y as F . We say that an efficiently
computable keyed function F : K ×X → Y with keyspace K is a pseudorandom
function (PRF), if for all PPT algorithms A there is a negligible function negl(λ)
such that: ∣∣∣Pr

[
AF (k,·)(1λ) = 1

]
− Pr

[
Af(·)(1λ) = 1

]∣∣∣ ≤ negl(λ)

where the first probability is taken over k←$K and the second probability is taken
over f ←$F .

2.2.5 Authenticated Encryption

An authenticated encryption scheme provides both, confidentiality and authen-
ticity. In this section, we first introduce the security definition of unforgeability
under a chosen plaintext attack (UF-CPA), a variant of the MAC-UF-CMA def-
inition for encryption schemes. This definition is necessary since the syntax of
a MAC is not compatible with the syntax of an encryption scheme. Then, we
formally define authenticated encryption.

Definition 15 (SE-UF-CPA). A symmetric encryption scheme Π = (Gen,Enc,
Dec) is unforgeable under a chosen-plaintext attack, or just unforgeable, if for
all PPT adversaries A there is a negligible function negl(λ) such that:

Pr
[
ExpSEUF-CPA

A,Π (λ) = 1
]
≤ negl(λ)

where the experiment is defined as follows:

ExpSEUF-CPA
A,Π (λ)

M := ∅
k ← Π.Gen(1λ)

c← AE(k,·)(1λ)

m := Π.Dec(k, c)

return m 6= ⊥ ∧m /∈M

E(k,m)

c← Π.Enc(k,m)

M := M ∪ {m}
return c

Definition 16 (Authenticated Encryption). A symmetric encryption scheme is
an authenticated encryption (AE) scheme, if it is CCA-secure and unforgeable.

14

2.3 Probability and Information Theory

2.3 Probability and Information Theory

This section introduces various information theory definitions and related defini-
tions from probability theory [CT06].

Definition 17 (Random Variable). Let (Ω,Σ, P) be a probability space and E a
measurable space. A random variable is a measurable function X : Ω→ E. X is
called a discrete random variable if the image of X is countable.

Definition 18 (Probability Mass Function). Let X : Ω→ E be a discrete random
variable on a probability space (Ω,Σ, P). Then the probability mass function
pX : E → [0, 1] for X is defined as

pX(x) := P ({ω ∈ Ω : X(ω) = x}) .

Definition 19 (Shannon Entropy). Let X be a discrete random variable with pos-
sible values E = {x1, . . . , xn} and probability mass function pX(x). The Shannon
entropy (or entropy) is defined as

H(X) := −
n∑
i=1

pX(xi) log pX(xi).

Definition 20 (Conditional Shannon Entropy). Let X and Y be discrete ran-
dom variables with probability mass functions pX(x) and pY (y). The conditional
Shannon entropy of X given Y is defined as

H(X|Y) := −
∑

x∈X ,y∈Y
pX,Y (x, y) log

pX,Y (x, y)

pY (y)
,

where X and Y denote the support sets of X and Y and pX,Y the joint probability
mass function of X and Y .

Definition 21 (Conditional Minimal Entropy). Let X and Y be discrete ran-
dom variables with probability mass functions pX(x) and pY (y). The conditional
minimal entropy of X given Y is defined as

H∞(X|Y) := min
y∈Y

H(X|Y = y),

where Y denotes the support set of Y .

2.4 Optimization Problems

This section introduces concepts related to multi-objective optimization prob-
lems. Section 2.4.1 provides basic definitions and Section 2.4.2 presents the hy-
pervolume indicator for determining the quality of multi-objective approximation
sets.

15

2 Preliminaries

2.4.1 Multi-Objective Optimization Problems

The presentation in this section is based on the work by Miettinen [Mie98] and
Zitzler et al. [ZBT06].

Definition 22 (Multi-Objective Optimization Problem). A multi-objective op-
timization problem (MOP) is an optimization problem of the form:

minimize {f1(x), f2(x), . . . , fk(x)}
subject to x ∈ X

for k ≥ 2 objective functions fi : W → R. W is called the decision variable
space and usually W = Rn. X is a non-empty subset of W and called the
feasible region or feasible set. An element x ∈ X is called a feasible solution or
feasible decision. The vector of objective functions

f(x) := (f1(x), f2(x), . . . , fk(x))T

can be interpreted as a function f : W → Rk assigning each decision variable an
objective vector from the objective space Rk.

Definition 23 (Pareto Dominance). Let f be the vector of objective functions of a
k-objective minimization problem with feasible set X. Furthermore, let x, y ∈ X.
We say that x weakly dominates y, or x � y, iff

∀i ∈ [1, k] : fi(x) ≤ fi(y).

We say that x dominates y, or x � y, iff

x � y ∧ ∃i ∈ [1, k] : fi(x) < fi(y).

Definition 24 (Pareto Dominance For Sets). Let X be the feasible set of a
minimization problem and let A ⊆ X and B ⊆ X. We say that A weakly
dominates B, or A � B, iff

∀y ∈ B : ∃x ∈ A : x � y

and we say that A dominates B, or A � B, iff

∀y ∈ B : ∃x ∈ A : x � y.

Definition 25 (Pareto Optimality). Let f be the vector of objective functions of
a k-objective minimization problem with feasible set X and dominance relation �.
A feasible solution x ∈ X is called Pareto-optimal with respect to f iff

@y ∈ X : y � x.

If f is clear from context, we simply call x Pareto-optimal. The set of all Pareto-
optimal solutions is called the Pareto front.

Definition 26 (Non-Dominated Set). Let f be the vector of objective functions of
a k-objective minimization problem with feasible set X and dominance relation �.
A set Y ⊆ X is called non-dominated iff

@x, y ∈ Y : x � y.

16

2.4 Optimization Problems

2.4.2 The Hypervolume Indicator

Depending on its exact parameters, finding the Pareto front of an MOP can be
computationally expensive or prohibitive. In this case, a common practice is to
instead compute an approximation of the Pareto front using an MOP optimizer or
an application-specific heuristic. These algorithms then output a set of objective
vectors as an approximation set. Given an MOP with objective space Z, an
approximation set is an element of the powerset of Z. In almost all cases, only
feasible solutions are accepted and the feasible set X is used instead of Z.

Clearly, the Pareto front is the best approximation set that can be found. But,
how can we determine whether an approximation set is better than another? An
established measure used to determine the quality of approximation sets is the
hypervolume indicator (HVI) [ZBT06; ZT98; RVLB15; Aud+18]. Essentially, an
indicator assigns a numeric quality score to an approximation set. Geometrically,
the HVI computes the space (or volume) dominated by a given approximation
set.

Classically, the HVI has been defined using volumes of polytopes or hyper-
cubes [ZBT06]. Zitzler et al. [ZBT06] provide an elegant definition using at-
tainment functions, which we present in the following. Their definition assumes
Z = (0, 1)k, but this assumption is without loss of generality since there exists a
bijective mapping from R into the open interval (0, 1) ⊂ R [ZBT06]. Their defi-
nitions use the weak dominance relation �, but likewise applies to the dominance
relation �.

Definition 27 (Attainment Function). Given an approximation set A, the at-
tainment function αA : [0, 1]n → {0, 1} for A is defined as

αA(z) :=

{
1 if A � {z}
0 else

for z ∈ Z.

Definition 28 (Hypervolume Indicator). The hypervolume indicator (HVI) I∗H
with reference point (0, . . . , 0) is defined as

I∗H(A) :=

∫ (1,...,1)

(0,...,0)
αA(z)dz

for an approximation set A.

17

3 Related Work

This chapter provides an overview on approaches allowing computation on en-
crypted data and related concepts. We discuss encryption schemes capable of
computing on encrypted data in Section 3.1 and other cryptographic primitives
in Section 3.2. Section 3.3 reviews techniques transforming programs to compute
on encrypted data. We close the chapter with a discussion of hardware-based
trusted execution environments in Section 3.4. Note that additional related work
is presented in Sections 5.8 and 6.8.

3.1 Encryption Schemes with Computation Support

This section presents encryption schemes supporting computation on ciphertexts.
Sections 3.1.1 and 3.1.2 introduce property-preserving and searchable encryption.
Sections 3.1.3 and 3.1.4 discuss functional and homomorphic encryption.

3.1.1 Property-Preserving Encryption

Essentially, a property-preserving encryption scheme is a symmetric encryption
scheme (Gen,Enc,Dec) extended with a fourth Test algorithm, which can be ap-
plied to a tuple of ciphertexts in order to determine whether their corresponding
plaintexts possess a certain pre-defined property. In the formal definition pro-
vided by Pandey et al. [PR12] the Gen algorithm is called Setup and, in addition
to a secret key, also outputs some public parameters which are provided to all
other algorithms. In the following, we present their definition using our notation.

Definition 29 (Property-Preserving Encryption Syntax). A symmetric property-
preserving encryption (PPE) scheme for message space M is a tuple of PPT
algorithms (Setup,Enc,Dec,Test) and an associated property P : Ml → {0, 1}
such that:

• The setup algorithm Setup takes as input the security parameter λ and
outputs a secret key k and public parameters pp.

• The encryption algorithm Enc takes as input public parameters pp, a key k
and a plaintext message m ∈M and outputs a ciphertext c.

• The decryption algorithm Dec takes as input public parameters pp, a key
k and a ciphertext c and outputs a message m ∈M.

• The testing algorithm Test takes as input public parameters pp, ciphertexts
c1, . . . , cl and outputs a bit b ∈ {0, 1}.

19

3 Related Work

Definition 30 (Property-Preserving Encryption Correctness). Let Π = (Setup,
Enc,Dec,Test) be a PPE scheme for message space M with associated property
P . In order for Π to be correct, we require that for any (pp, k)← Setup(1λ) and
any m ∈M it holds that

Dec(pp, k,Enc(pp, k,m)) = m.

Furthermore, it is required that there exists a negligible function negl(λ) such
that ∀(m1, . . . ,ml) ∈Ml

Pr

[
Test(pp, c1, . . . , cl)
= P (m1,m2, . . . ,ml)

∣∣∣∣ (pp, k)← Setup(1λ)
∀i ∈ [1, l] : ci ← Enc(pp, k,mi)

]
≥ 1− negl(λ)

where the probability is taken over the randomness of all algorithms.

Since the Test algorithm of a PPE scheme does not require any secret inputs,
it can be evaluated on ciphertexts by an untrusted party, for example a cloud
service provider in our scenario.

Deterministic encryption schemes such as synthetic initialization vector au-
thenticated encryption (SIV) [Har08] allow to determine whether plaintexts are
equal based on their corresponding ciphertexts. Similarly, order-preserving en-
cryption (OPE) as defined by Agrawal et al. [Agr+04] and order-revealing en-
cryption (ORE) as defined by Boneh et al. [Bon+15] allow to determine plaintext
order (e.g., ≤ on Z) from ciphertexts.

Some PPE schemes, for example SIV and OPE, possess the additional feature
of allowing the same Test algorithm to be used for testing the property P on
plaintexts and testing the property on ciphertexts. This feature is for exam-
ple useful when integrating encryption algorithms into existing data processing
environments such as database management systems.

3.1.2 Searchable Encryption

Searchable symmetric encryption (SSE) as introduced by Song et al. [SWP00]
allows to test for equality similar to deterministic encryption. However, basically,
the PPE Test algorithm cannot be applied to all ciphertexts, but first requires a
search token to be generated.

Definition 31 (Searchable Symmetric Encryption Syntax). A searchable sym-
metric encryption (SSE) scheme for message space M is a tuple of PPT algo-
rithms (Setup,Enc,Token,Match) such that:

• The setup algorithm Setup takes as input the security parameter λ and
outputs a secret master key k.

• The encryption algorithm Enc takes as input a master key k and a plaintext
message m ∈M. It outputs a ciphertext cm.

• The deterministic token generation algorithm Token takes as input a master
key k and a plaintext message w ∈M. It outputs a search token tw.

20

3.1 Encryption Schemes with Computation Support

• The deterministic testing algorithm Match takes as input a ciphertext cm
and a search token tw. It outputs a bit b ∈ {0, 1}.

Definition 32 (Searchable Symmetric Encryption Correctness). Let Π = (Setup,
Enc,Token,Match) be an SSE scheme for message space M. In order for Π to
be correct, we require that

Pr

[
Match(cm, tw)
= (m = w)

∣∣∣∣ k ← Setup(1λ),∀m,w ∈M :
cm ← Enc(k,m), tw := Token(k,w)

]
≥ 1− negl(λ)

where the probability is taken over the randomness of all algorithms.

In particular, Song et al. [SWP00] consider a collection of text documents
outsourced to a CSP. Using SSE, a trusted client can perform exact keyword
matching on the outsourced documents by first generating a search token using
the master key and then sending the token to the CSP. The CSP can then
perform the matching on the documents, but is limited to learning matches of
keywords for which a token was provided.

Note that the syntax definition does not include a decryption algorithm. If
decryption is required, an SSE scheme can be combined with a regular symmetric
encryption scheme, e.g., an authenticated encryption scheme.

Boneh et al. [Bon+04] later proposed public-key encryption with keyword
search (PEKS), which allows any party to encrypt using the public key, but lim-
its the generation of search tokens to entities in possession of the secret master
key. For an overview on additional variants of searchable encryption, e.g., range
queries rather than equality testing, we refer to a survey by Bösch et al. [Bös+14].

3.1.3 Functional Encryption

Functional encryption [BSW11] generalizes the concept of searchable encryption
in the asymmetric setting from equality testing to function evaluation. As usual
in asymmetric encryption, the encryption algorithm takes a public key and a
plaintext message, and outputs a ciphertext. However, the decryption algorithm
does not only reverse the encryption process, it evaluates a function at the same
time. The function is identified by a function-specific secret key generated from
a master key. Constructions have been proposed in which the function key cor-
responds to a binary circuit [Gar+16; Gol+13b] or Turing machine [Gol+13a].

Definition 33 (Functional Encryption Syntax). A functional encryption (FE)
scheme for key space K, message spaceM and functionality F : K×M→ {0, 1}∗
is a tuple of PPT algorithms (Setup,Gen,Enc,Dec) such that:

• The setup algorithm Setup takes as input the security parameter λ. It
outputs a secret master key mk and a public key pk.

• The key-generation algorithm Gen takes as input a master key mk and
function key k. It outputs a secret key skk for evaluating F (k, ·).

• The encryption algorithm Enc takes as input a public key pk and a plaintext
message m ∈M. It outputs a ciphertext cm.

21

3 Related Work

• The decryption algorithm Dec takes as input a secret key skk and a cipher-
text cm. It outputs the result of F (k,m).

Definition 34 (Functional Encryption Correctness). Let Π = (Setup,Gen,Enc,
Dec) be an FE scheme for key space K, message space M and functionality
F : K ×M→ {0, 1}∗. In order for Π to be correct, it is required that

∀k ∈ K,m ∈M,

∀(pk,mk)← Setup(1λ)

∀sk ← Gen(mk, k)

∀c← Enc(pk,m)

it holds that
Dec(sk, c) = F (k,m).

PEKS [Bon+04] can be considered a special case of FE for exact keyword
matching. Functionality provided by similarly limited schemes for example in-
clude inner-product computation and orthogonality testing of encrypted vec-
tors [AFV11; Lew+10].

3.1.4 Homomorphic Encryption

We already briefly introduced and discussed the concept of homomorphic en-
cryption (HE) in Chapter 1. In comparison to functional encryption, function
evaluation in HE does not depend on a secret key and always yields a ciphertext;
that is, the result stays encrypted. HE schemes can be categorized based on the
limitations imposed onto the functions that can be evaluated homomorphically.

A partially homomorphic encryption (PHE) scheme is limited to a single op-
eration on ciphertexts, e.g., integer addition or integer multiplication, but the
number of such operations is not limited. We provide a formal definition in
the asymmetric encryption setting based on the definition by Katz and Lin-
dell [KL14]. Equivalently, homomorphic encryption could be defined using a
fourth Eval algorithm.

Definition 35 (Asymmetric Homomorphic Encryption). An asymmetric encryp-
tion scheme Π = (Gen,Enc,Dec) is a partially homomorphic encryption (PHE)
scheme, or just homomorphic, if for all λ and all (pk, sk)← Gen(1λ) it is possible
to define groups (M,+) and (C, ·) (depending on pk only) such that:

• The message space is M, and all ciphertexts output by Enc(pk, ·) are ele-
ments of C.

• For any m1,m2 ∈ M, any c1 ← Enc(pk,m1), and any c2 ← Enc(pk,m2) it
holds that:

Dec(sk, c1 · c2) = m1 +m2.

Moreover, the distribution on ciphertexts obtained by encrypting m1, en-
crypting m2, and then multiplying the results is identical to the distribution
on ciphertexts obtained by encrypting m1 +m2.

22

3.2 Other Cryptographic Primitives

PHE schemes have for example been proposed by Paillier [Pai99b] for homo-
morphic addition on integers and Goldwasser et al. [GM82] for homomorphic
computation of the bitwise exclusive-or (XOR). We also already presented a
construction of a PHE scheme. The Elgamal encryption scheme provided in
Construction 1 can homomorphically compute the group operation with M = G
and C = G×G, where the group operation in C is performed component-wise.

The BGN encryption scheme by Boneh et al. [BGN05] is a well-known repre-
sentative of the more powerful category of somewhat homomorphic encryption
(SWHE) schemes. Besides an arbitrary number of additions on ciphertexts, their
scheme supports up to one homomorphic multiplication. Thus, BGN can be used
to homomorphically evaluate boolean circuits in 2-DNF form, i.e., disjunctive
normal form where each conjunctive clause contains at most two literals.

Extending on SWHE schemes, Gentry presented the first construction of a
fully homomorphic encryption (FHE) scheme in 2009 [Gen09]. An FHE scheme
can perform an unlimited number of homomorphic additions and an unlimited
number of homomorphic multiplications. As a result, an FHE scheme can be used
to homomorphically evaluate arbitrary boolean circuits and thus can perform
arbitrary computations on encrypted data.

Although Gentry’s discovery sparked significant interest in the field which led
to a number of additional research results [BGV14; BV14; SV10; Dij+10], the
applicability of FHE to general purpose computing — and in particular cloud
computing — remains limited. The reason for this is twofold.

First, in comparison to operations on plaintext, operations on FHE ciphertexts
entail extraordinarily high memory and computation overhead. This is crucial
for cloud applications because computing on plaintexts using limited resources
in a trusted environment may be economically more efficient than computing on
FHE-encrypted data using powerful resources in the cloud. An often used bench-
mark for FHE schemes is the homomorphic evaluation of an AES-128 encryption
operation, which Gentry et al. [GHS12] report to require about 4 minutes of
wall-clock time and 3 GB of random access memory (RAM).

Second, there is an important difference between evaluating circuits and exe-
cuting programs as in prevailing general purpose computing. A circuit can only
be evaluated completely or not at all. There is no notion of control flow which
could be used to skip some computations. This in turn prevents efficient execu-
tion of algorithms with high worst case complexity, but low average case com-
plexity. Any execution will exhibit the same worst case behavior, since circuits
must be evaluated entirely.

3.2 Other Cryptographic Primitives

In this section, we briefly discuss cryptographic primitives related to computation
on encrypted data but outside the scope of this dissertation. Section 3.2.1 in-
troduces secure multi-party computation protocols. Section 3.2.2 presents prim-
itives for hiding the access pattern when handling collections of ciphertexts. Sec-
tion 3.2.3 discusses cryptographic program code obfuscation.

23

3 Related Work

3.2.1 Secure Multi-Party Computation

Secure multi-party computation (MPC) [EKR18] allows multiple distrusting par-
ties to jointly compute an arbitrary function while keeping their inputs secret.
The security goal is to ensure that each party learns nothing beyond their in-
tended output function.

MPC is best illustrated using Yao’s Millionaires’ problem [Yao82] which consid-
ers two millionaires, who want to know which of them is richer without revealing
their actual wealth. Assuming their respective wealths are wa and wb, then each
of the two wants to learn the output function wa ≤ wb without revealing any
other information to the other party.

Secure computations are performed using MPC protocols in an interactive
setting in which all parties are assumed connected via a network and online. A
primary complexity measure for protocols then is the number of communication
rounds required for a given computation.

MPC was first introduced for two parties [Yao82] and later extended to more
parties [GMW87]. An extension has been proposed in which the parties are
assisted by an additional server [FKN94]. The server has no inputs to the secure
computation and learns no output function, but provides its computing resources
to the other parties.

MPC is related to the setting considered in this dissertation, but does not
directly apply. Whereas MPC considers multiple mutually distrusting parties,
we consider a trusted client and an untrusted server. The server trusts the client
and has no inputs that must be kept secret from the client.

3.2.2 Primitives for Access Pattern Hiding

Encryption can be used to transform plaintexts into ciphertexts to achieve data
confidentiality. However, when multiple ciphertexts are held in data structures
allowing ciphertexts to be accessed individually, additional security properties
may become relevant.

An adversary capable of observing accesses to individual ciphertexts of a collec-
tion may be able to infer information about their corresponding plaintexts based
on the observed access pattern. Consider for example a cloud storage scenario in
which an array of ciphertexts is outsourced to a CSP. An eavesdropping attacker
on the cloud server could observe which array elements are accessed, the order
of accesses and whether an access performed a read or a write operation.

Oblivious RAM (ORAM) is a cryptographic primitive allowing a trusted client
to access a random access memory (RAM) outsourced to an untrusted server
without revealing the access pattern to the server. Formally, given a readable
and writable RAM at the server, ORAM (in combination with encryption) at
the client ensures that an adversary cannot distinguish between the RAM com-
munication transcripts for two access sequences of the same length, even if the
sequences were chosen by the adversary. ORAM constructions have been pro-
posed for various assumptions about available client storage, server computation
capabilities and number of servers [Abr+17; Dev+16; Ren+15; Ste+13].

24

3.3 Program Transformation Techniques

Private information retrieval (PIR) [KO97] considers the similar problem of
hiding which entries a client has requested from a read-only RAM outsourced to
a server. In comparison to ORAM, PIR considers multiple clients and the data
held by the server is assumed to be public. That is, the data does not have to
be kept confidential from the server.

3.2.3 Obfuscation Primitives

Colloquially, program obfuscation is the process of producing program code that
is difficult for humans to understand. Software developers may for example want
to use obfuscation to hide the true purpose of a program or to prevent reverse
engineering. In the scenario considered in this dissertation, the client may want
to prevent the CSP from learning the source code of the outsourced program.

Ideally, an obfuscator O efficiently transforms a given program P into a pro-
gram P ′ = O(P) such that P ′ computes the same function as P and anything
that can be efficiently computed from P ′ can be efficiently computed given only
oracle access to P , that is, P ′ behaves like a virtual black box for P .

Barak et al. [Bar+12] show that it is impossible to achieve this notion of virtual
black box obfuscation for arbitrary programs. As an alternative security notion,
the authors introduce the weaker definition of indistinguishability obfuscation
(iO) in which the black box paradigm is avoided. In a nutshell, this notion re-
quires that, if two programs compute the same function, then their obfuscations
should be indistinguishable. Garg et al. [Gar+13] proposed a possible construc-
tion for iO. However, their work applies to circuits as used in FHE rather than
programs as considered in this work.

Due to ongoing research in the field and without any readily available and
efficient cryptographic tools to use, the architecture presented in this dissertation
does not consider the protection of outsourced program code.

3.3 Program Transformation Techniques

Since fully homomorphic encryption entails high computational overhead, re-
searchers have resorted to partially encrypting computations using more efficient
encryption schemes. Several proposals for program transformation into such en-
crypted computations have been made.

MrCrypt [Tet+13] uses type inference to infer feasible encryption schemes for
each program variable and transforms programs such that they operate using
the inferred encryption schemes. If no arithmetic or comparison operation is
performed, MrCrypt uses a common symmetric encryption scheme providing
IND-CPA security. Additionally, MrCrypt may infer deterministic encryption
for equality comparisons and OPE for order comparisons. Multiplication and
addition operations are supported using two PHE schemes. MrCrypt may also
infer that FHE is required for the execution of a program, but the authors did
not incorporate an FHE implementation due to the high computational overhead.
Essentially, MrCrypt attempts to partition a program such that it can run using

25

3 Related Work

a set of efficient encryption schemes. However, MrCrypt does not consider con-
versions between incompatible encryption schemes. If FHE is inferred, then no
efficient partition could be found. This severely limits the set of programs that
can be transformed using MrCrypt. The authors evaluate MrCrypt on shallow
Java MapReduce programs and even in this case several test cases cannot be
executed.

JCrypt [DMD16] improves the type inference algorithm such that a larger set
of programs is admissible for computation on encrypted data. By distinguishing
between sensitive and cleartext variables JCrypt increases the granularity of the
program partition. Additionally, JCrypt allows instructions of the original pro-
gram to execute in the sensitive or the cleartext context, depending on whether
there is a data flow from a variable marked as sensitive. Thus, the use of encryp-
tion is minimized and the set of admissible programs increased. However, still
no conversions between encryption schemes are considered.

AutoCrypt [Top+13] uses partially homomorphic encryption for addition and
multiplication, searchable symmetric encryption for equality comparisons, but
decided against using OPE due to its weak security guarantees. The AutoCrypt
architecture assumes an untrusted virtual machine running programs on en-
crypted data on top of a trusted hypervisor. The hypervisor can be used to
convert between incompatible encryption schemes. However, the authors real-
ized the security implications of allowing arbitrary conversions. Hence, they
disallowed any conversion from homomorphic encryption to searchable encryp-
tion. This restriction prevents any program from running that modifies its input
and then performs a control-flow decision.

Next to programs written in imperative languages (e.g., Java) programs in
declarative languages (e.g., SQL) are amenable to encrypted computation. In
these languages, the programmer does not specify the control-flow decisions,
but they may be optimized by the interpreter or compiler. Hence any resulting
data is admissible and weaker encryption schemes must be used. Hacigümüş
et al. [Hac+02] used deterministic encryption to implement a large subset of
SQL. Popa et al. [Pop+11] additionally used randomized and order-preserving
encryption in an adjustable manner.

3.4 Trusted Execution Environments

Another approach for computing on encrypted data are trusted execution envi-
ronments (TEEs). Instead of relying on cryptographic guarantees derived from
theoretical hardness assumptions, TEEs base their security on practical hardware
assumptions.

The general concept of hardware-based security is in prevailing use today. For
example, smart cards are used for access control and authorization in mobile tele-
phony networks and banking. These mechanisms are ultimately implemented by
using the card’s processor to perform cryptographic operations such as encryp-
tion or MAC computation (cf. Section 2.2). The security assumption is that the
chip card is tamper-resistant, i.e., it is assumed impossible (or at least uneco-

26

3.4 Trusted Execution Environments

nomical) for an attacker to extract the cryptographic key material stored in the
card’s persistent memory, e.g., in order to steal the card holders’s identity.

Whereas smart cards posses only constrained computation power and only pro-
vide limited functionality (e.g., cryptographic operations), TEEs aim to extend
the concept of hardware-based security to the execution of application-specific
code in general purpose computing. The prevailing TEE for general purpose
cloud computing readily available at the time the research for this dissertation
was started is Intel SGX [Ana+13; Hoe+13; McK+13]. We introduce details
about SGX in Section 3.4.1 and present attacks on SGX in Section 3.4.2.

3.4.1 Intel Software Guard Extensions (SGX)

Intel Software Guard Extensions (SGX) is an instruction set extension of commer-
cial off-the-shelf processors providing TEE capabilities. It was introduced into
the Intel Core CPU family with the Skylake generation released in Q3/2015 and
into the Intel Xeon family with the Kaby Lake generation released in Q1/2017.

Essentially, SGX enables developers to execute programs in isolated memory
regions, so-called enclaves, such that the program’s code and data are protected
from attackers controlling the host system. Potential attackers for example in-
clude external intruders, regular applications and other enclaves running on the
same system, the host operating system or hypervisor, and device firmware.

In more detail, SGX combines a number of techniques to achieve its protec-
tions. When a memory write operation is performed by an enclave program,
the corresponding data is encrypted before being written to physical memory.
Similarly, when a memory read operation is performed, data is decrypted before
being loaded into the CPU cache. The encryption process does not only provide
confidentiality of memory data, but also ensures its integrity (cf. authenticated
encryption in Section 2.2.3). In addition, SGX ensures the property of freshness,
which guarantees that the latest version of a memory page is loaded. Over-
all, SGX’s memory encryption thus prevents a physical memory attacker from
reading data as well as modifying or rolling back data without being detected.
Enclave data in plaintext is only available inside the processor and the security
assumption is that attackers cannot observe the plaintexts during computation.
Unfortunately, the total amount of memory for which these strong guarantees are
provided is limited to 128 MB. 96 MB are available to user-provided enclaves,
the remainder is used for internal SGX purposes. The limitation can be overcome
by swapping out some (encrypted) memory pages to the host operating system,
but doing so has performance as well as security implications.

SGX applications are developed using a software development kit (SDK) and
follow a certain framework. An application consists of two parts: an untrusted
program part and a trusted enclave part. The untrusted part is executed as a
regular operating system process (i.e., in unprotected memory) and is responsible
for setting up the trusted enclave. It can interact with its environment as usual,
for example access the filesystem on disk or initiate network connections. The
enclave is executed in isolated memory with the protections described above. It
is incapable of performing input/output operations directly, but has to use the

27

3 Related Work

untrusted part to do so. The two parts can communicate using an explicit inter-
face specified at compile time. Defined enclave calls (ECalls) allow the untrusted
part to perform well-defined calls into the enclave and outside calls (OCalls) al-
low the enclave to perform calls into the untrusted program part. Additionally,
the enclave has access to the virtual memory allocated to the corresponding un-
trusted part. However, since this memory is not subject to the strong protections
of enclave memory, security implications when reading or writing data must be
taken into account.

Another feature provided by SGX, which makes it especially appealing for re-
mote computation scenarios such as the one considered in this dissertation, is
remote attestation [Ana+13]. In a nutshell, SGX can prove to a remote party
that an enclave was initialised with a certain version of code and data. Inter-
nally, this is realized by hashing (cf. Definition 13) each memory page as it is
loaded and then computing a single summary hash before completing enclave
initialisation. During the attestation process, the remote party and the enclave
can also establish a secure communication channel, for example by exchanging
cryptographic key material. In summary, remote attestation allows the remote
party to determine whether their expected version of an enclave is running before
transmitting sensitive data to the remote enclave.

3.4.2 Attacks on Intel SGX

Various attacks against Intel SGX have been published in the literature. SGX has
for example been demonstrated to be prone to information leakage via software
side-channels, vulnerable to exploitation of security defects in enclave programs,
and affected by processor bugs.

Side-Channel Attacks When memory paging is used, SGX inherently leaks
information about page accesses to the host operating system. This is because
SGX delegates paging to the untrusted host, which can thus learn the memory
access pattern (cf. Section 3.2.2) of enclaves at the granularity of pages. Xu et
al. [XCP15] show that an untrusted operating system can exfiltrate secrets from
an enclave via this side-channel by inducing page faults.

Another source of information leakage are caches shared between SGX enclaves
and untrusted software. Moghimi et al. [MIE17] show that cryptographic key
material can be exfiltrated from a shared L1 cache. The attacks presented by
Brasser et al. [Bra+17] and Götzfried et al. [Göt+17] achieve the same goal,
but do not require the victim enclave to be frequently interrupted by the host
operating system. Schwarz et al. [Sch+17] show how to conceal cache attacks
when attacking the victim enclave from another enclave.

Yet another source of information leakage is the branch prediction history of
modern CPUs. Lee et al. [Lee+17b] present a branch shadowing attack allowing
the control flow executed inside SGX enclaves to be inferred from an untrusted
program. The authors use this attack to recover cryptographic key material used
by the victim enclave.

28

3.4 Trusted Execution Environments

It should be noted that these attacks are outside of Intel SGX’s threat model.
SGX “is not designed to handle side-channel attacks” [Int19] and it is up to the
developers to build their enclaves accordingly.

Enclave Code Exploits Weichbrodt et al. [Wei+16] present AsyncShock, a tool
for the exploitation of synchronization bugs in multi-threaded enclave programs.
AsyncShock interrupts threads by forcing segmentation faults on enclave pages
and exploits use-after-free and time-of-check-to-time-of-use defects to hijack the
control flow of the enclave program.

Lee et al. [Lee+17a] apply the exploit technique of return-oriented program-
ming (ROP) to SGX enclave programs. ROP works by piecing together programs
from code snippets preceding return statements in the victim program. The au-
thors present Dark-ROP, which uses fuzzing on the victim enclave’s ECalls to find
memory corruption vulnerabilities in the enclave program. By exploiting these
vulnerabilities, Dark-ROP achieves arbitrary code execution in the enclave. This
in turn allows enclave code and data to be exfiltrated via untrusted memory and
remote attestation to be defeated.

Since the enclave code is controlled by the enclave developer, these attacks
are also outside the threat model of Intel SGX. Because the number of software
vulnerabilities grows with the size of the code base, it is advisable to keep the
TCB of the enclave program as small as possible.

Processor Bugs Another source of attacks has been the speculative out-of-order
execution paradigm implemented in Intel CPUs. Out-of-order execution refers to
the reordering of instructions to minimize CPU idle time. The idea is to execute
instructions as soon as their operands are available but to make their results
visible in the original order specified by the programmer. Similarly, speculative
execution predicts the outcome of branching decisions and executes instructions
along the predicted control-flow path before knowing whether it is actually taken
or not. Both techniques entail the computation of intermediate results which
must be discarded rather than become visible to the programmer.

Outside the context of SGX, Lipp et al. [Lip+18] show an attack named
Meltdown exploiting intermediate results from out-of-order execution to subvert
memory isolation between processes. The Spectre attack proposed by Kocher
et al. [Koc+19] achieves the same result by exploiting speculative execution.

SGXPectre [Che+19] is a variant of the Spectre attack against SGX enclaves
used to extract register values and cryptographic key material from enclaves.
Foreshadow [Bul+18], ZombieLoad [Sch+19], CacheOut [Sch+20] and SGAxe
[Sch+] are attacks similar to Meltdown capable of extracting sensitive data from
enclaves and disarming the security protections of SGX (e.g., attestation).

All mentioned attacks are within the scope of the Intel SGX threat model
and have been addressed by CPU microcode updates published by the processor
vendor.

29

4 Methodology

This chapter derives requirements from our research question and summarizes
the methodology used to assess them. Section 4.1 defines requirements and Sec-
tion 4.2 explains how our solution fulfills some of them by design. Section 4.3
presents our practicality and efficiency assessment methodology. Section 4.4 in-
troduces our security assessment methodology.

4.1 Solution Requirements

Section 1.2 proposes the research question investigated in this dissertation:

How can homomorphic encryption and trusted execution environ-
ments be combined into a practical architecture enabling efficient and
secure computation on encrypted data?

The same section briefly expands on parts of the question:

We use practical to refer to the property of allowing an implemen-
tation and deployment on commercially available computer systems.
With efficient we refer to low running time overhead in comparison
to plaintext operations. Using secure we refer to provably secure
cryptography and a small trusted code base.

From the first quote, we can directly derive the following initial requirements:

• R1: The provided solution must use homomorphic encryption.

• R2: The provided solution must use a trusted execution environment.

• R3: The provided solution must offer an architecture sufficiently generic to
support a multitude of applications.

From the second quote, we can derive the following additional requirements:

• R4: The solution must be implementable and deployable on a commercially
available computer system.

• R5: The solution must have low running time overhead in comparison to
plaintext operations.

• R6: The solution must provide provable security guarantees.

• R7: The solution must be implementable using a small trusted code base.

In the remainder of this chapter, we describe how the solution provided in this
dissertation fulfills these requirements by design or how we assess them.

31

4 Methodology

4.2 Solution Design

Chapters 5 and 6 present a novel architecture for computation on encrypted
data as an answer to the research question proposed in this dissertation. In
this section, we explain how our architecture is designed to fulfill some of the
requirements listed above.

Fully homomorphic encryption (cf. Section 3.1.4) can perform arbitrary compu-
tations on encrypted data in theory, but in practice suffers a complexity penalty
and high computational overhead. To avoid the complexity penalty, our archi-
tecture executes control-flow driven programs instead of computing circuits as
in FHE (R5). To avoid the high computational overhead, our architecture uses
multiple partially homomorphic encryption schemes rather than FHE (R1, R5).

TEEs (cf. Section 3.4) can very efficiently compute on encrypted data, but
have been shown to be prone to attacks exploiting software vulnerabilities in
their TCB. Our architecture significantly reduces the surface for such attacks by
keeping the TCB small. Instead of executing entire applications in the TEE, we
consider a generic trusted module implemented using a TEE (R2). The TCB of
the trusted module is small and program-independent, i.e., has a constant size
(R7). As such it can be reused across applications and hardened against software
vulnerabilities as well as side-channels.

4.3 Practicality and Efficiency Assessment Methodology

We demonstrate the practicality of our contributions by implementing research
prototypes in software (R4). All our implementations use an Intel SGX en-
clave (cf. Section 3.4.1) as the TEE (R2). The SGX instruction set is widely
supported by common Intel desktop and server CPUs (R4). Initial software pro-
totypes are deployed to an off the shelf desktop computer system featuring a
common Intel desktop CPU (R4). Subsequent implementations are evaluated on
the Microsoft Azure platform, a commercial cloud environment providing access
to SGX-capable CPUs (R4).

To assess the practical efficiency of our contributions, we evaluate our proto-
types in multiple applications (R3). In Chapter 5, we evaluate the wall-clock
running times of different programs executed on encrypted data and compare
them to the running times of equivalent programs operating on plaintext data
(R5). We also collect the number of TEE invocations required by two of our
proposed primitives, such that we can also compare this dimension. In Chap-
ter 6, the evaluation of our contributions focusses on the quality of the solutions
discovered by our algorithms, rather than their performance. However, we can
estimate the actual wall-clock running times of our algorithms from data col-
lected during an exhaustive search of the solution space. In the same chapter,
we also evaluate the wall-clock running times of different variants of the same
program computing on encrypted data as part of our security and performance
trade-off analysis (R3).

32

4.4 Security Assessment Methodology

4.4 Security Assessment Methodology

Chapter 5 introduces the foundation of our architecture, including novel crypto-
graphic primitives. To provide precise security definitions, we follow the principle
of game-based security (cf. Section 2.2.1). For a new primitive, we first formally
define its syntax requirements and correctness conditions. Then, we formally de-
fine its desired security properties using security experiments (games). Next, we
provide one or more constructions adhering to the syntax requirements. Finally,
we show the security of our constructions via reduction to problems assumed
hard (R6).

We perform security reductions using a sequence of games [BR06]. The first
game is the original security experiment provided by the security definition. Each
subsequent game is equal to the previous game except for some small well-defined
change for which we argue that it does only negligibly influence adversarial ad-
vantage. The last game then has a special and easy to verify property, e.g., the
adversary has no advantage over a blind guess. Only negligible change in ad-
vantage between subsequent games implies only negligible change in advantage
between the first and the last game, which concludes the reduction.

Chapter 6 extends the foundation of our architecture with additional security
guarantees. As part of our security and performance trade-off analysis, we evalu-
ate the leakage of different variants of the same program computing on encrypted
data using the technique of quantitative information flow. QIF uses established
definitions from information theory (cf. Section 2.3) to summarize the leakage of
a program in a single numeric value.

33

5 DFAuth: Dataflow Authentication

In this chapter, we present the foundation of our architecture. We study control-
flow leakage under active attacks and introduce the concept of dataflow authen-
tication (DFAuth) as a defense.

Section 5.1 briefly reiterates our motivation, introduces a possible dataflow
modification attack, and provides an overview of our solution. Section 5.2 pro-
vides our adversary model and defines the syntax, correctness and security of
our homomorphic authenticated symmetric encryption (HASE) scheme. Based
on HASE, we introduce DFAuth and the security it provides in Section 5.3.
Section 5.4 presents our HASE constructions and discusses their security. We
complement DFAuth and HASE with our alternative construction trusted au-
thenticated ciphertext operations (TACO) in Section 5.5. Details about our
implementation are given in Section 5.6. Section 5.7 shows the results of our
experiments using this implementation. Section 5.8 presents related work and
Section 5.9 provides a summary of this chapter.

The content of this chapter has been the subject of the following scientific
publications, of which parts are included verbatim in this thesis.

• Andreas Fischer, Benny Fuhry, Florian Kerschbaum, Eric Bodden: Com-
putation on Encrypted Data using Dataflow Authentication. In 20th Pri-
vacy Enhancing Technologies Symposium (PETS), 2020. [Fis+20a]

• Andreas Fischer, Benny Fuhry, Jörn Kussmaul, Jonas Janneck, Florian
Kerschbaum, Eric Bodden: Improved Computation on Encrypted Data us-
ing Dataflow Authentication. Under submission. [Fis+]

5.1 Introduction

Many critical computations are being outsourced to the cloud. However, attack-
ers might gain control of the cloud servers and steal the data they hold. End-
to-end encryption is a viable security countermeasure, but requires the cloud to
compute on encrypted data.

TEEs such as SGX enclaves (cf. Section 3.4.1) promise to provide a secure
environment in which data can be decrypted and then processed. However,
software vulnerabilities give attackers ample opportunity to execute arbitrary
code in the enclave program [Lee+17a]. These attacks can modify the control
and data flow of the program and leak secrets from the enclave via untrusted
memory or SGX side-channels (cf. Section 3.4.2). Since the number of software
vulnerabilities grows with the size of the code base, it is advisable to keep the
TCB as small as possible. Hence, it is not a good idea to outsource entire
programs to an SGX enclave.

35

5 DFAuth: Dataflow Authentication

Consider the following dataflow modification attack that efficiently leaks a
secret x in its entirety. Assume an encrypted variable Enc(x) in the domain
[0, N − 1] is compared to N/2 − 1. The “then” branch is taken if it is lower or
equal; the “else” branch otherwise. This can be observed, for example, by the
branch shadowing attack presented by Lee et al. [Lee+17b]. The observation of
this behavior leaks whether x ≤ N/2− 1. This becomes quite problematic when
assuming a strong, active adversary that can modify the control and data flow.
The adversary may then create constants Enc(x̄) for x̄ ∈ {N/4, N/8, N/16, . . . ,
1} in the program code, add those to the variable Enc(x) and re-run the control-
flow branch. This way, by consecutively adding or subtracting the constants, the
adversary can conduct a binary search for the encrypted value.

As a defense for this attack of modifying the dataflow, we introduce the concept
of dataflow authentication (DFAuth). We instrument each control-flow decision
variable with a label (broadly speaking: a MAC tag), such that only variables
with a pre-approved dataflow can be used in the decision. Variables carry unique
identifiers that are preserved and checked during the encrypted operations. This
prevents an adversary from deviating from the dataflow in ways that would allow
attacks such as the one we described above. Note that a program may still have
intentional leaks introduced by the programmer. However, DFAuth restricts the
leakage of any program to these intended leaks by the programmer which the pro-
grammer could avoid, e.g., by using appropriate algorithms such as data-oblivious
ones (cf. Section 3.2.2). In essence, the technique restricts the information flows
to those that are equivalent to the original program’s information flows.

FHE (cf. Section 3.1.4) would be an alternative to compute on encrypted data
without the drawback of data leaks. However, due to its high computational
complexity, researchers are seeking efficient alternatives that offer similar secu-
rity. Fortunately, PHE can efficiently perform additively and multiplicatively
homomorphic operations on encrypted data. Furthermore, if we reveal the con-
trol flow1 of a program instead of computing a circuit, efficient computation seems
feasible. Several proposals for program transformation into such encrypted com-
putations have been made (cf. Section 3.3). MrCrypt [Tet+13], JCrypt [DMD16]
and AutoCrypt [Top+13] each offer an increasing set of programs that can be
computed on encrypted data. To support encrypted computation on all pro-
grams, one needs to convert between different homomorphic encryption schemes.
These conversions are very small routines, such that one can scrutinize their
code and implement them safely in a trusted module likely without any software
vulnerabilities.

In this way, we combine the benefits of PHE with a small TCB and the effi-
ciency of unprotected program execution. Our re-encryption routines are small
and program-independent and are run protected in the trusted module whereas
the program runs efficiently on homomorphic encrypted values in unprotected
memory. We take care not to destroy the benefits of outsourcing. The ver-
ification of labels is constant time and does not depend on the homomorphic

1Note that any control-flow decision on an encrypted variable is an intentional leak by the
programmer.

36

5.2 Definitions

Approach
Support for

Control Flow
Low Computational

Overhead
Program-Independent

Trusted Code Base

FHE # #
SGX only #
AutoCrypt G#
DFAuth

Table 5.1: Comparison of DFAuth to the most relevant alternative approaches
computing on encrypted data.

computation. To this end, we introduce our own homomorphic authenticated
symmetric encryption (HASE) scheme and the complementary concept of trusted
authenticated ciphertext operations (TACO).

For a summary of key properties provided by DFAuth and a comparison to
the most relevant alternative approaches for computation on encrypted data,
refer to Table 5.1. Note that FHE does not require any trusted code to be
executed by the untrusted evaluator (i.e., the CSP in our use case). Also note that
AutoCrypt only supports control-flow decisions on encrypted input variables.
DFAuth extends the state of the art to those programs performing control-flow
decisions based on encrypted intermediate variables.

5.2 Definitions

In order to understand the security of DFAuth, we first introduce the overall
adversary model considered, the algorithms that HASE offers and the security it
guarantees.

5.2.1 Adversary Model

We consider a scenario between a trusted client and an untrusted cloud server,
which has a trusted (hardware) module, e.g., an SGX enclave. Figure 5.1 depicts
the process and its trust boundaries. The client wishes to execute a program at
the cloud server with sensitive input data. Our security objective is to leak only
the information about the inputs to the cloud server that can be inferred from
the program’s executed control flow.

We distinguish two phases of this outsourced computation: setup and runtime.
First, the client chooses the keys for the encryption of its inputs in our HASE
scheme (A). Then the client transforms the intended program using a specialized
DFAuth-enabled compiler (B) and uploads it to the cloud. The server deploys
some parts of the program into the trusted module which the client verifies by
remote attestation (C). This concludes the setup phase.

In the runtime phase, the client can execute – multiple times if it wishes – the
program on inputs of its choice. It encrypts the inputs using the information
from the compiled program and sends the ciphertexts to the cloud server (1–2).
The cloud server now executes the program (3). We assume an active adversary

37

5 DFAuth: Dataflow Authentication

Client

Server (Untrusted)
Controlled by

Adversary

Trusted ModuleA. Generate Keys
B. Compile Program

C. Deploy Program
(Remote Attestation)

1. Encrypt Inputs 2. Send Ciphertexts

3. Execute Program

4. Send (Encrypted) Result

5. Verify Result

Figure 5.1: Dataflow Authentication System Overview

controlling the server who can

• read the contents of all variables and the program text, except in the trusted
module.

• modify the contents of all variables and the program, except in the trusted
module.

• continuously observe and modify the control flow, e.g., by breaking the
program, executing instructions step-by-step and modifying the instruction
pointer, except in the trusted module.

• do all of this arbitrarily interleaved.

After the execution of the program the server returns an encrypted result to the
client (4). The client can then verify the result of the computation (5).

We ensure the following security property: The server has learnt nothing be-
yond the intended information flow of the program to unclassified memory loca-
tions (interference equivalence as presented in Section 5.3).

5.2.2 Homomorphic Authenticated Symmetric Encryption

In this section, we define the syntax, correctness and security of a homomorphic
authenticated symmetric encryption (HASE) scheme. For security, we separately
define confidentiality and authenticity.

Syntax and Correctness The syntax of a HASE scheme is defined as an adap-
tation of asymmetric homomorphic encryption (Definition 35). HASE, however,
does not make use of the public-key property of asymmetric encryption, but con-
siders a symmetric encryption setting in which the same secret key is used for
encryption and decryption (cf. Section 2.2.2). Hence, the Gen algorithm does not
output a public encryption key. Partially homomorphic encryption capabilities

38

5.2 Definitions

Gen1

sk

ek

Enc

i
m

cDer

l

Dec

or

Evalλ

Figure 5.2: HASE Syntax Overview

are captured by an explicit Eval algorithm, which takes into account additional
public parameters in the form of an evaluation key. The Gen algorithm hence
also outputs an evaluation key. HASE implements message authentication (cf.
Section 2.2.3) as follows: The encryption algorithm Enc takes an identifier pa-
rameter in addition to a message. Pre-approval of dataflows is implemented using
an additional label derivation algorithm Der. The Der algorithm takes a set of
identifiers as input and outputs a label. The decryption algorithm Dec takes
a label parameter in addition to a ciphertext and uses the label to determine
whether homomorphic evaluation followed the pre-approved dataflow.

We now formally define the syntax of a HASE scheme. An overview of all
operations involved is provided in Figure 5.2.

Definition 36 (HASE Syntax). Let I be the set of identifiers. A homomorphic
authenticated symmetric encryption (HASE) scheme is a tuple of PPT algorithms
(Gen,Enc,Eval,Der,Dec) such that:

• The key-generation algorithm Gen takes the security parameter 1λ as in-
put and outputs a key pair (ek, sk) consisting of a public evaluation key
ek and a secret key sk. The evaluation key implicitly defines a commuta-
tive plaintext group (M,⊕), a commutative ciphertext group (C,⊗) and a
commutative label group (L, �).

• The encryption algorithm Enc takes a secret key sk, a plaintext message
m ∈M and an identifier i ∈ I as input and outputs a ciphertext c ∈ C.

• The evaluation algorithm Eval takes an evaluation key ek and a set of
ciphertexts C ⊆ C as input and outputs a ciphertext ĉ ∈ C.

• The deterministic label derivation algorithm Der takes a secret key sk and
a set of identifiers I ⊆ I as input and outputs a secret label l ∈ L.

• The deterministic decryption algorithm Dec takes a secret key sk, a cipher-
text c ∈ C and a secret label l ∈ L as input and outputs a plaintext message
m ∈M or ⊥ on decryption error.

39

5 DFAuth: Dataflow Authentication

HASE correctness requires – except with negligible probability – the decryp-
tion of a ciphertext resulting from a legitimate homomorphic evaluation, i.e., an
evaluation with a pre-approved dataflow, to result in the same plaintext as if all
operations were performed directly on the corresponding plaintexts.

Definition 37 (HASE Correctness). Let Π = (Gen,Enc,Eval,Der,Dec) be a
HASE scheme, M the plaintext group and I the set of identifiers. We say that
Π is correct if for all (m1, . . . ,mn) ∈ Mn with associated unique identifiers
(i1, . . . , in) ∈ In there exists a negligible function negl(λ) such that

Pr

m̂ =
⊕
j∈[1,n]

mj

∣∣∣∣∣∣∣∣∣∣
(ek, sk)← Gen(1λ)
∀j ∈ [1, n] : cj ← Enc(sk,mj , ij)
l := Der(sk, {i1, . . . , in})
ĉ← Eval(ek, {c1, . . . , cn})
m̂ := Dec(sk, ĉ, l)

 ≥ 1− negl(λ)

where the probability is taken over the randomness of all algorithms.

Security Definitions We define confidentiality in terms of indistinguishability
and authenticity in terms of unforgeability. Indistinguishability of HASE schemes
is defined as an adaptation of the IND-CPA security definition for symmetric
encryption schemes (Definition 5). Unforgeability of HASE schemes is based on
the unforgeable encryption definition (Definition 15).

Definition 38 (HASE-IND-CPA). A HASE scheme Π has indistinguishable
encryptions under a chosen-plaintext attack, or is CPA-secure, if for all PPT
adversaries A there is a negligible function negl(λ) such that

AdvIND-CPA
A,Π (λ) :=

∣∣∣∣Pr
[
ExpHASEIND-CPA

A,Π (λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ)

The experiment is defined as follows:

ExpHASEIND-CPA
A,Π (λ)

(ek, sk)← Π.Gen(1λ)

(m0,m1, i0, i1, st)← AΠ.Enc(sk,·,·)(1λ, ek)

b←$ {0, 1}
c← Π.Enc(sk,mb, ib)

b′ ← AΠ.Enc(sk,·,·)(1λ, c, st)

return b = b′

Definition 39 (HASE-UF-CPA). A HASE scheme Π is unforgeable under a
chosen-plaintext attack, or just unforgeable, if for all PPT adversaries A there
is a negligible function negl(λ) such that

AdvUF-CPA
A,Π (λ) := Pr

[
ExpHASEUF-CPA

A,Π (λ) = 1
]
≤ negl(λ)

The experiment is defined as follows:

40

5.3 Dataflow Authentication

ExpHASEUF-CPA
A,Π (λ)

S := {}
(ek, sk)← Π.Gen(1λ)

(c, I)← AE(sk,·,·)(1λ, ek)

l := Π.Der(sk, I)

m := Π.Dec(sk, c, l)

m̃ :=
⊕

(m′,i)∈S,i∈I

m′

return m 6= ⊥ ∧m 6= m̃

E(sk,m, i)

if i ∈ π2(S) then

return ⊥
else

S := S ∪ {(m, i)}
c← Π.Enc(sk,m, i)

return c

The adversary returns a ciphertext c and a set of identifiers I. The adversary
is successful if and only if two conditions are met. First, c has to successfully
decrypt under the label derived from I. Second, the resulting plaintext m must
be different from the plaintext m̃ resulting from the application of the plaintext
operation to the set of plaintexts corresponding to I. Note that by controlling I
the adversary controls which elements of S are used for the evaluation resulting
in m̃.

5.3 Dataflow Authentication

We introduce dataflow authentication (DFAuth) using an example. Consider the
following excerpt from a Java program:

1 a = b + c;

2 d = a * e;

3 if (d > 42)

4 f = 1;

5 else

6 f = 0;

First DFAuth performs a conversion to single static assignment (SSA) form
[AWZ88]: assign each variable at exactly one code location; create atomic ex-
pressions; introduce fresh variables if required. In the example, DFAuth changes
the program to the following:

1 a = b + c;

2 d = a * e;

3 d1 = d > 42;

4 if (d1)

5 f1 = 1;

6 else

7 f2 = 0;

8 f = phi(f1 ,f2);

As usual in SSA, phi is a specially interpreted merge function that combines the
values of both assignments to f, here denoted by f1 and f2.

DFAuth then performs a type inference similar to JCrypt [DMD16] and Au-
toCrypt [Top+13]. As a result of this inference, each variable and constant is
assigned an encryption type of {add,mul, cmp}. At runtime, each constant and

41

5 DFAuth: Dataflow Authentication

variable value will be encrypted according to the appropriate type. HASE imple-
ments multiplicative homomorphic encryption mul and its operations directly,
while it implements additive homomorphic encryption add using exponentiation.
Comparisons cmp are implemented in the trusted module. Our experiments show
that this is more efficient than performing the comparison in the program space
using conversion to searchable or functional encryption. An attacker observing
user space will hence only see encrypted variables and constants, but can observe
the control flow. Actual data values are hidden from the attacker.

Combinations of multiple operations, however, require additional work. Every
time a variable is encrypted in one encryption type (e.g., additive), but is later
used in a different one (e.g., multiplicative), DFAuth must insert a conversion.
The resulting program in our running example looks as follows:

Listing 5.1: Example as executed on the server

1 a = b + c;

2 a1 = convertToMul(a, "a1");

3 d = a1 * e;

4 d1 = convertToCmpGT42(d, "d1");

5 if (d1)

6 f1 = 1;

7 else

8 f2 = 0;

9 f = phi(f1 , f2);

The first conversion is necessary because the variable a must be converted from
additive to multiplicative homomorphic encryption. The resulting re-encrypted
value is stored in a1. For security reasons, the decryption performed by the
conversion routine must be sensitive to the variable identifier it is assigned to.
A unique label must be introduced to make the decryption routine aware of the
code location. DFAuth can use the left-hand-side variable’s identifier ("a1" in
this example), because it introduced unique names during SSA conversion. Using
this variable identifier, the conversion routine can retrieve the corresponding label
of the HASE encryption stored in the memory protected by the trusted module.

Any branch condition is also treated as a conversion that leaks the result of the
condition check. In the example, DFAuth introduces the variable d1 to reflect
this result:

4 d1 = convertToCmpGT42(d, "d1");

To simplify the exposition, we assume that our compiler inlines this comparison
into a special routine convertToCmpGT42. In the general case, a binary compari-
son on two variables x and y would result in a call to a routine convertToCmp(x,
y, "z"). We show the full algorithm in Listing 5.4 in Section 5.6 which is generic
for all comparisons and in case of comparison to a constant looks up this con-
stant in an internal table protected by the trusted module. We need to protect
constants in comparisons, since if they were part of the program text, they could
be modified by the adversary.

As mentioned before, the security challenge of such conversions to cmp is that
they leak information about the encrypted variables, and particularly that active

42

5.3 Dataflow Authentication

adversaries who can modify the control and data flow can exploit those leaks
to restore the variables’ plaintext. In this work, we thus propose to restrict the
dataflow using DFAuth. This allows such conversions in a secure way by enforcing
that encrypted variables can be decrypted only along the program’s original
dataflow. The approach comprises two steps. First, happening at compile time,
for each conversion DFAuth pre-computes the Der algorithm (cf. Definition 36)
on the operations in the code. In the conversion convertToMul(a, "a1") (at
line 2 in our example), DFAuth computes the label

l2 = Der(sk, {"b", "c"})

and in the conversion at line 4

l4 = Der(sk, {"a1", "e"})

Here the second argument to Der is the multi-set of variable identifiers involved
in the unique computation preceding the conversion. We use a multi-set and not
a vector, because all our encrypted operations are commutative. The compiler
computes labels for all variables and constants in the program.

At runtime the computed labels as well as the secret key sk must be kept secret
from the attacker, which is why both are securely transferred to, and stored in,
the trusted module during the setup phase. The trusted module registers the
secret labels under the respective identifier, for example, associating label l4
with identifier "d1".

All conversion routines run within the trusted module. They retrieve a secret
label for an identifier with the help of a labelLookup(id) function. In partic-
ular, when the program runs and a conversion routine is invoked, the trusted
module looks up and uses the required labels for decryption. In the example at
line 4, the call to convertToCmpGT42 internally invokes the decryption operation
Dec(sk, d, l4) using secret label l4 retrieved for variable identifier "d1":

1 convertToCmpGT42(d, "d1") {

2 l4 = labelLookup ("d1");

3 x = Dec(sk , d, l4);

4 if (x == fail)

5 stop;

6 return (x > 42);

7 }

Note that in this scheme, the trusted module returns the result of the com-
parison in the clear. In this case, however, leaking the branch decision is secure,
as HASE guarantees that any active attack that would yield the adversary a
significant advantage will be reliably detected.

Let us assume an attacker that attempts to modify the program’s data or
control flow to leak information about the encrypted plaintexts, for instance,
using a binary search as described in Section 5.1. The attacker is not restricted
to the compiled instructions in the program, and can also try to “guess” the result
of cryptographic operations as the adversary in experiment ExpHASEIND-CPA

A,Π .
This modification to binary search can only succeed if the decryption operations

43

5 DFAuth: Dataflow Authentication

Listing 5.2: Example modified by the attacker

1 a = b + c;

2 a1 = convertToMul(a, "a1");

3 g1 = a1 * e; // changed

4 for (i = n..1) { // inserted

5 g = phi(g1 , g3); // inserted

6 d = g + 2^i; // inserted

7 d1 = convertToCmpGT42(d, "d1");

8 if (d1) {

9 f1 = 1;

10 g2 = g3 - 2^i; // inserted

11 } else {

12 f2 = 0;

13 g3 = phi(g, g2); // inserted

14 f = phi(f1 ,f2);

15 leak(f); // inserted

16 }

17 }

Dec in convertToCmpGT42 (or other conversion routines) succeed. The adversary
can minimize the Dec operations, e.g., by not introducing new calls to conversion
routines, but given the scheme defined above, any attempt to alter the dataflow
on encrypted variables will cause Dec to fail: Assume that an attacker inserts
code in Listing 5.1 to search for the secret value d resulting in the code shown
in Listing 5.2. We only use this code to illustrate potential attacks and ignore
the fact that the attacker would need access to the encrypted constants (2^i)
and needs to guess the result of the homomorphic addition operation on the
ciphertexts. However, given these capabilities, the attacker could try to observe
the control flow – simulated by our statement leak(f) – which then would in
turn leak the value of d.

This code will only execute if each variable decryption succeeds, but decryption
for instance of d1 will succeed only if it was encrypted with the same label l4
that was associated with d1 at load time. Since the trusted module keeps the
labels and the key sk secret, the attacker cannot possibly forge the required
label at runtime. Moreover, in the attacker-modified program, the encryption
must fail due to the altered data dependencies: in the example, the input d

to convertToCmpGT42 has now been derived from g3 and i instead of a1 and
e, which leads to a non-matching label for d. In result, the decryption in the
conversion routine convertToCmpGt42 will fail and stop program execution before
any unintended leakage can occur.

General Security Argument The way in which we derive labels from dataflow
relationships enforces a notion of interference equivalence. A program P is said
to be non-interferent [Smi07], if applied to two different memory configurations
M1,M2 that are equal w.r.t. their low, i.e. unclassified (unencrypted), mem-
ory locations, M1 =L M2 for short, then also the resulting memory locations

44

5.4 HASE Constructions

after program execution must show such low-equivalency: P (M1) =L P (M2).
Non-interference holds if and only if there is no information flow from high, i.e.
classified (encrypted), values to low memory locations. While this is a semantic
property, previous research has shown that one can decide non-interference also
through a structural analysis of programs, through so-called program dependency
graphs (PDGs) that capture the program’s control and data flow [WLS09]. In
this view, a program is non-interferent if the PDG is free of paths from high to
low memory locations.

In the setting considered in this work one must assume that the executed pro-
gram before encryption already shows interference for some memory locations,
e.g., because the program is, in fact, intended to declassify some limited infor-
mation (notably control-flow information). Let M ↓ C denote a projection of
memory configuration M onto all (classified) memory locations C that are not
declassified that way. Then even in the setting here it holds for any program P
and any memory configurations M1,M2 that P (M1 ↓ C) =L P (M2 ↓ C).

The main point of the construction proposed in this work is that any program
that an attacker can produce, and that would lead to the same computation
of labels (and hence decryptable data) as the original program, cannot produce
any more information flows than the original program. Let us denote by tr
a program transformation conducted by the attacker, e.g., the transformation
explained above, which inserted a binary search. Then the property we would
like to obtain is that:

∀M1,M2, tr : P (M1 ↓ C) =L P (M2 ↓ C)

=⇒ (tr(P))(M1 ↓ C) =L (tr(P))(M2 ↓ C)

In other words: disregarding the explicitly declassified information within C, the
transformed program does not leak any additional information, i.e., the adversary
cannot learn any additional information about the encrypted data. Let us assume
for a moment that the above equation did not hold. If that were true then there
would exist a transformation tr that would cause the transformed program tr(P)
to compute values in at least one low memory location despite low-equivalent
inputs. But this is impossible, as any such transformation would necessarily
have to insert additional PDG-edges, destroying at least one label computation,
and hence invalidating our HASE-UF-CPA security proof.

Result Verification Note that the client can verify the result of the computation
using a simple check on the variable’s label – just as the conversion routine does.
The result is just another variable, which albeit not being converted, can be
checked for correct dataflow computation. That way, a client can ensure that it
receives a valid output of the program.

5.4 HASE Constructions

In this section, we provide two constructions of HASE schemes. Section 5.4.1
introduces Multiplicative HASE allowing homomorphic multiplication on inte-

45

5 DFAuth: Dataflow Authentication

gers. Section 5.4.2 presents Additive HASE supporting homomorphic addition
on integers. Finally, Section 5.4.3 shows the security of our schemes under their
assumptions.

5.4.1 Multiplicative HASE

Our first construction is based on the Elgamal public-key encryption scheme
(Construction 1). We do not make use of the public-key property of the scheme,
but extend ciphertexts with a third group element working as a homomorphic
authenticator (i.e., a MAC tag).

Construction 2 (Multiplicative HASE). Let G be a group generation algorithm
(Definition 7). Define a HASE scheme using the following PPT algorithms:

• Gen: on input 1λ obtain (G, q, g) ← G(1λ). For a pseudorandom function
family H : K × I → G choose k←$K. Choose a, x, y←$Zq and compute
h := gx, j := gy. The evaluation key is G, the secret key is (G, q, g, a,
x, y, h, j, k). The plaintext group is (M,⊕) := (G, ·) where · is the group
operation in G. The ciphertext group is (G3,⊗) where we define ⊗ to denote
the component-wise application of · in G. The label space is (G, ·).

• Enc: on input a secret key sk = (G, q, g, a, x, y, h, j, k), a message m ∈ G
and an identifier i ∈ I. Choose r←$Zq and obtain the label l = H(k, i).
Compute u := gr, v := hr ·m and w := jr ·ma · l. Output the ciphertext
(u, v, w).

• Eval: on input an evaluation key G and a set of ciphertexts C ⊆ C compute
the ciphertext

c :=
⊗
c′∈C

c′

and output c.

• Der: on input a secret key (G, q, g, a, x, y, h, j, k) and a set of identifiers
I ⊆ I compute the label

l :=
∏
i∈I

H(k, i)

and output l. Note that here Π denotes the repeated application of the group
operation · in G.

• Dec: on input a secret key (G, q, g, a, x, y, h, j, k), a ciphertext c = (u, v, w)
and a secret label l ∈ G. First compute m := u−x · v, then t := uy ·ma · l.
If t equals w output m, otherwise output ⊥.

It is well known that the Elgamal encryption scheme is homomorphic with
regard to the group operation in G. As can be easily seen, this property is inher-
ited by our construction. For the original Elgamal scheme, G is most commonly
instantiated either as Gq, the q-order subgroup of quadratic residues of Z∗p for
some prime p = 2q + 1 (with q also prime), or as an elliptic curve over some

46

5.4 HASE Constructions

q-order finite field. In the latter case, the group operation is elliptic curve point
addition and the ability to perform point addition in a homomorphism serves no
useful purpose in our context. Instantiating G as Gq on the other hand enables
homomorphic multiplication on the integers.

5.4.2 Additive HASE

Our second construction supports homomorphic integer addition and is obtained
by applying a technique proposed by Hu et al. [HMS12] to Multiplicative HASE
(Construction 2). The basic idea is to consider plaintexts to be element of Zq
instead of G and to encrypt a given plaintext m by first raising the generator g
to the power of m and then encrypting the resulting group element in the usual
way. In detail, this means computing ciphertexts of the form (gr, hrgm) rather
than (gr, hrm). To see that the resulting scheme is homomorphic with regard
to addition on Zq, consider what happens when the group operation is applied
component-wise to two ciphertexts:

(gr1 · gr2 , hr1gm1 · hr2gm2) = (gr1+r2 , hr1+r2 · gm1+m2)

Unfortunately, decryption now involves computing discrete logarithms with re-
spect to base g, which must be difficult for sufficiently large exponents in or-
der for the DDH problem (cf. Definition 8) to be hard relative to G. Hu et
al. [HMS12] keep exponents small enough for discrete logarithm algorithms to
terminate within reasonable time despite their exponential asymptotic running
time. They do so by unambiguously decomposing plaintexts m into t smaller
plaintexts me (e ∈ [1, t]) via means of the Chinese remainder theorem (CRT)
and then encrypting each me separately. Although doing so increases the cipher-
text size roughly by a factor of t in comparison to Construction 2, this drawback
can be compensated by instantiating G as an elliptic curve group since the homo-
morphic operation is on Zq rather than G. At a comparable security level, group
elements of elliptic curves can be represented using a fraction of bits [Sma+14].

We now provide the full details of our Additive HASE construction. Note
that the authenticator only requires constant (i.e., independent of t) ciphertext
space and can be verified without discrete logarithm computation. Although we
consider instantiating G as an elliptic curve group, we keep writing the group
operation multiplicatively.

Construction 3 (Additive HASE). Let G be a group generation algorithm (Def-
inition 7). Define a HASE scheme using the following PPT algorithms and the
Eval algorithm from Construction 2:

• Gen: on input 1λ obtain (G, q, g) ← G(1λ). For a pseudorandom function
family H : K×I → Zq choose k←$K. Choose {d1, . . . , dt} ⊂ Z+ such that
d :=

∏t
e=1 de < q and ∀e 6= j : gcd(de, dj) = 1. Define D := (d1, . . . , dt, d).

Choose a, x, y←$Zq and compute h := gx, j := gy. The evaluation key
is G, the secret key is (G, q, g, a, x, y, h, j, k,D). The plaintext group is
(M,⊕) := (Zd,+). The ciphertext group is (G2(t+1),⊗) where ⊗ denotes
the component-wise application of · in G. The label space is (G, ·).

47

5 DFAuth: Dataflow Authentication

• Enc: on input a secret key sk = (G, q, g, a, x, y, h, j, k,D), a message m ∈
Zd and an identifier i ∈ I. Obtain the label l := H(k, i). For e := 1, . . . , t:

– Compute me := m mod de.

– Choose re←$Zq
– Compute ue := gre

– Compute ve := hre · gme

Choose r←$Zq. Compute s := gr and w := jr ·gm·a·l. Output the ciphertext
(u1, v1, . . . , ut, vt, s, w).

• Der: on input a secret key (G, q, g, a, x, y, h, j, k,D) and a set of identifiers
I ⊆ I compute the label

l :=
∏
i∈I

gH(k,i)

and output l.

• Dec: on input a secret key (G, q, g, a, x, y, h, j, k,D), a ciphertext (u1, v1,
. . . , ut, vt, s, w) and a secret label l ∈ G. Parse D = (d1, . . . , dt, d). First
compute me := logg(veue

−x) for e = 1, . . . , t, then recover

m :=
t∑

e=1

me
d

de

(
d

de

−1

mod de

)
mod d.

If sy · gm·a · l = w then output m, else output ⊥. Note that logg denotes the
discrete logarithm with respect to base g.

5.4.3 Security Reductions

Theorem 2 (Multiplicative HASE-IND-CPA). Let Π be Construction 2. If the
DDH problem is hard relative to G and H is a PRF as described in Π.Gen, then
Π is CPA-secure.

Proof. Let Π,G, H be as described and let A be a PPT adversary. We use a
sequence of games to show that A’s advantage AdvIND-CPA

A,Π (λ) is negligible in λ.
For Game n we use Sn to denote the event that b = b′. The final game and the
encryption oracle used in all games are given in Figure 5.3.

Game 0. This is the original experiment from Definition 38 except that instead
of relying on Π the challenger performs the exact same computations on its own.
Clearly, AdvIND-CPA

A,Π (λ) = |Pr[S0]− 1
2 |.

Game 1 (Indistinguishability-Based Transition). Instead of deriving the label
used in the third component of the challenge ciphertext using the pseudorandom
function H : K × I → G for some random k←$K, we make use of a random
function f ←$F from the set of functions F = {F : I → G}.

48

5.4 HASE Constructions

Game3
IND-CPA
A (λ)

(G, q, g)← G(1λ)

a, x, y←$Zq, k←$K
h := gx, j := gy

ek := G
sk := (G, q, g, a, x, y, h, j, k)

(m0,m1, i0, i1, st)← AE(sk,·,·)(1λ, ek)

b←$ {0, 1}
r, s , z ←$Zq
l := gs

c := (gr, gz ·mb, j
r ·mb

a · l)

b′ ← AE(sk,·,·)(1λ, c, st)

return b = b′

E(sk,m, i)

parse sk = (G, q, g, a, x, y, h, j, k)

r←$Zq
l := H(k, i)

c := (gr, hr ·m, jr ·ma · l)
return c

Figure 5.3: Final security experiment used in Multiplicative HASE-IND-CPA
proof. Changes compared to the first experiment are highlighted.

We construct a polynomial time algorithm B distinguishing between a PRF
(for a random key) and a random function using A as a black box. If B’s oracle
is a pseudorandom function, then the view of A is distributed as in Game 0
and we have Pr[S0] = Pr

[
BA,H(k,·)(1λ) = 1

]
for some k←$K. If B’s oracle is a

random function, then the view of A is distributed as in Game 1 and thus we
have Pr[S1] = Pr

[
BA,f(·)(1λ) = 1

]
for some f ←$F . Under the assumption that

H is a PRF, |Pr[S0]− Pr[S1] | is negligible.

Game 2 (Conceptual Transition). Because f is only evaluated on a single input
ib and f is a random function, the result is a random element of G. Thus, instead
of computing l := f(ib), we can compute l := gs for a random exponent s←$Zq.
Since this is only a conceptual change, we have Pr[S1] = Pr[S2].

Game 3 (Indistinguishability-Based Transition). In the challenge ciphertext
we replace hr = gxr with a random group element gz generated by raising g to
the power of a random z←$Zq.

We construct a polynomial time distinguishing algorithm D solving the DDH
problem that interpolates between Game 2 and Game 3. If D receives a real triple
(gα, gβ, gαβ) for α, β←$Zq, thenA operates on a challenge ciphertext constructed
as in Game 2 and thus we have

Pr[S2] = Pr
[
DA(G, q, g, gα, gβ, gαβ) = 1

]
.

If D receives a random triple (gα, gβ, gγ) for α, β, γ←$Zq, then A operates on a

49

5 DFAuth: Dataflow Authentication

Game2
UF-CPA
A,G,H (λ)

S := {}
(G, q, g)← G(1λ)

a, x, y←$Zq, k←$K, f ←$F
h := gx, j := gy

ek := G
sk := (G, q, g, a, x, y, h, j, f)

(c, I)← AE(sk,·,·)(1λ, ek)

l :=
∏
i∈I

f(i)

parse c = (u, v, w)

m := u−x · v
t := uy ·ma · l
m̃ :=

⊕
(m′,i)∈S,i∈I

m′

return t = w ∧m 6= m̃

E(sk,m, i)

parse sk = (G, q, g, a, x, y, h, j, f)

if i ∈ π2(S) then

return ⊥
else

S := S ∪ {(m, i)}

r←$Zq, l := f(i)

c := (gr, hr ·m, jr ·ma · l)
return c

Figure 5.4: Final security experiment used in Multiplicative HASE-UF-CPA
proof. Changes compared to the first experiment are highlighted.

challenge ciphertext constructed as in Game 3 and thus we have

Pr[S3] = Pr
[
DA(G, q, g, gα, gβ, gγ) = 1

]
.

In both cases D receives (G, q, g) output by G(1λ). Under the assumption that
the DDH problem is hard relative to G, |Pr[S2]− Pr[S3] | is negligible.

Conclusion. In the last game, the first component of the challenge ciphertext is
trivially independent of the challenge plaintext as well as the challenge identifier.
In the second component, gz acts like a one-time pad and completely hides mb.
Similarly, l = gs acts like a one-time pad in the third component. Because
the challenge ciphertext does not contain any information about mb or ib, we
conclude that Pr[S3] = 1

2 . Overall we have that AdvIND-CPA
A,Π (λ) = negl(λ).

Theorem 3 (Multiplicative HASE-UF-CPA). Let Π be Construction 2. If H is
a PRF as described in Π.Gen, then Π is unforgeable.

Proof. Let Π,G, H be as described and let A be a PPT adversary. We use a
sequence of games to show that A’s advantage AdvUF-CPA

A,Π (λ) is negligible in λ.
For Game n we use Sn to denote the event that the adversary wins the game.
The final game is illustrated in Figure 5.4.

50

5.4 HASE Constructions

Game 0. This is the original experiment from Definition 39 except that instead
of relying on Π the challenger performs the exact same computations on its own.
Clearly, AdvUF-CPA

A,Π (λ) = |Pr[S0] |.

Game 1 (Conceptual Transition). We eliminate the conditional statement in-
troduced by the Dec algorithm by comparing t and w in the return statement.

Game 2 (Indistinguishability-Based Transition). We replace the pseudoran-
dom function H(k, ·) with a function f(·) chosen at random. Under the assump-
tion that H is a PRF, we have that |Pr[S1] − Pr[S2] | is negligible as in the
previous security reduction in Theorem 2.

Conclusion. We show that Pr[S2] = negl(λ). Let X be the event that ∀i ∈ I :
∃(m, i) ∈ S, i.e., all identifiers have been used in encryption oracle queries.

In case event X does not happen, the challenger evaluates function f on at
least one new argument. By the definition of f , the result is a random value in
the image of f . This random group element acts as a one-time pad and makes
l look random. Subsequently, t is also random from the point of view of the
adversary. To win the experiment, A has to fulfill t = w. Because t is random,
A cannot guess the correct w with probability better than 1

q . Thus, we have

Pr[S2 ∧ ¬X] =
1

q
· Pr[¬X] . (5.1)

Recall that q is the order of G (of which w is an element) and both are output by
the group generation algorithm G(1λ). Also note that ¬X holds when A performs
no encryption queries at all.

Now consider the case when event X happens and let (c, I) be the output of the
adversary. The set of identifiers I determines a label l and an expected message
m̃. Furthermore, let c̃ = (ũ, ṽ, w̃) be the ciphertext resulting from the application
of Π.Eval to ciphertexts identified by I. As c̃ is an honestly derived encryption
of m̃, the following must hold:

m̃ = ũ−x · ṽ
w̃ = ũy · m̃a · l

= (ũy−x · ṽ)a · l (5.2)

Similarly, in order for c = (u, v, w) to be accepted as a forgery regarding I, it
must hold that:

w = (uy−x · v)a · l (5.3)

for some m := u−x · v 6= m̃. Because m 6= m̃ we know that ũy−x · ṽ 6= uy−x · v
and w̃ 6= w.

51

5 DFAuth: Dataflow Authentication

Combining equations (5.2) and (5.3) yields

w̃

w
=

(ũy−x · ṽ)a · l
(uy−x · v)a · l

=

(
ũy−x · ṽ
uy−x · v

)a
(5.4)

In order for c to be a forgery with regard to I, equation (5.4) needs to be satisfied.
But since a is a random element of Zq, the probability that A can satisfy (5.4)
is only 1

q . Hence,

Pr[S2 ∧X] =
1

q
· Pr[X] . (5.5)

Summing up (5.1) and (5.5), we have

Pr[S2] = Pr[S2 ∧ ¬X] + Pr[S2 ∧X] =
1

q

and overall we have that AdvUF-CPA
A,Π (λ) = negl(λ)

Theorem 4 (Additive HASE-IND-CPA). Let Π be Construction 3. If the DDH
problem is hard relative to G and H is a PRF as described in Π.Gen, then Π is
CPA-secure.

Proof Sketch. The security follows from Theorem 2.

Theorem 5 (Additive HASE-UF-CPA). Let Π be Construction 3. If H is a
PRF as described in Π.Gen, then Π is unforgeable.

Proof Sketch. The security follows from Theorem 3.

5.5 Trusted Authenticated Ciphertext Operations

In this section, we complement DFAuth and HASE with trusted authenticated
ciphertext operations (TACO), an alternative concept for operating on cipher-
texts.

TACO is similar to HASE, but evaluations in TACO are defined as a secret
key operation, which offers some advantages. First, constructions do not have to
rely on homomorphic encryption, but can make use of more efficient symmetric
encryption schemes. Second, the TACO syntax is more powerful and allows to
perform multiplication, addition and other operations such as division using the
same generic construction. However, these properties are a trade-off: Since the
evaluation algorithm depends on the secret key, it must be run by a trusted party,
i.e., the client or the trusted module in our setting (cf. Section 5.2).

We define the syntax and correctness of a TACO scheme in Section 5.5.1.
Section 5.5.2 provides our TACO security definitions. Section 5.5.3 presents a
construction of a TACO scheme and Section 5.5.4 shows its security properties.

52

5.5 Trusted Authenticated Ciphertext Operations

5.5.1 Syntax and Correctness

The syntax is similar to that of HASE. An important difference is that evaluation
can be performed for multiple operations which do not necessarily have to be
commutative. Furthermore, labels are public and their computation no longer
depends on the secret key.

Definition 40 (TACO Syntax). Let M be the message space, C the space of
ciphertexts, L the space of labels, K the space of keys and I the space of identi-
fiers. Furthermore, let Φ be a set of plaintext operations. Each ϕ ∈ Φ has a fixed
number of parameters pϕ such that ϕ maps a pϕ-dimensional tuple (m1, . . . ,mpϕ)
with mj ∈ M to one message m̂ ∈ M. A trusted authenticated ciphertext op-
erations (TACO) scheme is a tuple of PPT algorithms (Gen,Enc,Eval,Der,Dec)
such that:

• The key-generation algorithm Gen takes the security parameter 1λ as input
and outputs a secret key sk ∈ K.

• The encryption algorithm Enc takes a secret key sk, a plaintext message
m ∈M and an identifier i ∈ I as input and outputs a ciphertext c ∈ C.

• The evaluation algorithm Eval takes a function ϕ ∈ Φ and a pϕ-dimensional
tuple (c1, . . . , cpϕ) with cj ∈ C as input and outputs a ciphertext ĉ ∈ C or ⊥
on authentication error.

• The deterministic label derivation algorithm Der takes either

– an identifier i ∈ I or

– a function ϕ ∈ Φ and a pϕ-dimensional tuple (l1, . . . , lpϕ) with lj ∈ L

as input and outputs a label l̂ ∈ L.

• The deterministic decryption algorithm Dec takes a secret key sk, a ci-
phertext c ∈ C and a label l ∈ L as input and outputs a plaintext message
m ∈M or ⊥ on decryption error.

In order for a TACO scheme to be correct, the decryption must be successful
and yield the expected value also after multiple evaluations. For this purpose we
introduce the following definitions:

Definition 41 (TACO Partial Correctness). Let Π = (Gen,Enc,Eval,Der,Dec)
be a TACO scheme. We say that Π is partially correct if for all m ∈M and all
i ∈ I it holds that

Dec(sk,Enc(sk,m, i),Der(i)) = m

Definition 42 (TACO Ciphertext Validity). Let c ∈ C be a ciphertext. We say
c is valid if and only if

∃l ∈ L : Dec(sk, c, l) 6= ⊥
The corresponding l ∈ L, for which Dec(sk, c, l) 6= ⊥ is denoted as a valid label

for c.

53

5 DFAuth: Dataflow Authentication

Definition 43 (TACO Correctness). Let Π = (Gen,Enc,Eval,Der,Dec) be a par-
tially correct TACO scheme. We say that Π is correct if for any secret key
sk ← Gen(1λ), any function ϕ ∈ Φ, any pϕ-dimensional tuple of ciphertexts
C := (c1, . . . , cpϕ) with cj ∈ C and cj valid and any pϕ-dimensional tuple of la-
bels L := (l1, . . . , lpϕ) with lj ∈ L and lj valid for cj, for the pϕ-dimensional tuple
of plaintexts M := (m1, . . . ,mpϕ) with mj = Π.Dec(sk, cj , lj) it holds that

Dec(sk,Eval(ϕ,C),Der(ϕ,L)) = ϕ(M)

5.5.2 Security Definitions

Indistinguishability of a TACO scheme is defined like HASE-IND-CPA (Defini-
tion 38) except that the adversary is provided with access to an evaluation oracle
rather than the evaluation key. Unforgeability of a TACO scheme is based on the
unforgeable encryption definition (Definition 15). Essentially, the unforgeability
adversary wins by producing two ciphertexts which decrypt to different messages
under the same label.

Definition 44 (TACO-IND-CPA). A TACO scheme Π has indistinguishable
encryptions under a chosen-plaintext attack, or is CPA-secure, if for all PPT
adversaries A there is a negligible function negl(λ) such that

AdvIND-CPA
A,Π (λ) :=

∣∣∣∣Pr
[
ExpTACOIND-CPA

A,Π (λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ)

The experiment is defined as follows:

ExpTACOIND-CPA
A,Π (λ)

sk ← Π.Gen(1λ)

(m1,m2, i1, i2, st)← AΠ.Enc(sk,·,·),Π.Eval(sk,·,·)(1λ)

b←$ {0, 1}
c← Π.Enc(sk,mb, ib)

b′ ← AΠ.Enc(sk,·,·),Π.Eval(sk,·,·)(1λ, c, st)

return b = b′

Definition 45 (TACO-UF-CPA). A TACO scheme Π is unforgeable under a
chosen-plaintext attack, or just unforgeable, if for all PPT adversaries A and
all functions ϕ ∈ ΦΠ there is a negligible function negl(λ) such that

AdvUF-CPA
A,Π (λ) := Pr

[
ExpTACOUF-CPA

A,Π,ϕ (λ) = 1
]
≤ negl(λ)

with the experiment defined as follows:

ExpTACOUF-CPA
A,Π,ϕ (λ)

I := {}
sk ← Π.Gen(1λ)

(c1, c2, l)← AE(sk,·,·),Π.Eval(sk,·,·)(1λ)

m1 := Π.Dec(sk, c1, l)

m2 := Π.Dec(sk, c2, l)

return m1 6= ⊥ ∧m2 6= ⊥ ∧m1 6= m2

E(sk,m, i)

if i ∈ I then

return ⊥
else

I := I ∪ {i}
c← Π.Enc(sk,m, i)

return c

54

5.5 Trusted Authenticated Ciphertext Operations

5.5.3 Construction

Construction 4 (TACO). Define the message space M := {0, 1}∗, the cipher-
text space C := {0, 1}∗, the label space L := {0, 1}λ and the space of identifiers
I := {0, 1}∗. Let SE = (Gen,Enc,Dec) be a symmetric encryption scheme with
message space M and ciphertext space C. Define the key space K as the space of
keys output by SE.Gen. For a hash function Ω = (Gen, H) obtain k ← Ω.Gen(1λ).
Furthermore, let Φ be a set of plaintext operations and let id : Φ 7→ {0, 1}∗ be
an injective function. Construct a TACO scheme using the following PPT algo-
rithms:

• Gen: on input 1λ obtain and output a symmetric encryption secret key

sk ← SE.Gen(1λ).

• Enc: on input a secret key sk and a message m ∈M, output the ciphertext

c← SE.Enc(sk,m‖Der(i)).

• Eval: on input a secret key sk, an operation ϕ ∈ Φ and a pϕ-dimensional
tuple of ciphertexts (c1, . . . , cpϕ).
For j ∈ [1, pϕ]:

– Compute dj := SE.Dec(sk, cj).

– Parse dj = mj‖lj.

If any dj = ⊥, then return ⊥. Otherwise compute

– m′ := ϕ
(
(m1, . . . ,mpϕ)

)
– l′ := Der

(
ϕ, (l1, . . . , lpϕ)

)
– ĉ← SE.Enc (sk,m′‖l′)

and output the ciphertext ĉ.

• Der:

– on input a secret key sk and an identifier i ∈ I, output the label

l̂ := H(k, i‖0).

– on input a secret key sk, a function ϕ ∈ Φ and a pϕ-dimensional tuple
of labels (l1, . . . , lpϕ), output the label

l̃ := H
(
k, id(ϕ)‖l1‖ . . . ‖lpϕ‖1

)
.

• Dec: on input a secret key sk, a ciphertext c ∈ C and label l ∈ L, compute
d := SE.Dec(sk, c) and parse d = m′‖l′. If d = ⊥ or l 6= l′, then output ⊥.
Otherwise output m′.

55

5 DFAuth: Dataflow Authentication

5.5.4 Security Reductions

Theorem 6 (TACO-IND-CPA). Let Π be Construction 4 and SE its symmetric
encryption scheme. If SE is CCA-secure (Definition 6), then Π is TACO-IND-
CPA secure.

Proof. Let Π and SE as before. Note that if SE is CCA-secure, it is also CPA-
secure (Definition 5).

Assume there exists an adversary winning the TACO-IND-CPA game with
non-negligible probability. By definition, the adversary can then distinguish for
chosen messages m1,m2 ∈M and identifiers i1, i2 ∈ I the ciphertext

c1 ← Π.Enc(sk,m1, i1)
Def
= SE.Enc(sk,m1‖Der(i1))

from
c2 ← Π.Enc(sk,m2, i2)

Def
= SE.Enc(sk,m2‖Der(i2))

with non-negligible probability. In case the adversary performed no evaluation
oracle queries, this is a contradiction to IND-CPA security of SE.

To show that the evaluation oracle provides only negligible advantage to the
adversary, we simulate it as an attacker on the IND-CCA property of the SE
scheme. The IND-CCA property of the SE scheme provides indistinguishability
with additional access to a decryption oracle: Assume the adversary on TACO
wants to perform an evaluation ϕ on ciphertexts C = (c1, . . . , cpϕ). In case C
does not include the challenge ciphertext c, the evaluation can be simulated by
decrypting each ciphertext using the SE.Dec oracle, calculating ϕ on the results,
and encrypting with the encryption oracle again. In case the adversary wants to
perform an evaluation ϕ on a tuple including the challenge ciphertext c, instead
of computing SE.Dec(sk, c), we use mb, i with b←$ {0, 1} for the calculation of
ϕ. If the attacker can distinguish the simulation from a honest oracle with non-
negligible probability, he can again distinguish SE.Enc(m′1) from SE.Enc(m′2)
for at least two m′1,m

′
2 ∈ M with non-negligible probability. Since the attacker

can only perform a number of evaluations polynomial in λ, we get the security
as induction over the number of evaluations.

Theorem 7 (TACO-UF-CPA). Let Π be Construction 4, SE its symmetric
encryption scheme and Ω = (Gen, H) its hash function. If SE is unforgeable
(Definition 15) and Ω is collision resistant (Definition 13), then Π is TACO-
UF-CPA secure.

Proof. Let Π, SE and Ω as before. The instructions defined in the TACO-UF-
CPA game lead directly to the following equalities:

AdvUF-CPA
A,Π (λ)

= Pr[m1 6= ⊥ ∧m2 6= ⊥ ∧m1 6= m2]

= Pr[Π.Dec(sk, c1, l) 6= ⊥ ∧Π.Dec(sk, c2, l) 6= ⊥ ∧m1 6= m2]

= Pr[SE.Dec(sk, c1) 6= ⊥ ∧ l1 = l ∧ SE.Dec(sk, c2) 6= ⊥ ∧ l2 = l ∧m1 6= m2]

≤Pr[l1 = l2 ∧ SE.Dec(sk, c1) 6= ⊥ ∧ SE.Dec(sk, c2) 6= ⊥ ∧m1 6= m2] (5.6)

56

5.5 Trusted Authenticated Ciphertext Operations

Here, l1 and l2 are the parsed labels of the back part of the SE.Dec decrypted
ciphertexts. Applying the definition of conditional probability results in:

AdvUF-CPA
A,Π (λ)

≤Pr[l1 = l2 | m1 6= m2 ∧ SE.Dec(sk, c1) 6= ⊥ ∧ SE.Dec(sk, c2) 6= ⊥] (5.7)

Since the underlying encryption scheme is assumed to be unforgeable, in order for
SE.Dec(sk, c1) 6= ⊥∧SE.Dec(sk, c2) 6= ⊥ to hold with non-negligible probability,
the ciphertexts must have been created using the secret key. This implies that
the ciphertexts were created by either the evaluation oracle or the encryption
oracle. For the evaluation not to result in ⊥, it must be performed on valid
ciphertexts. Let Pr[Sn] be the probability in inequality 5.7, where n is the
number of evaluations an adversary performs on valid ciphertexts to create the
ciphertexts c1 and c2 before passing them to the challenger. We show the security
by an induction proof over n.

• Claim: Pr[Sn] is negligible ∀n ∈ N with n polynomial in λ.

• First base case for n = 0: No evaluations have been performed such that:

Pr[S0] = Pr [l1 = l2 | m1 6= m2

∧ c1 = E(sk,m1, i1) ∧ c2 = E(sk,m2, i2)]

= Pr [H(k, i1‖0) = H(k, i2‖0) | m1 6= m2

∧ c1 = E(sk,m1, i1) ∧ c2 = E(sk,m2, i2)]

Since the encryption oracle does not allow to encrypt different messages
with the same identifier, it must hold that i1 6= i2 which leads to

Pr[S0] = Pr[H(k, i1‖0) = H(k, i2‖0) | i1 6= i2]

This probability is negligible due to the assumption that Ω is collision
resistant.

• Second base case for n = 1: Without loss of generality let c1 be the ci-
phertext created by an evaluation of an operation ϕ and valid ciphertexts
(c1,1, . . . , c1,pϕ) with corresponding labels (l1,1, . . . , l1,pϕ). Then:

Pr[S1] = Pr [l1 = l2 | m1 6= m2

∧ c1 = Eval(sk, ϕ, (c1,1, . . . , c1,pϕ)) ∧ c2 = E(sk,m2, i2)]

= Pr
[
H(k, id(ϕ)‖l1,1‖ . . . ‖l1,pϕ‖1) = H(k, i2‖0)

]
This probability is negligible due to the assumption that Ω is collision
resistant.

• Step case for n n + 1: Assume the claim is true for 0 ≤ n∗ ≤ n. If
only one challenger ciphertext is created by evaluations, then the proof
in the second base case applies. Otherwise for j ∈ {0, 1} let cj be the
ciphertext created by an evaluation of operation ϕj and valid ciphertexts

57

5 DFAuth: Dataflow Authentication

(cj,1, . . . , cj,pϕj
) with corresponding labels (lj,1, . . . , lj,pϕj

) and correspond-

ing messages (mj,1, . . . ,mj,pϕj
). Then:

Pr[Sn+1] = Pr [l1 = l2 | m1 6= m2

∧ ∀j ∈ {0, 1} : cj = Eval(sk, ϕj , (cj,1, . . . , cj,pϕj
))

∧ SE.Dec(sk, c1) 6= ⊥ ∧ SE.Dec(sk, c2) 6= ⊥]

= Pr [H(k, id(ϕ1)‖l1,1‖ . . . ‖l1,pϕ1
‖1) =

H(k, id(ϕ2)‖l2,1‖ . . . ‖l2,pϕ2
‖1) | m1 6= m2

∧ SE.Dec(sk, c1) 6= ⊥ ∧ SE.Dec(sk, c2) 6= ⊥]

= Pr [H(. . .) = H(. . .) ∧ (ϕ1 6= ϕ2 ∨ ∃j : l1,j 6= l2,j) | m1 6= m2

∧ SE.Dec(sk, c1) 6= ⊥ ∧ SE.Dec(sk, c2) 6= ⊥] (5.8)

+ Pr [H(. . .) = H(. . .) ∧ (ϕ1 = ϕ2 ∧ ∀j : l1,j = l2,j) | m1 6= m2

∧ SE.Dec(sk, c1) 6= ⊥ ∧ SE.Dec(sk, c2) 6= ⊥] (5.9)

Probability (5.8) is negligible since the input to H differs and Ω is collision
resistant. We explore the Probability (5.9) in more detail by considering
its conditions.

m1 6= m2

⇒ SE.Dec(sk,Eval(sk, ϕ1, (c1,1, . . . , c1,pϕ1
)))

6= SE.Dec(sk,Eval(sk, ϕ2, (c2,1, . . . , c2,pϕ2
)))

⇒ ϕ1(SE.Dec(sk, c1,1), . . . , SE.Dec(sk, c1,pϕ1
))

6= ϕ2(SE.Dec(sk, c2,1), . . . , SE.Dec(sk, c2,pϕ2
))

⇒ ϕ1(SE.Dec(sk, c1,1), . . . , SE.Dec(sk, c1,pϕ1
))

6= ϕ1(SE.Dec(sk, c2,1), . . . , SE.Dec(sk, c2,pϕ1
))

⇒ ∃j∗ : SE.Dec(sk, c1,j∗) 6= SE.Dec(sk, c2,j∗) (5.10)

We choose such an j∗ fulfilling inequality (5.10) and obtain:

Pr[Sn+1] = Pr [H(. . .) = H(. . .) ∧ ϕ1 = ϕ2 ∧ ∀j : l1,j = l2,j | m1 6= m2

∧ SE.Dec(sk, c1) 6= ⊥ ∧ SE.Dec(sk, c2) 6= ⊥] + negl(λ)

≤ Pr [H(. . .) = H(. . .) ∧ ϕ1 = ϕ2 ∧ l1,j∗ = l2,j∗ | m1 6= m2

∧ SE.Dec(sk, c1) 6= ⊥ ∧ SE.Dec(sk, c2) 6= ⊥] + negl(λ)

≤ Pr [l1,j∗ = l2,j∗ | m1 6= m2

∧ SE.Dec(sk, c1) 6= ⊥ ∧ SE.Dec(sk, c2) 6= ⊥] + negl(λ)

= Pr [l1,j∗ = l2,j∗ | m1 6= m2

∧ SE.Dec(sk, c1) 6= ⊥ ∧ SE.Dec(sk, c2) 6= ⊥
∧ SE.Dec(sk, c1,j∗) 6= SE.Dec(sk, c2,j∗)] + negl(λ)

≤ Pr [l1,j∗ = l2,j∗ | SE.Dec(sk, c1) 6= ⊥
∧ SE.Dec(sk, c2) 6= ⊥ ∧m1,j∗ 6= m2,j∗] + negl(λ)

58

5.6 Implementation

Applica�on

Generated Keys

Bytecode-to-bytecode
Compiler

Crypto Library
App Class

Conversion Data

Main Class

Client

1

1
2 3

4

4

4

Figure 5.5: Application transformation during DFAuth setup phase.

Moreover it holds:

SE.Dec(sk, c1) 6= ⊥ ∧ SE.Dec(sk, c2) 6= ⊥
⇒ SE.Dec(Eval(sk, ϕ1, (c1,1, . . . , c1,pϕ1

))) 6= ⊥
∧ SE.Dec(Eval(sk, ϕ2, (c2,1, . . . , c2,pϕ2

))) 6= ⊥
⇒ SE.Dec(c1,j∗) 6= ⊥ ∧ SE.Dec(c2,j∗) 6= ⊥

Pr[Sn+1] ≤ Pr [l1,j∗ = l2,j∗ | SE.Dec(c1,j∗) 6= ⊥ ∧ SE.Dec(c2,j∗) 6= ⊥
∧m1,j∗ 6= m2,j∗] + negl(λ)

= Pr[Sn∗] + negl(λ) , n∗ ≤ n

This probability is negligible according to the induction hypothesis which
proofs that ∀n ∈ N Pr[Sn] is negligible. Because the number of evaluations
an adversary can perform n is polynomial in λ, AdvUF-CPA

A,Π (λ) is negligible.

5.6 Implementation

In this section, we present details of an implementation in Java used in our
experiments. Recall from Section 5.2.1 that our scenario considers a trusted
client and an untrusted cloud server which has a trusted module. Also recall that
we distinguish two phases of the outsourced computation: setup and runtime.

5.6.1 Setup Phase

The setup phase is divided into two parts, compilation and deployment, as de-
scribed below. An overview is provided in Figure 5.5.

Compilation. First, the client translates any Java bytecode program to a byte-
code program running on encrypted data. To start, the client generates a set
of cryptographic keys. It then uses our bytecode-to-bytecode compiler to trans-
form an application (in the form of Java bytecode) using the generated keys (1).
Our compiler is based on Soot, a framework for analyzing and transforming Java
applications [Lam+11]. It uses our DFAuth crypto library to encrypt program
constants and choose variable labels (2–3).

59

5 DFAuth: Dataflow Authentication

The DFAuth crypto library contains implementations of all required cryp-
tographic algorithms, including our own from Sections 5.4 and 5.5. It imple-
ments the PRF used for authentication labels as HMAC-SHA256 [EH06]. For
the group operations in Multiplicative HASE we use MPIR [Mpi] for large in-
teger arithmetic. Additive HASE operates on the elliptic curve group provided
by libsodium [Lib]. The Gen method of Additive HASE has as parameters the
number of ciphertext components and the number of bits per component. From
these, it deterministically derives a set of t primes. The Additive HASE Dec
method computes the discrete logarithms using exhaustive search with a fixed
set of precomputed values. To ensure the efficiency of Additive HASE decryption,
the compiler inserts trusted-module invocations into the program that decrypt
and re-encrypt ciphertexts. These re-encryptions result in modulo reductions in
the exponents (cf. Construction 3), thus preventing excessive exponent growth
and ensuring an efficient decryption. The frequency of these invocations can be
defined by the application. We demonstrate the efficacy of these re-encryptions
in Section 5.7.2. For HASE, our compiler converts floating-point plaintexts to
a fixed-point representation using an application-defined scaling factor. It also
transforms the calculations to integer values, whereby the scaling factors are con-
sidered when appropriate. The resulting value is transformed back to floating-
point after decryption. For the symmetric encryption scheme in TACO we use
the Advanced Encryption Standard [Aes] in Galois/counter mode (AES-GCM).
AES-GCM is an authenticated encryption scheme and as such is both CCA-
secure and unforgeable (cf. Definition 16).

Finally, the compiler performs the transformation described in Section 5.3 and
outputs a main class containing the program start code, multiple app classes
containing the remaining code and conversion data (e.g., labels and comparison
data) (4).

Deployment. Second, the client deploys the app classes at the cloud server
and securely loads the generated cryptographic keys and conversion data into
the trusted module. We implemented the trusted module using an Intel SGX
enclave (cf. Section 3.4.1). SGX is well suited for our implementation because it
provides isolated program execution (including strong memory encryption) and
remote attestation (including a secure communication channel). The client uses
remote attestation to prepare the enclave. It verifies the correct creation of the
DFAuth trusted module enclave in the remote system and the correct setup of the
crypto library. At the same time, the client establishes a secure communication
channel with the remote enclave, over which the sensitive conversion data is
loaded. The secure channel provides confidentiality and authenticity. It protects
the communication between the trusted client and the trusted enclave against the
untrusted part of the server as well as any other attackers on the network. We
also emphasize that SGX’s hardware protections protect cryptographic keys and
conversion data on the server from access by any software except our DFAuth
enclave.

60

5.6 Implementation

Client

App Class DFAuth Wrapper

Server

Crypto LibraryConversion Data

Trusted ModuleInput

Crypto Library

Main Class

Encrypted Input

1

1

2 3

4

Generated Keys
5 6

9

10
78

Generated Keys

Figure 5.6: Application execution during DFAuth runtime phase.

5.6.2 Runtime Phase

To run the program, the client executes the main class which triggers the remote
program execution at the cloud server (see Figure 5.6). The main class encrypts
the program input (for this run of the program) with the generated keys (for
the entire setup of the program) using the crypto library (1–4). The main class
passes the encrypted input to the app classes on the cloud server (5). The app
classes operate on encrypted data and do not have any additional protection.
They invoke the DFAuth wrapper for operations on homomorphic ciphertexts
and re-encryption or comparison requests (6). The wrapper hides the specific
homomorphic encryption schemes and trusted module implementation details
from the app classes, such that it is feasible to run the same program using
different encryption schemes or trusted modules. It forwards re-encryption and
comparison requests to the trusted module and passes the answers back to the
application (7–9). Once the app classes finish their computation, they send an
encrypted result (including an authentication label) back to the client (10). The
client verifies the authentication label to the one computed by our compiler.

The task of the trusted module during runtime is to receive re-encryption and
comparison requests, determine whether they are legitimate and answer them
if they are. It bundles cryptographic keys, authentication labels and required
parts of the crypto library inside a trusted area, shielding it from unauthorized
access. The DFAuth wrapper enables to potentially select different trusted mod-
ules based on the client’s requirements and their availability at the cloud server.
Besides Intel SGX enclaves, one can implement a trusted module using a hyper-
visor or calling back to the client for sensitive operations. However, alternative
implementations would involve making slightly different trust assumptions.

SGX’s secure random number generator provides the randomness required dur-
ing encryption. A restriction of the current generation of Intel SGX is the limited
size of its isolated memory (cf. Section 3.4.1). It only provides about 96 MB for
code and data and thus enforces an upper bound on the number of precomputed
discrete logarithm values used to speedup Additive HASE. The available memory
can be used optimally with a careful selection of CRT parameters.

TACO evaluation, HASE re-encryption and comparison requests have to be
implemented inside the trusted module. We display the conversion routines (im-
plemented in an SGX enclave in our case) for conversion to Multiplicative HASE
and comparison in Listings 5.3 and 5.4. The conversion routine to Additive
HASE is similar to the one for Multiplicative HASE in Listing 5.3 with the roles
of the encryption schemes switched. The comparison of two encrypted values

61

5 DFAuth: Dataflow Authentication

Listing 5.3: Conversion to Multiplicative HASE

1 convertToMul(x, "x") {

2 label = labelLookup ("x");

3 y = Dec(K, x, label);

4 if (y == fail)

5 stop;

6 id = idLookup ("x");

7 return Enc(K, y, id);

8 }

Listing 5.4: Conversion to comparison

1 convertToCmp(x, y, "x") {

2 label = labelLookup ("x");

3 x1 = Dec(K, x, label);

4 if (x1 == fail)

5 stop;

6 if (y == null) {

7 param = paramLookup ("x");

8 switch (param.type) {

9 case EQ:

10 return (x1 == param.const);

11 case GT:

12 return (x1 > param.const);

13 case GTE:

14 ...

15 }

16 } else {

17 label = labelLookup ("y");

18 y1 = Dec(K, y, label);

19 if (y1 == fail)

20 stop;

21 ...

22 }

23 }

is similar to the comparison of one to a constant in Listing 5.4. Similar to the
call labelLookup, which retrieves labels from conversion data stored inside the
trusted module, idLookup and paramLookup retrieve identifiers for encryption
and parameters for comparison from the conversion data.

5.7 Evaluation

In this section, we present the evaluation results collected in various experiments.
Our experiments are grouped into two series consisting of two experiments each.
The first series focusses on DFAuth with HASE. The second series focusses on
more complex applications and a comparison of HASE and TACO.

62

5.7 Evaluation

Experiments of the first series are performed on an SGX-capable Intel Core i7-
6700 CPU with 64 GB RAM running Windows 10. In our first experiment (pre-
sented in Section 5.7.1), we apply DFAuth to the checkout (shopping cart) com-
ponent of a secure sales application, which we developed ourselves. In the second
experiment (presented in Section 5.7.2), we benchmark the Additive HASE con-
struction for large numbers of additions.

Experiments of the second series are performed in the Microsoft Azure Cloud
using Azure Confidential Computing. We use Standard DC4s VM instances
which run Ubuntu Linux 18.04 and have access to 4 cores of an SGX-capable
Intel Xeon E-2176G CPU and 16 GB RAM. In the third experiment (presented
in Section 5.7.3), we apply DFAuth to an existing neural network program en-
abling secure neural network evaluation in the cloud. In the fourth experiment
(presented in Section 5.7.4), we use DFAuth to protect sensitive data processed
by a smart charging scheduler for electric vehicles. In both experiments, we sep-
arately evaluate DFAuth with HASE and DFAuth with TACO. We collect the
running time inside and outside the trusted module as well as the number of
operations performed inside and outside the trusted module.

In all experiments, we aim for a security level equivalent to 80 bits of symmetric
encryption security. We use the 1536-bit MODP Group from RFC3526 [KK03]
as the underlying group in Multiplicative HASE. The libsodium [Lib] elliptic
curve group used by Additive HASE even provides a security level of 128 bits
[Ber06]. A key length of 128 bits is used for the AES-GCM symmetric encryption
scheme in TACO.

5.7.1 Secure Sales Application

In this experiment, we consider the checkout component of a secure sales appli-
cation running on an untrusted server. When a client checks out a shopping cart,
the server is tasked with summing up the encrypted prices of all items in the cart.
Additionally, discounts need to be applied when the sum exceeds certain thresh-
olds. We aim to protect the rebate structure of the client, i.e. the thresholds when
discounts are applied and the percentage of the discount. This is important in
outsourced sales applications, because an attacker, e.g. a co-residing competitor,
could try to infer the rebate structure in order to gain an unfair advantage in the
market.

The purpose of this experiment is twofold. First, this experiment serves as
a performance test for the implementation of our HASE constructions. Second,
this experiment serves as an example of the larger class of non-linear functions.
While the secrets in this illustrative example can be inferred fairly easily, with
growing number of parameters inference gets harder. Note that the constants in
almost any computation can be inferred by repetitive queries. It is a question of
costs whether it is economically worthwhile to do it. Also note that in a business
to business sales application, almost each customer has its own confidential rebate
structure.

The transformed program performs control-flow decisions comparing the sum
of encrypted inputs to the encrypted thresholds of the rebate structure. To a

63

5 DFAuth: Dataflow Authentication

control-flow observer each such decision reveals a small amount of information
about the relationship between inputs and threshold constants. After observing
the result of sufficiently many such decisions, an attacker may be capable of
inferring the confidential threshold values. Note that the attacker does not learn
additional information about the output and most importantly the discounts
granted.

Experimental Setup. We implemented the described checkout component and
applied DFAuth with HASE to it. If the sum exceeds the value of $250, our
implementation grants a discount of 5%. If the sum exceeds the value of $500,
we grant a total discount of 10%.

In order to evaluate the performance of the original (plaintext) and the DFAuth
variant of the program, we built shopping carts of sizes {1, 10, . . . , 100}. Prices
were taken uniformly at random from the interval [0.01, 1000.00]. For each cart
a plaintext and an encrypted variant is stored at the untrusted server.

For each of the two program variants, the total running time of code exe-
cuting at the untrusted server was measured. This time includes reading the
corresponding cart data from disk, summing up the prices of all cart items and
granting discounts where applicable. For the DFAuth variant, we also collected
the number of operations performed on encrypted data inside and outside of the
trusted module, as well as the time spent invoking and inside the trusted module.
Our measurements do not include the setup phase, because it is only a one-time
overhead that amortizes over multiple runs. We also do not include network
latency in our measurements, since the difference in communication between a
program running on plaintext and a program running on encrypted data is very
small.

Evaluation Results. There are three cases for the control flow in the secure
sales application:

1. The sum of all item prices neither reaches the first threshold nor the second
threshold. In this case, the sum of the prices is compared to two different
threshold constants.

2. The sum of all prices reaches the larger threshold. In this case, the sum
is compared to one threshold constant and needs to be converted to Mul-
tiplicative HASE before being multiplied with the respective discount con-
stant.

3. The sum of all prices reaches the lower threshold, but not the larger thresh-
old. In this case, the sum is compared to two threshold constants and needs
to be converted to Multiplicative HASE before being multiplied with the
respective discount constant.

Figure 5.7 presents the mean running time of 100 runs of the experiment de-
scribed above for Case 3. We can see that, even for large-sized carts containing
100 items, DFAuth only increases the program running time by a factor of 11.5

64

5.7 Evaluation

1 10 20 30 40 50 60 70 80 90 100
0

1

2

3

#Aggregated Values

To
ta

l R
un

ni
ng

 T
im

e
[m

s]

Plaintext Trusted Module Other

Figure 5.7: Mean running time [ms] of the original (left) and DFAuth (right)
variants of the shopping cart program as a function of the cart size
for Case 3.

Operation Type # Ops in Case 1/2/3

Homomorphic Addition HASE 9/9/9
Homomorphic Multiplication HASE 0/1/1
Total HASE 9/10/10

Additive to Multiplicative Conversion SGX 0/1/1
Comparison to Constant SGX 2/1/2
Total SGX 2/2/3

Table 5.2: Number of untrusted (HASE) and trusted (SGX) operations in the
Secure Sales Application experiment for shopping cart size 10.

on average. Assuming a round-trip latency of 33 ms, which can be considered
realistic according to [Net], the total round-trip time (consisting of round-trip
latency and program running time) increases only by a factor of 1.08 on aver-
age. Most importantly, the absolute running time values are sufficiently low for
practical deployment of online computation.

From Figure 5.7 we can also see that a significant portion of the total running
time is spent inside (or invoking) the trusted module. On the one hand, this
shows that a more efficient trusted module implementation would significantly
decrease the total running time of the application. On the other hand, it sug-
gests that we execute more instructions inside the trusted module than outside,
contradicting our basic idea of a reduced execution inside the trusted module.
However, Table 5.2, which reports the number of operations performed on en-
crypted data inside and outside of the trusted module, shows that this is not the
case. Even for a shopping cart containing only 10 items, there are 9 to 10 un-
trusted HASE operations, but only 1 to 3 trusted operations. While the number
of trusted operations is independent of the cart size, the number of untrusted

65

5 DFAuth: Dataflow Authentication

operations is approximately linear in the cart size, i.e., an even larger cart would
further increase the fraction of untrusted operations. We refer to the next section
for a demonstration of Additive HASE’s scalability.

5.7.2 Additive HASE Benchmark

The decryption algorithm of Additive HASE (Construction 3) has to compute
a discrete logarithm for each ciphertext component (after Elgamal decryption).
Since each homomorphic addition can increase the bit length of exponents by
1, a large amount of homomorphic additions can make decryption exponentially
costlier (or impossible, assuming only a lookup table with precomputed loga-
rithms), despite the use of the CRT approach provided by Hu et al. [HMS12].
In this experiment, we demonstrate that re-encryptions inserted by the DFAuth
compiler are an effective measure for preventing excessive exponent growth and
ensuring an efficient decryption.

Experimental Setup. Throughout this experiment, we use a CRT decompo-
sition involving 13 different 5-bit primes. These parameters were chosen such
that we can represent 64-bit integer values. In the trusted module a lookup
table containing 218 precomputed discrete logarithms was generated. We mea-
sure the running time of the decryption algorithm when applied to a ciphertext
resulting from the homomorphic evaluation of n ciphertexts. For each n we con-
sider two variants of the experiment: one without re-encryptions, the other with
re-encryptions performed after every 4000 homomorphic evaluations. We use
n ∈ {10, 100, 1000, 10000, 100000} and perform each measurement 100 times.

Evaluation Results. Figure 5.8 presents the mean running time of the decryp-
tion algorithm for each n and each variant (without and with re-encryptions).
We can see that the decryption time without re-encryptions are mostly constant
up to 1000 homomorphic evaluations, but increases drastically for larger numbers
of evaluations. The reason for this sharp increase in decryption time is likely the
fact that the discrete logarithms can no longer be computed via table lookup but
the decryption has to fall back to exhaustive search (cf. Section 5.6.1). In com-
parison, when re-encryptions are performed, the decryption time only increases
minimally, even for n = 100000.

5.7.3 Secure Neural Networks in the Cloud

In this experiment we consider the use case of evaluating neural networks in the
cloud. We aim to protect the network model and the instance classified, i.e.,
the weights of the connections and the inputs and outputs of the neurons. The
weights do not change between classifications and often represent intellectual
property of the client. Also, the privacy of a user classified by the network is
at risk, since the user’s classification may be revealed. DFAuth overcomes these
concerns by encrypting the weights in the network and the client’s input and
performing only encrypted calculations. Also, since the transformed program

66

5.7 Evaluation

0

1

10

100

1,000

10,000

100,000

10 100 1000 10000 100000

D
ec

ry
p

ti
o

n
 T

im
e

[m
s]

#Additions

With Re-encryptions No Re-encryptions

Figure 5.8: Mean running time [ms] to decrypt a ciphertext produced by summing
up a varying number of ciphertexts using Additive HASE.

does not perform any control-flow decisions based on network weights or client
input, the attacker cannot learn sensitive data by observing the control flow. Note
that even the classification result does not leak, since the result returned is the
output values for each of the classification neurons, i.e. a chance of classification
y, e.g., breast cancer in our subsequent example, of x%.

Experimental Setup. We apply our transformation to the BrestCancerSample
[sic] neural network provided by Neuroph [Neu], a framework for neural networks.
Given a set of features extracted from an image of a breast tumor, the network
predicts whether the tumor is malignant or benign. As such, it operates on highly
sensitive medical data.

The properties of the network, e.g., layer and neuron configuration, are encoded
programmatically in the main class of the network. This class is also capable of
reading the data set associated with the network and dividing it into a 70%
training set and a 30% test set. We use the training set to learn network weights
and the test set to evaluate whether the network delivers correct predictions.

First, we apply DFAuth to the main class of the network and the classes of the
framework (app classes). Result of the transformation is a new main class and
a set of app classes operating on ciphertexts rather than floating-point double
values. For HASE, floating-point numbers are converted to integers by scaling
by a factor of 106. Essentially, the resulting code allows us to evaluate DFAuth-
encrypted neural networks in addition to plaintext neural networks.

Then, we test different network evaluation sizes n ∈ {1, 10, 20, . . . , 100} and
perform 20 evaluation runs each. In each run, a new neural network is trained
based on a random segmentation of training and test data. We use the facilities
provided by Neuroph to serialize the trained network weights into a double array

67

5 DFAuth: Dataflow Authentication

0

10

20

30

40

50

60

70

80

90

100

1 10 20 30 40 50 60 70 80 90 100

R
u

n
n

in
g

Ti
m

e
[s

]

Number of Neural Network Evaluations

Trusted Module Other

Figure 5.9: Mean running time [s] of the HASE variant of the breast cancer neural
network experiment as a function of the number of evaluations.

and write the network to disk. Additionally, we encrypt the trained network
weights using HASE and TACO and also write these encrypted neural networks
to disk.

We end each run by performing n neural network evaluations with each of the
three neural network variants stored on disk. Neural network inputs are sampled
uniformly at random (without replacement) from the test data set. We measure
the total running time of code executing at the untrusted server, the time spent
invoking and inside the trusted module and the number of operations performed
on encrypted data inside and outside of the trusted module. The total running
time includes reading the network configuration (i.e., layers and neuron), loading
the weights and executing the evaluation.

Evaluation Results. Figure 5.9 presents the mean running time of the encrypted
neural network using DFAuth with HASE. The mean is computed over all 20 runs
for each evaluation size and is divided into time spent inside the trusted module
and time spent outside the trusted module. Figure 5.10 shows the results for
DFAuth with TACO. Figure 5.11 compares the running times of HASE and
TACO. We do not include the plaintext measurements in the graphs because
they are too small to be visible. Table 5.3 reports the number of untrusted and
trusted module (SGX) operations.

Using HASE, the total running time of one network evaluation is 951 ms, of
which 895 ms (94.1%) are spent in the trusted module (SGX) and 56 ms (5.9%)
outside of the trusted module. Even for 100 evaluations a run completes in
92.15 s on average. In this case, the processing time in the trusted module is
89.54 s (97.2%) and 2.60 s (2.8%) outside. The relative running time of an evalu-

68

5.7 Evaluation

0

200

400

600

800

1000

1200

1400

1 10 20 30 40 50 60 70 80 90 100

R
u

n
n

in
g

Ti
m

e
[m

s]

Number of Neural Network Evaluations

Trusted Module Other

Figure 5.10: Mean running time [ms] of the TACO variant of the breast cancer
neural network experiment as a function of the number of evalua-
tions.

ation (total running time / number of network evaluations) is 921 ms. Compared
to one plaintext network evaluation, the running time increased by a factor of
about 1417. A waiting time of less than one second demonstrates the practical
deployment of neural network evaluation on encrypted data and should already
be acceptable for most use cases.

In Figure 5.9 we can see that using HASE a significant portion of the total run-
ning time is spent inside (or invoking) the trusted module. On the one hand, this
shows that a more efficient trusted module implementation would significantly
decrease the total running time of the application. On the other hand, it sug-
gests that we execute more instructions inside the trusted module than outside,
contradicting our basic idea of a reduced execution inside the trusted module.

Operation HASE TACO
Type # Ops Type # Ops

Addition HOM 548 SGX 548
Multiplication HOM 548 SGX 548
Additive to Multiplicative Conversion SGX 36
Multiplicative to Additive Conversion SGX 548
Comparison SGX 36 SGX 36

Total
HOM 1096

SGX 1132
SGX 620

Table 5.3: Number of untrusted homomorphic (HOM) and trusted (SGX) oper-
ations for a single evaluation of the neural network.

69

5 DFAuth: Dataflow Authentication

1

10

100

1000

10000

100000

1 10 20 30 40 50 60 70 80 90 100

R
u

n
n

in
g

Ti
m

e
[m

s]

Number of Neural Network Evaluations

TACO HASE

Figure 5.11: Compared mean running time [ms] of the TACO and the HASE
variant of the breast cancer neural network experiment as a function
of the number of evaluations.

However, Table 5.3 shows that this is not the case. For a single neural network
evaluation, 1096 untrusted operations and 620 trusted operations on encrypted
data are performed. This means that 64% of all operations can be performed
without the trusted module.

Using TACO, the total running time of one network evaluation is 23 ms, of
which 8 ms (35.7%) are spent in the trusted module (SGX) and 15 ms (64.3%)
outside of the trusted module. For 100 evaluations the relative running time of
an evaluation is 12.55 ms. In Figure 5.10 we can see that in contrast to HASE
a smaller fraction of the total running time is spent in the trusted module. Al-
though TACO requires 1132 trusted module invocations while HASE only re-
quires 620, it appears that the higher number of invocations is easily compen-
sated by TACO’s use of a more efficient encryption scheme. For one network
evaluation, TACO is faster than HASE by a factor of 41 and slower than plain-
text evaluation by a factor of 35. See Figure 5.11 for a more detailed comparison
of HASE and TACO running times.

Comparison to Alternative Solutions. Recently, implementations of machine
learning on encrypted data have been presented for somewhat homomorphic en-
cryption [Gil+16] and Intel SGX [Ohr+16]. Compared to the implementation on
SWHE our approach offers the following advantages:

1. Our approach has a latency of 12.55 milliseconds compared to 570 seconds
for SWHE. The construction by Gilad-Bachrach et al. [Gil+16] exploits
the inherent parallelism of SWHE to achieve a high throughput. However,
when evaluating only one sample on the neural network, the latency is high.

70

5.7 Evaluation

Our approach is capable of evaluating only a single sample with low latency
as well.

2. Our approach scales to different machine learning techniques with minimal
developer effort. Whereas the algorithms by Gilad-Bachrach et al. [Gil+16]
were developed for a specific type of neural network, our implementation
on encrypted data was derived from an existing implementation of neural
networks on plaintext data by compilation. This also implies that the
error introduced by Gilad-Bachrach et al. [Gil+16] due to computation on
integers does not apply in our case. However, we have not evaluated this
aspect of accuracy in comparison to their implementation.

3. Our approach is capable of outsourcing a neural network evaluation whereas
the approach by Gilad-Bachrach et al. [Gil+16] is a two-party protocol, i.e.,
the weights of the neural network are known to the server. Our approach
encrypts the weights of the neural network and hence a client can outsource
the computation of neural network. Note that our approach includes the
functionality of evaluating on plaintext weights as well and hence offers the
larger functionality.

Although their running time overhead is smaller than ours, our approach offers
the following advantage compared to the implementation on SGX [Ohr+16]: In
our approach the code in the SGX enclave is independent of the functionality,
e.g., machine learning. The implementation by Ohrimenko et al. [Ohr+16] pro-
vides a new, specific algorithm for each additional machine learning function, i.e.,
neural networks, decision trees, etc. Each implementation has been specifically
optimized to avoid side-channels on SGX and hopefully scrutinized for software
vulnerabilities. The same development effort has been applied once to our conver-
sion routines and crypto library running in the trusted module. However, when
adding a new functionality our approach only requires compiling the source pro-
gram and not applying the same effort again on the new implementation.

5.7.4 Secure Electric Vehicle Charging Scheduling

In this experiment, we use DFAuth to protect sensitive data processed by a smart
charging scheduler for EVs. Smart charging is a technique to schedule EV fleets
making the most of existing infrastructure, for example undersized connection
lines and a limited number of charging stations.

Frendo et al. [FGS19] present a novel approach combining day-ahead and real-
time planning. Their schedule-guided heuristic takes as input a precomputed
day-ahead schedule and adjusts it in real-time as new information arrives. Events
providing new information for example include EV arrival, EV departure, and
price changes at energy markets. Event processing must be fast, for example such
that drivers can be assigned a charging station as they enter a parking garage.
The event handling process is divided into two parts, EV scheduling and EV
prioritization, as depicted in Figure 5.12.

71

5 DFAuth: Dataflow Authentication

Assign EV to free charging station

Is EV scheduled?

EV arrival

Fill schedule to min SoC,
ordering timeslots by time

Are all stations reserved?

Fill schedule to full SoC
according to timeslot ordering

Block timeslot k

Order EVs scheduled to charge at k
by priority

Deallocate schedule at k
for EV with lowest priority

Fill schedule of EV with lowest priority
according to timeslot ordering,

taking into account blocked timeslots

Assign EV to charging station
according to precomputed schedule

EV receives precomputed schedule

Set timeslot k = 0

Is EV early and
has expected SoC?

Is there a violation at k?

k < kmax ?

Unblock all timeslots

k++

Yes

No

Done

No

No

Yes

Yes

Yes

Yes

EV
 S

CH
ED

UL
IN

G
EV

 P
RI

O
RI

TI
ZA

TI
O

N

No

No

Calculate priority for each EV

Figure 5.12: Schedule-guided smart charging heuristic (taken from Frendo et
al. [FGS19]).

72

5.7 Evaluation

To provide event responses in real-time, it is convenient to utilize the cloud’s
powerful computing resources, high availability and central data storage. How-
ever, sensitive data such as planned EV arrival and departure times as well as
technical car properties, which could be used to identify the driver, are at risk
of being revealed to the cloud service provider. We apply DFAuth such that all
operations involving sensitive data are performed on encrypted data.

Experimental Setup. Overall, we apply DFAuth to the schedule-guided heuris-
tic by Frendo et al. [FGS19] and reproduce their real-time charging simulation
using our encrypted schedule-guided heuristic. Provided a precomputed encrypted
day-ahead schedule as input, we simulate one day of events during which the cur-
rent schedule has to be updated.

In particular, we apply our transformation to all classes handling sensitive data.
For each car, the information protected in this way includes its minimum state of
charge (min SoC), its current state of charge and its current charging schedule.
We do not protect prices at energy markets, the structure of the charging schedule
(e.g., timeslot size) and the car type, i.e., whether it is a battery-electric or a plug-
in hybrid electric vehicle. Result of the transformation are new classes operating
on ciphertexts rather than floating-point double values. For HASE, floating-point
numbers are converted to fixed-point numbers by scaling by a factor of 108.

The charging simulation is parameterized by the number of EVs. We consider
the same parameters {10, 20, 30, . . . , 400} as in the original experiment [FGS19].
The number of charging stations is fixed at 25. Possible events are EV arrival, EV
departure, update of expected EV arrival, update of expected EV departure and
price changes at energy markets. Each EV event occurs approximately once per
EV, new energy prices are updated every 15 minutes, i.e., 96 times per simulation.

We execute the simulation for each parameter for HASE and TACO using the
same underlying data set. In each simulation, we measure the accumulated time
taken to adjust the schedule as a result of an event. We distinguish the running
time of code executing at the untrusted server, the time spent invoking and inside
the trusted module and the number of operations performed on encrypted data
inside and outside of the trusted module. To evaluate the real-time property of
our solution, we also determine the maximum event response time over all events.

Evaluation Results. Figure 5.13 presents the total running time of each simu-
lation for HASE and TACO. It can be seen that TACO also outperforms HASE
in this experiment. The smallest simulation using 10 EVs takes 802 s for HASE,
but only 4 s for TACO. Even for the largest simulation involving 400 EVs, the
running time of 139 s for TACO is significantly lower than for 10 EVs using
HASE. The graph does not include any HASE results for parameters larger than
20, because we aborted the HASE experiment due to its long running time. In
Figure 5.13 we can also see that sometimes the running time of a simulation de-
creases although the number of EVs increases, e.g., for parameters 220 and 230.
This is caused by randomized sampling of simulation data, which may result in
larger instances being easier to solve by the heuristic than smaller instances.

73

5 DFAuth: Dataflow Authentication

1

10

100

1000

10000

10 40 70 100 130 160 190 220 250 280 310 340 370 400

R
u

n
n

in
g

Ti
m

e
[s

]

Number of EVs

TACO HASE

Figure 5.13: Running times of EV simulations.

Figure 5.14 shows the number of trusted module calls for each simulation.
The trusted module calls linearly increase in the number of EVs, as is expected
based on the algorithm. For parameters 220 and 230, the number of trusted
module calls are in line with the respective running times and again suggest
that the simulation involving 230 EVs was easier to solve. As in the neural
network experiment, HASE requires less trusted module calls than TACO. For
example, for 10 EVs HASE requires 284 920 trusted module calls while TACO
performs 309 656. This may result in better overall HASE performance in case
an alternative trusted module with more expensive calls is used.

Figure 5.15 illustrates the time TACO spent inside and outside the trusted
module. The portion of time inside the trusted module only varies between 59.5%
for 320 EVs and 62.4% for 10 EVs, and as such can be considered independent of
the number of EVs. In comparison, for HASE the average portion of time inside
the trusted module is 99.5%, despite the lower number of trusted module calls
and higher total running time.

Figure 5.16 presents the maximum event response time, an important property
of real-time applications. By definition, the maximum response time is dominated
by single events which are complex to handle for the heuristic. Such events cause
spikes in the chart, as can be observed for 70 and 130 EVs. If we ignore those
outliers, we can split the graph into two parts. From 10 to 90 EVs, the maximum
response time continuously increases with the number of EVs. This is because
time is mostly spent in the scheduling step and only a small number of violations
have to be resolved in the prioritization step (cf. Figure 5.12). For larger numbers
of EVs the maximum response time varies between 0.70 s and 2.14 s with an
average of 1.06 s. Considering the response time of different simulations, we can
see that it is practically independent of the number of EVs.

74

5.7 Evaluation

0

2

4

6

8

10

12

10 40 70 100 130 160 190 220 250 280 310 340 370 400

Tr
u

st
ed

 M
o

d
u

le
 C

al
ls

 in
 M

ill
io

n
s

Number of EVs

TACO HASE

Figure 5.14: Number of trusted module calls in EV simulations.

0

20

40

60

80

100

120

140

160

10 40 70 100 130 160 190 220 250 280 310 340 370 400

R
u

n
n

in
g

Ti
m

e
[s

]

Number of EVs

Trusted Module Other

Figure 5.15: Running time inside and outside the trusted module for TACO in
EV simulations.

75

5 DFAuth: Dataflow Authentication

0,00

0,25

0,50

0,75

1,00

1,25

1,50

1,75

2,00

2,25

10 40 70 100 130 160 190 220 250 280 310 340 370 400

M
ax

im
u

m
 R

es
p

o
n

se
 T

im
e

[s
]

Number of EVs

Figure 5.16: Maximum event response time for TACO in EV simulations.

In summary, DFAuth using TACO enables the protection of sensitive data
while at the same time providing sufficiently fast response times required by the
smart charging use case.

5.8 Related Work

The work presented in this chapter is related to obfuscation techniques and
trusted hardware, (homomorphic) authenticated encryption and computation on
encrypted data – including but not limited to homomorphic encryption. An
overview on computation on encrypted data and related concepts is provided in
Chapter 3.

Obfuscation Techniques and Trusted Hardware Approaches straightening or
obfuscating the control flow can be combined with DFAuth on the unprotected
program part and are hence orthogonal to DFAuth. We provide a detailed analy-
sis of the security and performance implications of executing control-flow driven
programs in Chapter 6. An introduction to trusted execution environments and
a detailed description of Intel SGX is provided in Section 3.4.

Molnar et al. [Mol+05] eliminate control-flow side-channels by transforming
code containing conditional instructions into straight-line code employing mask-
ing.

GhostRider [Liu+15] enables privacy-preserving computation in the cloud as-
suming a remote trusted processor. It defends against memory side-channels by
obfuscating programs such that their memory access pattern is independent of
control-flow instructions. However, as a hardware-software co-design, GhostRider
requires a special co-processor. In contrast, DFAuth works on commodity SGX-

76

5.8 Related Work

enabled CPUs and provides a program-independent TCB inside the secure hard-
ware. Raccoon [RLT15] extends these protections to the broader class of side-
channels carrying information over discrete bits. Essentially, Raccoon executes
both paths of a conditional branch and later combines the real and the decoy
path using an oblivious store operation.

HOP [Nay+17] obfuscates programs by encrypting them such that only a
trusted processor can decrypt and run them. By incorporating encryption rou-
tines into the program, HOP can be extended to also protect program input
and output. However, HOP assumes the program is free of software vulnera-
bilities and runs the entire program inside the trusted hardware. In contrast,
in DFAuth vulnerabilities are confined to the untrusted program and the code
inside the trusted module is program-independent.

(Homomorphic) Authenticated Encryption Authenticated encryption (AE)
provides confidentiality as well as authenticity (cf. Section 2.2.3) and is the rec-
ommended security notion for symmetric encryption. An AE scheme can be
obtained by composing an IND-CPA secure encryption scheme with a message
authentication code (MAC) or signature scheme [BN08]. Hence, one can obtain
a homomorphic AE scheme by combining a homomorphic encryption scheme (cf.
Section 3.1.4) with a homomorphic MAC. However, since the best known homo-
morphic MACs [GW13] are not yet fully homomorphic, a different construction
is required. Joo and Yun provide the first fully homomorphic AE [JY14]. How-
ever, their decryption algorithm is as complex as the evaluation on ciphertexts,
undermining the advantages of an encrypted program, i.e., one could do the en-
tire computation in the trusted module. In parallel work, Barbosa et al. [BCF17]
develop labeled homomorphic encryption which, however, has not been applied
to trusted modules.

Boneh et al. [Bon+09] introduced linearly homomorphic signatures and MACs
to support the efficiency gain by network coding. However, their signatures
were still deterministic, hence not achieving IND-CPA security. Catalano et
al. [CMP14] integrated MACs into efficient, linearly homomorphic Paillier en-
cryption [Pai99a] and used identifiers to support public verifiability, i.e., verifica-
tion without knowledge of the plaintext. However, their scheme also has linear
verification time undermining the advantages of a small trusted module. In our
HASE construction we aimed for using identifiers and not plaintext values to en-
able DFAuth. Furthermore, we split verification into a pre-computed derivation
phase and a verification phase. Hence, we can achieve constant time verification.

Aggregate MACs [KL08] provide support for aggregation of MACs from dis-
tinct keys. However, our current DFAuth considers one client and secret key.

Computation on Encrypted Data A detailed description of techniques trans-
forming programs to compute on encrypted data is given in Section 3.3. The
underlying efficient encryption schemes are introduced in Section 3.1. MrCrypt
[Tet+13] infers feasible encryption schemes using type inference. In addition to
homomorphic encryption, MrCrypt makes use of randomized and deterministic

77

5 DFAuth: Dataflow Authentication

order-preserving encryption (cf. Section 3.1.1). However, the set of feasible pro-
grams is limited. JCrypt [DMD16] improved the type inference algorithm to a
larger set of programs. However, neither MrCrypt nor JCrypt consider conver-
sions between encryption schemes. AutoCrypt [Top+13] used these conversions,
however, realized their security implications. The authors hence disallowed any
conversion from homomorphic encryption to searchable encryption. This restric-
tion prevents any program from running that modifies its input and then performs
a control-flow decision. Such programs include the arithmetic computations we
performed in our evaluation.

Verifiable computation [GGP11] can be used by a client to check whether a
server performed a computation as intended – even on encrypted data. However,
this does not prevent the attacks by malicious adversaries considered in this
chapter. It only proves that the server performed one correct computation, but
not that it did not perform any others.

Functional encryption (cf. Section 3.1.3) is a more powerful computation on
encrypted data than homomorphic encryption. It not only can compute any func-
tion, but also reveal the result of the computation and not only its ciphertext.
However, generic constructions are even slower than homomorphic encryption.
Searchable encryption (cf. Section 3.1.2) is a special case of functional encryp-
tion for comparisons and could be used to implement comparisons in DFAuth.
However, since the actual comparison time is so insignificant compared to the
cryptographic operations, it is more efficient to implement comparison in the
trusted module as well.

5.9 Summary

In this chapter, we introduced the concept of dataflow authentication (DFAuth)
which prevents an active adversary from deviating from the dataflow in an out-
sourced program. This in turn allows safe use of re-encryptions between homo-
morphic and leaking encryption schemes in order to allow a larger class of pro-
grams to run on encrypted data where only the executed control flow is leaked
to the adversary. Our implementation of DFAuth uses two novel schemes, homo-
morphic authenticated symmetric encryption (HASE) and trusted authenticated
ciphertext operations (TACO), and trusted modules in an SGX enclave. Com-
pared to an implementation solely on fully homomorphic encryption we offer
better and actually practical performance and compared to an implementation
solely on Intel’s SGX we offer a much smaller trusted code base independent of
the protected application. We underpin these results by an implementation of a
bytecode-to-bytecode compiler that translates Java programs into Java programs
operating on encrypted data using DFAuth.

78

6 PASAPTO: Policy-Aware Security
and Performance Trade-off Analysis

In this chapter, we address the concern that control-flow leakage might be inac-
ceptable from a security perspective. To avoid unconditionally sacrificing per-
formance for security, we analyze the trade-off between the two properties in
more detail. To this end, we extend dataflow authentication with a policy-aware
security and performance trade-off (PASAPTO) analysis.

Section 6.1 describes our motivation in more detail and presents an illustrative
example program. Section 6.2 introduces our program and adversary models as
well as our definitions of policy-compliance and trade-off analysis. Section 6.3
explains how to quantify adversarial information flow resulting from control-flow
observations. Section 6.4 presents the PASAPTO optimization problem and
two heuristics approximating a solution. Section 6.5 constructs a PASAPTO
analysis for DFAuth. Section 6.6 provides details about the implementation of
our DFAuth trade-off analyzer (DFATA). Section 6.7 presents the results of our
experiments using this implementation. Section 6.8 discusses related work and
Section 6.9 provides a summary of this chapter.

The content of this chapter has been the subject of the following scientific
publications, of which parts are included verbatim in this thesis.

• Andreas Fischer, Jonas Janneck, Jörn Kussmaul, Nikolas Krätzschmar,
Florian Kerschbaum, Eric Bodden: PASAPTO: Policy-aware Security and
Performance Trade-off Analysis – Computation on Encrypted Data with
Restricted Leakage. In 33rd IEEE Computer Security Foundations Sympo-
sium, 2020. [Fis+20b]

6.1 Introduction

Efficient computation on encrypted data without side-channels remains an open
problem. On the one hand, cryptographic techniques such as FHE (cf. Sec-
tion 3.1.4) can perform arbitrary computations without revealing any information
about the data computed on, but suffer high computational costs. On the other
hand, TEEs such as Intel SGX enclaves (cf. Section 3.4.1) entail only little com-
putational overhead, but are vulnerable to side-channel attacks (cf. Section 3.4.2).
For example, it has been demonstrated that the control flow executed inside SGX
enclaves can be inferred from untrusted programs [Lee+17b]. Similarly, DFAuth
(cf. Chapter 5) considers any control-flow decision on an encrypted variable an
intentional leak by the programmer.

79

6 PASAPTO: Policy-Aware Security and Performance Trade-off Analysis

1 int p1(int x)

2 if (e)

3 y = f(x)

4 else

5 y = g(x)

6 return y

1 int p2(int x)

2 y1 = f(x)

3 y2 = g(x)

4 # obliviously select

5 # y1 or y2 based on e

6 y = select(e, y1 , y2)

7 return y

Figure 6.1: Two semantically equivalent variants of a program.

For some applications, meaningful security can only be achieved when all side-
channels are eliminated. Consider, for example, cryptographic primitives such as
square-and-multiply algorithms used for modular exponentiation in public key
cryptography. If private key bits are leaked through side-channels [BB03], all
security relying on the secrecy of the private key is lost. A broad class of side-
channels can be avoided by producing constant-time code not making any mem-
ory accesses or control-flow decisions based on secret data. Some cryptographic
primitives have even been designed such that an implementation likely possesses
these properties [Ber06]. However, for more complex applications these prop-
erties cannot be achieved without causing prohibitive performance. Consider,
for example, Dantzig’s simplex algorithm [Dan51] for solving linear optimization
problems. This algorithm terminates as soon as objective values of the current
solution can no longer be improved. It is extraordinarily efficient in practice but
its worst-case running time is exponential in the problem size [KM70]. If we
are to eliminate all side-channels, we must also prevent the termination condi-
tion from leaking. Thus, any simplex invocation must have exponential running
time. Since this behavior is impractical for any non-trivial input, engaging in a
trade-off between security and performance seems justified.

In this work, we consider the trade-off between security and performance of
control-flow side-channels when executing programs on encrypted data. Our
motivation for focusing on control flow is based on the expectation that the
disclosure of control-flow information, e.g., rather than computing a circuit as in
FHE, results in significant performance gains.

Consider, for example, the two variants of a program provided in Figure 6.1.
The first program p1 reveals the control flow – more precisely the boolean result of
the conditional expression e – to an attacker capable of observing the executed
control flow. Based on the result of e, only either f or g is computed. The
second program p2 computes both f and g and combines the result by invoking
an oblivious select function. Because no control-flow decisions can be observed,
the attacker does not learn the result of e. Since p2 has to perform c(f) + c(g)
computations while p1 has to perform only max{c(f), c(g)} computations, we
expect p2’s performance to be inferior to that of p1.

More generally, a trade-off for a program is determined by selecting for each
control-flow decision whether it may be revealed or must be hidden. Since the
number of program variants is exponential in the number of control-flow decisions
and not all selections have the same impact on security and performance, it is

80

6.2 Definitions

impracticable for developers to make such selections manually for any non-trivial
program. Our analysis uses program transformation techniques to hide control-
flow decisions and explore the security-performance trade-off.

To enable strong security guarantees, our analysis incorporates information-
flow policies, which allow developers to define varying sensitivity levels on data.
By defining the appropriate sensitivity level, developers can also completely pre-
vent data from being revealed during program execution.

We first formalize the problem of policy-aware security and performance trade-
off (PASAPTO) analysis as an optimization problem and prove the NP-hardness
of the corresponding decision problem. Then, to make the problem tractable,
we develop two heuristic algorithms computing an approximation of the Pareto
front of the optimization problem. Finally, we extend DFAuth with a PASAPTO
analysis to investigate the trade-off of control-flow leakage. Our DFAuth trade-
off analyzer (DFATA) takes as input a program operating on plaintext data
and an associated information flow policy. It outputs semantically equivalent
program variants operating on encrypted data which are policy-compliant and
approximately Pareto-optimal with respect to security and performance.

DFAuth is not the only application of our PASAPTO analysis, but the same
analysis can be applied to investigate the security-performance trade-off of other
techniques revealing partial information about secret data through control-flow.
For example, the same analysis can be applied to control-flow driven programs
running in SGX enclaves (without the help of DFAuth). Also, this trade-off does
not only occur when outsourcing sensitive computations, but the same trade-
off can be made in many other types of computation on encrypted data. For
example, it also applies to MPC protocols (cf. Section 3.2.1). By declassifying
(i.e., making public) partial information such as intermediate results, expensive
MPC computations can be avoided and the performance of MPC protocols can
be improved.

6.2 Definitions

To better understand our analysis, we first introduce our program and adversary
models as well as our definitions of policy-compliance and trade-off analysis.

6.2.1 Programs and Computation

We model a program as a transition system P = (S, Tr, I, F) consisting of a
set of possible program states S, a set of program transitions Tr, a set of initial
states I ⊆ S and a set of final states F ⊆ S. We use P to refer to the set of all
programs.

A program state s ∈ S contains an instruction pointer and a map assigning
each program variable a value from its domain. We refer to the set of variables
of a program as V . Without loss of generality, we assume all variables to be
integers in the range Dn := [−2n−1, 2n−1 − 1] ⊂ Z.

Each transition corresponds to a program statement as written in a program-
ming language. We consider a deterministic, imperative programming language

81

6 PASAPTO: Policy-Aware Security and Performance Trade-off Analysis

with assignments, conditional expressions, et cetera. We refer to a transition
corresponding to a program statement containing a control-flow decision as a
control-flow transition. By T ⊆ Tr we denote the set of all control-flow transi-
tions.

6.2.2 Adversary Model

We consider a passive adversary capable of continuously observing the instruction
pointer of the program state s ∈ S during an execution of a program. We assume
the adversary knows the program text, that is, any transition and e.g., any
program constant. Hence, the adversary is capable of continuously observing the
control flow. The goal of the adversary is to learn additional information about
the initial state i ∈ I, i.e., which input variable is assigned which value.

6.2.3 Information Flow Policy Compliance

An attacker may learn information about the program state from expressions
determining control-flow decisions. To prevent sensitive data from being revealed,
it is thus desirable to ensure that such data is either not used in a control-flow
decision or the adversarial information flow caused by the control-flow decision
does not exceed a certain user-defined threshold.

In this section, we define information flow policies allowing these requirements
to be expressed on a per-variable basis. Our goal is to verify that a given program
P complies with a given information flow policy. If P is non-compliant, our goal
is to use a control-flow removal algorithm to transform P into a semantically
equivalent program P ′ that is compliant.

Definition 46 (Quantitative Information Flow Policy). Let P be a program
and V the set of variables in P . A quantitative information flow policy Ψ is a
map assigning each program variable a numeric upper bound on the adversarial
information flow when executing P . Formally,

Ψ : V → R≥0 ∪ {∞}

where we use ∞ to denote no upper bound on the adversarial information flow.

Definition 47 (Policy Compliance). Let P be a program with variables V and
let Ψ a quantitative information flow policy for P . We say that P is compliant
with Ψ iff for each variable v ∈ V the adversarial information flow for v when
executing P does not exceed Ψ(v). If P is not compliant with Ψ, we say that P
violates Ψ.

Definition 48 (Control-Flow Removal Algorithm). A control-flow removal al-
gorithm

T : P × {0, 1}|T | → P

takes as input a program P and a binary vector t specifying for each control-flow
transition τi ∈ T whether it may be revealed (ti = 1) or must be hidden (ti = 0).

82

6.3 Control Flow Leakage Quantification

It outputs a semantically equivalent program variant P ′ only containing control-
flow transitions τi where ti = 1. We require that T does not introduce any new
control-flow transitions.

6.2.4 Security-Performance Trade-off Analysis

Two fundamental requirements for an analysis of the trade-off between security
and performance of a policy-compliant program are a function measuring the
security of a given program and a function measuring the performance of a pro-
gram. We model both as cost functions, i.e., in a the lower the better fashion.
Finally, with all required components introduced, we are ready to define the key
problem considered in this chapter.

Definition 49 (Program Security Measure). A program security measure is a
function assigning a non-negative numeric value to a given program.

µs : P → R≥0

Definition 50 (Program Performance Measure). A program performance mea-
sure is a function assigning a non-negative numeric value to a given program.

µp : P → R≥0

Definition 51 (Policy-Aware Security-Performance Trade-off Analysis). Let P
be a program and Ψ a quantitative information flow policy for P . Furthermore,
let µs be a program security measure, µp a program performance measure and T
a control-flow removal algorithm. The problem of policy-aware security and per-
formance trade-off (PASAPTO) analysis is to produce – in expected polynomial
time – a set of programs P such that each program P ′ ∈ P is

• a T -transformation of P , that is P ′ = T (P, t) for some binary vector t ∈
{0, 1}|T |,

• compliant with policy Ψ and

• Pareto-optimal with respect to (µs, µp).

6.3 Control Flow Leakage Quantification

In this section, we describe how adversarial information flow (leakage) resulting
from the observation of control-flow decisions can be quantified. Section 6.3.1
introduces two program security measures (instances of µs). Section 6.3.2 shows
how to capture leakage for each variable of a program such that we can support
quantitative information flow policies.

83

6 PASAPTO: Policy-Aware Security and Performance Trade-off Analysis

6.3.1 Two Program Security Measures

To evaluate the security of programs, we rely on information theory (cf. Sec-
tion 2.3) and other established quantitative information flow (QIF) techniques
[BKR09; Kle14; Mal11; Smi09]. Our QIF analysis is decomposed into two steps:
an algebraic interpretation followed by a numerical evaluation. We first cap-
ture the view of any adversary as an equivalence relation on the initial states of
a program. Then, we quantize the equivalence relation to arrive at a numeric
value expressing the adversarial information flow when executing the program.
The primary benefit of a two-step QIF analysis is that each of the two steps can
be considered independently. For example, multiple numeric evaluations can be
defined based on the same algebraic interpretation.

Algebraic Interpretation We model the information flow to an observer result-
ing from an execution of a program as an equivalence relation R on its initial
states. R ⊆ I × I relates two states if an observer cannot distinguish between
them. R is called indistinguishability relation and induces an indistinguishability
partition I/R on the set of all possible initial states I.

In the extreme case of R = I × I, the observer cannot distinguish between any
of the program’s states and has learned nothing from its observation. If, on the
other hand, the equivalence classes are singleton sets, the observer has perfect
knowledge of the program’s initial state. Intuitively, the higher the number of
equivalence classes and the smaller the classes, the more information is revealed
to the attacker.

The indistinguishability partition can be computed using symbolic execution
[Kin76], a method of program evaluation using symbolic variables and expres-
sions rather than actual input values. More precisely, symbolic execution can
be used to obtain symbolic program paths which aggregate input values leading
to the same control flow. The resulting equivalence classes contain input values
indistinguishable from the point of view of an adversary. Overall, we assume the
existence of an algorithm Π performing symbolic execution to map a program
P = (S, Tr, I, F) to its indistinguishability partition, i.e., Π(P) := I/R.

Numerical Evaluation For the second step, a multitude of valuations have been
proposed in the literature [BKR09; Kle14; Mal11]. It should be noted that nei-
ther of the established definitions is superior to any other definition in all cases.
The valuation to use depends on the system model, the adversary model and
the question that is supposed to be answered. We are concerned with the ques-
tion ”How much information can an attacker gain from observing the system?”
[Mal11] and define two security metrics measuring the answer in bits.

We measure the uncertainty of an attacker about the initial state of a program
using the information-theoretic concept of Shannon entropy (Definitions 19-21).
The adversarial information flow (leakage) is then defined as the reduction in
uncertainty before and after observing the program’s control flow. In the fol-
lowing, we first introduce two random variables, then we define two information
flow measures. The average information flow measures the leakage of a program

84

6.3 Control Flow Leakage Quantification

using weighted averaging over all equivalence classes. The maximum information
flow only considers the smallest equivalence class, thus it measures the worst-case
leakage of a program.

Let P = (S, Tr, I, F) be a program and R its indistinguishability relation after
observing the control flow. Define two discrete random variables [BKR09]:

• U : I → I with probability distribution p : I → R represents the distribu-
tion of the initial states.

• VR : I → I/R maps each initial state to its equivalence class according to
R.

Definition 52 (Average Information Flow). Let P , U , VR be as before and let
H denote Shannon entropy. We define the average information flow (µ̄) of P as

µ̄(P) := H(U)−H(U|VR).

Definition 53 (Maximum Information Flow). Let P , U , VR be as before and let
H denote Shannon entropy. We define the maximum information flow (µmax)
of P as

µmax(P) := H(U)−H∞(U|VR).

Example We illustrate our adversary model and the definitions of indistin-
guishability partition and information flow measures using the following program
P .

1 int example1(int x)

2 if (x > 42)

3 x *= 2

4 return x

Any possible state of P contains one variable x. To simplify the exposition, let us
assume that the domain of x is D8 = [−128, 127], i.e. x is a signed 8-bit integer.
As the adversary knows the program text, the domain of x is known before the
execution of the program. Hence the indistinguishability partition contains a
single equivalence class.

I/Rstart = {{x ∈ D8}}

By observing the control flow – more precisely whether the then-branch (line 3) is
taken or not – the attacker can infer whether or not x > 42. The indistinguisha-
bility partition of the program after observing the control flow (after program
execution) is thus

I/R = {{x ∈ D8 | x > 42}, {x ∈ D8 | x ≤ 42}}.

If we assume U to be distributed uniformly, i.e. each initial state is equally
likely, then the initial uncertainty is

H(U) = − log
1

28
= 8 bits.

85

6 PASAPTO: Policy-Aware Security and Performance Trade-off Analysis

The uncertainty after the control-flow observation is given by the conditional
entropy. Each equivalence class E ∈ I/R occurs with probability |E|

|I| , thus we
obtain

H(U|VR) = −
∑

E∈I/R

|E|
|I|

log |E|

= − 85

256
log

1

85
− 171

256
log

1

171
(6.1)

= 7.08 bits. (6.2)

The average information flow of program P is

µ̄(P) = H(U)−H(U|VR)

= 8− 7.08

= 0.92 bits.

In (6.1) we can see that the then-branch is less likely than the (empty) else-
branch but leads to a higher amount of information flow. To determine the
worst-case leakage we compute the maximum information flow

µmax(P) = H(U)−H∞(U|VR)

= 8−
(
− log

1

85

)
= 1.59 bits,

which only considers the equivalence class associated with the branch resulting
in the largest adversarial information flow.

6.3.2 Variable-Specific Information Flow

As defined by Definition 47, we consider a program P with variables V compli-
ant with a quantitative information flow policy Ψ if the adversarial information
flow of P does not exceed Ψ(v) for any variable v ∈ V . We can express this re-
quirement formally by considering an information flow measure µvar(P, v) which
provides the adversarial information flow for a specific variable v of a program
P . Naturally, policy-compliance can then be defined as

P is compliant with Ψ⇔ ∀v ∈ V : µvar(P, v) ≤ Ψ(v).

Since Ψ(v) defines an upper bound on the adversarial information flow for vari-
able v, the measure µvar(P, v) must be a worst-case information flow measure.
In the remainder of this section, we hence construct a µvar(P, v) measure based
on the maximum information flow program security measure (Definition 53) in-
troduced in the previous section.

Consider random variable U which distinguishes the initial states from each
other. To define a variable-specific measure for variable vi, we want to distinguish
only states in which values of vi differ. To this end, we consider a partition on

86

6.3 Control Flow Leakage Quantification

the initial states fulfilling the following relation. Two states are equivalent if and
only if the variable assignments of the i-th variable are equal. We denote this
partition as I/vi and define the random variable U|vi : I → I/vi . We can now
define a variable-specific information flow measure.

Definition 54 (Variable-Specific Information Flow). Let P be a program with
variables V . Furthermore, let H, U , VR be as in Section 6.3.1. We define the
variable-specific information flow of a variable vi ∈ V as

µvar(P, vi) := H(U|vi)−H∞(U|vi |VR).

Example Consider the following program P given by its program code.

1 int example2(int x1 , int x2)

2 if (x1 > 42)

3 x1 += 2

4 if (x2 == 42)

5 x1 *= 2

6 return x1

Now consider the information flow policy Ψ defined by Ψ(x1) := 2 and Ψ(x2) :=
∞. To simplify the exposition, we assume the domain of x1 and x2 to be D8 =
[−128, 127] and the inputs to be distributed uniformly. The initial state then
is I = {(x1, x2) ∈ D8 × D8} and the attacker’s initial uncertainty is H(U) =
log 28+8 = 16 bits. Using symbolic execution algorithm Π we can obtain the
indistinguishability partition as

I/R = {{(x1, x2) ∈ D8 ×D8 | x1 > 42 ∧ x2 = 42},
{(x1, x2) ∈ D8 ×D8 | x1 > 42 ∧ x2 6= 42},
{(x1, x2) ∈ D8 ×D8 | x1 ≤ 42 ∧ x2 = 42},
{(x1, x2) ∈ D8 ×D8 | x1 ≤ 42 ∧ x2 6= 42}}.

The worst-case overall uncertainty after observation of control flow amounts to
H∞(U|VR) = 6.41 bits, thus the maximum information flow of the program is
µmax(P) = 16− 6.41 = 9.59 bits.

To check compliance to Ψ, we have to investigate the information flow of each
individual variable. For variable x2 compliance is trivially fulfilled. Performing
a projection on variable x1 leads to an initial uncertainty of

H(U|x1) = log 28 = 8 bits

and an uncertainty after observation of

H∞(U|x1 |VR) = log 85 = 6.41 bits.

We obtain
µvar(P, x1) = 8− 6.41 = 1.59 bits.

Since µvar(P, x1) ≤ Ψ(x1) and µvar(P, x2) ≤ H(U|x2) = 8 bits ≤ Ψ(x2), P com-
plies to information flow policy Ψ.

87

6 PASAPTO: Policy-Aware Security and Performance Trade-off Analysis

6.4 Policy-Aware Security and Performance Trade-off
Analysis

This section presents the PASAPTO optimization problem. In Section 6.4.1, we
first formalize the problem of policy-aware security and performance trade-off
(PASAPTO) analysis as an optimization problem and prove the NP-hardness
of the corresponding decision problem. Sections 6.4.2 and 6.4.3 then present a
greedy heuristic and a genetic algorithm efficiently approximating a solution to
the optimization problem.

6.4.1 The PASAPTO Optimization Problem

If a program P violates a quantitative information flow policy Ψ, then there
exists some v ∈ V such that the adversarial information flow exceeds the defined
threshold Ψ(v). In order for a program variant P ′ to be compliant with Ψ, the
information flow with regards to v must be decreased. This can be achieved
by removing control-flow statements involving data from v. To this end, we
introduced the syntax of a control-flow removal algorithm T (Definition 48) in
Section 6.2.3. The purpose of T is, however, not limited to establishing policy-
compliance1. Given a control-flow removal algorithm T , we can also explore the
trade-off between security and performance (see Definition 51). More precisely,
each binary vector t ∈ {0, 1}|T | can be interpreted as a specific selection of such
a trade-off. The problem of finding those transitions corresponding to a policy-
compliant program with Pareto-optimal security and performance can then be
expressed as an optimization problem with objective function

f(t) :=

(
µs(T (P, t))
µp(T (P, t))

)
.

In more detail, we are interested in finding those binary vectors t ∈ {0, 1}|T | for
which the cost function f(t) is minimal and the program T (P, t) complies with
Ψ. Formally, this can be expressed using the argument minimum function:

arg min
t

f(t)

subject to T (P, t) is compliant with Ψ,

t ∈ {0, 1}|T |
(6.3)

Since f has multiple objectives, solving this optimization problem will in gen-
eral not yield a single optimal function argument, but a set of Pareto-optimal
solutions.

Complexity Analysis To analyze the complexity of the problem, we define its
corresponding decision problem and a class of security and performance functions
which allow to construct programs with certain behavior.

1Note that policy-compliance can always be established since T can be used to remove all
control-flow transitions of a program.

88

6.4 Policy-Aware Security and Performance Trade-off Analysis

Definition 55 (Polynomial-Time Linear Expandability). Let µvar be a variable-
specific information flow measure and µp be a program performance measure. We
call (µvar, µp) polynomial-time linear expandable iff:

1. ∀P ∈ P ∀n ∈ N0 ∀v ∈ V : we can modify P (in polynomial time) to P ′

by adding a control-flow decision τi such that for ti = 1 : µvar(P
′, v) =

µvar(P, v) + n and ∀v′ ∈ V, v′ 6= v : µvar(P
′, v′) = µvar(P, v

′).

2. ∀P ∈ P ∀n ∈ N0 ∀τi ∈ T : we can modify (in polynomial time) P to P ′ such
that for ti = 1 : µp(P

′) = µp(P) + c and for ti = 0 : µp(P
′) = µp(P) + 2c.

3. For the empty program P0 it applies that µp(P0) = 0 and ∀v ∈ V :
µvar(P0, v) = 0.

Definition 56 (PASAPTO Decision Problem). Given P,Ψ, µvar, µs, µp and ks,
kp ∈ N0, the PASAPTO decision problem is to decide whether

∃t ∈ {0, 1}|T |

such that for the resulting program variant

P ′ = T (P, t)

it holds that

P ′ is compliant to Ψ ∧ µs(P ′) ≤ ks ∧ µp(P ′) ≤ kp.

Theorem 8 (NP-Hardness of PASAPTO Decision Problem). If (µvar, µp) are
polynomial-time linear expandable, then the PASAPTO decision problem is NP-
hard.

Proof Sketch. We show a reduction from the 0-1 integer linear programming (0-
1-ILP) decision problem, which is known to be NP-complete. Thereby, every
0-1-ILP variable represents a control-flow decision and every 0-1-ILP condition
represents a variable in the program. If a control-flow decision is revealed, the
leakage of each variable shall be increased by the corresponding coefficient in the
0-1-ILP conditions. Thus, the policy represents the conditions of the 0-1-ILP
and the performance represents the objective function.

Proof. Given A = (ai,j) ∈ Zn×m, b ∈ Zn, c ∈ Zm and k ∈ Z, the 0-1 integer
linear programming (0-1-ILP) decision problem is to decide whether there exists
an x ∈ {0, 1}m such that A · x ≤ b and c>x ≥ k. This problem is known to
be NP-complete. We perform a many-one reduction of the PASAPTO decision
problem to the 0-1-ILP decision problem by transforming an 0-1-ILP instance I
into a PASAPTO instance we denote by Γ(I). Starting with the empty program
P0, we modify it as follows:

• For each column j of A we add a variable zj and two control-flow transitions
tj and t̃j , which each leak 1 of zj independently.

89

6 PASAPTO: Policy-Aware Security and Performance Trade-off Analysis

• For each row i of A we create a variable yi. For all ai,j ∈ A, if ai,j < 0 then
t̃j shall leak −ai,j of variable yi, else tj shall leak ai,j of variable yi.

• Let csum :=
∑m

k=1 |ck|. For all cj in c, if cj < 0 then each branch of tj
needs csum − cj + 1 time and each branch of t̃j needs csum + 1 time, else
each branch of tj needs csum + 1 and each branch of t̃j needs csum + cj + 1
time.

• Let δ : Z→ N with

δ(z) :=

{
0, for z ≥ 0
−z, for z < 0

For each row i of A we define the policy Ψ(yi) = bi +
∑m

k=1 δ(ai,k). For
each column j of A define the policy Ψ(zj) = 1.

Let kp = 3m(csum + 1) + 2csum + min (k, csum) and ks =∞. For x ∈ {0, 1}m we
denote x̃ as vector with the same size as x and ∀xj : x̃j := 1− xj . We show that
the output Γ(I) equals the output of I.

Lemma 1. For a 0-1-ILP I and its transformation Γ(I) = (P,Ψ) it applies that:

1. {x | A · x ≤ b} =

{
x | T

(
P,

(
x
x̃

))
Ψ-compliant

}
We denote this set as S.

2. ∀x ∈ S :

c> · x = µp

(
T
(
P,

(
x
x̃

)))
− 3m(csum + 1)− 2csum

3. Let

F := {(y, z)> | T
(
P, (y, z)>

)
Ψ-compliant ∧ y /∈ S}

then ∀x ∈ S ∀f ∈ F :

µp

(
T
(
P,

(
x
x̃

)))
< µp (T (P, f))

and

µp (T (P, f)) > 3m(csum + 1) + 3csum

Proof. By construction.

Lemma 1 shows that the PASAPTO decision problem is many-one reducible to
the 0-1-ILP decision problem. This shows that the PASAPTO decision problem
is NP-hard.

Corollary 8.1. If µvar, µs and µp can be computed in polynomial time (e.g.,
constant time), then the PASAPTO decision problem is NP-complete.

90

6.4 Policy-Aware Security and Performance Trade-off Analysis

x % 2 == 0

x <= 0 x >= 0

5 3 4 4

(a) Control flow of original program P

x <= 0

x >= 0 x >= 0

1 8 7 X

(b) Control flow of program variant P ′

Figure 6.2: Control-flow graphs for proof of Theorem 9

Heuristic Approaches To overcome the time complexity implications of Theo-
rem 8, we can employ heuristic approaches to efficiently find satisfactory solu-
tions. A heuristic may not necessarily find optimal solutions, but we require any
returned solution to satisfy the constraints, i.e., to be policy compliant.

A näıve heuristic could assume that removing a control-flow transition always
decreases the adversarial information flow. Formally, this assumption can be
described as follows: Consider a partial order

≤p ⊆ {0, 1}|T | × {0, 1}|T |

defined by
t ≤p t′ :⇐⇒ ∀i ∈ [1, |T |] : ti ≤ t′i .

Given a program P and a security measure µs, the stated assumption then is
equivalent to the question whether the function

g(t) := µs(T (P, t))

with input t ∈ {0, 1}|T | is monotonically increasing. We can show that this
assumption does not hold in the general case.

Theorem 9 (Non-Monotonicity of Control Flow Leakage). Let ≤p and g(t) be as
defined before. Then, g(t) is not monotonic increasing in the variable t ∈ {0, 1}|T |
for partial order ≤p. Formally, t ≤p t′ ; g(t) ≤ g(t′).

Proof by Contradiction. Consider the following code of program P with input
x ∈ D4 distributed uniformly and the maximum information flow measure µmax.

1 int example3(int x)

2 if (x % 2 == 0)

3 if (x <= 0)

4 x += 1

5 else

6 if (x >= 0)

7 x -= 2

8 return x

The control flow of program P is illustrated in Figure 6.2a and includes the size
of each indistinguishable equivalence class in the leaves of the program path. We
obtain a worst-case information flow of

µmax(P) = 4−min{log 5, log 3, log 4} = 2.42 bits.

91

6 PASAPTO: Policy-Aware Security and Performance Trade-off Analysis

Now consider the program variant

P ′ := T (P, t′) with t′ := (0, 1, 1)T ,

that is, we apply T to P in order to hide the control flow of the first transition (x
% 2 == 0). To this end, P ′ executes the then-branch as well as the else-branch
of the hidden control-flow transition. In P ′ the adversary can thus observe the
control flow of both branches for every input. The control flow of P ′ is illustrated
in Figure 6.2b, where ’X’ denotes an infeasible path. The combination of branches
leads to an increased information flow of

µmax(P ′) = 4−min{log 1, log 8, log 7} = 4 bits.

Defining t := (1, 1, 1)T , we can conclude that

t′ ≤p t
⇒ µmax(T (P, t′)) ≥ µmax(T (P, t)).

and as thus there is no monotonic increasing structure in general.

Even if there is no general structure, one could find some special cases where
the monotony assumption holds. For example, a program without any nested
conditions, as well as the restriction of removing only inner conditions of a pro-
gram with nested ones fulfill this assumption. Our heuristics presented in the
remainder of this section implicitly take this knowledge into account.

6.4.2 GreedyPASAPTO: A greedy heuristic

Our first algorithm GreedyPASAPTO is a greedy heuristic providing fast conver-
gence. Starting point of this algorithm is a transformation of P not containing
any control-flow transitions. We call this program the all-hidden program. We
know that this program is compliant with Ψ, because it does not entail any ad-
versarial information flow at all. Based on the all-hidden program, we iteratively
reveal control-flow transitions until revealing any other control-flow transition
would lead to a non-compliant program or a program dominated with respect to
the cost function. By incrementally revealing control-flow transitions, we expect
to gradually obtain policy-compliant programs with better performance.

Structure GreedyPASAPTO is structured as follows. It takes as input a pro-
gram P and a quantitative information flow policy Ψ, and outputs a solution set
P containing non-dominated program variants of P . In each iteration step, we
consider a base program, starting with the all-hidden program in the first step,
and a bit vector set B corresponding to programs with one additional control-flow
transition revealed. We filter any policy-compliant and non-dominated program
and add its corresponding bit vector to the current bit vector set B. The algo-
rithm terminates if every program is non-compliant or dominated by a program
of the solution set or if there are no more transitions to reveal. At the end of

92

6.4 Policy-Aware Security and Performance Trade-off Analysis

each iteration, all program variants corresponding to a vector in B are added
to the solution set. One of these programs is randomly chosen as a base for
the next iteration step. Filtering non-dominated programs is achieved by the
subroutine filterNonDominated(·) that on input a set of programs outputs the
maximum subset of non-dominated programs. The details of GreedyPASAPTO
are presented in Algorithm 1.

Algorithm 1 GreedyPASAPTO: Greedy Heuristic

Require: P – Program under inspection
Ψ – Quantitative information flow policy

Ensure: P – Non-dominated set of program variants of P
1: procedure GreedyPASAPTO(P,Ψ)
2: T := filterControlFlow(P)
3: V := computeVariableSpace(P)
4: B := {0|T |,1}
5: P := ∅
6: while B 6= ∅ do
7: t←$ B
8: B := ∅
9: for all i ∈ {n ∈ N | 1 ≤ n ≤ |T |, tn = 0} do

10: t′ := t+ ei
11: if ∀v ∈ V : µvar(T (P, t′), v) ≤ Ψ(v) then
12: B := B ∪ {t′}
13: end if
14: end for
15: P := filterNonDominated(P ∪ {T (P , t) | t ∈ B})
16: for all t′ ∈ {t ∈ B | T (P, t) /∈ P} do
17: B := B \ {t′}
18: end for
19: end while
20: return P
21: end procedure

Alternative approach We prefer the approach of starting with the all-hidden
program and revealing control-flow transitions over the alternative of starting
with the all-revealed (i.e., the original) program and removing control-flow tran-
sitions for two reasons. First, the all-hidden program is guaranteed to be policy-
compliant. The alternative approach on the other hand has to somehow establish
policy-compliance by investigating other program variants. In doing so, a large
number of non-compliant programs may have to be investigated. Second, one
could think that in the alternative approach removing additional control flow
from a policy-compliant program would always lead to another policy-compliant
program and hence policy-compliance does not have to be checked again. How-
ever, Theorem 9 shows that this is not true in the general case and hence policy-
compliance has to be checked for each candidate program.

93

6 PASAPTO: Policy-Aware Security and Performance Trade-off Analysis

6.4.3 GeneticPASAPTO: A genetic algorithm

GeneticPASAPTO is a heuristic approach for solving optimization problem (6.3)
based on a genetic meta-heuristic. Genetic algorithms do not require any a priori
knowledge about the structure of the search space, thus they fit our problem very
well. In contrast to our greedy heuristic, a whole set of not necessarily policy-
compliant solutions, the so-called population, is considered and used to generate
new solutions. GeneticPASAPTO selects the fittest individuals, i.e. binary vec-
tors of size |T |, from the population according to some fitness function. Based on
the selected individuals, by using so-called crossing and mutation, new individ-
uals are generated which replace the least fittest individuals in the population.
This procedure is repeated until a sufficiently large amount of non-dominated
solutions have been found or a running time bound has been reached.

Our genetic algorithm uses a population size of N determined by the developer.
The algorithm outputs for a program P and a quantitative information flow policy
Ψ a non-dominated solution set of policy-compliant program variants of size at
most N . Since genetic algorithms may converge to one solution, to obtain a wide
selection of solutions for the developer, GeneticPASAPTO uses niching methods
[Mah95]. The details of GeneticPASAPTO are presented in Algorithm 2.

Testing the dominance is implemented by the subroutine dominates(t1 , t2)
which on input two binary vectors outputs > if the program T (P, t1) dominates
the program T (P, t2) and ⊥ otherwise. Dominance is defined in terms of the ob-
jective function f(t) given by the optimization problem. To simplify the depiction
we use the function updateFitness(ti , tj), which reduces the fitness of individual
j by 1 if dominates(ti , tj) = >. By Jm,n we denote the m × n matrix with all
entries equal to one.

Fitness function Our fitness function F is based on a ranking [FF+93] which
takes policy-compliance into account. To an individual i we assign Fi := N − k
if it is dominated by k individuals in the current population. If a program is
not policy-compliant, we assign Fi := 0 to penalize such solutions and prefer
complying programs.

Crossing and Mutation In the context of genetic algorithms each component
of an individual is called a gene. We cross two individuals by switching the first
half of the genes of the parents. For those individuals, mutation is applied with
a probability of 1

|T | for each gene, i.e. the gene is inverted.

Niching We use Sharing [GR+87, pp. 41–49][Hol+92] as our niching method,
because it is recommended for multi-objective optimization [Mah95, p. 84]. If
two individuals of a population are in the same niche, i.e., their distance is below
a certain threshold σ called the sharing parameter, their fitness is shared. The
sharing parameter σ should be chosen carefully. An estimation of a good selection
of σ based on the bounds of the search space has been made by Fonseca and

94

6.4 Policy-Aware Security and Performance Trade-off Analysis

Fleming [FF+93]. Applied to our problem, we obtain the unambiguous solution

σ =
M1 +M2 − (m1 +m2)

N − 1
.

We approximate the bounds of the search space using the properties of two
well-known programs. We expect the all-revealed program to have high leakage
but good performance. On the other hand, we expect the all-hidden program to
have no leakage but bad performance.

By determining the distance of two points, we do not want to weight the
influence of one dimension over another, because they may have different size
scales. To this end, we standardize both dimensions with respect to the maximum
values of the programs above. This leads to the following choice of parameters:

M1 :=
µs(P)

µs(P)
= 1 m1 :=

µs(P̂)

µs(P)
= 0

M2 :=
µp(P̂)

µp(P̂)
= 1 m2 :=

µp(P)

µp(P̂)
,

where P̂ := T (P, (0, . . . , 0)T) represents the all-hidden program. In the following,
we denote the scale factor by

S :=

(
1

µs(P)
,

1

µp(P̂)

)T
.

The fitness is now shared with other individuals in the same niche. We define
a sharing function [GR+87, p. 45],

sh : [0,∞)→ [0, 1]

with

sh(d) :=

{
1− d

σ , if d < σ

0, otherwise

where d describes a metric of two points in the search space. We use the Euclidean
metric in the following.

Based on the simple fitness function F we can now define a shared fitness
function F ′. F ′ takes as arguments an individual i and a matrixM which contains
the individuals of a population as columns.

F ′(i,M) :=
Fi∑N

j=1 sh(d(f(M:,i) ◦ S, f(M:,j) ◦ S))

Convergence Based on the shared fitness function the evolution process is re-
peated until the maximum number of iterations (user-defined parameter X) is
reached or the convergence criterion is fulfilled. We use maximum allowable
pareto percentage as our convergence criterion, i.e., the algorithm terminates if
the percentage of non-dominated individuals in the current population exceeds
the user-defined threshold α. By default, we use α = 0.7. The quality of the
solution set depends on carefully chosen parameters α and X.

95

6 PASAPTO: Policy-Aware Security and Performance Trade-off Analysis

Algorithm 2 GeneticPASAPTO: Genetic Algorithm

Require: P – Program under inspection
Ψ – Quantitative information flow policy
N – Population size
α – Maximum allowable Pareto percentage
X – Maximum number of iterations

Ensure: P – Non-dominated set of compliant programs
1: procedure GeneticPASAPTO(P,Ψ, N, α,X)
2: T := filterControlFlow(P)
3: V := computeVariableSpace(P)
4: R := 0|T |,N
5: /∗ Compute share parameter ∗/
6: P̂ := T (P, 0|T |,1)

7: σ :=
2µp(P̂)−µp(P)

µp(P̂)(N−1)

8: /∗ random start selection ∗/
9: for i := 1 to N do

10: Ri,: ←$ {0, 1}|T |
11: end for
12: /∗ initial fitness ∗/
13: F := JN,1
14: F ′ := JN,1
15: for i := 1 to N do
16: Fi := N
17: if ∃v ∈ V : µvar(T (P,R:,i), v) > Ψ(v) then
18: Fi := 0
19: else
20: for j := 1 to N do
21: updateFitness(R:,j ,R:,i)
22: end for
23: F ′i := F ′(i, R)
24: end if
25: end for
26: paretoPercentage := 0
27: counter := 1
28: while paretoPercentage ≤ α ∧ counter ≤ X do
29: /∗ determine fittest and unfittest ∗/
30: fittestInd := arg maxi∈N F

′
i

31: fittest := R:,fittestInd

32: secondFittestInd := maxi∈N\{fittestInd} F
′
i

33: secondFittest := R:,secondFittestInd

34: a := arg mini∈N F
′
i

35: b := arg mini∈N\{a} F
′
i

96

6.4 Policy-Aware Security and Performance Trade-off Analysis

36: /∗ crossing ∗/
37: firstChild := fittest
38: secondChild := secondFittest
39: for i := 1 to b |T |2 c do
40: firstChild i := secondFittest i
41: secondChild i := fittest i
42: end for
43: /∗ mutation ∗/
44: randomVector ←$ {n ∈ N | 1 ≤ n ≤ N}|T |
45: for i := 1 to |T | do
46: if randomVector i = 1 then
47: firstChild i := firstChild i ⊕ 1
48: end if
49: if randomVector i = N then
50: secondChild i := secondChild i ⊕ 1
51: end if
52: end for
53: for i := 1 to N do
54: /∗ update after removing old ∗/
55: if dominates(R:,a ,R:,i) = > then
56: Fi := Fi + 1
57: end if
58: if dominates(R:,b ,R:,i) = > then
59: Fi := Fi + 1
60: end if
61: /∗ update after inserting new ∗/
62: updateFitness(firstChild ,R:,i)
63: updateFitness(secondChild ,R:,i)
64: F ′i := F ′(i, R:,·)
65: end for
66: /∗ Reinitialize ∗/
67: R:,a := firstChild
68: R:,b := secondChild
69: Fa := N
70: Fb := N

97

6 PASAPTO: Policy-Aware Security and Performance Trade-off Analysis

71: /∗ fitness of new ∗/
72: for i := 1 to N do
73: updateFitness(R:,i ,R:,a)
74: updateFitness(R:,i ,R:,b)
75: end for
76: if ∃v ∈ V : µvar(T (P,R:,a), v) > Ψ(v) then
77: Fa := 0
78: end if
79: if ∃v ∈ V : µvar(T (P,R:,b), v) > Ψ(v) then
80: Fb := 0
81: end if
82: F ′a := F ′(a,R)
83: F ′b := F ′(b, R)
84: /∗ update loop ∗/
85: n := 0
86: for i := 1 to N do
87: if Fi = N then
88: n := n+ 1
89: end if
90: end for
91: paretoPercentage := n

N
92: counter := counter + 1
93: end while
94: /∗ Prepare Return ∗/
95: P := ∅
96: for i := 1 to N do
97: if Fi = maxj Fj then
98: P := P ∪ {T (P,R:,i)}
99: end if
100: end for
101: return P
102: end procedure

98

6.5 A PASAPTO Analysis for Dataflow Authentication

6.5 A PASAPTO Analysis for Dataflow Authentication

In this section, we describe a PASAPTO analysis for dataflow authentication (cf.
Chapter 5). This combination of DFAuth and PASAPTO forms the basis of our
dataflow authentication trade-off analyzer (DFATA) described in Section 6.6 and
evaluated in Section 6.7.

In the remainder of this section, we first explain why PASAPTO can be ap-
plied to DFAuth. Then, we present potential instantiations of security measures
performance measures and control-flow removal algorithms.

Compatibility Recall from Section 5.2.1 that DFAuth considers an active ad-
versary controlling the cloud server, who can (i) read and modify the contents
of all variables and the program text (except in the trusted module) (ii) observe
and modify the control flow (except in the trusted module) (iii) do all of this
arbitrarily interleaved. The security guarantee of DFAuth is to reveal only the
information about the inputs to the untrusted cloud server that can be inferred
from the program’s executed control flow.

Inherently, DFAuth considers an active adversary, but due to its security guar-
antees any adversary is limited to passively observing the control flow of the pro-
gram executed on the cloud server. Now recall from Section 6.2.2 that PASAPTO
considers a passive adversary capable of continuously observing the control flow
of an execution of a program. As such, we can extend DFAuth with a PASAPTO
analysis to further reduce the adversarial information flow.

Security and Performance Measures In Section 6.3.1 we presented two pro-
gram security measures capturing the leakage resulting from control-flow observa-
tions. Both, average information flow (µ̄) and maximum information flow (µmax),
can be used to instantiate the program security measure µs in our DFATA analy-
sis, depending on the information to be captured. To determine compliance of a
program with a quantitative information flow policy, we use the variable-specific
information flow measure (µvar) introduced in Section 6.3.2.

We consider two instantiations of the program performance measure µp. The
running time performance measure µ̂ captures the elapsed wall-clock time of the
execution of a DFAuth-transformed program. An alternative program perfor-
mance measure can be defined by applying program analysis techniques to count
the instructions used by the program and assign each DFAuth operation a cost
value. However, this measure is outside of the scope of this work.

Control Flow Removal Algorithm We consider two instantiations of T which
we refer to as straightlining (Ts) and oblivious state update (To). Ts rewrites code
fragments containing conditional instructions into semantically equivalent code
not containing any control-flow transitions. For example, bitwise operations can
be combined with a constant-time conditional assignment operation to avoid con-
ditional instructions [Mol+05]. To executes both the then and the else branch of
a conditional [Aga00; RLT15]. To forks the state of the program before branching

99

6 PASAPTO: Policy-Aware Security and Performance Trade-off Analysis

and obliviously updates the program state with the correct one. To this end, we
extend DFAuth with an additional trusted module invocation. Provided with the
two state variants and the conditional, the trusted module determines the correct
variant and returns it to the cloud server. Before returning, the correct variant
is re-randomized such that the untrusted part of the server remains oblivious as
to which of the two states was returned. Note that this extension is in line with
DFAuth’s goal of a program-independent trusted code base.

6.6 Implementation

In this section, we present details about DFATA, our Java-based dataflow au-
thentication trade-off analyzer. At the core of our implementation is Soot, a
framework for analyzing and manipulating Java programs [Lam+11]. Soot is
used to implement our own DFAuth compiler, detection of control-flow leaks and
control-flow removal. We implement the DFAuth trusted module in an SGX
enclave.

We compute the indistinguishability partition required to quantify control-flow
leakage based on JBSE (Java Bytecode Symbolic Executor) [BDP13; BDP15].
Using symbolic execution we obtain the set of symbolic paths of a program and
the corresponding path conditions. By construction, the path conditions are
equal to the constraints of each equivalence class. We assume the random vari-
able U to be distributed uniformly and transform the constraints into a system
of linear inequalities for each equivalence class. The numeric evaluation of each
equivalence class is determined using LattE [DL+04]. LattE implements Barvi-
nok’s algorithm [Bar94] to compute the size of the equivalence classes exactly
and in polynomial time.

DFATA supports our two heuristics as well as an exhaustive search trade-off
analysis algorithm. DFATA takes Java Bytecode operating on plaintext data
and an associated information flow policy as input. It outputs the result of the
trade-off analysis as a set of fully executable programs operating on encrypted
data using DFAuth.

DFATA currently operates only on a subset of Java. It performs intra-proce-
dural analysis and does not handle exceptions, because it is limited by its tools
– DFAuth and the QIF analysis. Extensions are possible, but orthogonal to
our work on heuristics. For an overview on techniques, tools and trade-offs for
model counting involving non-linear numeric constraints, we refer to a survey by
Borges et al. [Bor+17]. We refer to Aydin et al. [Ayd+18] for how to perform
model counting on string (sequences of characters) constraints and mixed string
and integer constraints. For multi-instantiation of a class in a sensitive and an
insensitive context, we refer to Dong et al. [DMD16]. Also, the current imple-
mentation is not optimized for performance, but for the evaluation of the quality
of our heuristics.

100

6.7 Evaluation

6.7 Evaluation

In this section, we present the results collected in two experiments in which we
applied DFATA. In the first experiment (presented in Section 6.7.1), we con-
sider an implementation of an electronic auction with sealed bids. In the second
experiment (presented in Section 6.7.2), we inspect a program performing deci-
sion tree evaluation on medical data. We chose these programs such that we are
able to explore all program variants in order to evaluate the effectiveness of our
heuristics, but complex enough to be non-trivial in the context of computation
on encrypted data (e.g., FHE or MPC).

In each experiment, we first use DFATA in exhaustive mode to obtain all pro-
gram variants as well as their average information flow (µ̄) and running time
performance (µ̂). We determine µ̂ by executing each variant multiple times on
random inputs, then computing the mean over all measurements. From these
results, we determine the Pareto front of the PASAPTO optimization prob-
lem (modulo policy-compliance). We then execute each of our two probabilistic
heuristics multiple times.

In each run, we compute the hypervolume indicator (HVI) (cf. Section 2.4.2)
of the heuristic solution set with respect to the dimensions µ̄ and µ̂. We evaluate
the quality of our algorithms using the relative difference between the HVI of a
heuristic solution set and the HVI of the Pareto front:

HVIrel :=
HVIheuristic

HVIPareto front
− 1.

Elements of high quality solution sets according to HVIrel are close to the Pareto
front and cover a wide range of trade-offs.

For each experiment and heuristic, we perform 101 runs. We perform an odd
number of runs such that we can unambiguously identify a single run as the
median run according to HVIrel. Scatter plots presented in the following show
data points for this particular run. In addition to the median HVIrel, we present
the 95th percentile (Q0.95) of HVIrel over all runs.

Because our implementation of DFATA is not optimized for performance, but
for the evaluation of the quality of the heuristics, we cannot provide wall-clock
running times of our heuristics. However, we can estimate the total running time
t of a heuristic by t = v ∗ (s + p) + h where v refers to the number of program
variants visited, s and p denote the time to compute µ̄ respectively µ̂ of a program
variant, and h refers to the running time of the heuristic itself.

All experiments were conducted in the Microsoft Azure Cloud using Azure
Confidential Computing VM instances of type Standard DC4s. Each instance
runs Ubuntu Linux 18.04 and has access to 4 cores of an SGX-capable Intel
Xeon E-2176G CPU and 16 GB RAM.

6.7.1 Electronic Sealed-Bid Auction

In a sealed-bid auction, individual bids {h0, . . . , hn−1} must be kept confidential.
The winner of the auction is identified by the highest bid and is announced
publicly.

101

6 PASAPTO: Policy-Aware Security and Performance Trade-off Analysis

Experimental Setup Consider the following pseudocode implementing such an
auction.

1 int auction(int[] h)

2 int l = 0;

3 for (int i = 0; i < h.length; i++)

4 if (h[i] > h[l])

5 l = i;

6 return l;

On input an array h containing n bids, the program determines the identity of
the winner l as the array index of the winning bid.

A similar piece of code was previously investigated by Backes et al. [BKR09],
although in a different context. They considered a secret (high-sensitive) input
array h and allowed the adversary to only observe the public (low-sensitive)
output l. In our case, the adversary is allowed to observe the control flow of the
program during execution.

The input array h is ordered randomly to protect the identities of the bidders.
In doing so, we also ensure a fair determination of the winner in case the highest
bid does not unambiguously identify a winner.

In this experiment, we assume n = 10. After loop unrolling, the resulting pro-
gram performs n−1 comparisons, respectively control-flow transitions. Since one
can decide whether to reveal or hide for each transition, our algorithms operate on
a search space containing 2n−1 = 512 program variants. For GeneticPASAPTO
we use a population size of N := 2 · |T | = 19 and a bound of X := 10 · |T | = 90.

Evaluation Results Figure 6.3 shows the median leakage and running time of
all possible program variants grouped by their number of hidden control-flow
transitions. The number of variants per aggregation group is

(
n−1
k

)
where k is

the number of hidden control-flow transitions. For example, the search space
contains

(
9
2

)
= 36 variants with 2 hidden transitions. The chart experimentally

confirms the negative correlation between leakage and running time we expect.

Figure 6.4 relates the behavior of the median run of GreedyPASAPTO to the
entire search space. Figure 6.5 does the same for GeneticPASAPTO. Each plot
contains the entire search space of 512 program variants. The distinguished all-
hidden and all-revealed programs are highlighted. The set of Pareto-optimal
programs is a subset of the search space and contains elements of the Pareto
front of the PASAPTO optimization problem. The set of visited programs is a
subset of the search space and contains programs which have been investigated
by the algorithm. Points marked as solution are part of the solution set output
by the algorithm.

As is expected, no program with worse performance than the all-hidden pro-
gram exists. One would expect the all-revealed program to provide the best
performance, but DFATA found another one with better performance. How-
ever, we believe this to be only due to the inaccurate nature of the running time
measurement. The performance range over all program variants reaches from
7.84 ms for the best performing program to 15.63 ms for the all-hidden program.

102

6.7 Evaluation

6

8

10

12

14

16

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

R
u

n
n

in
g

Ti
m

e

A
ve

ra
ge

 In
fo

rm
at

io
n

 F
lo

w

Number of Hidden Control Flow Transitions

Median Leakage Median Runtime

[B
it

s]

[m
s]

Figure 6.3: Median leakage (left y-axis) and median running time (right y-axis) of
the set of all Auction program variants grouped by number of hidden
control-flow transitions.

The security range reaches from a leakage of 0 bits for the all-hidden program to
5.723 bits for the all-revealed program.

In Figure 6.4 we can see that GreedyPASAPTO visited only 46 points and
output 18 points in the solution set. The algorithm still found a solution close
to the Pareto front. In the median, the heuristic solution is HVIrel = 5.35%
(Q0.95 = 19.18%) worse than the Pareto front.

In Figure 6.5 we can see that GeneticPASAPTO also produced a solution close
to the Pareto front, but visited 38 programs and output 13 in the solution set. For
the genetic algorithm, we obtain HVIrel = 19.47% with Q0.95 = 30.36%. Even if
the quality of the median run is worse than the quality of GreedyPASAPTO, we
can repeat the execution of GeneticPASAPTO to obtain a higher quality since
the algorithm is probabilistic. Moreover, the advantage of GeneticPASAPTO is
that it can potentially find any solution, whereas GreedyPASAPTO could miss
some solutions in every run due to its design.

In this experiment, measuring the QIF of a program variant approximately
takes time s = 26 s and measuring the performance of a program variant approx-
imately takes time p = 12 ms. In conclusion, the running time would be roughly
t = 1200 s for GreedyPASAPTO (h = 0.1 ms), and t = 1000 s for GeneticPAS-
APTO (h = 6 ms).

6.7.2 Decision Tree Evaluation

In this experiment, we use DFATA on a program performing decision tree eval-
uation on sensitive medical data. Consider the use case of a research institution
providing a decision tree evaluation service to medical institutions such as hospi-
tals. Medical institutions can submit patient’s health data and obtain the result
of the decision tree classification to aid their diagnosis. Since patient data is
highly confidential, the research institution has to compute on encrypted data
using DFAuth.

103

6 PASAPTO: Policy-Aware Security and Performance Trade-off Analysis

7

10

13

16

0 1 2 3 4 5 6

R
u

n
n

in
g

Ti
m

e

Average Information Flow

Variant Visited Pareto-optimal All-revealed All-hidden Solution

ҧ𝜇

[m
s]

[Bits]

Figure 6.4: Greedy algorithm applied to Auction Program.

7

10

13

16

0 1 2 3 4 5 6

R
u

n
n

in
g

Ti
m

e

Average Information Flow

Variant Visited Pareto-optimal All-revealed All-hidden Solution

ҧ𝜇

[m
s]

[Bits]

Figure 6.5: Genetic algorithm applied to Auction Program.

The security goal is to protect the sensitive inputs to the decision tree. The
sensitivity of each input is provided as a quantitative information flow policy.
The protection of the output of the decision tree is not a security goal and may
be learned by the decision tree service provider.

Experimental Setup We consider a program making predictions about breast
cancer based on the decision tree by Sumbaly et al. [SVJ14]. Provided with
medical information, the program outputs a prediction of whether or not the

104

6.7 Evaluation

patient has breast cancer. The pruned decision tree takes six input variables
and performs 13 control-flow decisions. Thus, the size of the search space is
213 = 8192. The attribute represented by each variable is described in Table 6.1.

Variable Attribute Ψ(vi)

v1 Clump Thickness 2
v2 Uniformity Cell Size ∞
v3 Uniformity Cell Shape ∞
v4 Marginal Adhesion 1
v5 Bare Nuclei ∞
v6 Bland Chromatin 0

Table 6.1: Overview on variables and our QIF policy

Input variables are integers in the interval [1, 10], which our leakage model
captures accordingly. The information of each variable is log(10) = 3.32. Our
analysis can take into account that not all variables are equally sensitive. Under
the assumption that (i) the bland chromatin attribute is critically sensitive and
no information about it must leak, (ii) the clump thickness attribute is highly sen-
sitive, (iii) the marginal adhesion attribute is sensitive and (iv) all other variables
are not sensitive, a developer may define a quantitative information flow policy
as presented in the third column of Table 6.1. We will assume this policy in our
experiment. For GeneticPASAPTO we use a population size of N := 4 · |T | = 52
and a bound of X := 20 · |T | = 260.

Evaluation Results Figures 6.6 and 6.7 present results concerning the search
space, i.e., all program variants. Figures 6.8 and 6.9 present the results of our
two heuristic algorithms.

Figure 6.6 shows leakage depending on the number of hidden control-flow tran-
sitions. For k hidden transitions,

(
13
k

)
programs are aggregated. In contrast to

the previous experiment (see Figure 6.3), we can see that the median leakage
does not decrease before more than 7 transitions are hidden. The mean leakage
even increases in comparison to the all-revealed program. This highlights that
as per Theorem 9 leakage can increase when removing control-flow transitions.

Figure 6.7 shows the running time depending on the number of hidden tran-
sitions. In particular, the minimum of aggregated variants shows that up to 8
transitions can be hidden without significantly increasing the running time. The
analysis shows that the leakage and running time of complex programs is not
linear in the number of hidden transitions and it is important to find combina-
tions of hidden transitions that barely increase the running time, but significantly
reduce leakage.

Figures 6.8 and 6.9 present the results of the median runs for each of our two
algorithms. Note that for this experiment, we do not show the data points of all
8192 program variants, but only those which are policy-compliant or have been

105

6 PASAPTO: Policy-Aware Security and Performance Trade-off Analysis

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A
ve

ra
ge

 In
fo

rm
at

io
n

 F
lo

w

Number of Hidden Control Flow Transitions

Maximum Minimum Mean Median

[B
it

s]

Figure 6.6: Median leakage of the set of all Decision Tree program variants
grouped by number of hidden control-flow transitions.

2
4
6
8

10
12
14
16
18
20

0 1 2 3 4 5 6 7 8 9 10 11 12 13R
u

n
n

in
g

Ti
m

e

Number of Hidden Control Flow Transitions

Maximum Minimum Mean Median

[m
s]

Figure 6.7: Median running time of the set of all Decision Tree program variants
grouped by number of hidden control-flow transitions.

visited by our heuristic. The performance range over all policy-compliant pro-
gram variants reaches from 4.231 ms for the best performing program to 19.341
ms for the all-hidden program. The security range reaches from a leakage of 0
bits for the all-hidden program to a program variant with 3.358 bits leakage.
This is even higher than the leakage of the non-compliant all-revealed program
with 2.447 bits and additionally has a worse performance of 7.891 ms compared
to 2.720 ms. This experimentally confirms Theorem 9, which says that the ad-
versarial information flow might increase when removing control-flow.

As in the auction experiment, GreedyPASAPTO only evaluated a few variants
and still produced a solution close to the Pareto front. The algorithm inspected
86 program variants and output 14 programs in the solution set. Visited points
that are better than the Pareto front are not compliant with our policy and are
not added to the solution set. For this algorithm, we have HVIrel = 1.76% with

106

6.7 Evaluation

0

3

6

9

12

15

18

0 1 2 3 4

R
u

n
n

in
g

Ti
m

e

Average Information Flow

Policy-compliant Visited Pareto-optimal All-revealed All-hidden Solution

ҧ𝜇

[m
s]

[Bits]

Figure 6.8: Greedy algorithm applied to Decision Tree Program

0

3

6

9

12

15

18

0 1 2 3 4

R
u

n
n

in
g

Ti
m

e

Average Information Flow

Policy-compliant Visited Pareto-optimal All-revealed All-hidden Solution

ҧ𝜇

[m
s]

[Bits]

Figure 6.9: Genetic algorithm applied to Decision Tree Program

the 95th percentile Q0.95 = 3.57%. The best running time for a policy-compliant
program is 4.231 ms, which is also the best running time on the Pareto front.

GeneticPASAPTO visited 415 program variants and output 11 programs in
the solution set. Recall that a design goal of this algorithm is the diversity of
the elements in the solution set, which is implemented using Niching. For ex-
ample, the solution set of GreedyPASAPTO contains clusters of non-dominated
solutions, e.g., a lot of program variants with running time between 4 and 5 ms
with a large difference in leakage but only little difference in performance. In

107

6 PASAPTO: Policy-Aware Security and Performance Trade-off Analysis

contrast, Niching avoids clustering and outputs a solution set with sufficiently
differing values to simplify the choice of the developer. This can lead to a lower
quality solution, because it can cause the fitness of two optimal points to be
shared resulting in both being possibly removed from the population. For this
algorithm, we have HVIrel = 14.08% with the 95th percentile of Q0.95 = 33.80%.
The best running time found for a policy-compliant program is 5.353 ms which
is 26.5% worse than the best running time on the Pareto front. The second ex-
periment provides better solutions than the first one. We believe this is caused
by the fact that the second experiment has more structure that can be used by
the heuristics.

In this experiment, measuring the QIF of a program variant approximately
takes time s = 15 s and measuring the performance of a program variant approx-
imately takes time p = 8 ms. In conclusion, the running time would be roughly
t = 1250 s for GreedyPASAPTO (h = 0.5 ms), and t = 6200 s for GeneticPAS-
APTO (h = 3 s).

Since the running time is dominated by the QIF analysis, we note that a
further, possibly very effective optimization is to update the QIF measure, instead
of re-computing it from scratch. We do not have an estimate how effective that
optimization would be.

6.8 Related Work

The work presented in this chapter is related to the trade-off between security
and performance, language-based information flow security and (control flow)
side-channels and defenses.

Trade-off between Security and Performance This trade-off has for exam-
ple been explored in the context of secured networked control systems [ZC11],
cyber-physical systems [Zha+16], block ciphers [Wei+13], timing attacks in cryp-
tographic code [DK15] and range queries on encrypted data [LO05]. Wolter et
al. [WR10] present a generic security-performance trade-off model based on gen-
eralized stochastic Petri nets. However, their model assumes that recovery from
an insecure system state is possible. We do not think that recovery from adver-
sarial information flows is possible, hence their model cannot be applied in our
case.

Once a specific trade-off has been chosen, formal verification techniques [LHS13;
Mol+05; Alm+18] can be used to ensure that compilers do not introduce addi-
tional side-channels. However, these techniques are orthogonal to our work since
they verify the compliance of an implementation to a given specification (i.e.,
ideal functionality in MPC) whereas we modify the specification by altering the
security-performance trade-off.

Language-Based Information Flow Security For an overview on this subject,
we refer to a survey by Sabelfeld et al. [SM03].

108

6.9 Summary

The program security measures considered in this work are based on the con-
cept of QIF and inspired by the work of Backes et al. [BKR09]. For foundations
of QIF, we refer to Köpf et al. [KB07], Smith [Smi09], Heusser et al. [HM10],
Malacaria [Mal11] and Klebanov [Kle14]. Our measures are exact rather than
approximate and are based on a two-step QIF analysis consisting of an algebraic
interpretation followed by a numeric evaluation. The first step is based on sym-
bolic execution, which has been used previously for information flow analysis
[NKP18; OT11; PM14]. Our PASAPTO analysis does not mandate a specific
program security measure, but can be instanciated using other measures. For
example: Leakwatch [CKN14] estimates leakage of Java programs by repeatedly
executing them. Malacaria et al. [Mal+18] consider an approximation of informa-
tion flow based on noisy side-channels. Kučera et al. [Kuč+17] use the concept of
an attacker’s belief [CMS05], which orthogonally captures the attacker’s accuracy
besides uncertainty.

Information flow policies and checking for their compliance has been consid-
ered in [Alm+18; HM10; YT11]. Policy establishment has for example been
considered in [Alm+18; Kuč+17]. Recently, Kučera et al. [Kuč+17] presented a
program synthesis similar to our program transformation. Their approach also
takes a program and a policy as inputs and outputs a policy-compliant program.
However, their procedure only applies to probabilistic programs and works by
adding uncertainty to the program’s output while we consider side-channels and
preserve the original program’s semantics.

(Control-Flow) Side-Channels and Defenses An approach to avoid a broad
class of side-channels is to produce constant-time code not making any control-
flow decisions on secret data. Molnar et al. [Mol+05] present a source-to-source
transformation producing such code by relying on bitwise operations and a con-
stant-time conditional assignment operation. Similarly, Cauligi et al. [Cau+17]
define their own domain specific language to produce code adhering to these
requirements. Raccoon [RLT15] transactionally executes both branches of a
control-flow statement and ensures that the program state is updated obliviously
using the correct transaction. GhostRider [Liu+15] defends against side-channels
based on memory access pattern by obfuscating programs such that their memory
access pattern is independent of control-flow instructions.

6.9 Summary

In this chapter, we showed how to efficiently compute policy-compliant and ap-
proximately Pareto-optimal trade-offs between leakage and performance where
the decision problem is NP-hard. For a given Java Bytecode program our imple-
mentation proposes semantically equivalent, side-channel reduced Java programs
for the execution within DFAuth-protected SGX enclaves from which develop-
ers can select their desired trade-off. We showed the practical feasibility of this
approach for computing on encrypted data in a commercial cloud environment
using two example programs. The combined protection by DFAuth (security

109

6 PASAPTO: Policy-Aware Security and Performance Trade-off Analysis

against active attackers and program-independent enclave code) and PASAPTO
(performance-optimized side-channel reduction) is more secure against a num-
ber of attacks (side-channel analysis, software vulnerability exploitation) than
executing the unmodified program in SGX, but orders of magnitude faster than
executing the program using fully homomorphic encryption.

110

7 Conclusion

This chapter concludes our work. Section 7.1 summarizes our achievements and
relates them to our primary research question. Section 7.2 discusses open prob-
lems and directions for future work.

7.1 Summary

In Chapter 1, we discussed the motivation of our work and described our scientific
contributions. Section 1.2 proposed the primary research question investigated
in this dissertation: “How can homomorphic encryption and trusted execution
environments be combined into a practical architecture enabling efficient and
secure computation on encrypted data?”.

In Chapter 2, we presented foundational concepts as the basis for our con-
tributions. We introduced common cryptographic principles (e.g., encryption
schemes and game-based security definitions) used by DFAuth (Chapter 5) and
provided various information theory and optimization problem definitions used
by PASAPTO (Chapter 6).

In Chapter 3, we provided an overview on homomorphic encryption, TEEs
and other approaches related to computation on encrypted data. We described
that fully homomorphic encryption incurs high computational overhead and is
structurally incapable of efficiently executing algorithms with high worst case
but low average case complexity due to lack of control-flow support. We also
motivated the necessity of a small trusted code base to reduce the surface for
attacks allowing the protections of TEEs to be disarmed by exploiting software
vulnerabilities.

In Chapter 4, we described the methodology used to investigate the primary
research question. We first derived requirements from the research question and
explained how our solution fulfills some of them by design. Then, we introduced
our practicality and efficiency assessment methodology which includes software
implementations and their evaluation on commercially available computer sys-
tems. Finally, we presented our security assessment methodology consisting of
security models, security proofs and quantitative information flow techniques.

In Chapter 5, we first combined partially homomorphic encryption with a TEE
to execute programs on encrypted data. By operating on control-flow driven
programs rather than circuits, our approach supports the execution of efficient
algorithms without incurring the complexity penalty as in FHE. By incorporat-
ing a small trusted module (implemented in a TEE), our architecture provides
a small and program-independent TCB, which can be reused across applications
and hardened against software vulnerabilities and side-channels. We considered

111

7 Conclusion

control-flow leakage under active attacks, introduced the concept of dataflow au-
thentication (DFAuth) to prevent the adversary from deviating from the dataflow
of the outsourced program, and showed its interference equivalence property in a
program dependency graph. We implemented DFAuth using a novel homomor-
phic authenticated symmetric encryption (HASE) scheme, for which we provided
security definitions, two constructions and security proofs. We showed the practi-
cal feasibility of our architecture using a Java bytecode-to-bytecode compiler and
evaluated transformed programs on a commercially available desktop computer.
In summary, DFAuth in combination with HASE provides a practical architec-
ture enabling efficient computations on encrypted data without the drawbacks
of solutions based solely on FHE or a TEE.

Also in Chapter 5, we improved the performance of DFAuth by complementing
HASE with the concept of trusted authenticated ciphertext operations (TACO).
We provided updated security definitions, a generic construction and security
proofs. We extended our implementation and evaluated transformed programs
in a commercially available cloud environment. Our TACO construction makes
use of a common authenticated symmetric encryption scheme instead of partially
homomorphic encryption. Although ciphertext operations have to be performed
in the trusted module, our experiments showed that TACO significantly improves
the running times of outsourced programs. In summary, TACO allows DFAuth
to be applied to applications which require fast response times such as the smart
charging scheduler for electric vehicles considered in our evaluation.

In Chapter 6, we further improved the security of DFAuth and addressed the
concern that control-flow leakage might be inacceptable from a security perspec-
tive. We formalized the problem of policy-aware security and performance trade-
off (PASAPTO) analysis as an optimization problem and proved the NP-hardness
of the corresponding decision problem. We presented two heuristic algorithms
approximating the Pareto front of the optimization problem: a greedy heuristic
providing fast convergence and a genetic algorithm providing well distributed
trade-offs. We used established quantitative information flow techniques to mea-
sure security, running time to measure performance and program transformation
techniques to alter the trade-off between the two. We also adjusted an existing
QIF analysis to capture the adversarial information flow for each variable of a
program such that we can support variable-based information flow policies. We
implemented our algorithms and evaluated them on programs computing on en-
crypted data using DFAuth in a commercially available cloud environment. In
summary, PASAPTO improves the security of DFAuth and provides developers
more control over the security and performance characteristics of their outsourced
program.

In conclusion, we presented a novel architecture combining cryptographic prim-
itives with hardware-based security to compute on encrypted data. The pro-
posed architecture has been demonstrated to be practical in various evaluations
on commercially available computer systems, computations on encrypted data
are efficient due to control-flow support und fast ciphertext operations, and the
architecture provides extensive security guarantees.

112

7.2 Outlook

7.2 Outlook

The architecture presented in this work addresses the problem of secure and
efficient computation on encrypted data. However, we can only provide first
steps towards a thorough “general purpose cloud computing on encrypted data”
scenario. To bridge the gap between general purpose computing and computation
on encrypted data, additional research and engineering seems necessary. In the
following, we identify some of the open problems and provide some possible
directions for future work.

• DFAuth considers a simple scenario between two parties, a client and a
server (which has a trusted module). The cryptographic key material is
generated on the trusted client and then shared with the trusted module
over a secure channel. How can the DFAuth scenario be extended to cover
multiple clients? Can HASE be adjusted to a public-key setting without
weakening its security properties?

• Our PASAPTO analysis has been evaluated in the context of DFAuth.
However, the same trade-off can be made in many other types of computa-
tion on encrypted data. In future research, the trade-off between security
and performance of executing control-flow driven programs inside SGX en-
claves could be investigated. PASAPTO can also be applied to MPC pro-
tocols, which may leak some intermediate results to avoid expensive MPC
computations.

• The DFAuth architecture provides data confidentiality, but does not protect
access patterns from being revealed to the adversary (cf. Section 3.2.2). To
see that this leakage can be a security issue also in this scenario, consider
a program statement of the form a[i], in which some array a is accessed
using some index i. Even if the content of a and the index i are encrypted,
the adversary may still be able to observe the memory locations accessed
by the outsourced program [RLT15]. In future work, DFAuth could be
combined with ORAM (cf. Section 3.2.2) to prevent data from leaking via
memory access pattern side-channels.

• The DFAuth trusted module in this work was implemented using an SGX
enclave. Recently, a number of additional TEEs have become available on
the market of commercial computer systems. Future work could analyze
their benefits and whether the DFAuth architecture can gain any security
or performance improvements from switching to another TEE.

113

Publications and Contributions

The concepts presented in this dissertation have been the subject of multiple
scientific publications co-authored by me. In the following these publications are
listed and my contributions to them are described.

• Andreas Fischer, Benny Fuhry, Florian Kerschbaum, Eric Bodden: Com-
putation on Encrypted Data using Dataflow Authentication. In 20th Pri-
vacy Enhancing Technologies Symposium (PETS), 2020. [Fis+20a]

I am the principal author of this publication. Chapter 5 is based on this
work. The concepts of dataflow authentication (DFAuth) and homomor-
phic authenticated symmetric encryption (HASE) were inspired by security
issues posed by related work [Top+13]. DFAuth was developed in techni-
cal discussions with Eric Bodden and Florian Kerschbaum. HASE was
developed in technical discussions with Florian Kerschbaum. Benny Fuhry
helped with the Intel SGX implementation. Benny Fuhry, Florian Kersch-
baum and Eric Bodden co-authored the publication.

• Andreas Fischer, Benny Fuhry, Jörn Kussmaul, Jonas Janneck, Florian
Kerschbaum, Eric Bodden: Improved Computation on Encrypted Data us-
ing Dataflow Authentication. Under submission. [Fis+]

I am the principal author of this publication. Chapter 5 is based on this
work. The concept of trusted authenticated ciphertext operations (TACO)
was developed in technical discussions with Jörn Kussmaul to improve the
performance of DFAuth. Jonas Janneck helped with the implementation of
the experiments. Florian Kerschbaum and Eric Bodden provided feedback.
Jörn Kussmaul and Jonas Janneck co-authored the publication.

• Andreas Fischer, Jonas Janneck, Jörn Kussmaul, Nikolas Krätzschmar,
Florian Kerschbaum, Eric Bodden: PASAPTO: Policy-aware Security and
Performance Trade-off Analysis – Computation on Encrypted Data with
Restricted Leakage. In 33rd IEEE Computer Security Foundations (CSF)
Symposium, 2020. [Fis+20b]

I am the principal author of this publication. Chapter 6 is based on this
work. The concept of policy-aware security and performance trade-off
(PASAPTO) analysis was developed in technical discussions with Jonas
Janneck and Florian Kerschbaum to improve the security of DFAuth fur-
ther. Jörn Kussmaul helped with the implementation of the experiments.
Nikolas Krätzschmar helped with the implementation of the program se-
curity measures. Florian Kerschbaum and Eric Bodden provided feedback.
Jonas Janneck and Jörn Kussmaul co-authored the publication.

115

Bibliography

[Abr+17] I. Abraham, C. W. Fletcher, K. Nayak, B. Pinkas, and L. Ren.
“Asymptotically Tight Bounds for Composing ORAM with PIR”.
In: Public-Key Cryptography - PKC 2017 - 20th IACR International
Conference on Practice and Theory in Public-Key Cryptography,
Amsterdam, The Netherlands, March 28-31, 2017, Proceedings, Part
I. Ed. by S. Fehr. Vol. 10174. Lecture Notes in Computer Science.
Springer, 2017, pp. 91–120 (cit. on p. 24).

[Aes] Specification for the Advanced Encryption Standard (AES). Federal
Information Processin Standards Publication 197. 2001. url: http:
//csrc.nist.gov/publications/fips/fips197/fips-197.pdf

(cit. on pp. 2, 60).

[AFV11] S. Agrawal, D. M. Freeman, and V. Vaikuntanathan. “Functional
Encryption for Inner Product Predicates from Learning with Er-
rors”. In: Advances in Cryptology - ASIACRYPT 2011 - 17th In-
ternational Conference on the Theory and Application of Cryptology
and Information Security, Seoul, South Korea, December 4-8, 2011.
Proceedings. Ed. by D. H. Lee and X. Wang. Vol. 7073. Lecture Notes
in Computer Science. Springer, 2011, pp. 21–40 (cit. on p. 22).

[Aga00] J. Agat. “Transforming Out Timing Leaks”. In: POPL 2000, Pro-
ceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, Boston, Massachusetts, USA, Jan-
uary 19-21, 2000. Ed. by M. N. Wegman and T. W. Reps. ACM,
2000, pp. 40–53 (cit. on p. 99).

[Agr+04] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. “Order-Preserving
Encryption for Numeric Data”. In: Proceedings of the ACM SIG-
MOD International Conference on Management of Data, Paris, June
13-18, 2004. Ed. by G. Weikum, A. C. König, and S. Deßloch. ACM,
2004, pp. 563–574 (cit. on p. 20).

[Alm+18] J. B. Almeida, M. Barbosa, G. Barthe, H. Pacheco, V. Pereira, and
B. Portela. Enforcing ideal-world leakage bounds in real-world se-
cret sharing MPC frameworks. Cryptology ePrint Archive, Report
2018/404. https://eprint.iacr.org/2018/404. 2018 (cit. on
pp. 108, 109).

[Ana+13] I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata. “Innovative
Technology for CPU Based Attestation and Sealing”. In: Workshop
on Hardware and Architectural Support for Security and Privacy.
HASP. 2013 (cit. on pp. 2, 27, 28).

117

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
https://eprint.iacr.org/2018/404

Bibliography

[Aud+18] C. Audet, J. Bigeon, D. Cartier, S. Le Digabel, and L. Salomon.
“Performance indicators in multiobjective optimization”. In: Opti-
mization Online (2018) (cit. on p. 17).

[AWZ88] B. Alpern, M. N. Wegman, and F. K. Zadeck. “Detecting equality
of variables in programs”. In: Proceedings of the 15th ACM Sympo-
sium on Principles of Programming Languages. POPL. 1988 (cit. on
p. 41).

[Ayd+18] A. Aydin, W. Eiers, L. Bang, T. Brennan, M. Gavrilov, T. Bultan,
and F. Yu. “Parameterized model counting for string and numeric
constraints”. In: ESEC/SIGSOFT FSE. ACM, 2018, pp. 400–410
(cit. on p. 100).

[Bar+12] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P.
Vadhan, and K. Yang. “On the (im)possibility of obfuscating pro-
grams”. In: J. ACM 59.2 (2012), 6:1–6:48 (cit. on p. 25).

[Bar94] A. I. Barvinok. “A polynomial time algorithm for counting integral
points in polyhedra when the dimension is fixed”. In: Mathematics
of Operations Research 19.4 (1994), pp. 769–779 (cit. on p. 100).

[BB03] D. Brumley and D. Boneh. “Remote Timing Attacks Are Practical”.
In: Proceedings of the 12th USENIX Security Symposium, Washing-
ton, D.C., USA, August 4-8, 2003. 2003 (cit. on p. 80).

[BCF17] M. Barbosa, D. Catalano, and D. Fiore. “Labeled Homomorphic En-
cryption - Scalable and Privacy-Preserving Processing of Outsourced
Data”. In: Proceedings of the 22nd European Symposium on Research
in Computer Security. ESORICS. 2017 (cit. on p. 77).

[BDP13] P. Braione, G. Denaro, and M. Pezzè. “Enhancing symbolic execu-
tion with built-in term rewriting and constrained lazy initialization”.
In: Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, ESEC/FSE’13, Saint Petersburg, Russian Federation,
August 18-26, 2013. Ed. by B. Meyer, L. Baresi, and M. Mezini.
ACM, 2013, pp. 411–421 (cit. on p. 100).

[BDP15] P. Braione, G. Denaro, and M. Pezzè. “Symbolic execution of pro-
grams with heap inputs”. In: Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015,
Bergamo, Italy, August 30 - September 4, 2015. Ed. by E. D. Nitto,
M. Harman, and P. Heymans. ACM, 2015, pp. 602–613 (cit. on
p. 100).

[Ber06] D. J. Bernstein. “Curve25519: New Diffie-Hellman Speed Records”.
In: Public Key Cryptography - PKC 2006, 9th International Con-
ference on Theory and Practice of Public-Key Cryptography, New
York, NY, USA, April 24-26, 2006, Proceedings. Ed. by M. Yung,
Y. Dodis, A. Kiayias, and T. Malkin. Vol. 3958. Lecture Notes in
Computer Science. Springer, 2006, pp. 207–228 (cit. on pp. 63, 80).

118

Bibliography

[BGN05] D. Boneh, E. Goh, and K. Nissim. “Evaluating 2-DNF Formulas on
Ciphertexts”. In: Theory of Cryptography, Second Theory of Cryp-
tography Conference, TCC 2005, Cambridge, MA, USA, February
10-12, 2005, Proceedings. Ed. by J. Kilian. Vol. 3378. Lecture Notes
in Computer Science. Springer, 2005, pp. 325–341 (cit. on p. 23).

[BGV14] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. “(Leveled) Fully
Homomorphic Encryption without Bootstrapping”. In: ACM Trans.
Comput. Theory 6.3 (2014), 13:1–13:36 (cit. on p. 23).

[BKR09] M. Backes, B. Köpf, and A. Rybalchenko. “Automatic Discovery
and Quantification of Information Leaks”. In: 30th IEEE Symposium
on Security and Privacy (S&P 2009), 17-20 May 2009, Oakland,
California, USA. IEEE Computer Society, 2009, pp. 141–153. isbn:
978-0-7695-3633-0 (cit. on pp. 84, 85, 102, 109).

[BN08] M. Bellare and C. Namprempre. “Authenticated encryption: Rela-
tions among notions and analysis of the generic composition paradigm”.
In: Journal of Cryptology 21.4 (2008) (cit. on p. 77).

[Bon+04] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano. “Public
Key Encryption with Keyword Search”. In: Advances in Cryptol-
ogy - EUROCRYPT 2004, International Conference on the Theory
and Applications of Cryptographic Techniques, Interlaken, Switzer-
land, May 2-6, 2004, Proceedings. Ed. by C. Cachin and J. Ca-
menisch. Vol. 3027. Lecture Notes in Computer Science. Springer,
2004, pp. 506–522 (cit. on pp. 21, 22).

[Bon+09] D. Boneh, D. Freeman, J. Katz, and B. Waters. “Signing a linear
subspace: Signature schemes for network coding”. In: Proceedings of
the 12th International Workshop on Public Key Cryptography. PKC.
2009 (cit. on p. 77).

[Bon+15] D. Boneh, K. Lewi, M. Raykova, A. Sahai, M. Zhandry, and J. Zim-
merman. “Semantically Secure Order-Revealing Encryption: Multi-
input Functional Encryption Without Obfuscation”. In: Advances in
Cryptology - EUROCRYPT 2015 - 34th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II. Ed. by E.
Oswald and M. Fischlin. Vol. 9057. Lecture Notes in Computer Sci-
ence. Springer, 2015, pp. 563–594 (cit. on p. 20).

[Bor+17] M. Borges, Q. Phan, A. Filieri, and C. S. Pasareanu. “Model-Counting
Approaches for Nonlinear Numerical Constraints”. In: NASA For-
mal Methods - 9th International Symposium, NFM 2017, Moffett
Field, CA, USA, May 16-18, 2017, Proceedings. 2017, pp. 131–138
(cit. on p. 100).

[Bös+14] C. Bösch, P. H. Hartel, W. Jonker, and A. Peter. “A Survey of
Provably Secure Searchable Encryption”. In: ACM Comput. Surv.
47.2 (2014), 18:1–18:51 (cit. on p. 21).

119

Bibliography

[BR06] M. Bellare and P. Rogaway. “Code-Based Game-Playing Proofs and
the Security of Triple Encryption”. In: Proceedings of the 25th In-
ternational Conference on Advances in Cryptology. EUROCRYPT.
2006 (cit. on pp. 8, 33).

[Bra+17] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun,
and A.-R. Sadeghi. “Software Grand Exposure: SGX Cache Attacks
Are Practical”. In: Proceedings of the 11th USENIX Workshop on
Offensive Technologies. WOOT. 2017 (cit. on pp. 2, 28).

[BSW11] D. Boneh, A. Sahai, and B. Waters. “Functional encryption: Defini-
tions and challenges”. In: Proceedings of the 8th Theory of Cryptog-
raphy Conference. TCC. 2011 (cit. on p. 21).

[Bul+18] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx. “Fore-
shadow: Extracting the Keys to the Intel SGX Kingdom with Tran-
sient Out-of-Order Execution”. In: 27th USENIX Security Sympo-
sium, USENIX Security 2018, Baltimore, MD, USA, August 15-17,
2018. Ed. by W. Enck and A. P. Felt. USENIX Association, 2018,
pp. 991–1008 (cit. on p. 29).

[BV14] Z. Brakerski and V. Vaikuntanathan. “Efficient Fully Homomor-
phic Encryption from (Standard) LWE”. In: SIAM J. Comput. 43.2
(2014), pp. 831–871 (cit. on p. 23).

[Cau+17] S. Cauligi, G. Soeller, F. Brown, B. Johannesmeyer, Y. Huang,
R. Jhala, and D. Stefan. “FaCT: A Flexible, Constant-Time Pro-
gramming Language”. In: IEEE Cybersecurity Development, SecDev
2017, Cambridge, MA, USA, September 24-26, 2017. 2017, pp. 69–
76 (cit. on p. 109).

[Che+19] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. Lai. “Sgx-
Pectre: Stealing Intel Secrets from SGX Enclaves Via Speculative
Execution”. In: IEEE European Symposium on Security and Pri-
vacy, EuroS&P 2019, Stockholm, Sweden, June 17-19, 2019. IEEE,
2019, pp. 142–157 (cit. on p. 29).

[CKN14] T. Chothia, Y. Kawamoto, and C. Novakovic. “Leakwatch: Estimat-
ing information leakage from java programs”. In: European Sympo-
sium on Research in Computer Security. Springer. 2014, pp. 219–236
(cit. on p. 109).

[CMP14] D. Catalano, A. Marcedone, and O. Puglisi. “Authenticating Com-
putation on Groups: New Homomorphic Primitives and Applica-
tions”. In: Proceedings of the 20th International Conference on the
Advances in Cryptology. ASIACRYPT. 2014 (cit. on p. 77).

[CMS05] M. R. Clarkson, A. C. Myers, and F. B. Schneider. “Belief in informa-
tion flow”. In: 18th IEEE Computer Security Foundations Workshop
(CSFW’05). IEEE. 2005, pp. 31–45 (cit. on p. 109).

120

Bibliography

[CT06] T. M. Cover and J. A. Thomas. Elements of information theory (2.
ed.) Wiley, 2006. isbn: 978-0-471-24195-9 (cit. on p. 15).

[Dan51] G. B. Dantzig. “Maximization of a linear function of variables sub-
ject to linear inequalities”. In: Activity analysis of production and
allocation 13 (1951), pp. 339–347 (cit. on p. 80).

[Dev+16] S. Devadas, M. van Dijk, C. W. Fletcher, L. Ren, E. Shi, and D.
Wichs. “Onion ORAM: A Constant Bandwidth Blowup Oblivious
RAM”. In: Theory of Cryptography - 13th International Conference,
TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings,
Part II. Ed. by E. Kushilevitz and T. Malkin. Vol. 9563. Lecture
Notes in Computer Science. Springer, 2016, pp. 145–174 (cit. on
p. 24).

[Dij+10] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. “Fully
Homomorphic Encryption over the Integers”. In: Advances in Cryp-
tology - EUROCRYPT 2010, 29th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques,
Monaco / French Riviera, May 30 - June 3, 2010. Proceedings.
Ed. by H. Gilbert. Vol. 6110. Lecture Notes in Computer Science.
Springer, 2010, pp. 24–43 (cit. on p. 23).

[DK15] G. Doychev and B. Köpf. “Rational Protection against Timing At-
tacks”. In: IEEE 28th Computer Security Foundations Symposium,
CSF 2015, Verona, Italy, 13-17 July, 2015. Ed. by C. Fournet, M. W.
Hicks, and L. Viganò. IEEE Computer Society, 2015, pp. 526–536
(cit. on p. 108).

[DL+04] J. A. De Loera, R. Hemmecke, J. Tauzer, and R. Yoshida. “Effective
lattice point counting in rational convex polytopes”. In: Journal of
symbolic computation 38.4 (2004), pp. 1273–1302 (cit. on p. 100).

[DMD16] Y. Dong, A. Milanova, and J. Dolby. “JCrypt: Towards Computa-
tion over Encrypted Data”. In: Proceedings of the 13th International
Conference on Principles and Practices of Programming on the Java
Platform. PPPJ. 2016 (cit. on pp. 26, 36, 41, 78, 100).

[EH06] D. Eastlake 3rd and T. Hansen. US Secure Hash Algorithms (SHA
and HMAC-SHA). RFC 4634 (Informational). Internet Engineering
Task Force, 2006 (cit. on p. 60).

[EKR18] D. Evans, V. Kolesnikov, and M. Rosulek. “A Pragmatic Introduc-
tion to Secure Multi-Party Computation”. In: Found. Trends Priv.
Secur. 2.2-3 (2018), pp. 70–246 (cit. on p. 24).

[Elg85] T. Elgamal. “A public key cryptosystem and a signature scheme
based on discrete logarithms”. In: IEEE Transactions on Informa-
tion Theory 31.4 (1985) (cit. on p. 11).

[FF+93] C. M. Fonseca, P. J. Fleming, et al. “Genetic Algorithms for Multi-
objective Optimization: FormulationDiscussion and Generalization.”
In: Icga. Vol. 93. July. 1993, pp. 416–423 (cit. on pp. 94, 95).

121

Bibliography

[FGS19] O. Frendo, N. Gaertner, and H. Stuckenschmidt. “Real-time smart
charging based on precomputed schedules”. In: IEEE Transactions
on Smart Grid (2019) (cit. on pp. 71–73).

[Fis+] A. Fischer, B. Fuhry, J. Kussmaul, J. Janneck, F. Kerschbaum,
and E. Bodden. “Improved Computation on Encrypted Data us-
ing Dataflow Authentication”. Under submission (cit. on pp. 4, 35,
115).

[Fis+17] A. Fischer, B. Fuhry, F. Kerschbaum, and E. Bodden. “Computation
on Encrypted Data using Data Flow Authentication”. In: CoRR
abs/1710.00390 (2017). arXiv: 1710.00390. url: http://arxiv.
org/abs/1710.00390 (cit. on p. 3).

[Fis+20a] A. Fischer, B. Fuhry, F. Kerschbaum, and E. Bodden. “Computa-
tion on Encrypted Data using Dataflow Authentication”. In: 20th
Privacy Enhancing Technologies Symposium (PETS) 2020.1 (2020).
url: https://petsymposium.org/2020/files/papers/issue1/
popets-2020-0002.pdf (cit. on pp. 3, 35, 115).

[Fis+20b] A. Fischer, J. Janneck, J. Kussmaul, N. Krätzschmar, F. Kersch-
baum, and E. Bodden. “PASAPTO: Policy-aware Security and Per-
formance Trade-off Analysis – Computation on Encrypted Data with
Restricted Leakage”. In: 33rd IEEE Computer Security Foundations
Symposium, CSF 2020, Boston, MA, USA, June 22-26, 2020. IEEE,
2020, pp. 230–245 (cit. on pp. 4, 79, 115).

[FKN94] U. Feige, J. Kilian, and M. Naor. “A minimal model for secure
computation (extended abstract)”. In: Proceedings of the Twenty-
Sixth Annual ACM Symposium on Theory of Computing, 23-25 May
1994, Montréal, Québec, Canada. Ed. by F. T. Leighton and M. T.
Goodrich. ACM, 1994, pp. 554–563 (cit. on p. 24).

[Gar+13] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Wa-
ters. “Candidate Indistinguishability Obfuscation and Functional
Encryption for all Circuits”. In: 54th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2013, 26-29 October, 2013,
Berkeley, CA, USA. IEEE Computer Society, 2013, pp. 40–49 (cit.
on p. 25).

[Gar+16] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Wa-
ters. “Candidate Indistinguishability Obfuscation and Functional
Encryption for All Circuits”. In: SIAM J. Comput. 45.3 (2016),
pp. 882–929 (cit. on p. 21).

[Gen09] C. Gentry. “Fully homomorphic encryption using ideal lattices”. In:
Proceedings of the Symposium on Theory of Computing. STOC. 2009
(cit. on pp. 2, 23).

122

https://arxiv.org/abs/1710.00390
http://arxiv.org/abs/1710.00390
http://arxiv.org/abs/1710.00390
https://petsymposium.org/2020/files/papers/issue1/popets-2020-0002.pdf
https://petsymposium.org/2020/files/papers/issue1/popets-2020-0002.pdf

Bibliography

[GGP11] R. Gennaro, C. Gentry, and B. Parno. “Non-interactive verifiable
computing: Outsourcing computation to untrusted workers”. In: Pro-
ceedings of the 30th International Conference on Advances in Cryp-
tology. CRYPTO. 2011 (cit. on p. 78).

[GHS12] C. Gentry, S. Halevi, and N. P. Smart. “Homomorphic evaluation
of the AES circuit”. In: Proceedings of the 32nd International Con-
ference on Advances in Cryptology. CRYPTO. 2012 (cit. on pp. 2,
23).

[Gil+16] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. E. Lauter, M. Naehrig,
and J. Wernsing. “CryptoNets: Applying Neural Networks to En-
crypted Data with High Throughput and Accuracy”. In: Proceedings
of the 33rd International Conference on Machine Learning. ICML.
2016 (cit. on pp. 70, 71).

[GM82] S. Goldwasser and S. Micali. “Probabilistic Encryption and How to
Play Mental Poker Keeping Secret All Partial Information”. In: Pro-
ceedings of the 14th Annual ACM Symposium on Theory of Comput-
ing, May 5-7, 1982, San Francisco, California, USA. Ed. by H. R.
Lewis, B. B. Simons, W. A. Burkhard, and L. H. Landweber. ACM,
1982, pp. 365–377 (cit. on p. 23).

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. “How to Play any Men-
tal Game or A Completeness Theorem for Protocols with Honest
Majority”. In: Proceedings of the 19th Annual ACM Symposium on
Theory of Computing, 1987, New York, New York, USA. Ed. by
A. V. Aho. ACM, 1987, pp. 218–229 (cit. on p. 24).

[Gol+13a] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and
N. Zeldovich. “How to Run Turing Machines on Encrypted Data”.
In: Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryp-
tology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part II. Ed. by R. Canetti and J. A. Garay. Vol. 8043.
Lecture Notes in Computer Science. Springer, 2013, pp. 536–553 (cit.
on p. 21).

[Gol+13b] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and
N. Zeldovich. “Reusable garbled circuits and succinct functional en-
cryption”. In: Proceedings of the Symposium on Theory of Comput-
ing. STOC. 2013 (cit. on p. 21).

[Göt+17] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller. “Cache At-
tacks on Intel SGX”. In: Proceedings of the 10th European Work-
shop on Systems Security, EUROSEC 2017, Belgrade, Serbia, April
23, 2017. Ed. by C. Giuffrida and A. Stavrou. ACM, 2017, 2:1–2:6
(cit. on p. 28).

123

Bibliography

[GR+87] D. E. Goldberg, J. Richardson, et al. “Genetic algorithms with shar-
ing for multimodal function optimization”. In: Genetic algorithms
and their applications: Proceedings of the Second International Con-
ference on Genetic Algorithms. Hillsdale, NJ: Lawrence Erlbaum.
1987, pp. 41–49 (cit. on pp. 94, 95).

[GW13] R. Gennaro and D. Wichs. “Fully Homomorphic Message Authenti-
cators”. In: Proceedings of the 19th International Conference on the
Advances in Cryptology. ASIACRYPT. 2013 (cit. on p. 77).

[Hac+02] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra. “Executing SQL over
encrypted data in the database-service-provider model”. In: Proceed-
ings of the ACM International Conference on Management of Data.
SIGMOD. 2002 (cit. on p. 26).

[Har08] D. Harkins. “Synthetic Initialization Vector (SIV) Authenticated
Encryption Using the Advanced Encryption Standard (AES)”. In:
RFC 5297 (2008), pp. 1–26 (cit. on p. 20).

[HM10] J. Heusser and P. Malacaria. “Quantifying information leak vulnera-
bilities”. In: arXiv preprint arXiv:1007.0918 (2010) (cit. on p. 109).

[HMS12] Y. Hu, W. Martin, and B. Sunar. “Enhanced Flexibility for Homo-
morphic Encryption Schemes via CRT”. In: Proceedings (Industrial
Track) of the 10th International Conference on Applied Cryptogra-
phy and Network Security. ACNS. 2012 (cit. on pp. 47, 66).

[Hoe+13] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo.
“Using Innovative Instructions to Create Trustworthy Software So-
lutions”. In: Workshop on Hardware and Architectural Support for
Security and Privacy. HASP. 2013 (cit. on pp. 2, 27).

[Hol+92] J. H. Holland et al. Adaptation in natural and artificial systems:
an introductory analysis with applications to biology, control, and
artificial intelligence. MIT press, 1992 (cit. on p. 94).

[Int19] Intel Corporation. Intel Software Guard Extensions (Intel SGX) SDK
for Linux OS. 2019. url: https://download.01.org/intel-

sgx/linux-2.6/docs/Intel_SGX_Developer_Reference_Linux_

2.6_Open_Source.pdf (visited on 10/12/2020) (cit. on p. 29).

[JY14] C. Joo and A. Yun. “Homomorphic Authenticated Encryption Se-
cure against Chosen-Ciphertext Attack”. In: Proceedings of the 20th
International Conf. on the Advances in Cryptology. ASIACRYPT.
2014 (cit. on p. 77).

[KB07] B. Köpf and D. Basin. “An information-theoretic model for adaptive
side-channel attacks”. In: Proceedings of the 14th ACM conference
on Computer and communications security. ACM. 2007, pp. 286–
296 (cit. on p. 109).

[Kin76] J. C. King. “Symbolic execution and program testing”. In: Commu-
nications of the ACM 19.7 (1976), pp. 385–394 (cit. on p. 84).

124

https://download.01.org/intel-sgx/linux-2.6/docs/Intel_SGX_Developer_Reference_Linux_2.6_Open_Source.pdf
https://download.01.org/intel-sgx/linux-2.6/docs/Intel_SGX_Developer_Reference_Linux_2.6_Open_Source.pdf
https://download.01.org/intel-sgx/linux-2.6/docs/Intel_SGX_Developer_Reference_Linux_2.6_Open_Source.pdf

Bibliography

[KK03] T. Kivinen and M. Kojo. More Modular Exponential (MODP) Diffie-
Hellman groups for Internet Key Exchange (IKE). RFC 3526 (Pro-
posed Standard). Internet Engineering Task Force, 2003 (cit. on
p. 63).

[KL08] J. Katz and Y. Lindell. “Aggregate message authentication codes”.
In: Proceedings of the Cryptographers’ Track of the RSA Conference.
CT-RSA. 2008 (cit. on p. 77).

[KL14] J. Katz and Y. Lindell. Introduction to Modern Cryptography, Sec-
ond Edition. 2nd. Chapman & Hall/CRC, 2014. isbn: 1466570261,
9781466570269 (cit. on pp. 8, 22).

[Kle14] V. Klebanov. “Precise quantitative information flow analysis - a sym-
bolic approach”. In: Theor. Comput. Sci. 538 (2014), pp. 124–139
(cit. on pp. 84, 109).

[KM70] V. Klee and G. J. Minty. How good is the simplex algorithm. Tech.
rep. University of Washington, Seattle Department of Mathematics,
1970 (cit. on p. 80).

[KO97] E. Kushilevitz and R. Ostrovsky. “Replication is NOT Needed: SIN-
GLE Database, Computationally-Private Information Retrieval”. In:
38th Annual Symposium on Foundations of Computer Science, FOCS
’97, Miami Beach, Florida, USA, October 19-22, 1997. IEEE Com-
puter Society, 1997, pp. 364–373 (cit. on p. 25).

[Koc+19] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M.
Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y.
Yarom. “Spectre Attacks: Exploiting Speculative Execution”. In:
2019 IEEE Symposium on Security and Privacy, SP 2019, San Fran-
cisco, CA, USA, May 19-23, 2019. IEEE, 2019, pp. 1–19 (cit. on
p. 29).

[Kuč+17] M. Kučera, P. Tsankov, T. Gehr, M. Guarnieri, and M. Vechev.
“Synthesis of probabilistic privacy enforcement”. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM. 2017, pp. 391–408 (cit. on p. 109).

[Lam+11] P. Lam, E. Bodden, O. Lhotak, and L. Hendren. “The Soot frame-
work for Java program analysis: a retrospective”. In: Cetus Users
and Compiler Infastructure Workshop. CETUS. 2011 (cit. on pp. 59,
100).

[Lee+17a] J. Lee, J. Jang, Y. Jang, N. Kwak, Y. Choi, C. Choi, T. Kim, M.
Peinado, and B. B. Kang. “Hacking in Darkness: Return-oriented
Programming against Secure Enclaves”. In: Proceedings of the 26th
USENIX Security Symposium. USENIX Security. 2017 (cit. on pp. 2,
29, 35).

125

Bibliography

[Lee+17b] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado. “In-
ferring Fine-grained Control Flow Inside SGX Enclaves with Branch
Shadowing”. In: Proceedings of the 26th USENIX Security Sympo-
sium. USENIX Security. 2017 (cit. on pp. 2, 28, 36, 79).

[Lew+10] A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Wa-
ters. “Fully Secure Functional Encryption: Attribute-Based Encryp-
tion and (Hierarchical) Inner Product Encryption”. In: Advances in
Cryptology - EUROCRYPT 2010, 29th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques,
Monaco / French Riviera, May 30 - June 3, 2010. Proceedings.
Ed. by H. Gilbert. Vol. 6110. Lecture Notes in Computer Science.
Springer, 2010, pp. 62–91 (cit. on p. 22).

[LHS13] C. Liu, M. Hicks, and E. Shi. “Memory trace oblivious program ex-
ecution”. In: 2013 IEEE 26th Computer Security Foundations Sym-
posium. IEEE. 2013, pp. 51–65 (cit. on p. 108).

[Lib] The Sodium crypto library (libsodium). url: https://download.
libsodium.org/doc/ (visited on 10/12/2020) (cit. on pp. 60, 63).

[Lip+18] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J.
Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Ham-
burg. “Meltdown: Reading Kernel Memory from User Space”. In:
27th USENIX Security Symposium, USENIX Security 2018, Balti-
more, MD, USA, August 15-17, 2018. Ed. by W. Enck and A. P.
Felt. USENIX Association, 2018, pp. 973–990 (cit. on p. 29).

[Liu+15] C. Liu, A. Harris, M. Maas, M. W. Hicks, M. Tiwari, and E. Shi.
“GhostRider: A Hardware-Software System for Memory Trace Obliv-
ious Computation”. In: Proceedings of the 20th International Con-
ference on Architectural Support for Programming Languages and
Operating Systems. ASPLOS. 2015 (cit. on pp. 76, 109).

[LO05] J. Li and E. R. Omiecinski. “Efficiency and security trade-off in
supporting range queries on encrypted databases”. In: IFIP An-
nual Conference on Data and Applications Security and Privacy.
Springer. 2005, pp. 69–83 (cit. on p. 108).

[Mah95] S. W. Mahfoud. “Niching methods for genetic algorithms”. PhD
thesis. 1995 (cit. on p. 94).

[Mal11] P. Malacaria. “Algebraic Foundations for Information Theoretical,
Probabilistic and Guessability measures of Information Flow”. In:
CoRR abs/1101.3453 (2011). url: http://arxiv.org/abs/1101.
3453 (cit. on pp. 84, 109).

[Mal+18] P. Malacaria, M. Khouzani, C. S. Pasareanu, Q.-S. Phan, and K.
Luckow. “Symbolic side-channel analysis for probabilistic programs”.
In: 2018 IEEE 31st Computer Security Foundations Symposium (CSF).
IEEE. 2018, pp. 313–327 (cit. on p. 109).

126

https://download.libsodium.org/doc/
https://download.libsodium.org/doc/
http://arxiv.org/abs/1101.3453
http://arxiv.org/abs/1101.3453

Bibliography

[McK+13] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi, V.
Shanbhogue, and U. R. Savagaonkar. “Innovative Instructions and
Software Model for Isolated Execution”. In: Workshop on Hardware
and Architectural Support for Security and Privacy. HASP. 2013 (cit.
on pp. 2, 27).

[MIE17] A. Moghimi, G. Irazoqui, and T. Eisenbarth. “CacheZoom: How
SGX Amplifies the Power of Cache Attacks”. In: Cryptographic Hard-
ware and Embedded Systems - CHES 2017 - 19th International Con-
ference, Taipei, Taiwan, September 25-28, 2017, Proceedings. Ed. by
W. Fischer and N. Homma. Vol. 10529. Lecture Notes in Computer
Science. Springer, 2017, pp. 69–90 (cit. on p. 28).

[Mie98] K. Miettinen. Nonlinear multiobjective optimization. Vol. 12. In-
ternational series in operations research and management science.
Kluwer, 1998. isbn: 978-0-7923-8278-2 (cit. on p. 16).

[Mol+05] D. Molnar, M. Piotrowski, D. Schultz, and D. A. Wagner. “The Pro-
gram Counter Security Model: Automatic Detection and Removal of
Control-Flow Side Channel Attacks”. In: Information Security and
Cryptology - ICISC 2005, 8th International Conference, Seoul, Ko-
rea, December 1-2, 2005, Revised Selected Papers. ICISC. 2005 (cit.
on pp. 76, 99, 108, 109).

[Mpi] MPIR: Multiple Precision Integers and Rationals. url: http://

mpir.org (visited on 10/12/2020) (cit. on p. 60).

[Nay+17] K. Nayak, C. W. Fletcher, L. Ren, N. Chandran, S. V. Lokam, E. Shi,
and V. Goyal. “HOP: Hardware makes Obfuscation Practical”. In:
24th Annual Network and Distributed System Security Symposium.
NDSS. 2017 (cit. on p. 77).

[Net] AT & T Global IP Network – Network Averages. url: http : / /

ipnetwork.bgtmo.ip.att.net/pws/averages.html (visited on
09/08/2017) (cit. on p. 65).

[Neu] Neuroph – Java Neural Network Framework. url: http://neuroph.
sourceforge.net (visited on 10/12/2020) (cit. on p. 67).

[NKP18] Y. Noller, R. Kersten, and C. S. Păsăreanu. “Badger: Complexity
analysis with fuzzing and symbolic execution”. In: Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing
and Analysis. ACM. 2018, pp. 322–332 (cit. on p. 109).

[Ohr+16] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin, K.
Vaswani, and M. Costa. “Oblivious Multi-Party Machine Learning
on Trusted Processors”. In: Proceedings of the 25th USENIX Security
Symposium. USENIX Security. 2016 (cit. on pp. 70, 71).

[OT11] J. Obdržálek and M. Trt́ık. “Efficient loop navigation for symbolic
execution”. In: International Symposium on Automated Technology
for Verification and Analysis. Springer. 2011, pp. 453–462 (cit. on
p. 109).

127

http://mpir.org
http://mpir.org
http://ipnetwork.bgtmo.ip.att.net/pws/averages.html
http://ipnetwork.bgtmo.ip.att.net/pws/averages.html
http://neuroph.sourceforge.net
http://neuroph.sourceforge.net

Bibliography

[Pai99a] P. Paillier. “Public-key Cryptosystems Based on Composite Degree
Residuosity Classes”. In: Proceedings of the 17th International Con-
ference on Theory and Application of Cryptographic Techniques. EU-
ROCRYPT. 1999 (cit. on p. 77).

[Pai99b] P. Paillier. “Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes”. In: Advances in Cryptology - EUROCRYPT
’99, International Conference on the Theory and Application of Cryp-
tographic Techniques, Prague, Czech Republic, May 2-6, 1999, Pro-
ceeding. Ed. by J. Stern. Vol. 1592. Lecture Notes in Computer Sci-
ence. Springer, 1999, pp. 223–238 (cit. on p. 23).

[PM14] Q.-S. Phan and P. Malacaria. “Abstract model counting: a novel
approach for quantification of information leaks”. In: Proceedings of
the 9th ACM symposium on Information, computer and communi-
cations security. ACM. 2014, pp. 283–292 (cit. on p. 109).

[Pop+11] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan.
“CryptDB: protecting confidentiality with encrypted query process-
ing”. In: Proceedings of the 23rd ACM Symposium on Operating Sys-
tems Principles. SOSP. 2011 (cit. on p. 26).

[PR12] O. Pandey and Y. Rouselakis. “Property Preserving Symmetric En-
cryption”. In: Advances in Cryptology - EUROCRYPT 2012 - 31st
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Pro-
ceedings. Ed. by D. Pointcheval and T. Johansson. Vol. 7237. Lec-
ture Notes in Computer Science. Springer, 2012, pp. 375–391 (cit. on
p. 19).

[RAD78] R. L. Rivest, L Adleman, and M. L. Dertouzos. “On Data Banks and
Privacy Homomorphisms”. In: Foundations of Secure Computation,
Academia Press (1978), pp. 169–179 (cit. on p. 2).

[Ren+15] L. Ren, C. W. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. van
Dijk, and S. Devadas. “Constants Count: Practical Improvements to
Oblivious RAM”. In: 24th USENIX Security Symposium, USENIX
Security 15, Washington, D.C., USA, August 12-14, 2015. Ed. by J.
Jung and T. Holz. USENIX Association, 2015, pp. 415–430 (cit. on
p. 24).

[RLT15] A. Rane, C. Lin, and M. Tiwari. “Raccoon: Closing Digital Side-
Channels through Obfuscated Execution”. In: Proceedings of the
24th USENIX Security Symposium. USENIX Security. 2015 (cit. on
pp. 77, 99, 109, 113).

[RSA78] R. L. Rivest, A. Shamir, and L. M. Adleman. “A Method for Ob-
taining Digital Signatures and Public-Key Cryptosystems”. In: Com-
mun. ACM 21.2 (1978), pp. 120–126 (cit. on p. 2).

128

Bibliography

[RVLB15] N. Riquelme, C. Von Lücken, and B. Baran. “Performance metrics in
multi-objective optimization”. In: 2015 Latin American Computing
Conference (CLEI). IEEE. 2015, pp. 1–11 (cit. on p. 17).

[Sch+] S. van Schaik, A. Kwong, D. Genkin, and Y. Yarom. SGAxe: How
SGX Fails in Practice. url: https://sgaxeattack.com/ (visited
on 10/12/2020) (cit. on p. 29).

[Sch+17] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard. “Mal-
ware Guard Extension: Using SGX to Conceal Cache Attacks”. In:
Proceedings of the 14th International Conference on Detection of In-
trusions and Malware, and Vulnerability Assessment. DIMVA. 2017
(cit. on pp. 2, 28).

[Sch+19] M. Schwarz, M. Lipp, D. Moghimi, J. V. Bulck, J. Stecklina, T.
Prescher, and D. Gruss. “ZombieLoad: Cross-Privilege-Boundary
Data Sampling”. In: Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2019, Lon-
don, UK, November 11-15, 2019. Ed. by L. Cavallaro, J. Kinder, X.
Wang, and J. Katz. ACM, 2019, pp. 753–768 (cit. on p. 29).

[Sch+20] S. van Schaik, M. Minkin, A. Kwong, D. Genkin, and Y. Yarom.
“CacheOut: Leaking Data on Intel CPUs via Cache Evictions”. In:
CoRR abs/2006.13353 (2020). arXiv: 2006.13353. url: https://
arxiv.org/abs/2006.13353 (cit. on p. 29).

[SM03] A. Sabelfeld and A. C. Myers. “Language-based information-flow
security”. In: IEEE Journal on selected areas in communications
21.1 (2003), pp. 5–19 (cit. on p. 108).

[Sma+14] N. P. Smart, V. Rijmen, B. Gierlichs, K. G. Paterson, M. Stam,
B. Warinschi, and G. Watson. Algorithms, key size and parameters
report. Ed. by N. P. Smart. 2014 (cit. on p. 47).

[Smi07] G. Smith. “Principles of Secure Information Flow Analysis”. In: Mal-
ware Detection. Ed. by M. Christodorescu, S. Jha, D. Maughan,
D. Song, and C. Wang. Vol. 27. Advances in Information Security.
Springer, 2007, pp. 291–307. isbn: 978-0-387-32720-4 (cit. on p. 44).

[Smi09] G. Smith. “On the foundations of quantitative information flow”.
In: International Conference on Foundations of Software Science
and Computational Structures. Springer. 2009, pp. 288–302 (cit. on
pp. 84, 109).

[Ste+13] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu,
and S. Devadas. “Path ORAM: an extremely simple oblivious RAM
protocol”. In: 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS’13, Berlin, Germany, November 4-
8, 2013. Ed. by A. Sadeghi, V. D. Gligor, and M. Yung. ACM, 2013,
pp. 299–310 (cit. on p. 24).

129

https://sgaxeattack.com/
https://arxiv.org/abs/2006.13353
https://arxiv.org/abs/2006.13353
https://arxiv.org/abs/2006.13353

Bibliography

[SV10] N. P. Smart and F. Vercauteren. “Fully Homomorphic Encryption
with Relatively Small Key and Ciphertext Sizes”. In: Public Key
Cryptography - PKC 2010, 13th International Conference on Prac-
tice and Theory in Public Key Cryptography, Paris, May 26-28,
2010. Proceedings. Ed. by P. Q. Nguyen and D. Pointcheval. Vol. 6056.
Lecture Notes in Computer Science. Springer, 2010, pp. 420–443 (cit.
on p. 23).

[SVJ14] R. Sumbaly, N Vishnusri, and S Jeyalatha. “Diagnosis of breast
cancer using decision tree data mining technique”. In: International
Journal of Computer Applications 98.10 (2014) (cit. on p. 104).

[SWP00] D. X. Song, D. A. Wagner, and A. Perrig. “Practical Techniques
for Searches on Encrypted Data”. In: 2000 IEEE Symposium on
Security and Privacy, Berkeley, California, USA, May 14-17, 2000.
IEEE Computer Society, 2000, pp. 44–55 (cit. on pp. 20, 21).

[Tet+13] S. Tetali, M. Lesani, R. Majumdar, and T. Millstein. “MrCrypt:
Static Analysis for Secure Cloud Computations”. In: Proceedings of
the ACM International Conference on Object Oriented Programming
Systems Languages & Applications. OOPSLA. 2013 (cit. on pp. 25,
36, 77).

[Top+13] S. Tople, S. Shinde, Z. Chen, and P. Saxena. “AUTOCRYPT: En-
abling Homomorphic Computation on Servers to Protect Sensitive
Web Content”. In: Proceedings of the ACM International Confer-
ence on Computer & Communications Security. CCS. 2013 (cit. on
pp. 26, 36, 41, 78, 115).

[Wei+13] S. Wei, J. Wang, R. Yin, and J. Yuan. “Trade-off between security
and performance in block ciphered systems with erroneous cipher-
texts”. In: IEEE Transactions on Information Forensics and Secu-
rity 8.4 (2013), pp. 636–645 (cit. on p. 108).

[Wei+16] N. Weichbrodt, A. Kurmus, P. R. Pietzuch, and R. Kapitza. “Async-
Shock: Exploiting Synchronisation Bugs in Intel SGX Enclaves”. In:
Computer Security - ESORICS 2016 - 21st European Symposium
on Research in Computer Security, Heraklion, Greece, September
26-30, 2016, Proceedings, Part I. Ed. by I. G. Askoxylakis, S. Ioan-
nidis, S. K. Katsikas, and C. A. Meadows. Vol. 9878. Lecture Notes
in Computer Science. Springer, 2016, pp. 440–457 (cit. on p. 29).

[WLS09] D. Wasserrab, D. Lohner, and G. Snelting. “On PDG-based nonin-
terference and its modular proof”. In: Proceedings of the 2009 Work-
shop on Programming Languages and Analysis for Security. PLAS.
2009 (cit. on p. 45).

[WR10] K. Wolter and P. Reinecke. “Performance and security tradeoff”. In:
International School on Formal Methods for the Design of Computer,
Communication and Software Systems. Springer. 2010, pp. 135–167
(cit. on p. 108).

130

Bibliography

[XCP15] Y. Xu, W. Cui, and M. Peinado. “Controlled-Channel Attacks: De-
terministic Side Channels for Untrusted Operating Systems”. In:
2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose,
CA, USA, May 17-21, 2015. IEEE Computer Society, 2015, pp. 640–
656 (cit. on p. 28).

[Yao82] A. C. Yao. “Protocols for Secure Computations (Extended Abstract)”.
In: 23rd Annual Symposium on Foundations of Computer Science,
Chicago, Illinois, USA, 3-5 November 1982. IEEE Computer Soci-
ety, 1982, pp. 160–164 (cit. on p. 24).

[YT11] H. Yasuoka and T. Terauchi. “On bounding problems of quantitative
information flow”. In: Journal of Computer Security 19.6 (2011),
pp. 1029–1082 (cit. on p. 109).

[ZBT06] E. Zitzler, D. Brockhoff, and L. Thiele. “The Hypervolume Indi-
cator Revisited: On the Design of Pareto-compliant Indicators Via
Weighted Integration”. In: Evolutionary Multi-Criterion Optimiza-
tion, 4th International Conference, EMO 2007, Matsushima, Japan,
March 5-8, 2007, Proceedings. Ed. by S. Obayashi, K. Deb, C. Poloni,
T. Hiroyasu, and T. Murata. Vol. 4403. Lecture Notes in Computer
Science. Springer, 2006, pp. 862–876 (cit. on pp. 16, 17).

[ZC11] W. Zeng and M.-Y. Chow. “A trade-off model for performance and
security in secured networked control systems”. In: 2011 IEEE Inter-
national Symposium on Industrial Electronics. IEEE. 2011, pp. 1997–
2002 (cit. on p. 108).

[Zha+16] H. Zhang, Y. Shu, P. Cheng, and J. Chen. “Privacy and performance
trade-off in cyber-physical systems”. In: IEEE Network 30.2 (2016),
pp. 62–66 (cit. on p. 108).

[ZT98] E. Zitzler and L. Thiele. “Multiobjective optimization using evo-
lutionary algorithms—a comparative case study”. In: International
conference on parallel problem solving from nature. Springer. 1998,
pp. 292–301 (cit. on p. 17).

131

	Abstract
	Zusammenfassung
	List of Figures
	List of Tables
	List of Definitions
	List of Theorems
	List of Constructions
	List of Algorithms
	Abbreviations
	Introduction
	Motivation
	Contribution of this Work
	Structure of this Work

	Preliminaries
	Notation
	Common Cryptographic Principles
	Game-Based Security
	Encryption Schemes
	Message Authentication Codes
	Building Blocks for Message Authentication Codes
	Authenticated Encryption

	Probability and Information Theory
	Optimization Problems
	Multi-Objective Optimization Problems
	The Hypervolume Indicator

	Related Work
	Encryption Schemes with Computation Support
	Property-Preserving Encryption
	Searchable Encryption
	Functional Encryption
	Homomorphic Encryption

	Other Cryptographic Primitives
	Secure Multi-Party Computation
	Primitives for Access Pattern Hiding
	Obfuscation Primitives

	Program Transformation Techniques
	Trusted Execution Environments
	Intel Software Guard Extensions (SGX)
	Attacks on Intel SGX

	Methodology
	Solution Requirements
	Solution Design
	Practicality and Efficiency Assessment Methodology
	Security Assessment Methodology

	DFAuth: Dataflow Authentication
	Introduction
	Definitions
	Adversary Model
	Homomorphic Authenticated Symmetric Encryption

	Dataflow Authentication
	HASE Constructions
	Multiplicative HASE
	Additive HASE
	Security Reductions

	Trusted Authenticated Ciphertext Operations
	Syntax and Correctness
	Security Definitions
	Construction
	Security Reductions

	Implementation
	Setup Phase
	Runtime Phase

	Evaluation
	Secure Sales Application
	Additive HASE Benchmark
	Secure Neural Networks in the Cloud
	Secure Electric Vehicle Charging Scheduling

	Related Work
	Summary

	PASAPTO: Policy-Aware Security and Performance Trade-off Analysis
	Introduction
	Definitions
	Programs and Computation
	Adversary Model
	Information Flow Policy Compliance
	Security-Performance Trade-off Analysis

	Control Flow Leakage Quantification
	Two Program Security Measures
	Variable-Specific Information Flow

	Policy-Aware Security and Performance Trade-off Analysis
	The PASAPTO Optimization Problem
	GreedyPASAPTO: A greedy heuristic
	GeneticPASAPTO: A genetic algorithm

	A PASAPTO Analysis for Dataflow Authentication
	Implementation
	Evaluation
	Electronic Sealed-Bid Auction
	Decision Tree Evaluation

	Related Work
	Summary

	Conclusion
	Summary
	Outlook

	Publications and Contributions

