
Faculty for Computer Science, Electrical Engineering and Mathematics
Heinz Nixdorf Institute and Department of Computer Science
Research Group Software Engineering

SAFETY REQUIREMENTS ENGINEERING
FOR EARLY SIL TAILORING

PhD Thesis
submitted in partial fulfillment

of the requirements for the degree of
“Doktor der Naturwissenschaften (Dr. rer. nat.)”

by
MARKUS FOCKEL

Supervised by:
Prof. Dr. Eric Bodden

Paderborn, December 2018

ABSTRACT

The high degree of innovation in mechatronic systems domains leads to so-called
cyber-physical systems (CPS) that are characterized by their complex functionality and
communication with their surroundings. The safety-criticality of such systems is categorized
into so-called safety integrity levels (SIL) that are defined by safety standards like ISO 26262.
A determined SIL not only describes the risk of potential harm, it also dictates the required
degree of rigor to be applied in the development of a system to prevent hazards or mitigate
their consequences. A high SIL requires the application of safety measures with a high degree
of rigor in all phases of development, and, thus, implies high safety effort. SIL tailoring is a
means to reduce safety effort by assigning subsystems with a lower SIL if they are separated
from more critical subsystems or fulfill redundant safety requirements.

To plan the required safety effort, SIL tailoring possibilities should be identified as early
as possible, i.e., already during requirements analysis. Due to the complexity of CPS,
it is difficult to elicit and document safety requirements that establish valid SIL tailoring
possibilities. The validity of SIL tailorings has to be analyzed based on failure propagation
paths through the system. However, it is error-prone and time-consuming to determine
failure propagation paths based on requirements that are specified in informal language
and undergo frequent changes. In addition, the validity of applied SIL tailorings has to be
assured by arguments compiled in a so-called safety case. If requirements and applied SIL
tailorings undergo frequent changes, the safety case easily turns inconsistent and requires
high maintenance effort. Existing research approaches work on the design level rather than
requirements, and target only parts of these challenges. No existing approach provides a
seamless SIL tailoring process on the requirements level.

The contribution of this thesis is a systematic, tool-supported SIL tailoring process applied
in safety requirements engineering that copes with the mentioned challenges. The process
uses a model- and scenario-based formal requirements specification language, and provides
a catalog of requirement patterns to support the specification of unambiguous and consistent
safety requirements. Based on these formal requirements, automatically, failure propagation
models are generated and SILs allocated to subsystems. This minimizes the safety analysis
effort to a review task. Finally, a safety case with arguments for the validity of the applied
SIL tailorings is automatically derived from the generated analysis results to automate its
maintenance for consistency.

The SIL tailoring process was evaluated by a case study with two cases from the
automotive domain. The results show that the process is applicable to realistic examples
and reduces the effort for the safety manager.

III

ZUSAMMENFASSUNG

Der hohe Grad an Innovation in mechatronischen Systemen führt zu sogenannten Cyber-
Physical Systems (CPS). Diese sind durch komplexe Funktionalität und Kommunikation mit
ihrer Umgebung charakterisiert. Wie sicherheitskritisch solche Systeme (bzgl. Safety) sind,
wird durch sogenannte Sicherheits-Integritätslevel (SIL) kategorisiert, die durch Normen
wie der ISO 26262 definiert werden. Ein bestimmter SIL beschreibt nicht nur die Höhe
des Gefährdungsrisikos, sondern diktiert auch den erforderlichen Grad an Sorgfalt bei der
Entwicklung des Systems, um Gefahren zu verhindern oder abzumildern. Ein hoher SIL
erfordert die Anwendung von Safety-Maßnahmen mit einem hohen Sorgfaltsgrad in allen
Phasen der Entwicklung und impliziert daher einen hohen Safety-Aufwand. SIL-Tailoring
ist ein Mittel um den Safety-Aufwand zu reduzieren, indem man Subsystemen geringere
SILs zuordnet, falls sie von kritischeren Subsystemen getrennt sind oder redundante Safety-
Anforderungen erfüllen.

Um den nötigen Safety-Aufwand zu planen, sollten Möglichkeiten für SIL-Tailoring so
früh wie möglich identifiziert werden – d.h. bereits in der Anforderungsanalyse. Durch
die Komplexität von CPS, ist es schwierig Safety-Anforderungen zu ermitteln und zu
dokumentieren, die valide Möglichkeiten für SIL-Tailoring eröffnen. Die Validität von
SIL-Tailorings wird bestimmt, indem die Pfade analysiert werden, auf denen Fehler durch
das System propagieren. Allerdings ist es fehleranfällig und zeitaufwändig solche Pfade
basierend auf Anforderungen zu identifizieren, die informell beschrieben sind und häufigen
Änderungen unterliegen. Zusätzlich muss die Validität von angewendeten SIL-Tailorings
durch Argumente begründet werden, die im sogenannten Safety Case zusammengestellt
werden. Wenn Anforderungen und SIL-Tailorings häufigen Änderungen unterliegen, wird
der Safety Case leicht inkonsistent und erfordert hohen Pflegeaufwand. Existierende
Forschungsansätze arbeiten auf dem Design-Level statt auf Anforderungen und adressieren
nur Teile der genannten Herausforderungen. Kein existierender Ansatz stellt einen nahtlosen
SIL-Tailoring-Prozess auf Anforderungsebene bereit.

Der Beitrag dieser Dissertation ist ein systematischer, werkzeugunterstützter SIL-
Tailoring-Prozess, der im Safety Requirements Engineering angewendet wird und die
genannten Herausforderungen bewältigt. Der Prozess nutzt eine modell- und szenario-
basierte, formale Sprache zur Anforderungsspezifikation und stellt einen Katalog von
Anforderungsmustern bereit. Dies unterstützt die Spezifikation von eindeutigen und
konsistenten Safety-Anforderungen. Basierend auf diesen formalen Anforderungen werden
Fehlerpropagierungsmodelle automatisch generiert und Subsystemen automatisch SILs
zugeordnet. Das minimiert den Sicherheitsanalyseaufwand auf eine Review-Aufgabe.
Schließlich wird aus den generierten Analyseergebnissen automatisch ein Safety Case mit

V

Argumenten für die Validität von angewendeten SIL-Tailorings abgeleitet. Dadurch wird die
Safety-Case-Pflege automatisiert.

Der SIL-Tailoring-Prozess wurde durch eine Fallstudie mit zwei Fällen aus der
Automobilbranche evaluiert. Die Ergebnisse zeigen, dass der Prozess auf realistische
Beispiele anwendbar ist und den Aufwand des Safety-Managers reduziert.

VI

DANKSAGUNG

Es gibt viele Menschen, die auf unterschiedlichste Weise zu dieser Arbeit beigetragen haben.
An dieser Stelle möchte ich all diesen Menschen danken.

Zuerst möchte ich mich bei Wilhelm Schäfer bedanken, der mich dabei unterstützte,
den Weg zur Promotion zu beschreiten. Eric Bodden möchte ich dafür danken, dass er
bereitwillig übernahm und mich auf der Zielgeraden dieses Weges begleitete. Ich danke
Eric Bodden und Joel Greenyer für die Anfertigung ihrer Gutachten und auch den weiteren
Mitgliedern meiner Prüfungskommission, Roman Dumitrescu, Matthias Meyer und Stefan
Sauer für ihre Bereitschaft, an meiner Verteidigung teilzunehmen.

Weiterhin danke ich allen ehemaligen und aktuellen Kolleginnen und Kollegen am
Fraunhofer IEM und in der Fachgruppe Softwaretechnik. Hervorheben möchte ich dabei Jörg
Holtmann, Jens Frieben, David Schubert, David Schmelter und Thorsten Koch. Jörg danke
ich für die Zusammenarbeit in der Forschung und die Erhaltung der Kaffeepausentradition.
Darüber hinaus möchte ich Jörg, Jens und David Schubert für die jeweils geteilte Zeit im
gemeinsamen Büro und die erheiternden Momente danken. Außerdem danke ich Jörg, David
Schmelter und Thorsten für die zahlreichen Diskussionen in unserer RE-Expertenrunde.
Matthias Meyer danke ich dafür, dass er als Abteilungsleiter immer hinter mir stand. Für
das Lösen von organisatorischen und technischen Herausforderungen möchte ich mich bei
der Verwaltung am Fraunhofer IEM und in der Fachgruppe bedanken, insbesondere bei Vera
Meyer und Jürgen Maniera.

Ruslan Bernijazov, Patrick Enste, Frederik Knust, Conrad Neumann und Roman
Trentinaglia danke ich für die Zusammenarbeit im Rahmen ihrer SHK-Tätigkeit,
Abschlussarbeit oder Projektgruppe.

Schließlich danke ich insbesondere auch meiner gesamten Familie. Meine Eltern haben
mich stets auf dem Bildungsweg zu diesem Ziel gefördert und unterstützt. Annemarie danke
ich für ihre Liebe und ihr Verständnis für all die kostbare Zeit, die ich in diese Dissertation
investiert habe.

VII

CONTENTS

Abstract III

Zusammenfassung V

Danksagung VII

1 Introduction 1
1.1 Advanced Driver Assistance System EBEAS 3
1.2 Problem Statement . 5
1.3 Overview of the Solution . 9
1.4 Thesis Structure . 11

2 Foundations 13
2.1 Development Process for Safe Cyber-Physical Systems 13
2.2 Automotive Safety Standard ISO 26262 . 18
2.3 Safety Integrity Levels in other Safety Standards 22
2.4 Safety Analysis using Fault Trees . 22

2.4.1 Fault Tree Analysis (FTA) . 23
2.4.2 Component Fault Trees (CFTs) . 24

2.5 ASIL Tailoring . 24
2.5.1 Separation . 24
2.5.2 Decomposition . 26

2.6 Model-based Systems Engineering with CONSENS 28
2.7 Modal Sequence Diagrams (MSDs) . 34
2.8 Goal Structuring Notation (GSN) . 37

3 ASIL Tailoring Process on Functional Safety Requirements 39
3.1 Contributions . 39
3.2 Overview of Process Steps and Work Products 40
3.3 Analyzing the Environment and Hazards . 43
3.4 Specifying Functions and Requirements . 45
3.5 Safety Analysis and ASIL Allocation . 50
3.6 Allocating Functions to System Architecture 55
3.7 Assumptions & Limitations . 57
3.8 Related Work . 57

IX

Contents

3.9 Conclusion . 58

4 Specifying Formal Functional Safety Requirements 61
4.1 Contributions . 62
4.2 System Requirements Specification Contents 62
4.3 Systematic Development and Refinement of Functional Safety Requirements 64

4.3.1 Deriving the Top-Level Function Hierarchy from the Environment . . 64
4.3.2 Structure of MSD Specifications for Functional Safety Requirements 68
4.3.3 Refining the Function Hierarchy and Safety Requirements 69

4.4 Specifying Functional Safety Requirements with MSDs 72
4.4.1 MSD Semantics for Requirements 73
4.4.2 Functional (Safety) Requirement Classes 76

4.5 Integrating MBRE and NLRE for Safety Requirements Engineering 85
4.6 Assumptions & Limitations . 89
4.7 Related Work . 90

4.7.1 Function Hierarchies . 90
4.7.2 Formal Functional Safety Requirements 91
4.7.3 MBRE-NLRE Integration for Safety 92

4.8 Conclusion . 92

5 Safety Analysis and ASIL Allocation on Functional Safety Requirements 95
5.1 Contributions . 96
5.2 Safety Analysis on Functional Requirements 96

5.2.1 Component Fault Tree Meta Model and Profile 98
5.2.2 Linking Hazards to Failures . 102
5.2.3 Generating Component Fault Trees 103

5.3 ASIL Allocation on the Function Hierarchy 110
5.3.1 Calculating ASILs on CFTs . 112
5.3.2 Allocating ASILs to Functions and Functional Safety Requirements . 121
5.3.3 Application to other Safety-Critical Domains 123

5.4 Assumptions & Limitations . 126
5.5 Related Work . 127

5.5.1 Generating Failure Propagation Models 127
5.5.2 ASIL Allocation . 128

5.6 Conclusion . 129

6 Documenting ASIL Tailoring Arguments 131
6.1 Contributions . 132
6.2 Safety Case Construction . 132

6.2.1 Safety Arguments in Goal Structuring Notation Profile 133
6.2.2 Generating Safety Arguments . 138

6.3 Assumptions & Limitations . 144
6.4 Related Work . 146

6.4.1 Safety Argument Notations . 146
6.4.2 Generating Safety Arguments . 146

6.5 Conclusion . 147

X

Contents

7 Evaluation 149
7.1 Prototype Implementation . 149
7.2 Case Study . 152

7.2.1 Context and Cases . 152
7.2.2 Hypotheses . 153
7.2.3 Preparation of the Data Collection 154
7.2.4 Data Collection Procedure . 154
7.2.5 Interpreting the Results . 155
7.2.6 Threats to Validity . 158

8 Conclusion 161
8.1 Summary . 161
8.2 Future Work . 164

Bibliography 165
Own Publications . 165
Supervised Theses . 166
Foreign Publications . 167

List of Abbreviations 179

List of Definitions 181

List of Figures 183

List of Tables 187

A Case Study Models 189

B Paper Contributions 195

XI

1

INTRODUCTION

Systems that were purely mechanical in the past, have evolved into mechatronic systems
that are comprised of mechanical, electric/electronic, and software parts. In the automotive
domain, today 90 percent of innovation is realized by electronics and software [Inv14]. The
number of electronic control units (ECUs) used in cars rapidly increased since 1985 and
reached 70 to 100 ECUs per car in 2009 [Cha09; EJ09]. This high degree of innovation
leads to so-called cyber-physical systems [Aca11] that are characterized by their complex
functionality and communication with other systems and surroundings. Exemplary for this
development is the increasing complexity of advanced driver assistance systems (ADAS) that
are realized by connecting ECUs which previously had separate functionality [WHL+16].
These ADAS make use of huge amounts of sensory data and Vehicle-to-X communication
[Ins12] to automatically take decisions and control brakes or steering. Such systems are not
only complex but also highly safety-critical. If an ADAS unintentionally steers or fails to
brake when necessary, people are in danger. Especially, if drivers fully trust and rely on the
correct functioning of the systems (like Tesla’s Autopilot [Tes16]).

To make safe and profound decisions, ADAS analyze the current driving situation based
on the readings of several sensors and cameras. This integration of data, referred to as sensor
fusion, requires a lot processing power to gain results in real-time. Thus, there is a trend
towards central, powerful ECUs as the brain for decision-making [Bai15; Kus16]. These
central ECUs realize functions with different levels of safety-criticality and, by that, form so-
called mixed-criticality systems. For example, in an emergency braking system, the function
activating the brakes is more safety-critical than the function that warns the following traffic
by activating the hazard lights. A failure of the hazard lights shall not cause a failure of the
brakes. So it is important that functions of different safety-criticality do not interfere with
one another.

A function’s safety-criticality stems from the hazards that are caused by its possible
failures. Each hazard is categorized based on its severity and possibility of occurrence.
The safety standard for automotive systems ISO 26262 [Int11b] categorizes safety-criticality
in so-called Automotive Safety Integrity Levels (ASIL) ranging from ASIL D to ASIL A
(in decreasing order) and QM for non-safety-critical elements. Safety standards for other
domains have similar safety integrity levels (SIL) to categorize safety-criticality (e.g., DAL
for aerospace systems [SAE10] or AgPL for agricultural vehicles [Int10b]). Accordingly, the
concepts presented in this thesis are transferable although the automotive domain is used as
a running example.

The safety-criticality (i.e., the determined SIL) not only describes the risk of potential
harm to people. It also dictates the required degree of rigor to be applied in the development

1

1 Introduction

of a system to prevent the hazards or mitigate their consequences [WC12]. Based on the
SIL, the safety standards prescribe what safety measures have to be applied. These are safety
mechanisms to be integrated into the system (e.g., watchdogs or redundant components) and
safety activities to be executed in different development phases (e.g., performing an FMEA
[Int06a] or work product reviews). It is the responsibility of the safety manager [Int11a] to
make sure these safety measures are fulfilled to the required degree.

The development of mechatronic systems like ADAS requires a strong interplay of
different engineering disciplines. The systems consist of mechanics, electrics/electronics,
and software. To consolidate the disciplines, development processes based on the V model,
like VDI 2206 [VDI04] for mechatronic systems in general and Automotive SPICE [Aut10]
for embedded systems in the automotive industry, are followed. Figure 1.1 depicts the
left side of a V model based on those standards. Development begins with the discipline-
spanning system-level phases system requirements analysis and system architectural design.
Afterwards, development continues in discipline-specific sub-processes for mechanics,
electrics/electronics (E/E), and software (SW). For example, in the software process again
phases for requirements analysis (SW requirements analysis) and design (SW design) are
executed, focusing on the system’s software parts. The right side of the V-model follows
with testing and integration phases.

Hazards

System
Requirements Analysis

System
Architectural Design

Req.
Analys.

SWE/EMech.

SW
Design

SW Construction

Customer
Requirements

……

System Requirements

System Architecture

SW Requirements

SW Design

Figure 1.1: Interdisciplinary development process with work products and ASIL propagation

An ASIL that is determined for a hazard propagates through all following work products
(cf. the red arrow in Figure 1.1). It propagates to the system requirements containing safety
requirements to prevent the hazard, on to the subsystems of the system architecture that
satisfy those safety requirements, on to the discipline-specific safety requirements (e.g., the
SW requirements) that refine the system-level safety requirements, on to the discipline-
specific designs (e.g., SW design), etc. Thus, a high ASIL requires the application of safety
measures with a high degree of rigor in all phases of development. A high ASIL accordingly
implies a high safety effort. Additionally, if system failures that would cause a hazard, are

2

1.1 Advanced Driver Assistance System EBEAS

detected late in the process, this causes expensive iterations to repeat safety measures or
apply additional ones. Hence, the safety manager’s goal is to find possible failures and plan
safety measures as early as possible. Due to the complexity and mixed-criticality of ADAS
and cyber-physical systems in general, reaching this goal is challenging, and may depend on
the expertise and experience of the safety manager.

As an example of a complex, mixed-criticality system, we use an ADAS from the
automotive domain that is introduced in the next section.

1.1 Advanced Driver Assistance System EBEAS

Autonomous Emergency Braking systems automatically detect an imminent crash with a
front vehicle, warn the driver, and also automatically brake to prevent or mitigate the crash.
These systems are part of the Euro NCAP test for vehicle safety since 2014 [Eur14].

Autonomous Emergency Steering systems automatically support the driver’s steering to
keep the vehicle under control when the driver decides to evade an obstacle. Examples of
such systems have been presented by automotive suppliers like Continental [Tut10] and ZF
[ZF 16]. These assistance systems have not yet made it into series production.

The Emergency Braking & Evasion Assistance System (EBEAS) combines the two systems
and automatically decides to brake or evade based on coordination with the surrounding
vehicles via Vehicle-to-Vehicle (V2V) communication [HFK+16].

Figure 1.2 sketches the system’s application scenario. When the leading vehicle suddenly
performs an emergency braking because of obstacles on the road, it automatically warns the
following vehicle ego via V2V communication. ego then has to decide to either brake as well
or evade to the neighboring lane. This decision, on the one hand, is based on the vehicle’s
sensor information and, on the other hand, on V2V communication. ego communicates
with the nearby vehicles following and overtaking: If following can safely brake and come to
a standstill without a crash, ego will decide to brake. Otherwise, ego will ask overtaking
whether it can safely brake such that ego can evade to its lane to solve the situation. If
evading is also no option, ego will perform an emergency braking and warn following. This
will not prevent a crash but mitigate the consequences and is assumed to be less severe than
evading and crashing into overtaking.

following

overtaking

ego
Brake Emergency

Braking

Evade

leading

Vehicle-to-Vehicle Communication

Figure 1.2: EBEAS scenario

The basic principle underlying this system is to first detect and analyze the critical
situation, then make a decision to brake or evade, and finally execute that decision. There

3

1 Introduction

are existing, series production systems that gather information that can be used to detect a
critical situation or are able to control braking or steering. Figure 1.3 shows the EBEAS and
the existing systems that it has to interact with. The Adaptive Cruise Control is connected to
radar sensors in the front of the vehicle and can detect the distance and speed of the leading
vehicle. The Electronic Stability Control uses wheel speed sensors to determine the ego
vehicle’s speed and controls the hydraulic braking system. The Vehicle2X Communication
uses antennas to exchange information with other vehicles (or infrastructure). The Active
Front Steering can electro-mechanically actuate the steering column for the EBEAS (or for
automatic parking). The EBEAS is also connected to further systems to detect the following
and overtaking vehicle, to detect lane markings, to determine the ego vehicle’s driving lane,
and to control the turn signals and brake lights.

EBEAS

ElectronicStabilityControl

AdaptiveCruiseControl

...

Vehicle2XCommunication

...

ActiveFrontSteering

distance,
relative speed

vehicle
speed

brake warning
brake command

brake
warning

steering
command

ASIL B

QM

ASIL D

ASIL D

ASIL C

ASIL C

Id = “H2“
Text = “Missing warning about
hard braking.“
ASIL = ASIL B

«Hazard»
EmcyBrakeWarningOmission

Id = “H3“
Text = “Missing
automatic steering.“
ASIL = ASIL D

«Hazard»
SteeringOmission

Id = “H1“
Text = “Missing
automatic hard braking.“
ASIL = ASIL D

«Hazard»
HardBrakingOmission

Id = “H...“
Text = “...“
ASIL = ...

«Hazard»
...

Figure 1.3: EBEAS ECU, interacting systems, and hazards

This shows that an ADAS like this is a complex system comprised of the interaction of a
number of ECUs, sensors, and actuators. The different information gathered from the sensors
and V2V messages has to be combined (sensor fusion) to get a thorough understanding of
the situation.

The system is highly safety-critical (ASIL D), as it interferes with brakes and steering.
However, it also is a mixed-criticality system because the interacting systems like the
Adaptive Cruise Control or the Vehicle2X Communication contain preexisting functionality
with lower criticality. In Figure 1.3 the surrounding preexisting systems are annotated
with predetermined ASIL values. These stem from hazard analyses based on their prior
usage without an EBEAS [Cot13; Cro15]. The Electronic Stability Control and the Active
Front Steering are ASIL D systems as they control brakes and steering. The Adaptive
Cruise Control and some other existing systems that do not directly interfere with brakes
or steering are ranked ASIL C. The Vehicle2X Communication is used to display warnings
about upcoming road hazards via the infotainment system to the driver. In its prior usage, it

4

1.2 Problem Statement

does not interfere with vehicle control systems. Thus, it is not considered safety-critical and
assigned with QM.

Some hazards that are caused by possible failures of the EBEAS are shown in the bottom
of Figure 1.3. The first hazard H1 is the missing automatic hard braking. It occurs if the
EBEAS fails to decide to brake when it should, such that the Electronic Stability Control is
not signaled to activate the braking maneuver. Hazard H3 analogously describes the missing
automatic steering for an evasion maneuver. Both of these hazards are assigned with the
highest ASIL value of ASIL D, as they regard the highly safety-critical brakes and steering.
Hazard H2 is the missing warning of the following vehicle about a hard braking once the
EBEAS decided to perform an emergency braking maneuver. As this is only a warning to a
following vehicle that still could detect the critical situation on its own, this hazard is assigned
with ASIL B only.

The EBEAS has to be developed with the degree of rigor of the highest ASIL that is
assigned to one of its hazards. Thus, the EBEAS is an ASIL D system. However, as
there is at least one hazard (H2) with a lower ASIL value, parts of the EBEAS (e.g., the
communication functionality) might possibly be developed with less rigor. So, the EBEAS
is a mixed-criticality system in itself.

To develop a safe EBEAS with reasonable time and effort, the safety manager has two
goals: to early on make sure
• that the predetermined ASIL values assigned to the surrounding systems do not need

to be increased, and
• that as much as possible of the EBEAS itself can be developed in accordance with a

low ASIL value.

1.2 Problem Statement

A high ASIL requires the application of safety measures with a high degree of rigor. A high
ASIL accordingly implies a high safety effort. However, less critical parts of the system
should not require the same high safety effort. If parts of the safety requirements (and the
subsystems satisfying them) can be assigned with a lower ASIL, this could reduce the safety
effort because less rigorous safety measures are required [APW+14]. To reduce the number
of high ASIL requirements and subsystems, the safety manager can apply so-called ASIL
tailoring [Int11h]. It is a means to
• separate subsystems (incl. their safety requirements) with different ASILs and to
• decompose safety requirements into redundant safety requirements with lower ASILs.

For example, if the non-safety-critical infotainment system of the vehicle is separated from
the safety-critical EBEAS, it may keep its low ASIL (i.e., QM). If the sensing of the distance
to the leading vehicle can be decomposed onto two redundant and independent sensors, they
both may be assigned with a lower ASIL than a single sensor.

The resulting system has to stay safe although the planned safety effort is reduced.
Accordingly, the validity of each applied tailoring has to be assured by safety analysis (e.g.,
FTA or FMEA): Separated subsystems may not cause more critical subsystems to fail, and
decomposed subsystems may not fail for the same reason. This can be argued by analyzing
the propagation paths of the identified possible failures.

5

1 Introduction

The ASIL tailoring rules are explicitly defined in ISO 26262 for the automotive domain
[Int11h]. The underlying principles are transferable to other mechatronic systems domains
(e.g., aerospace [SAE10]), and always the validity of each tailoring has to be assured by
safety analysis.

The separation and decomposition of safety-critical functionality for ASIL tailoring can
be applied in different phases of development. The earlier in the development process it is
applied, the less effort for safety measures is required in following development phases (cf.
ASIL propagation in Figure 1.1). Existing research approaches are applied in the phases
of system architectural design or software design [APW+14; MAL+12]. They calculate an
ASIL allocation to subsystems of a technical architecture with known failure propagation and
safety mechanisms already in place. They assume that ASIL tailoring measures (separation
and decomposition) have already been applied – both on requirements and architectural level.

However, ASIL tailoring is not a design task in the responsibility of system designers
[She96] or software architects. It is the responsibility of the safety manager and should be
performed during requirements engineering on functional, technical, and software/hardware
safety requirements [Int11h; WC12]. The reason is that ASIL tailoring is not about reducing
the probability of random (hardware) failures, it considers deterministic failures that are
reduced by systematic changes. The solution space for such changes is higher on the
requirements level. For example, ASIL tailoring by decomposition does not necessarily
require introducing additional, redundant subsystems. It can also be realized by decomposing
a safety requirement into requirements that are satisfied by independent subsystems that exist
in the system anyways: The EBEAS requirement to detect the hard braking of the leading
vehicle can be satisfied by the Vehicle2X communication receiving a warning message and
by the adaptive cruise control sensing the sudden decrease of distance. The Vehicle2X
communication and the adaptive cruise control are both part of the vehicle anyways. Hence,
this requirements decomposition avoids the effort for safety measures like adding additional
sensors or antennas.

The safety manager’s goal is to find possible failures and plan safety measures as early as
possible to reduce expensive development iterations and achieve foreseeable safety effort.
A high ASIL requires high effort for safety measures because it propagates through all
development phases (cf. Figure 1.1). ASIL tailoring is a means to reduce the safety effort
in following development phases. Therefore, the safety manager’s goal is to apply ASIL
tailoring as early as possible, i.e., already on the requirements level. However, this goal is
hindered by the following challenges.

C1: Complexity of Mixed-Criticality Systems

ADAS are complex systems that have to realize many requirements. For example, the
EBEAS (s. Section 1.1) makes use of huge amounts of sensory data and vehicle-to-X
communication to automatically take decisions and control brakes and steering. The
EBEAS directly communicates with about eight other ECUs, which are again connected
to further ECUs, sensors, and actuators that comprise the EBEAS functionality. In addition,
complexity also stems from the different driving situations, number and position of other
vehicles, environmental conditions, etc. that have to be considered. Moreover, ADAS
are developed interdisciplinary. The requirements have to be realized by mechanics,
hardware, and software. This is a source of complexity which introduces dependent

6

1.2 Problem Statement

failures, crossing the disciplines (e.g., a software failure leading to a hardware failure),
which are difficult to identify. Altogether, the complexity of ADAS puts a challenge
on thoroughly identifying failures and their propagation through the system [HWK+14;
ZRH16]. However, the identified failures are a prerequisite for planning safety measures
and applying ASIL tailoring.

ADAS are mixed-criticality systems that span multiple subsystems of a vehicle. Some
ECUs realize functions for different ADAS with different levels of safety-criticality. The
ECUs that are connected to the EBEAS ECU realize driver assistance systems, like the
adaptive cruise control, with their own safety-criticality levels (cf. predetermined ASIL
values in Figure 1.3) which differ from the safety-criticality of the EBEAS. The EBEAS
ECU contains subfunctions of different criticality (cf. different ASIL values of the hazards
in Figure 1.3) and, thus, is a mixed-criticality system in itself. Furthermore, there is a trend
towards central, powerful ECUs that provide information in real-time to ADAS of different
criticality and, thus, form mixed-criticality systems. In addition, the centralization onto
mixed-criticality ECUs is inevitable because of the limited physical space for ECUs in a
vehicle. The mixed-criticality requires the application of ASIL tailoring to ensure the safety
of the overall vehicle by separating subsystems of lower safety-criticality and decreasing the
number and complexity of highly safety-critical subsystems.

To cope with complexity of ADAS and cyber-physical systems in general, systems
engineering methods [Int08; Int15] are used that deal with interdisciplinary development,
especially in the early system requirements analysis and system architectural design phases
(cf. Figure 1.1). Unfortunately, the processes of systems engineering and safety engineering
are not well-integrated. They use different vocabulary, paradigms, and tools [HWK+14].
Moreover, requirements engineering is considered to be a part of systems engineering, but
hazard analysis and other safety analyses are considered to be a part of safety engineering
[HWK+14]. This bad integration hinders identification of failure propagation paths and
ASIL tailoring possibilities on the requirements level.

The complexity and mixed-criticality of systems also infers complex, mixed-criticality
requirements specifications which are typically only specified in informal language. Informal
language is prone to ambiguity, incompleteness, and inconsistency. Together with the
bad integration of systems and safety engineering processes, this leads to error-prone and
incomplete safety analysis and ASIL tailoring results. What the safety manager needs is
“having a requirements specification in a form that is understandable, amenable to analysis,
and precise enough” [HWK+14].

C2: Safety Requirements Engineering Dilemma

To apply valid ASIL tailoring, the possible system failures and their propagation paths
through the system need to be known. Unfortunately, there is a problem known as the safety
requirements engineering dilemma [Ber98]. It states that a system’s possible failures and
resulting hazards can best be found late in the development process, but are ideally already
known during requirements engineering. In the later phases of the development process most
system details are known (i.e., during SW construction or the testing and integration phases).
So it is easier to identify possible failures. However, changing the system to prevent or
mitigate a failure, then causes expensive development iterations (e.g., changing system and
SW requirements, changing SW/HW design, changing code and electronics). So, failures

7

1 Introduction

ideally would be found early, such that the safety manager can plan safety measures, ASIL
tailoring, and resulting safety effort from the beginning and avoid iterations.

In the automotive domain, a functional architecture of the system is used to identify
failure propagation paths through the system early [MFH15]. In the avionics domain, a
safety analysis called Functional Hazard Analysis [SSK14] is applied, which “should be
accomplished as early as possible in the systems engineering process” [Dep12]. Such safety
analyses are conducted manually. Thus, for complex systems, they are prone to errors,
based on experienced expert’s knowledge, and time-consuming. Additionally, on the earlier
requirements level, safety analyses are prone to incompleteness. Whenever new information
about failures is gained, the safety analyses have to be repeated. Therefore, in practice,
safety analyses are currently not performed on the requirements level, but rather on later,
more stable work products.

To reduce the manual effort, existing research approaches conduct automated safety
analyses on the technical system architecture [CJL+08; Dor14]. However, automated safety
analysis on a requirements level, especially for ASIL tailoring on that level, has not yet been
considered. In general, safety analysis automation is seen as an open challenge [HWK+14].

The validity of applied ASIL tailoring measures has to be assured by safety analysis. As
safety analysis is not conducted on the requirements level in practice, also ASIL tailoring is
not applied on the requirements level. As existing research approaches conduct automated
safety analyses on technical architectures only, also existing ASIL tailoring approaches work
on technical architectures only [APW+14; MAL+12]. However, the safety manager needs
support in early safety analysis and ASIL tailoring on the requirements level.

C3: Safety Case Construction and Maintenance

Safety standards like the ISO 26262 require a so-called safety case [Int11c], which provides
the “argument that the safety requirements for an item are complete and satisfied by evidence
compiled from work products of the safety activities during development” [Int11a]. The
safety manager has to argue the validity of each applied ASIL tailoring in the safety case.
For the EBEAS, evidence could be safety analysis results that show that the subsystems with
different assigned ASILs are non-interfering and that decomposed subsystems do not fail for
the same reason.

As safety analyses are time-consuming and error-prone in early development stages
(cf. previous challenges), ASIL tailoring is applied on technical architectures rather than
functional models of the requirements analysis phase. Consequently, safety cases are not
built in that phase either. Building a safety case with arguments for early ASIL tailoring
requires traceability throughout the whole development process (from the initial hazards to
the safety requirements, to introduced safety mechanisms, to safety analysis results). The
industry already identified the need to start building the safety case from the beginning of
the development process, but still misses supporting methods and tools [ZRH16]. Reverse
engineering the safety case in the end of development is a manual, tedious, and error-
prone task that may identify missing safety measures and, thus, cause expensive process
iterations. In research, approaches exist that describe ways to document a safety case
[Kel98; Ass18] and patterns to apply in a safety case [KM97; DP13]. However, there is
no approach that automatically constructs and maintains the safety case according to an
applied ASIL tailoring. In fact, safety case automation was identified as open challenge

8

1.3 Overview of the Solution

[HWK+14]. Altogether, the safety manager needs automated support in safety case
maintenance, including ASIL tailoring arguments.

1.3 Overview of the Solution

In order to tackle the challenges identified in the previous section, we propose a systematic,
tool-supported ASIL tailoring process working on functional safety requirements [Int11d] in
the system requirements analysis phase. The tailoring process is integrated into a systems
engineering method [Int08; Int15] that deals with the interdisciplinary development of
complex systems like ADAS and cyber-physical systems in general.

To cope with complexity, abstraction from details is a common approach. Therefore,
development processes like Automotive SPICE [Aut10] and safety standards like ISO 26262
[Int11e] include a discipline-spanning system architecture (cf. Figure 1.1) prior to discipline-
specific architectures. According to ISO 26262, the system architecture shall be modular,
have adequate level of granularity, be simple, and avoid unnecessary complexity [Int11e].
Because of the increasing complexity of ADAS and cyber-physical systems in general, a
further abstraction level is proposed to focus on a system’s functionality prior to its technical
realization [LW10][VEF+12][EAS13][GRS14, Sect. 4.1]. This function hierarchy is used to
bridge the gap between requirements and technical system architecture. Pahl et al. describe
the function hierarchy as a means to decompose a system’s complex functionality into
subfunctions, to focus on the essential, to negotiate with stakeholders, and to come up with
possible structures of the system architecture [PBF+06].

In order to tackle the challenge of complexity of mixed-criticality systems (C1), our
process uses such a functional abstraction of the system under development (SUD) in form of
a function hierarchy. It is used to structure and decompose the requirements (esp. the safety
requirements), as suggested by the requirements engineering standard ISO 29148 [Int11i].
In addition, the requirements are specified in a graphical, scenario-based modeling language
to improve understandability of requirements specifications and cope with the complexity
of different application scenarios (e.g., EBEAS driving scenarios with and without an
overtaking vehicle). Furthermore, the language is formal, and thus, precise and amenable
to analysis (e.g., for requirements validation [BGP13] and verification [GBC+13]).

To reduce the safety requirements engineering dilemma (C2), our tool-support
automatically identifies failure propagation paths in the function hierarchy based on the
requirements specified in the formal modeling language. Hence, the effort for repeated,
manual safety analyses on the requirements level is minimized.

To support the construction and maintenance of a safety case from the beginning
of development (C3), in our approach, a model-based safety argument is automatically
generated and updated whenever an ASIL tailoring is applied on the function hierarchy.

Figure 1.4 shows the process steps and created/required work products of the ASIL
tailoring process as a UML activity diagram [Obj15b]. The left of the figure is annotated
with the corresponding early system phases of the V model (cf. Figure 1.1) in which the
process steps are executed and the responsible roles.

In the early system phases, systems engineering methods are applied. Thus, the ASIL
tailoring process needs to be integrated with such a method. As an example of an established
model-based systems engineering method, we use CONSENS [GRS14, Sect. 4.1] in this

9

1 Introduction

S
ys

te
m

 R
eq

ui
re

m
en

ts
 A

na
ly

si
s

S
ys

te
m

A

rc
h.

D

es
ig

n

act ASIL Tailoring Process

S
ys

te
m

D

es
ig

ne
r,

S

af
et

y
M

an
ag

er

1. Analyze Environment and Hazards

2.3. Generate
Failure Propagation Model

for Function Hierarchy

2.4. Calculate
ASIL Allocation for
Function Hierarchy

2.2. Develop/Refine
(Safety) Requirements

for Functions

3. Define System Architecture and
Allocate Functions to System Elements

2.1. Develop/Refine
Function Hierarchy

[else]

Customer
Requirements

System
Architecture

Function
Hierarchy

Functional
(Safety)

Requirements

Failure Propagation
Model

Function Hierarchy
with Tailored ASILs

Environment and
Hazards with ASILs

R
eq

ui
re

m
en

ts
 E

ng
in

ee
r,

S
af

et
y

M
an

ag
er

[functions sufficiently trivial and
ASIL allocation reasonable]

Safety Argument

Figure 1.4: Overview of ASIL tailoring process steps and work products

thesis. In Step 1 of the ASIL tailoring process, the CONSENS environment model for the
SUD is specified and analyzed for hazards. The environment model describes the interfaces
of the SUD and its surrounding systems in the context that it has to interact with. In addition,
we specify the hazards (incl. their ASIL value) that could be caused by failures occurring on
the interfaces of the SUD. The hazards are identified through a hazard analysis on the SUD
as a black-box and its context [Int11d]. Figure 1.3 sketches an example of an environment
model with hazards for the EBEAS.

In Step 2.1 the CONSENS Function Hierarchy is developed. It describes a break down of
the overall functionality of the SUD, represented by a root function, into sub-functions until
technical realizations can be found. Each function describes how a sub-task of the overall
system is fulfilled by producing outputs based on given inputs. We extend the CONSENS
function hierarchy to specify this information flow through the functions as a structural basis
for the formal requirements and failure propagation paths.

In Step 2.2, the requirements (esp. the safety requirements) of each function are specified
using a formal modeling language. We use Modal Sequence Diagrams (MSDs) that are a

10

1.4 Thesis Structure

formal, scenario-based requirements language based on UML sequence diagrams [HM08;
Gre11; HFK+16]. Requirements specified in this language can automatically be processed
to identify failure propagation paths.

To find possible ASIL tailoring solutions and to verify that an applied tailoring meets its
safety requirements, safety analyses have to be performed. As requirements are iteratively
refined while developing the function hierarchy and applying ASIL tailoring, and because
of the safety requirements engineering dilemma, the safety analyses should require only
reasonable effort. Thus, in the automated Step 2.3, the safety manager generates a Failure
Propagation Model based on fault trees to be used for safety analysis. The failure propagation
model is generated from the structure of the function hierarchy and the behavior described
in the formal functional (safety) requirements. The failure propagation model is used to
calculate valid, tailored ASIL values for the functions of the function hierarchy in the
automated Step 2.4. Also in Step 2.4, a safety argument is constructed that connects and
traces the work products of the ASIL tailoring process to maintain a safety case in form of
a model using the Goal Structuring Notation (GSN) [Ass18] as suggested by ISO 26262
[Int12b].

The steps 2.1 to 2.4 are iterated until the tailored ASILs of the functions meet the safety
manager’s expectations and the detail level of the functions is sufficiently trivial to be realized
by technical elements of the System Architecture.

In the final Step 3, the system architecture is defined by the system designer [She96]
(as CONSENS active structure) and the functions are allocated to their realizing system
elements. Afterward, the functional safety requirements of the functions are refined into
technical safety requirements [Int11e] that have to be satisfied by the system elements that
the functions have been allocated to. Following, safety analyses on the system architecture
have to be performed to show that the ASIL tailoring on functional level remains valid on the
system level.

1.4 Thesis Structure

This thesis is structured as follows. Chapter 2 provides the foundations for the following
chapters. Chapter 3 describes the ASIL tailoring process in detail. In Chapter 4, the language
and method for specifying formal functional (safety) requirements and the integration
with natural language requirements are explained. Chapter 5 goes into detail on the
generation of the failure propagation model and its usage for ASIL allocation to functions.
Chapter 6 describes the construction of model-based safety arguments. The prototypical
implementation and evaluation of the approach are explained in Chapter 7. Chapter 8
concludes the thesis. In addition, Appendix A contains details on the models used for the
evaluation and Appendix B on my paper contributions.

11

2

FOUNDATIONS

This chapter introduces the terms, languages, and methods that are necessary to understand
the concepts presented in this thesis. Section 2.1 introduces the development process for
cyber-physical systems underlying the approach of this thesis. In Section 2.2, the automotive
safety standard ISO 26262 is introduced. Section 2.3 gives on overview of other safety
standards and their safety integrity levels. In Section 2.4, the basics of safety analysis
using fault trees are explained. Section 2.5 describes the two ASIL tailoring measures
defined by ISO 26262. The sections 2.6, 2.7, and 2.8 give an overview of the model-
based systems engineering method CONSENS, Modal Sequence Diagrams, and the Goal
Structuring Notation, respectively.

2.1 Development Process for Safe Cyber-Physical Systems

Cyber-physical systems [Aca11] are characterized by their complex functionality and
communication with other systems and surroundings. They have evolved from mechatronic
systems that are comprised of mechanical, electric/electronic, and software parts. The
development of such complex systems requires the application of systems engineering as
an interdisciplinary approach and means to enable their successful realization [Int15; Int08].
Figure 2.1 shows the development process for mechatronic systems of VDI 2206 [VDI04]
following the V model. Especially in its phase of system design interdisciplinary systems
engineering methods like CONSENS (cf. Section 2.6) are applied. Based on requirements a
system architecture is designed that forms the common ground for development in discipline-
specific design. The discipline-specific design is split up into the disciplines of mechanical
engineering for mechanical system parts, electrical engineering for electric/electronic system
parts, and information technology for software parts. Afterward, system-level test and
integration is done in the phase of system integration resulting in the final product.

The complexity of cyber-physical systems also implies complexity of their requirements.
Hence, their development requires the application of thorough requirements engineering
[Int11i; IG14]: “Requirements engineering is concerned with discovering, eliciting,
developing, analyzing, determining verification methods, validating, communicating,
documenting, and managing requirements” [Int11i]. Automotive SPICE [Aut10] is a
specialization of the general process maturity model SPICE [Int12a] for the automotive
domain. Its development process is shown in Figure 2.2. In contrast to VDI 2206, it
decomposes the phase of system design into two phases to explicitly account for requirements
engineering: Its phase of ENG.2 system requirements analysis precedes the phase of

13

2 Foundations

Assurance of Properties

System
 Design

Discipline-specific Design

Electrical Engineering
Information Technology

Modeling and Analysis

Mechanical Engineering

Requirements Product

Sy
st

em
 In

te
gr

at
io

n

Figure 2.1: VDI 2206 V model [VDI04]

Customer Requirements

ENG.3
System

Architectural
Design

ENG.4
Software

Requirements
Analysis

ENG.8
Software
Testing

ENG.7
Software

Integration
Test

Product

ENG.5
Software
Design

ENG.10
System
Testing

ENG.2
System

Requirements
Analysis

ENG.9
System

Integration
Test

ENG.6 Software Construction Software Unit Testing

Figure 2.2: Automotive SPICE V model

14

2.1 Development Process for Safe Cyber-Physical Systems

ENG.3 system architectural design. After these two system-level phases, Automotive SPICE
focuses on the software development phases ENG.4 to ENG.8 (cf. information technology in
VDI 2206). Finally, it also splits the phase called system integration in VDI 2206 into two
phases ENG.9 system integration test and ENG.10 system testing, in order to distinguish
tests against the system architecture and against the system requirements as specified in the
first two phases on the left side of the V model.

The development of safe cyber-physical systems requires the application of safety
engineering throughout the whole development process: “System safety engineering is
a compilation of engineering analyses and management practices that control dangerous
situations” [Bah14]. This are activities to

• identify the hazards in a system,
• determine the underlying causes of those hazards,
• develop engineering or management controls to either eliminate the hazards or mitigate

their consequences,
• verify that the controls are adequate and in place, and
• monitor the system after it has been changed and modify further as needed [Bah14].

Figure 2.3 shows an excerpt of the development process as prescribed by the automotive
safety standard ISO 26262 [Int11f] (cf. Section 2.2). The excerpt focuses on the system and
software phases related to Automotive SPICE as shown in Figure 2.2. The number to the
left of each phase references the according section of the standard (3-x [Int11d], 4-x [Int11e],
6-x [Int11f]). In phases 3-8 and 4-6 system-level safety requirements are specified (i.e.,
functional safety requirements and technical safety requirements, cf. Section 2.2). Hence,
these phases can be integrated with phase ENG.2 of Automotive SPICE. The phase 4-7
adds safety engineering measures to the system architectural design phase ENG.3. The
phase 4-8 adds safety engineering measures to the system-level test and integration phases
ENG.9 and ENG.10. The phases 6-6 to 6-11 add safety engineering measures to the software
development phases ENG.4 to ENG.8.

In conclusion, the development of safe cyber-physical systems requires sophisticated
methods for systems, requirements, and safety engineering in sync with development
processes as demanded by standards like VDI 2206, Automotive SPICE, and ISO 26262.
Figure 2.4 shows an interdisciplinary development process that integrates the views of those
three standards. Customer requirements are the initial input to the development process and
specifically to the system requirements analysis phase. The output of that phase are system
requirements that include the functional and technical safety requirements of ISO 26262.
Output of the system architectural design is the system architecture that forms the basis
for the discipline-specific phases of mechanical, electric/electronic (E/E), and software
engineering. The discipline-specific integration and test phases are followed by system
integration test and system test. Finally, the cyber-physical system is the product of the
development process.

In such a development process many persons are involved. They assume one or several
roles that are responsible for the tasks of the different development phases. Figure 2.5 shows
the roles that are relevant for the remainder of this thesis.

15

2 Foundations

Item testing

Software testing

Software testing

Software testingSoftware unit design and
implementation6-8

Specification of
software safety requirements6-6 Verification of

software safety requirements6-11

 Software architectural design6-7 Software integration and
testing6-10

Software unit testing6-9

System design4-7

Specification of
technical safety requirements4-6

Functional safety concept3-8

 Item integration and testing4-8

Figure 2.3: ISO 26262 V model

System
Requirements Analysis

System
Architectural Design

Req.
Analys.

SWE/EMech.

SW
Design

SW Construction SW Unit-Testing

SW
Integr.

SW
Test

Test

System
Integration Test

System
Test

Customer
Requirements Product

……

Verification

Verification

Verification

Verification

Verification

Figure 2.4: Interdisciplinary development process for cyber-physical systems

16

2.1 Development Process for Safe Cyber-Physical Systems

Safety
Manager

Requirements
Engineer

System
Designer

System
Requirements

Engineer

Software
Requirements

Engineer

Role

Engineer

Mechanical
Engineer

Electrical
Engineer

Software
Engineer

0..*

delegatesSafetyTasksTo

Figure 2.5: Roles in the development process

DEFINITION 2.1 (SAFETY MANAGER)
“The safety manager shall be responsible for the planning and coordination of the functional
safety activities in the development phases of the safety lifecycle” [Int11c]. “The safety
manager can delegate tasks to persons that possess the required skills, competences and
qualifications” [Int11c]. The safety manager is responsible for the safety activities (Def. 2.8;
e.g., safety analysis) and safety work products (e.g., hazards, safety requirements, and safety
case).

In this thesis, whenever we refer to the safety manager doing something, like e.g., writing
safety requirements, it is possible that he/she actually delegates that task to a requirements
engineer.
DEFINITION 2.2 (REQUIREMENTS ENGINEER)
The requirements engineer is a person who – in collaboration with stakeholders – elicits,
documents, validates, and manages requirements [IG14].

DEFINITION 2.3 (SYSTEM REQUIREMENTS ENGINEER)
The system requirements engineer is a requirements engineer that is responsible for system-
level requirements engineering (i.e., the system requirements analysis phase) and work
products (e.g., functional requirements and function hierarchy). We consider this role a
synonym for the requirements owner defined by Sheard [She96] and used in the integrated
system and software development process for cyber-physical systems of Holtmann et al.
[HBM+16].

DEFINITION 2.4 (SOFTWARE REQUIREMENTS ENGINEER)
The software requirements engineer is a requirements engineer that is responsible for
software-specific requirements engineering (i.e., the software requirements analysis phase)
as described by Holtmann et al. [HBM+16].

17

2 Foundations

DEFINITION 2.5 (SYSTEM DESIGNER)
The system designer is responsible for the phase of system architectural design and the
system architecture as defined by Sheard [She96] and used by Holtmann et al. [HBM+16].

For simplicity, we compile all discipline-specific tasks into the roles mechanical engineer,
electrical engineer, and software engineer in this thesis (except for the software requirements
engineer, cf. Definition 2.4). We consider these roles responsible for discipline-specific
design, implementation, and test.

2.2 Automotive Safety Standard ISO 26262

“ISO 26262 is the adaptation of IEC 61508 [Int10a] to comply with needs specific to
the application sector of electrical and/or electronic (E/E) systems within road vehicles.
ISO 26262 is intended to be applied to safety-related systems that include one or more
electrical and/or electronic (E/E) systems and that are installed in series production passenger
cars with a maximum gross vehicle mass up to 3.5 t.” [Int11a]

In general, ISO 26262 specifies what safety measures (cf. Definition 2.6) have to be taken
to develop, produce, and operate a safe vehicle.

DEFINITION 2.6 (SAFETY MEASURE)
A safety measure is a safety activity (Def. 2.8) or safety mechanism (Def. 2.7) to avoid or
control systematic failures and to detect or control random hardware failures, or mitigate
their harmful effects [Int11a].

DEFINITION 2.7 (SAFETY MECHANISM)
A safety mechanism is a technical solution implemented by E/E functions or elements, or by
other technologies, to detect faults or control failures in order to achieve or maintain a safe
state [Int11a].

DEFINITION 2.8 (SAFETY ACTIVITY)
A safety activity is an activity performed in one or more subphases of the safety life cycle
[Int11a]. Examples are the HARA (Def. 2.12) and safety analyses (Def. 2.9) like FMEA.

DEFINITION 2.9 (SAFETY ANALYSIS)
“The objective of safety analyses is to examine the consequences of faults and failures on
the functions, behaviour and design of items and elements. Safety analyses also provide
information on conditions and causes that could lead to the violation of a safety goal or
safety requirement.” [Int11h]
Safety analyses include FMEA and FTA [Int11h].

ISO 26262 consists of the nine normative Parts 1 to 9 and an informative Part 10. Part 1
defines the terms used throughout the standard. In Part 2, a safety life cycle from the concept
phase (Part 3), over development (Parts 4 to 6), to the phases of production, operation,
service, and decommissioning (Part 7) is defined. Part 8 specifies requirements on supporting
processes like configuration and change management. Part 9 contains requirements on safety
analyses and defines the rules for ASIL tailoring (cf. Section 2.5). The informative Part 10
provides a guideline on the standard, e.g., concerning its understanding and the specification
of a safety case (cf. Definition 2.10).

18

2.2 Automotive Safety Standard ISO 26262

DEFINITION 2.10 (SAFETY CASE)
The safety case is “an argument that the safety requirements for an item are complete and
satisfied by evidence compiled from work products of the safety activities [Def. 2.8] during
development” [Int11a]. “The safety case should progressively compile the work products
that are generated during the safety lifecycle” [Int11c].

The left of Figure 2.6 shows an excerpt from the concept and development phases of
ISO 26262 annotated with the respective part (and section) number. In ISO 26262, the
system under development is called item. During item definition the system boundary is
defined, i.e., what is part of the item and what is part of its environment. Afterward, during
hazard analysis & risk assessment (cf. Definition 2.12), hazards (cf. Definition 2.11) of
the item are identified, and their risk is determined and specified in form of an ASIL value
(Automotive Safety Integrity Level). ASIL values are ranging from ASIL D to ASIL A (in
decreasing order) and QM for non-safety-critical elements.

DEFINITION 2.11 (HAZARD)
A hazard is a potential source of physical injury or damage to the health of persons [Int11a].

DEFINITION 2.12 (HAZARD ANALYSIS & RISK ASSESSMENT)
Hazard Analysis & Risk Assessment (HARA) is “a method to identify and categorize
hazardous events of items and to specify safety goals and ASILs related to the prevention
or mitigation of the associated hazards in order to avoid unreasonable risk” [Int11a].

In general, the risk of a hazard is defined as the combination of its likelihood of occurrence
and the severity if the hazard occurs (Risk = Likelihood × Severity). In ISO 26262, the
likelihood is approximated by exposure (e.g., how often is the system in situations where
the hazard could occur) and controllability (in how far can the hazard be avoided by timely
reactions of involved persons). Hence, the ASIL of a hazard is determined by the three
metrics exposure, controllability, and severity:
ASIL = Risk = Likelihood × Severity = (Exposure × Non-Controllability) × Severity.

From the identified hazards, so-called Safety Goals are derived that represent top-level
requirements to prevent or mitigate the hazards. Each safety goal inherits the ASIL assigned
to the corresponding hazard. During the definition of the functional safety concept, the safety
goals are refined into Functional Safety Requirements (FSRs) specified on a Preliminary
Architecture. Each functional safety requirement inherits the maximum ASIL of the safety
goals it refines.

During product development on system level, the functional safety requirements are
refined into Technical Safety Requirements (TSRs) that specify requirements on the
discipline-spanning System Design. Each technical safety requirement inherits the
maximum ASIL of the functional safety requirements it refines. During product development
on hardware level, technical safety requirements are refined into Hardware Safety
Requirements that specify requirements on the Hardware Detailed Design. Each hardware
safety requirement inherits the maximum ASIL of the technical safety requirements
it refines. Similarly, during product development on software level, technical safety
requirements are refined into Software Safety Requirements that specify requirements on
the Software Architectural Design. Each software safety requirement inherits the maximum
ASIL of the technical safety requirements it refines.

19

2 Foundations

F
u

n
ctio

n
a

l
sa

fety co
n

cep
t

3-8

H
a

zard
 an

alysis
an

d
 ris

k ass
ess

m
en

t
3-7

Item
 d

efin
itio

n
3-5

P
ro

d
u

c
t d

ev
elo

p
m

e
n

t
S

ys
tem

 leve
l

4H
a

rd
w

a
re

leve
l

5
S

o
ftw

a
re

leve
l

6

Optional
Safety Analyses

Required
Safety Analyses

H
aza

rd
s

w
ith

 A
S

IL

S
afety

G
o

als

F
u

n
ctio

n
al

S
afety

R
eq

u
irem

en
ts

derived
From

refine

refine

refine
refine

P
relim

in
ary

A
rch

itectu
re

S
ystem

D
esig

n

H
ard

w
are

D
etailed

D
esig

n

S
o

ftw
are

A
rch

itectu
ral

D
esig

n

satisfies

satisfies

satisfies
satisfies

T
ech

n
ical

S
afety

R
eq

u
irem

en
ts

H
ard

w
are

S
afety

R
eq

u
irem

en
ts

S
o

ftw
are

S
afety

R
eq

u
irem

en
ts

A
SIL

P
ropagation

Figure
2.6:E

xcerptofISO
26262

safety
life

cycle
phases

w
ith

w
ork

products
and

A
SIL

propagation

20

2.2 Automotive Safety Standard ISO 26262

Safety analyses support the safety manager to identify failures and failure propagation
paths through the system, and, thus, to define corresponding safety requirements. ISO 26262
requires to apply safety analyses in the product development phases 4 to 6. In the earlier
phases 3-5 to 3-8 they are only considered optional.

As a refinement of Figure 1.1 on page 2, the red, thick arrows in Figure 2.6 highlight
the ASIL propagation. Each ASIL value is initially determined for an identified hazard,
and propagates over the different safety requirement abstraction levels to the corresponding
system-level and discipline-specific designs. Based on the ASIL of a requirement or design
element, ISO 26262 requires the application of safety measures (cf. Definition 2.6) of
different sophistication and effort. Hence, a high ASIL that propagates through all phases
results in a high safety effort.

The term “functional”
The term “functional” has several meanings in the different fields we touch in this thesis:
We have to distinguish functional safety, functional safety requirement, and (non-)functional
requirement. Functional safety is concerned with safe system behavior (cf. Definition 2.13).
Functional safety requirements (cf. Definition 2.14), technical safety requirements, and
hardware/software safety requirements denote the three safety requirement abstraction
levels used in ISO 26262 (cf. Figure 2.6). Orthogonal to that definition, in requirements
engineering, functional requirements (cf. Definition 2.15) and non-functional requirements
(cf. Definition 2.16) are terms used to distinguish requirements on behavior and requirements
on quality [IG14].

DEFINITION 2.13 (FUNCTIONAL SAFETY)
Functional safety is the absence of unreasonable risk due to hazards caused by
malfunctioning behavior of a system [Int11a].

DEFINITION 2.14 (FUNCTIONAL SAFETY REQUIREMENT)
A functional safety requirement is the specification of an implementation-independent safety
behavior, or an implementation-independent safety measure (Def. 2.6) [Int11a].

DEFINITION 2.15 (FUNCTIONAL REQUIREMENT)
A functional requirement is “a requirement concerning a result of behavior that shall be
provided by a function of a system” [IG14].

DEFINITION 2.16 (NON-FUNCTIONAL REQUIREMENT)
A non-functional requirement is “a quality requirement or a constraint” [IG14].

In this thesis, we use the abbreviated, general term “safety” instead of “functional safety”
(cf. Definition 2.13) to not confuse the reader with the other meanings of “functional”. We
use the term “functional” to refer to the abstraction level of functional safety requirements (cf.
Definition 2.14) and corresponding functions of a preliminary architecture (e.g., CONSENS
function hierarchy, cf. Section 2.6). We use the term “functional requirement” to refer to non-
safety requirements on the ISO 26262 abstraction level of functional safety requirements.
In conclusion, in this thesis, functional requirements are requirements on the functional
abstraction level that can be related to behavior, quality, or constraints, and functional safety
requirements are the same but specifically concerned with safety.

21

2 Foundations

2.3 Safety Integrity Levels in other Safety Standards

ISO 26262 is a safety standard specifically for the automotive domain. It is derived from
the base standard IEC 61508 [Int10a]. IEC 61508 defines five safety integrity levels (SIL)
ranging from SIL 0 (non-safety-critical) to SIL 4 (highly safety-critical). ISO 26262 also
defines five safety integrity levels, called Automotive Safety Integrity Levels (ASIL), ranging
from QM, over ASIL A, to ASIL D.

Many domains have derived their own safety standard from IEC 61508. The railway
domain derived their standard EN 50128 [CEN11] adopting the same five SILs of IEC 61508.
So did mechanical and plant engineering with IEC 62061 [Int05]. The safety standard for
agricultural vehicles ISO 25119 [Int10b] is also derived from IEC 61508 but uses their own
five safety integrity levels, called Agriculture Performance Levels (AgPL), ranging from
AgPL a to AgPL e. There are further domains with standards derived from IEC 61508.

Apart from domains basing on IEC 61508 there are other domains that defined safety
standards on their own. For instance, in the aerospace domain ARP4754A defines
Development Assurance Levels (DAL) [SAE10]. These are also comprised of five values
ranging from DAL E (lowest) to DAL A (highest).

Blanquart et al. compared the safety standards of different domains [BAB+12]. Each
standard they considered uses some kind of safety integrity levels and the risk assessment is
based on (a derivation of) the basic principle Risk = Likelihood × Severity.

2.4 Safety Analysis using Fault Trees

The objective of safety analysis is to examine the consequences of failures on the functions,
behavior and design of a system and its elements (cf. Definition 2.9). In this thesis, we
consider the following kinds of failures:

DEFINITION 2.17 (SINGLE-POINT FAILURE)
A single-point failure is a failure that results from one fault and leads directly to the violation
of a safety goal (i.e., the occurrence of a hazard) [Int11a].

DEFINITION 2.18 (MULTIPLE-POINT FAILURE)
A multiple-point failure is a failure resulting from the combination of several independent
faults that leads directly to the violation of a safety goal (i.e., the occurrence of a hazard)
[Int11a].

DEFINITION 2.19 (DUAL-POINT FAILURE)
A dual-point failure is a multiple-point failure resulting from the combination of two
independent faults that leads directly to the violation of a safety goal (i.e., the occurrence
of a hazard) [Int11a].

DEFINITION 2.20 (DEPENDENT FAILURES)
Dependent failures are failures whose probability of simultaneous or successive occurrence
cannot be expressed as the simple product of the unconditional probabilities of each of them
(PAB 6= PA × PB). [Int11a]

DEFINITION 2.21 (CASCADING FAILURE)
A cascading failure (CF) is a dependent failure (Def. 2.20) of an element causing one or more
other elements to fail [Int11a].

22

2.4 Safety Analysis using Fault Trees

DEFINITION 2.22 (COMMON CAUSE FAILURES)
Common cause failures (CCFs) are dependent failures (Def. 2.20) of two or more elements
resulting from a single specific event or root cause [Int11a].

Fault trees can be used to specify the correlation of subsystem failures and events leading
to a failure or hazard of the overall system. The following Section 2.4.1 briefly introduces
their notation and use. Section 2.4.2 explains an adaptation of the fault tree notation for use
in hierarchically structured models like component-oriented architectures.

2.4.1 Fault Tree Analysis (FTA)

Fault tree analysis (FTA) [Int06b] is a deductive safety analysis used to identify the possible
causes of an event (e.g., a failure). Figure 2.7 shows an example fault tree. Its root
node Omission of activateEmergencyBraking is a top-event denoted by a rectangle. It
represents the failure that the activation of emergency braking is omitted. In deductive
fault tree analysis, this event is decomposed into sub-events that lead to its occurrence.
Beside events, fault trees can also contain OR gates and AND gates. In the figure, the
top-event occurs if the basic event Crash (denoted by a circle) occurs OR the events
Omission of reachingLastPointToBrake AND Omission of receivedEmcyBrakeWarning occur
simultaneously. The latter two events are top-events in other fault trees that are referenced in
this fault tree by the triangle notation. On the contrary, basic events are events that are not
refined by any subtree of gates and events.

Crash

OR

AND

Omission of
activateEmergency

Braking Top-event

Gates

Basic event

Subtree
reference

Omission of
reachingLast

PointToBrake

Omission of
receivedEmcy
BrakeWarning

Figure 2.7: Example fault free

Once a fault tree is specified, it is analyzed for so-called minimal cut sets. They describe
minimal sets of fault tree leaf nodes (typically basic events) whose simultaneous occurrence
leads to the occurrence of the top-event. Figure 2.7 contains the two minimal cut sets {Crash}
and {Omission of reachingLastPointToBrake, Omission of receivedEmcyBrakeWarning}.

23

2 Foundations

2.4.2 Component Fault Trees (CFTs)

In classical fault tree analysis, for each hazard of a system, a fault tree with the hazard
occurrence as top-event is specified. If fault tree diagrams get too large to grasp, subtrees
are described in separate fault trees and referenced by the triangle notation (cf. Figure 2.7).
The classical fault tree notation has no defined traceability to a system, its components, or
component interfaces. Furthermore, fault trees relating to the same system usually have
common subtrees whose consistency has to be maintained if the system changes.

To overcome these disadvantages, Kaiser et al. developed Component Fault Trees (CFTs)
that decompose classical fault trees into reusable components that can directly relate to
components of a system [KLM03; HTZ+12]. Figure 2.8 shows a CFT representation of
the fault tree from Figure 2.7. A CFT is represented by a rectangle with the keyword “CFT”
in the top left followed by the name of the CFT (e.g., MakeDecisionCFT in Figure 2.8).
The internal CFT syntax closely follows the syntax of classical fault trees. The triangle
notation is used to connect different CFTs. Like UML ports, the triangles are placed on the
border of the CFT. So-called input failure modes (similar to subtree references in classical
fault trees) are denoted by white triangles, and output failure modes (relating to input failure
modes of other CFTs) by black triangles. Figure 2.8 shows the advantage of this notation:
The crash and omission input failure modes result in the output failure mode Omission of
activateEmergencyBraking, as denoted in the classical fault tree of Figure 2.7. However,
they also result in the output failure mode Omission of sendEmcyBrakeWarning. In classical
fault tree analysis, this would need to be specified by two separate fault trees that only differ
in their top-event and have to be kept in sync.

2.5 ASIL Tailoring

As a high ASIL requires a high degree of rigor that implies high development effort, there is
a demand to reduce the amount of high ASIL requirements and subsystems. ASIL tailoring
is a means to reduce the ASIL of parts of the system by separation and decomposition. The
automotive safety standard ISO 26262 defines rules that a tailoring has to obey [Int11h]. The
rules describe under what conditions a specific ASIL value of a safety requirement (and its
satisfying subsystem) may be reduced and to what value. Safety standards for other domains
(cf. Section 2.3) have similar rules, e.g., ARP4754A for aerospace.

The following sections describe the two ASIL tailoring measures separation
(Section 2.5.1) and decomposition (Section 2.5.2) and the according rules by example.

2.5.1 Separation

The first ASIL tailoring option to reduce the development effort is to separate subsystems
with different levels of safety-criticality (i.e., with different ASIL values). If one can
make sure that a less safety-critical subsystem will not interfere with a more safety-critical
subsystem, i.e., that a failure of the less critical subsystem will not cause a failure of the more
critical subsystem violating a more critical safety requirement (i.e., causing a more critical
hazard), the two subsystems are considered separate and may have different ASIL values
assigned [Int11h, Clause 6].

24

2.5 ASIL Tailoring

CFT
MakeDecisionCFT

Crash

OR

AND

Output
failure modes

Input
failure modes

Omission of
sendEmcyBrake
Warning

Omission of
reachingLast

PointToBrake

Omission of
receivedEmcy
BrakeWarning

Omission of
activateEmergency

Braking

Figure 2.8: Example Component Fault Tree

DEFINITION 2.23 (FREEDOM FROM INTERFERENCE)
An element a is free of interference from an element b if there are no cascading failures
(Def. 2.21) from b to a that could lead to the violation of a safety requirement [Int11a].

DEFINITION 2.24 (ASIL SEPARATION)
ASIL separation is the act of apportioning safety requirements to sub-elements of an element,
with the objective of reducing the ASIL of sub-elements that do not interfere (Def. 2.23) with
sub-elements with higher ASIL safety requirements.

Figure 2.9 depicts the separation of the EBEAS and the Body Control Module. The latter
controls the brake lights and turn signals and does not send any information to the EBEAS.
Thus it seems likely, that it’s malfunction will not cause the EBEAS to fail as well.

Table 2.1 sketches the safety requirements for the two systems. The Body Control Module
by itself only causes ASIL B hazards, and thus, has to fulfill ASIL B safety requirements
only (SR1 ff.). The EBEAS is highly safety-critial (cf., ASIL D hazards in Figure 1.3 on
page 4), and thus, has to fulfill some ASIL D requirements (SR42 ff.). For the EBEAS
scenario, the Body Control Module is connected to the EBEAS. In general, this would require
to increase the ASIL value of the Body Control Module to ASIL D as well. This would
increase the safety effort significantly, as the whole Body Control Module would need to be
redeveloped applying all the safety measures required for ASIL D systems. If the safety
analysis shows that no failure of the Body Control Module propagates to the EBEAS leading

25

2 Foundations

SR42,…,68, ASIL D

EBEAS

BodyControlModule

ASIL B

ASIL D

SR69, ASIL D

X

SR1,…,41, ASIL B

Figure 2.9: ASIL tailoring measure: Separation

to the violation of ASIL C or D requirements (safety requirement SR69), the ASIL of the
Body Control Module does not need to be increased.

Table 2.1: Requirements for separation

ID Description ASIL

SR1 The Body Control Module shall. . . ASIL B
.

SR42 The EBEAS shall. . . ASIL D
.

SR69 There shall not be any cascading failures from the Body Control Module
to the EBEAS.

ASIL D

2.5.2 Decomposition

The second ASIL tailoring option to reduce the development effort is to decompose a
system’s highly safety-critical requirement into redundant, less critical safety requirements
that are realized by independent subsystems [Int11h, Clause 5]. By adding redundancy in
this way, two systems would have to fail at the same time (dual-point-failure), in order for
the addressed hazard to occur.

DEFINITION 2.25 (INDEPENDENCE)
Two or more elements are independent if there are no dependent failures (Def. 2.20) between
them that could lead to the violation of a safety requirement [Int11a].

DEFINITION 2.26 (ASIL DECOMPOSITION)
ASIL decomposition is the act of apportioning safety requirements redundantly to sufficiently
independent elements (Def. 2.25), with the objective of reducing the ASIL of the redundant
safety requirements that are allocated to the corresponding elements [Int11a].

Figure 2.10 and Table 2.2 depict an example of an ASIL D requirement SR2 that is
decomposed into lower ASIL requirements SR2.1 and SR2.2 in order to keep the ASIL
of the two systems Adaptive Cruise Control and Vehicle2X Communication lower than

26

2.5 ASIL Tailoring

the ASIL of the EBEAS. The EBEAS can cause the hazards of missing brake activation
and missing steering for evasion (cf., hazards H1 and H3 in Figure 1.3 on page 4). The
according safety requirement SR1 shall avoid these hazards and thus inherits their ASIL
value of ASIL D. If the EBEAS shall activate the brakes or steering, it needs to get the
information whether the leading vehicle is braking to make a decision. This is stated in
requirement SR2 which accordingly also inherits ASIL D. The leading vehicle sends an
emergency brake warning via a vehicle-to-vehicle message. So, SR2 would be realized by
the Vehicle2X Communication that thus would inherit the ASIL D of the requirement. As
described in Section 1.1, the Vehicle2X Communication has a predetermined ASIL value of
QM. So, the increase to ASIL D would result in high development effort. In addition to the
vehicle-to-vehicle message, the braking of the leading vehicle can also be detected by the
sensors of the Adaptive Cruise Control. This means that there are two redundant sources
of information. This fact can be exploited for requirements decomposition with respect to
ASIL tailoring. The requirement SR2 is decomposed into the two redundant requirements
SR2.1 and SR2.2 that are allocated to the Vehicle2X Communication and the Adaptive Cruise
Control, respectively. Consequently, the two systems would have to fail at the same time, in
order for one of the hazards H1 and H3 to occur (cf., the AND-gate in Figure 2.10). To make
sure that the two systems do not fail for the same reason, the three safety requirements SR2.3

to SR2.5 are added.

SR1, ASIL D

EBEAS

ElectronicStabilityControl

AdaptiveCruiseControl

Vehicle2XCommunication
ASIL D

SR2.2, ASIL C(D)

SR2.1, ASIL A(D)

Sensed no
hard braking

Received no
brake warning

ASIL C(D)

ASIL A(D)

ASIL D

SR2.3,2.4,2.5, ASIL D

AND

No brake
activation

No evasive
steering

Figure 2.10: ASIL tailoring measure: Introduction of redundancy

As there are two systems that redundantly satisfy the original safety requirement SR2, the
safety standard ISO 26262 allows to develop each of the systems with a lower degree of rigor
than the original requirement’s ASIL value requires. But in sum, the applied rigor has to still
meet the original ASIL. This can be shown by applying simple arithmetics: each ASIL value
is assigned with a number from 0 to 4 and the sum of the decomposed ASIL values needs
to reach the original ASIL value [APW+14]. In the example, SR2.1 is assigned with the
ASIL value ASIL A and SR2.2 with ASIL C, which adds up to ASIL D (1 + 3 = 4). When
applying this decomposition ASIL tailoring method, ISO 26262 still requires to apply some
safety measures in accordance with the original ASIL, especially in the integration phases.

27

2 Foundations

Table 2.2: Requirements decomposition for ASIL tailoring

ID Description ASIL

SR1 If the EBEAS determines the leading vehicle’s hard braking, the
EBEAS shall execute an emergency braking or evasion maneuver.

ASIL D

SR2 If the leading vehicle brakes hard, the EBEAS shall be informed. ASIL D

SR2.1 If the Vehicle2X Communication receives a hard braking warning, it
shall inform the EBEAS.

ASIL A(D)

SR2.2 If the Adaptive Cruise Control senses the leading vehicle’s hard
braking, it shall inform the EBEAS.

ASIL C(D)

SR2.3 There shall not be any cascading failures from the Vehicle2X
Communication to the Adaptive Cruise Control.

ASIL D

SR2.4 There shall not be any cascading failures from the Adaptive Cruise
Control to the Vehicle2X Communication.

ASIL D

SR2.5 There shall not be any common cause failures of the Vehicle2X
Communication and the Adaptive Cruise Control.

ASIL D

Thus, the original ASIL value always has to be stated in parentheses (cf., Figure 2.10 and
Table 2.2).

In summary, the example contains ASIL D hazards and according safety requirements
for the EBEAS. The Vehicle2X Communication provides information, whose omission can
lead to those hazards occurring and thus would be assigned with ASIL D as well. The
predetermined ASIL value of the Vehicle2X Communication is only QM, so ASIL D would
result in a high development effort. The Adaptive Cruise Control can redundantly provide
the same information required by the EBEAS. Its predetermined ASIL value is ASIL C. By
decomposing the original ASIL D requirement SR2 into an ASIL A(D) requirement for the
Vehicle2X Communication and an ASIL C(D) requirement for the Adaptive Cruise Control,
the latter stays ASIL C and the ASIL value of the Vehicle2X Communication is only increased
one level to ASIL A. Thus, the overall development effort is reduced.

2.6 Model-based Systems Engineering with CONSENS

The CONceptual design Specification technique for the ENgineering of complex Systems
(CONSENS) is a model-based systems engineering language and method [GRS14,
Section 4.1]. Figure 2.11 sketches its so-called partial models and the process of their
creation. A detailed description of the CONSENS process including the transition to software
engineering is specified by Holtmann et al. [HBM+16]. Firstly, the system’s environment,
its application scenarios, and requirements are specified. These work products merge into a
function hierarchy specifying the functions the system shall provide. Based on the function
hierarchy, the active structure is developed that specifies the system’s internal structure.
Afterward, the system’s behavior and shape is specified. Eventually, the partial models serve
as input to the mechanical engineering, electrical engineering, and information technology
and their discipline-specific work products (cf. Figure 2.1 on page 14).

28

2.6 Model-based Systems Engineering with CONSENS

Application ScenariosEnvironment Requirements

Discipline-specific Work Products

Function Hierarchy
...

Active Structure

ID

1

2

3

... ...

Ipsum dolor...

Dolor lorem...

Lorem ipsum...

TextLorem ipsum dolor lorem
ipsum dolor lorem...Lorem ipsum dolor lorem

ipsum dolor lorem...

ShapeBehavior

Figure 2.11: Simplified CONSENS process with partial models

Instead of the plain CONSENS language, we use SysML4CONSENS [IKD+13;
KDH+13] that allows to specify CONSENS partial models based on the Systems Modeling
Language (SysML) [Obj15a]. SysML provides no systems engineering method but is
based on UML. Hence, using SysML4CONSENS enables a conceptual integration of the
CONSENS method with other UML-based methods used in this thesis, and easier technical
integration using established and extensible UML tool-support (e.g., Eclipse Papyrus1).
Figure 2.12 shows the elements of the SysML4CONSENS profile used in this thesis. We
explain the elements using the following examples of CONSENS partial models.

Environment
The partial model environment is used to specify the system boundary, i.e., the context of the
system. Figure 2.13 sketches the environment of the EBEAS. The SysML block definition
diagram (bdd) Environment Types specifies types of system and environment elements, their
ports, and their interfaces. The SysML internal block diagram (ibd) Environment specifies
interactions and connections between the system and its surrounding elements. The system
under development is marked by the SysML4CONSENS stereotypes System Template and
System Exemplar, respectively. The elements of the system’s environment are marked by the
SysML4CONSENS stereotypes Environment Element Template and Environment Element
Exemplar, respectively. In Figure 2.13, the EBEAS is the system under development. It
is screwed to the Vehicle Body via a Screw Connection marked as SysML4CONSENS
Mechanical Connection. The EBEAS communicates with the Electronic Stability Control
via a bus system called ADAS Bus. This is realized by exchange of electronic signals
represented by the SysML4CONSENS Energy Flow Specification named Adas Bus Signals.
Accordingly, both ECUs are connected to the ADAS Bus via ports typed by that energy

1www.eclipse.org/papyrus

29

2 Foundations

«profile» SysML4CONSENS

«Metaclass»
Abstraction

«Stereotype»
SysML::Block

«Metaclass»
Property

«Stereotype»
System
Template

«Stereotype»
SystemElement

Template

«Stereotype»
EnvironmentElement

Template

«Stereotype»
System
Exemplar

«Stereotype»
SystemElement
Exemplar

«Stereotype»
EnvironmentElement

Exemplar

«Metaclass»
Class

«Stereotype»
Function

«Stereotype»
Realizes

«Stereotype»
SysML::InterfaceBlock

«Stereotype»
Energy

FlowSpecification

«Stereotype»
Information

FlowSpecification

«Metaclass»
Connector

«Stereotype»
Mechanical
Connection

…

Figure 2.12: Excerpt of SysML4CONSENS profile

flow specification. The electronic bus signals are used to exchange information between the
EBEAS and the Electronic Stability Control. This is specified by direct port connections typed
by SysML4CONSENS Information Flow Specifications. The Electronic Stability Control
sends the current velocity to the EBEAS and the EBEAS sends braking requests to the
Electronic Stability Control.

Application Scenarios
The partial model application scenarios is used to specify use cases of the system under
development by informal texts and figures. They do not describe any internal structure or
behavior of the system but its externally visible behavior.

We consider application scenarios an abstract and informal specification of goals for the
system under development that could be the result of requirements elicitation workshops with
the customer. We see them as part of customer requirements specifications that are the input

30

2.6 Model-based Systems Engineering with CONSENS

«SystemExemplar»
:EBEAS

«EnvironmentElement
Exemplar»

:ElectronicStabilityControl
:~EscEcu2
EbeasEcu

:~EbeasEcu
2EscEcu

:EscEcu2
EbeasEcu

:EbeasEcu
2EscEcu

«EnvironmentElement
Exemplar»
:ADASBus

:~AdasBusSignals

:~AdasBus
Signals

:AdasBusSignals

:AdasBusSignals

bdd Environment Types

ibd Environment

«EnergyFlow
Specification»

AdasBusSignals

out brakingRequest: m/s²

«InformationFlow
Specification»

EbeasEcu2EscEcu

in velocity: km/h

«InformationFlow
Specification»

EscEcu2EbeasEcu

«EnvironmentElement
Exemplar»

:VehicleBody

«MechanicalConnection»
Screw Connection

«SystemTemplate»
EBEAS

«EnvironmentElement
Template»

ElectronicStabilityControl
:~EscEcu2
EbeasEcu

:~EbeasEcu
2EscEcu

:EscEcu2
EbeasEcu

:EbeasEcu
2EscEcu

«EnvironmentElement
Template»
ADASBus

:~AdasBusSignals

:~AdasBus
Signals

:AdasBusSignals

:AdasBusSignals

«EnvironmentElement
Template»

VehicleBody

Figure 2.13: Example of CONSENS environment

31

2 Foundations

to our approach (cf. Figure 1.4 on page 10). Hence, we do not use application scenarios in
this thesis.

Requirements
The partial model requirements is a list of textual requirements that refer to elements of other
partial models (e.g., functions or system elements).

We do not use this partial model in this thesis. Instead, we specify requirements as
Modal Sequence Diagrams (cf. Section 2.7 and Chapter 4). However, we also integrate our
approach with textual requirements that could be seen as instantiation of this partial model
(cf. Section 4.5).

Function Hierarchy
The partial model function hierarchy is used to decompose the functionality that the system
under development shall provide. The functionality is described by functions that are
decomposed level by level, until they are sufficiently trivial to implement.

Figure 2.14 shows the function hierarchy for the system EBEAS from Figure 2.13.
Functions are represented by UML classes marked with the SysML4CONSENS stereotype
Function. The root node FEBEAS represent the overall functionality of the EBEAS. It is
decomposed into four functions:
• The function Analyze Situation shall analyze the vehicles surrounding and velocity,
• the function Make Decision shall make the decision to brake or evade,
• the function Communicate with other Vehicles shall provide the vehicle-to-vehicle

communication, and
• the function Ensure Passenger Safety shall activate the emergency braking or evasion.

«Function»
FEBEAS

«Function»
Analyze
Situation

«Function»
Communicate

WithOtherVehicles

«Function»
Ensure

PassengerSafety

«Function»
Make

Decision

bdd Function Hierarchy

Figure 2.14: Example of CONSENS function hierarchy

Active Structure
The partial model active structure is used to specify the internal structure of the system
under development. Figure 2.15 shows the active structure of the system EBEAS from
Figure 2.13. Elements inside the system under development are called system element by
CONSENS. Accordingly, they are marked with the SysML4CONSENS stereotype System
Element Exemplar (and System Element Template in a corresponding bdd not shown in
the figure). The EBEAS contains the cores Lockstep Cores and Performance Core and the
bus interfaces ADAS Bus Interfaces and V2X Bus Interface. Their connections are specified

32

2.6 Model-based Systems Engineering with CONSENS

using ports and SysML4CONSENS flow specifications as it is done in the partial model
environment (the details are omitted in Figure 2.15).

In addition, the system elements realize the leaf functions of the function hierarchy. This
is specified by UML abstractions with the SysML4CONSENS stereotype Realizes. In
Figure 2.15, the system element Lockstep Cores realizes the function Make Decision from
Figure 2.14.

«SystemTemplate»
EBEAS

«SystemElementExemplar»
:LockstepCores

...
«SystemElementExemplar»

:V2XBusInterface

«SystemElementExemplar»
:PerformanceCore

«SystemElementExemplar»
:ADASBusInterfaces

«Realizes»

«Function»
Make

Decision

ibd Active Structure

Figure 2.15: Example of CONSENS active structure

Behavior
The partial model behavior is used to specify the technical behavior of the overall system
and its environment and the internal system elements. This can be done by UML sequence
diagrams and state machines.

We specify communication of the overall system with its environment on the functional
abstraction level using the function hierarchy root node and functional representations of
the environment (cf. Chapter 4). Moreover, we do not specify internal system element
communication, as our approach ends with the specification of a system architecture
represented as active structure. Hence, we do not use the behavior partial model in this
thesis.

Shape
The partial model shape is used to specify the three dimensional shape of the system under
development. This is not realized by the SysML4CONSENS profile but has to be done in a
CAD/CAM tool used by mechanical engineering.

This partial model is not used in this thesis because our approach ends with a system
architecture specified as active structure.

33

2 Foundations

2.7 Modal Sequence Diagrams (MSDs)

Modal Sequence Diagrams (MSDs) are a formal, model- and scenario-based behavior
specification language based on UML sequence diagrams [HM08]. Harel and Maoz defined
MSDs to specify provisional and required sequences of events (e.g., message exchange)
[HM08]. Greenyer et al. added language features to specify real-time behavior [Gre11;
BGH+14]. Holtmann and Meyer adapted MSDs to obey the communication rules of
hierarchically structured component-oriented architectures (e.g., information hiding concepts
using ports and interfaces) [HM13]. In this thesis, we follow the MSD requirements language
definition compiled in the technical report of Holtmann et al. [HFK+16].

Figure 2.16 shows an example of a so-called MSD specification for the EBEAS. It
describes message-based interaction behavior of a set of objects. It consists of UML classes,
UML collaborations, and MSDs. Classes define the types of objects. Their operations define
the messages an object can receive. In the figure, the EBEAS provides two operations
and the other two ECUs each provide one. Collaborations are used to specify different
situations, application scenarios, or use-cases of a system. In the figure, the collaboration
EBEAS Collaboration contains one role for each type defined in the class diagram. Another
collaboration based on the same class diagram could, for instance, leave out the Vehicle2X
Communication to specify behavior of the EBEAS without communication. For each
collaboration a set of MSDs can be specified. Each of their lifelines represents a role from
the corresponding collaboration.

MSD specifications can be validated by simulation with the so-called play-out algorithm
[BGP13]. For that, MSDs add the modalities of execution kind and temperature to messages
of UML sequence diagrams. Monitored messages are represented by a dashed line, executed
messages by a solid line. Cold messages are represented by a blue line, hot messages
by a red line. For readability without color-printing, we annotate the execution kind and
temperature on the side of an MSD using the letters “c”/“h” for cold/hot and “m”/”e” for
monitored/executed.

The terms execution kind and temperature are defined based on the play-out of an MSD
specification (i.e., the execution of a set of diagrams). From the point of view of one MSD,
a message with execution kind monitored can be observed during the execution of the MSD
but its occurrence is not required. An executed message, on the contrary, is required to
occur during the execution of an MSD. If it is not sent/received, a liveness violation occurs
(i.e., a liveness property is violated [Lam77]). In that case, we say the MSD is violated, in
this thesis. A message with temperature cold may be sent/received after any preceding and
before any subsequent messages of the same MSD, but its execution is not required to occur
in this order (it is not strict). If any other message of the same diagram occurs when the cold
message is expected, a cold violation occurs and the MSD execution is terminated. In that
case, we say the MSD is discarded, in this thesis. A hot message, on the contrary, has to
strictly occur in the order as specified in the MSD. If any other message of the same diagram
occurs when the hot message is expected, a hot violation occurs that is a violation of a safety
property [Lam77]. In that case, we say the MSD is violated, in this thesis.

The play-out algorithm uses so-called cuts to describe the execution state of an MSD
specification. Each MSD has its own cut that progresses from top to bottom and advances
whenever a message of the diagram occurs. The overall system state is defined by the set of

34

2.7 Modal Sequence Diagrams (MSDs)

receivedEmcyBrakeWarningFromFront()
warnedFollowers()

EBEAS

performHardBraking()

ElectronicStabilityControl

warnFollowingVehicle()

Vehicle2XCommunicationcd Classes

EBEAS Collaboration

ebeas:
EBEAS

esc: ElectronicStabilityControlv2x: Vehicle2XCommunication

v2x: Vehicle2X
Communication ebeas: EBEAS

receivedEmcyBrake
WarningFromFront

msd R1 Brake on Warning

esc: Electronic
StabilityControl

signature represents

type

abstract syntax link:

(c,m)

(h,e)

(c,e)

v2x: Vehicle2X
Communication ebeas: EBEAS

msd R2 Wait for Warning Response

esc: Electronic
StabilityControl

(c,m)

(h,m)

(c,m)

warnFollowingVehicle

warnFollowingVehicle

performHardBraking

performHardBraking

warnedFollowers

Cut 2

Cut 1

Figure 2.16: Example of an MSD specification

35

2 Foundations

all cuts. Each MSD starts in cut 0 located at the top of the MSD above the first message. The
first message of an MSD is called minimal message and is always cold and monitored.

Figure 2.16 contains the two MSDs R1 and R2. R1 specifies the following behavior:
if the EBEAS is informed about a received emergency brake warning from a vehicle in
front, it warns the following vehicle and afterward performs a hard braking maneuver. R2
specifies the behavior that the EBEAS waits for the Vehicle2X Communication to have warned
following vehicles before braking. In the beginning, both MSDs are inactive. If the message
receivedEmcyBrakeWarningFromFront occurs, the MSD R1 is activated and its cut advances
from above that minimal message (cut 0) to cut 1 above the message warnFollowingVehicle.
In this state, both messages warnFollowingVehicle and performHardBraking have to occur
eventually because they are specified as executed. However, because the message
warnFollowingVehicle is hot, it has to occur before performHardBraking. If it occurs, the
cut advances to cut 2 above performHardBraking. In addition, the MSD R2 is activated and
its cut advances to cut 1 because warnFollowingVehicle is its minimal message. This state
is depicted by the two cuts in Figure 2.16. In this state, R1 requires performHardBraking to
occur next. However, R2 prohibits this because it also contains that message but its cut is
above the hot message warnedFollowers. Thus, the Vehicle2X Communication has to send
warnedFollowers before the EBEAS may send performHardBraking. Once warnedFollowers
occurred, the cut of both MSDs is before the message performHardBraking and it may be
sent. Then, both cuts reached the end of the respective MSD, and the MSDs become inactive
until they are again activated by the occurrence of their minimal message.

Additionally to play-out simulation, MSD specifications can be formally verified for
consistency by synthesizing global controllers [GBC+13]. If the MSD R1 in Figure 2.16 also
contained the message warnedFollowers and the message performHardBraking was hot, the
cuts shown in both MSDs could not progress. R1 would require the hot performHardBraking
to occur before warnedFollowers may occur, and R2 still requires the hot warnedFollowers to
occur before performHardBraking. This would be an inconsistency in the MSD specification
that is found by the controller synthesis.

In addition to messages, MSDs also can contain conditions (represented as hexagon, cf.
Figure 3.9 on page 49). A condition contains a boolean expression that is evaluated when
the MSD execution reaches the condition. The execution kind of conditions is fixed to their
temperature: a cold condition is always monitored and a hot condition is always executed.
For specifying real-time behavior, MSDs can also contain so-called clock conditions. These
conditions are denoted by an hourglass in their top right (cf. Figure 4.12 on page 79). A clock
condition contains a boolean expression concerning a clock variable that holds the elapsed
time. If the MSD execution reaches a cold (clock) condition and its expression evaluates to
false, a cold violation occurs and the MSD is discarded. If the MSD execution reaches a
hot (clock) condition and its expression never evaluates to true, a liveness violation occurs.
If the MSD execution reaches a hot (clock) condition and any other message of the same
diagram occurs before its expression evaluates to true, a hot violation occurs. Both cases are
a violation of the MSD.

36

2.8 Goal Structuring Notation (GSN)

2.8 Goal Structuring Notation (GSN)

The Goal Structuring Notation (GSN) is used to specify model-based argument hierarchies
[Kel98; Ass18]. This graphical notation shall support the understanding of complex
arguments and reduce the problem of ambiguity in informal textual arguments. GSN
arguments follow a tree-like structure of goals that are refined by subgoals using certain
argument strategies. The leaf goals are supported by evidence in form of solutions or marked
as undeveloped.

Figure 2.17 shows an example argument in Goal Structuring Notation. It argues that all
hazards of a system have been mitigated (cf. root goal Goal 1). This goal is in the context
of the identified hazards H1 and H2. The hazards are referenced by the context Hazards,
denoted by a rectangle with rounded sides. Context nodes are linked via “in context of” links
depicted with a white arrow head.

Separate critical
components

J

ISO 26262-9:6

Coexistence of
elements

Goal 1

Mitigate all hazards

Separate ECU2

Allocate Component2
to ECU2

Separate ECU1

Allocate Component1
to ECU1

No CF

No cascading failures
of ECU1 and ECU2

FTA

No failure
propagation

Hazards

H1 and H2

Context

Justification

Solution

Goal In Context Of

Strategy

Supported By

Undeveloped
Goal

Figure 2.17: Example of an argument in Goal Structuring Notation

Goal 1 is reached by separating safety-critical components. This is specified via the
strategy Separate critical components denoted by a parallelogram. Strategies and goals
are linked via “supported by” links depicted with a black arrow head. The applicability
of strategies can be argued via justifications denoted as ellipse with a “J” in the lower
right. Justifications are linked via an “in context of” link. In the figure, the applicability
of the separation strategy is argued via the coexistence of elements section of the standard
ISO 26262. The strategy Separate critical components is supported by the three subgoals

37

2 Foundations

Separate ECU1, Separate ECU2, and No CF. The first two goals argue that two software
components Comp1 and Comp2 are allocated to separate ECUs of a vehicle. The third goal
No CF argues that there are no cascading failures (CF) between the two ECUs. The first two
goals are marked as undeveloped via a diamond below the rectangle. Undeveloped goals
represent sub-arguments that need to be supported by further subgoals, strategies, and/or
solutions. The goal No CF is supported by the solution FTA denoted by a circle. This solution
shall represent the result of a fault tree analysis, assuring that there is no failure propagation
between the two ECUs.

38

3

ASIL TAILORING PROCESS ON
FUNCTIONAL SAFETY REQUIREMENTS

To apply ASIL tailoring on functional safety requirements, we propose a systematic ASIL
tailoring process. That process is described in this chapter. It is embedded into the earliest
phases system requirements analysis and system architectural design of a development
process complying to Automotive SPICE and ISO 26262 (cf. Section 2.1).

Concepts presented in this chapter have been published in [Foc16].
This chapter is structured as follows. First, Section 3.1 summarizes the scientific

contributions of the ASIL tailoring process. Section 3.2 gives an overview of its process
steps and work products. Section 3.3 describes the step of analyzing the environment and
hazards. Section 3.4 describes the steps of specifying functions and functional (safety)
requirements. Section 3.5 describes the steps of safety analysis and ASIL calculation on
functions. Section 3.6 describes the step of allocating functions to the system architecture.
Section 3.7 lists assumptions and limitations of the process. The final Section 3.9 concludes
this chapter.

3.1 Contributions

The contributions of this chapter can be summarized as follows:

• The presented ASIL tailoring process integrates concepts of model-based safety
engineering with model-based requirements and systems engineering. This is a
step towards well-integrated processes for these domains as required for handling
complexity (cf. Challenge C1 in Section 1.2).

• The ASIL tailoring process is embedded into a standard development process
compliant to Automotive SPICE (cf. Section 2.1).

• The process is a concrete solution fulfilling the requirements posed by the automotive
safety standard ISO 26262 concerning safety requirements engineering and ASIL
tailoring (cf. Sections 2.2 and 2.5).

• The process applies ASIL tailoring in the earliest possible phase of the development
process (i.e., on functional requirements level before the system architecture is
defined). This early planning of ASIL tailoring measures is required due to the rising
complexity and mixed-criticality of ADAS (cf. Challenge C1 in Section 1.2).

39

3 ASIL Tailoring Process on Functional Safety Requirements

3.2 Overview of Process Steps and Work Products

The ASIL tailoring process is embedded into the model-based systems engineering
method CONSENS (cf. Section 2.6). In CONSENS, based on customer requirements, the
environment of the SUD is specified, followed by requirements, the function hierarchy, and
the active structure. CONSENS does neither consider safety nor define in detail how the
function hierarchy and requirements are developed. Our process adds the identification of
hazards on the environment, the interleaved development and refinement of the function
hierarchy and corresponding functional (safety) requirements, and ASIL tailoring steps.
Figure 3.1 recapitulates the ASIL tailoring process from Figure 1.4 on page 10 with its
process steps and flow of work products. The relations between the work products are shown
in Figure 3.2.

act ASIL Tailoring Process

S
ys

te
m

 D
es

ig
ne

r,

S
af

et
y

M
an

ag
er

1. Analyze Environment and Hazards

2.3. Generate
Failure Propagation Model

for Function Hierarchy

2.4. Calculate
ASIL Allocation for
Function Hierarchy

2.2. Develop/Refine
(Safety) Requirements

for Functions

3. Define System Architecture and
Allocate Functions to System Elements

2.1. Develop/Refine
Function Hierarchy

Customer
Requirements

«datastore»
System Architecture

R
eq

ui
re

m
en

ts
 E

ng
in

ee
r,

S
af

et
y

M
an

ag
er

[functions sufficiently trivial and
ASIL allocation reasonable]

«datastore»
System

Requirements

Function
Hierarchy

Function
Hierarchy

Function
Hierarchy

Functional (Safety)
Requirements

FSRs

Environment and Hazards with ASILs

System Elements
with ASILs

Failure
Propagation

Model

FPM
«datastore»
Safety Case

Environment and Hazards with ASILs
or Function Hierarchy [ASILs Tailored]

Function
Hierarchy

Function
Hierarchy

[ASILs Tailored]

Function Hierarchy
[ASILs Tailored]

Safety
Argument

[else]

Figure 3.1: ASIL tailoring process steps and work products

40

3.2 Overview of Process Steps and Work Products

S
af

et
y

C
as

e
S

ys
te

m

A
rc

h
it

ec
tu

re

S
ys

te
m

R

e
q

u
ir

e
m

e
n

ts

E
n

vi
ro

n
m

en
t

F
u

n
ct

io
n

al
S

af
et

y
R

e
q

u
ir

e
m

e
n

t

S
af

et
y

G
o

al

H
az

ar
d

F
u

n
c

ti
o

n

S
ys

te
m

E
le

m
e

n
t

T
ec

h
n

ic
al

S
af

et
y

R
e

q
u

ir
e

m
e

n
t

F
a

ilu
re

P
ro

p
ag

at
io

n
M

o
d

e
l

S
af

et
y

A
rg

u
m

e
n

t

S
ys

te
m

E
n

vi
ro

n
m

en
t

E
le

m
e

n
t

F
u

n
ct

io
n

al
R

e
q

u
ir

e
m

e
n

t

T
ec

h
n

ic
al

R
e

q
u

ir
e

m
e

n
t

T
ec

h
n

ic
al

S
af

et
y

A
n

al
ys

is

R
es

u
lt

T
ec

h
n

ic
al

S
af

et
y

A
rg

u
m

e
n

t

pr
ev
en
ts

O
rM
iti
ga
te
s

ca
us
es

in
te
ra
ct
sW
ith

re
fin
es

re
fin
es

re
fin
es

sa
tis
fie
s

sa
tis
fie
s

re
al
iz
es

de
sc
rib
es

Fu
nc
tio
na
lit
yO
f

sp
ec
ifi
es
Fa
ilu
re

P
ro
pa
ga
tio
nO
f

sp
ec
ifi
es
Fa
ilu
re

P
ro
pa
ga
tio
nO
f

ar
gu
es
A
s

E
vi
de
nc
e

cl
ai
m
sF
ul
fil
lm
en
t ar

gu
es
A
s

E
vi
de
nc
e

cl
ai
m
sF
ul
fil
lm
en
t

Fi
gu

re
3.

2:
A

SI
L

ta
ilo

ri
ng

pr
oc

es
s

w
or

k
pr

od
uc

tr
el

at
io

ns

41

3 ASIL Tailoring Process on Functional Safety Requirements

In Step 1 of the ASIL tailoring process, the CONSENS environment model for the SUD
is specified and analyzed for hazards. The environment describes the interfaces between the
system and its surrounding environment elements that it has to interact with (cf. Figure 3.2).
In addition, we specify the hazards that could be caused by failures occurring on the outgoing
interfaces (ports) of the system and their safety goals. The hazards and their ASILs are
identified through a hazard analysis (cf. Definition 2.12 on page 19) on the system as a
black-box and its environment [Int11d]. Step 1 is described in detail in Section 3.3.

In Step 2.1, the CONSENS function hierarchy is developed. It describes a breakdown
of the overall functionality of the SUD, represented by a root function, into sub-functions
until technical realizations can be found. Each function describes how a set of inputs is
used to generate outputs to fulfill a sub-task of the overall system. Inputs and outputs are
also decomposed onto sub-functions. In Step 2.2, the functional requirements and functional
safety requirements of each function are specified using a formal modeling language. We use
Modal Sequence Diagrams (MSDs) that are a formal, scenario-based requirements language
based on UML sequence diagrams (cf. Section 2.7). Requirements specified in this language
can automatically be processed to identify failure propagation paths. Step 2.1 and Step 2.2
are described in further detail in Section 3.4.

To find possible ASIL tailoring solutions and to verify that an applied tailoring is valid,
safety analyses have to be performed. Thus, in the automated Step 2.3, the safety manager
generates a failure propagation model to be used for safety analysis on the function hierarchy.
We use Component Fault Trees (CFTs) that allow to specify decomposed fault trees for
component-oriented models like the CONSENS function hierarchy (cf. Section 2.4.2). The
failure propagation model is generated from the structure of the function hierarchy and the
behavior described in the formal functional (safety) requirements. The failure propagation
model is used to calculate valid, tailored ASIL values for the functions of the function
hierarchy in the automated Step 2.4. The work products of the ASIL tailoring process are
connected and traced to construct and maintain a safety argument in form of a model using
the Goal Structuring Notation (GSN) as suggested by ISO 26262 [Int12b] (cf. Section 2.8).
Step 2.3 and Step 2.4 are described in further detail in Section 3.5.

The steps 2.1 to 2.4 are iterated until the tailored ASILs of the functions meet the safety
manager’s expectations and the detail level of the functions is sufficiently trivial to be
realized by technical system elements of the system architecture. In the final Step 3,
the system architecture is defined by the system designer (as CONSENS active structure)
and the functions are allocated to their realizing system elements. The functional (safety)
requirements of the functions have to be refined into technical (safety) requirements that
are satisfied by the system elements (cf. Figure 3.2). Afterward, safety analysis has to be
repeated on the technical level of the system architecture to show that the ASIL tailoring
on functional level remains valid on the system level. The result accordingly has to be
documented in a technical safety argument (cf. Figure 3.2). Step 3 is described in detail
in Section 3.6.

42

3.3 Analyzing the Environment and Hazards

3.3 Analyzing the Environment and Hazards

In Step 1 of the ASIL tailoring process, the environment of the SUD is specified and used to
identify possible hazards and their criticality (i.e., ASIL). Figure 3.3 shows the sub-actions
of Step 1.

1. Analyze Environment and Hazards

1.2 Apply HARA

1.1 Analyze
Environment

Customer
Requirements

Environment
with Hazards

Figure 3.3: Process Step 1 - Analyze Environment and Hazards

Step 1.1 is an instantiation of the item definition phase of ISO 26262 (cf. phase 3-5 in
Figure 2.6 on page 20). The requirements engineer uses the customer requirements to define
the boundary of the system under development (i.e., the item) and to identify the environment
elements that the system has to interact with.

Step 1.2 corresponds to the hazard analysis and risk assessment phase (HARA) of
ISO 26262 (cf. phase 3-7 in Figure 2.6 on page 20). Here, the safety manager uses the
customer requirements and the specified environment to identify hazards that could be
caused by the system.

The customer requirements are the input for the whole development process and
specifically for the system requirements analysis phase (cf. Section 2.1). They have to be
satisfied by so-called system requirements which are the output of the system requirements
analysis phase. The system requirements contain different types of requirements (cf.
Figure 3.2). For each hazard a top-level safety requirement called safety goal is defined.
The safety goals are later on refined into functional safety requirements in Step 2.1.

Figure 3.4 shows the environment with hazards for the EBEAS as refinement of the
sketch in Figure 1.3 on page 4. The system EBEAS receives information from the
environment elements Electronic Stability Control, Vehicle2X Communication, and Adaptive
Cruise Control. The information received from the latter is depicted in the information
flow specification AccEcu2EbeasEcu. The Adaptive Cruise Control notifies the EBEAS
if an obstacle or a vehicle was detected (obstacleDetected, frontVehicleDetected), and
sends the time in milliseconds until the detected object will be reached (timeToObstacle,
timegapToFrontVehicle).

The EBEAS sends information to the environment elements Electronic Stability Control,
Vehicle2X Communication, and Active Front Steering. These output interfaces are the
locations where failures of the EBEAS can cause hazards.

The hazards are identified via HARA (cf. Section 2.2) in Step 1.2 and depicted in the
bottom of Figure 3.4. A failure of the EBEAS could lead to a missing automatic hard braking
of the vehicle via the Electronic Stability Control that controls the brakes (cf. H1 Hard Braking
Omission). Similarly, a failure could lead to a missing automatic evasive steering via the

43

3 ASIL Tailoring Process on Functional Safety Requirements

ASIL = ASIL D

«SystemExemplar»
:EBEAS

ASIL = ASIL D

«EnvironmentElement
Exemplar»

:ElectronicStabilityControl

ASIL = ASIL C

«EnvironmentElement
Exemplar»

:AdaptiveCruiseControl

ASIL = QM

«EnvironmentElement
Exemplar»

:Vehicle2XCommunication

ASIL = ASIL D

«EnvironmentElement
Exemplar»

:ActiveFrontSteering:~AccEcu2
EbeasEcu

:AccEcu2
EbeasEcu

Id = “H2“
Text = “Missing warning about
hard braking.“
ASIL = ASIL B

«Hazard»
EmcyBrakeWarningOmission

Id = “H3“
Text = “Missing
automatic steering.“
ASIL = ASIL D

«Hazard»
SteeringOmission

Id = “H1“
Text = “Missing
automatic hard braking.“
ASIL = ASIL D

«Hazard»
HardBrakingOmission

«trace» «trace» «trace»

ibd Environment

in obstacleDetected: bool
in timeToObstacle: ms
in frontVehicleDetected: bool
in timegapToFrontVehicle: ms
...

«InformationFlowSpecification»
AccEcu2EbeasEcu

Figure 3.4: EBEAS system, environment, and hazards

Active Front Steering (cf. H3 Steering Omission). Furthermore, a failure of the EBEAS
could lead to a missing warning about the hard braking of the vehicle to following vehicles
via the Vehicle2X Communication (cf. H2 EmcyBrakeWarningOmission).

After the hazards were identified, their safety-criticality (i.e., ASIL) is determined as
described in Section 2.2. The EBEAS is assigned with ASIL D as it has to be developed
with the degree of rigor required for the hazard with the highest criticality (although there
is hazard H2 with a lower ASIL). The surrounding environment elements in Figure 3.4 are
assigned with predetermined ASIL values based on their previous usage without an EBEAS
(cf. Section 1.1). If no ASIL tailoring can be applied, all environment elements would have
to be assigned with the high ASIL of the EBEAS to assure system safety.

The specification of hazards and ASIL assignments in Figure 3.4 is enabled by the UML
profile shown in Figure 3.5. Hazards are specified as specialization of SysML requirements.
They thus inherit the attributes Id and Text as seen in Figure 3.4. Hazards additionally have
the attributes of severity, exposure, and controllability as defined by ISO 26262 that together
define the hazard’s ASIL (cf. Section 2.2).

To assign an ASIL to structural elements like systems, environment elements, etc., the
profile defines the stereotype SafetyClassifiedElement. It extends UML NamedElement to
be applicable to structural SysML elements on type and part level and to MSD requirements.
Safety Classified Elements can have two ASIL values: The ASIL attribute specifies the
final determined ASIL of an element after ASIL tailorings have been applied. If ASIL
decomposition was applied, the initialASIL specifies the maximum, undecomposed ASIL
inherited from the hazards. In ISO 26262 this value is appended to the decomposed ASIL in
parentheses (e.g., “ASIL B(D)”) [Int11h]. For easier automatic computation these two values

44

3.4 Specifying Functions and Requirements

«profile» Safety Profile

ASIL: ASILKind
initialASIL: ASILKind

«Stereotype»
SafetyClassifiedElement

«Metaclass»
NamedElement

TBD
ASIL_D
ASIL_C
ASIL_B
ASIL_A
QM

«Enumeration»
ASILKind

«Stereotype»
SysML::

Requirement

severity: SeverityClass
exposure: ExposureClass
controllability: ControllabilityClass
ASIL: ASILKind

«Stereotype»
Hazard

TBD
S3
S2
S1
S0

«Enumeration»
SeverityClass

TBD
E4
E3
E2
E1
E0

«Enumeration»
ExposureClass

TBD
C3
C2
C1
C0

«Enumeration»
ControllabilityClass

Figure 3.5: UML Profile for hazards and safety classified elements

are split in the profile. In the diagrams of this thesis, the parenthesis notation of ISO 26262 is
appended to the ASIL attribute for better readability. The stereotype SafetyClassifiedElement
is omitted in diagrams of this thesis for better readability, but the ASIL attribute is shown in
a stereotype compartment or curly braces.

In addition, each attribute defined in the profile can be assigned a value of TBD (to be
determined) to mark it as not yet fixed.

3.4 Specifying Functions and Requirements

In Steps 2.1 and 2.2 of the ASIL tailoring process, the function hierarchy and its (safety)
requirements are developed. This section describes the process steps and the final work
products produced in Steps 2.1 and 2.2. The detailed method how the work products are
created is described in Chapter 4.

In Step 2.1, the function hierarchy is developed and refined. Figure 3.6 shows the sub-
actions of Step 2.1. After the environment and hazards were specified in Step 1, the top-
level function hierarchy is derived from the environment in Step 2.1.a). This action consists
of the specification of the root function of the function hierarchy representing the full
functionality of the SUD, and the functional abstraction of the SUD’s technical interfaces
to the environment into input and output information. The top-level function hierarchy is
afterward used as input for Step 2.2. In following iterations of the Steps 2.1 to 2.4, the
function hierarchy is refined in Step 2.1.b). This refinement is the decomposition of the
functionality of single functions (like the top-level root function) into smaller functions

45

3 ASIL Tailoring Process on Functional Safety Requirements

on the next level of the function hierarchy, including their input and output information.
Furthermore, the structure of the function hierarchy can be revised based on the ASIL
tailoring results of Step 2.4.

2.1. Develop/Refine Function Hierarchy

Environment and
Hazards with ASILs

Function Hierarchy
with Tailored ASILs

Function
Hierarchy

2.1.b) Refine
Function Hierarchy

2.1.a) Develop
Top-Level

Function Hierarchy

Figure 3.6: Process Step 2.1 - Develop/Refine Function Hierarchy

In Step 2.2, the functional (safety) requirements for the functions of the function hierarchy
are developed and specified in form of MSDs (cf. Section 2.7). Figure 3.7 shows the sub-
actions of Step 2.2. After the top-level function hierarchy was specified in Step 2.1.a), in
Step 2.2.a) the according (safety) requirements for the top-level function are developed. In
following iterations, the top-level requirements are refined adhering to the refinement of the
function hierarchy in Step 2.1.b).

2.2. Develop/Refine (Safety) Requirements

2.2.b) Refine
(safety) MSDs

2.2.a) Develop
(safety) MSDs

for top-level functionFunction
Hierarchy

(Safety)
MSDs

[no MSDs
specified yet]

[else]

Figure 3.7: Process Step 2.2 - Develop/Refine (Safety) Requirements for Functions

Figure 3.8 depicts an excerpt of the function hierarchy as result of Step 2.1. The figures 3.9
and 3.10 show functional safety requirements (FSRs) for functions of the function hierarchy
as result of Step 2.2.

The top-level function FEBEAS in Figure 3.8 represents the whole functionality of the
SUD EBEAS. Thus, it also inherits its ASIL value ASIL D. Its ports represent the input and
output information received from and sent to its environment (cf. Figure 3.4). For instance,
the port p1 typed by the interface Acc2Ebeas represents the information received from the
adaptive cruise control. The top-level function FEBEAS with its ports and interfaces is
developed in Step 2.1.a).

In Step 2.1.b), the top-level function FEBEAS is decomposed into the four functions
Analyze Situation, Make Decision, Communicate With Other Vehicles, and Ensure

46

3.4 Specifying Functions and Requirements

re
ac

h
in

gL
as

tP
oi

nt
T

oB
ra

ke
()

pa
ss

ed
La

st
P

oi
nt

T
oB

ra
ke

()
pa

ss
ed

La
st

P
oi

nt
T

oE
va

de
()

...

«i
nt

er
fa

ce
»

S
it

u
at

io
n

al
E

ve
n

ts

A
S

IL
 =

 A
S

IL
 D

«F
un

ct
io

n
»

F
E

B
E

A
S

«F
un

ct
io

n
»

A
n

al
yz

e
S

it
u

a
ti

o
n

«F
un

ct
io

n
»

C
o

m
m

u
n

ic
at

e
W

it
h

O
th

er
V

eh
ic

le
s

«F
un

ct
io

n
»

E
n

su
re

P
as

se
n

g
er

S
af

et
y

p2
:V

2x
2

E
be

as

p
1:

A
cc

2
E

be
as

p3
:~

E
be

as
2E

sc

p7
:V

2x
2

E
be

as

p5
:~

S
itu

at
io

na
l

E
ve

nt
s

«F
un

ct
io

n
»

M
ak

e
D

ec
is

io
n

p6
:S

itu
at

io
na

l
E

ve
nt

s
p4

:A
cc

2E
be

as
p8

:~
E

be
as

2E
sc

b
d

d
 F

un
ct

io
ns

ob
st

ac
le

O
rF

ro
nt

V
eh

ic
le

D
et

ec
te

d(
)

se
tT

im
eg

ap
T

oF
ro

nt
(t

im
eg

ap
:

m
s)

...

«i
nt

er
fa

ce
»

A
cc

2E
b

ea
s

Fi
gu

re
3.

8:
E

B
E

A
S

fu
nc

tio
n

hi
er

ar
ch

y

47

3 ASIL Tailoring Process on Functional Safety Requirements

Passenger Safety. The purpose of the function Analyze Situation is to encapsulate the
requirements for analyzing the current driving situation of the vehicle (e.g., distance to
surrounding vehicles and ego vehicle speed). The function Make Decision describes
requirements on making the decision to brake or evade based on the information provided
by the functions Analyze Situation and Communicate With Other Vehicles. The latter’s
purpose is to provide information received from other vehicles via Vehicle-to-Vehicle
communication and to send information to those vehicles. The function Ensure Passenger
Safety encapsulates requirements concerning the execution of the decision made by Make
Decision, i.e., activating the brakes or the evasive steering maneuver.

The information received/sent by the top-level function is decomposed among its sub-
functions. It can be directly delegated to one function (like the port p1 to port p4) or
decomposed onto different functions with separate ports. The decomposed functions also can
exchange additional information (like Situational Events between p5 and p6) that is required
to fulfill the superordinate functionality.

Interfaces in the function hierarchy describe a high-level information exchange as an
abstraction from technical details like sample time, resolution, etc. The interface Acc2Ebeas
is a functional abstraction of the technical interface AccEcu2EbeasEcu in Figure 3.4. For
example, it merges the technically separated messages for detection of obstacles and vehicles
into one information. The interface SituationalEvents describes information sent from the
function Analyze Situation to the function Make Decision. The information exchanged is
abstracted to events like reaching or passing the last point to safely brake. Technically, this
information is complex to determine and consists of different sensor inputs in specific time
intervals.

The requirements for each function of the function hierarchy are specified as MSDs in
Step 2.2. The following figures show some examples. The top MSD in Figure 3.9 specifies a
functional safety requirement FSR2.1 for the function Analyze Situation. If the time timegap
until the leading vehicle would be hit is still long enough to safely brake (i.e., longer than
time4Braking) but shorter than that time plus a certain threshold brakeThreshold, then the
function Analyze Situation shall inform the function Make Decision that the last point to
safely brake is about to be reached (cf. message reachingLastPointToBrake).

The bottom MSD in Figure 3.9 specifies a functional safety requirement FSR1.1 for the
function Communicate With Other Vehicles. If the function receives information about
an emergency brake warning from the vehicle in front, it shall inform the Make Decision
function.

The two MSDs in Figure 3.10 specify functional safety requirements for the function
Make Decision. The top MSD describes the requirement that if the Make Decision function
is informed about an emergency brake warning from the vehicle in front (cf. FSR1.1 in
Figure 3.9), it shall decide to activate the emergency braking procedure of the function
Ensure Passenger Safety. Redundantly to this requirement, the bottom MSD in Figure 3.10
describes the requirement that the Make Decision function shall make the same decision if
it is informed about reaching the last point to safely brake by the function Analyze Situation
(cf. FSR2.1 in Figure 3.9).

The specification of the function hierarchy and the functional (safety) requirements as
resulting from the Steps 2.1 and 2.2 is the input for the safety analysis on the functional
(safety) requirements in the following Steps 2.3 and 2.4.

48

3.4 Specifying Functions and Requirements

as:
AnalyzeSituation

md:
MakeDecision

reaching
LastPointToBrake

msd FSR2.1 Determine Time for Safe Braking

setTimegapTo
Front(timegap)

time4Braking
< timegap <

time4Braking+brakeThreshold

cwov:
CommunicateWith

OtherVehicles

md:
MakeDecision

receivedEmcyBrake
WarningFromFront

msd FSR1.1 Pass Warnings from leading

receivedEmcyBrake
Warning

(c)

(h,e)

(h,e)

Figure 3.9: Requirements for functions Analyze Situation and Communicate With Other
Vehicles

md:
Make

Decision

cwov:
Communicate

WithOtherVehicles

msd FSR1.2 Brake Decision on Warning

eps:
Ensure

PassengerSafety

activate
EmergencyBraking

receivedEmcyBrake
Warning

md:
Make

Decision

msd FSR2.2 Brake Decision by Sensor

eps:
Ensure

PassengerSafety

activate
EmergencyBraking

as:
Analyze
Situation

reaching
LastPointToBrake

(h,e)

(h,e)

Figure 3.10: Requirements for function Make Decision

49

3 ASIL Tailoring Process on Functional Safety Requirements

3.5 Safety Analysis and ASIL Allocation

In Steps 2.3 and 2.4 of the ASIL tailoring process, a safety analysis is performed on the
function hierarchy to allocate tailored ASIL values to the functions. Together with the ASIL
allocation to functions, a safety argument is developed. This section describes the process
steps and the final work products produced in Steps 2.3 and 2.4. The detailed methods how
the work products are created are described in Chapters 5 and 6.

In Step 2.3, a failure propagation model in form of CFTs (cf. Section 2.4.2) is generated
from the function hierarchy and the functional (safety) requirements. Figure 3.11 shows the
sub-actions of Step 2.3. Initially, the safety manager has to specify which output failure
modes of the top-level function lead to a certain hazard by a so-called Hazard CFT in
Step 2.3.1. Afterward and in all following iterations, a failure propagation model in form
of interleaved CFTs is automatically generated from the function hierarchy and its (safety)
requirements in Step 2.3.2. These CFTs are generated from the hierarchical structure of the
functions and the requirements specified as MSDs. In addition, they are connected to the
manually specified Hazard CFTs. This enables safety analyses to find failure propagation
paths through the function hierarchy leading to a hazard.

2.3. Generate Failure Propagation Model

Function
Hierarchy

(Safety)
MSDs

CFTs

2.3.2 Generate
CFTs

2.3.1 Specify
Hazard CFT

[no Hazard CFT
specified yet]

[else]

Figure 3.11: Process Step 2.3 - Generate Failure Propagation Model for Function Hierarchy

In Step 2.4, the failure propagation model is used to calculate valid ASIL tailorings and
allocate ASILs to the functions of the function hierarchy. Figure 3.12 shows the automated
sub-actions of Step 2.4. First, in Step 2.4.1 the ASIL of each hazard in Hazard CFTs is
propagated along the failure propagation paths of the failure propagation model and allocated
to input/output failure modes of the different sub-CFTs. Where possible, the ASIL is
decomposed or reduced obeying the ASIL tailoring rules (cf. Section 2.5). As the CFTs
mirror the structure of the function hierarchy, afterward in Step 2.4.2, the highest ASIL of
each CFT is allocated to its corresponding function of the function hierarchy. Finally, in
Step 2.4.3, the safety argument, in form of a GSN model (cf. Section 2.8), assuring the
validity of applied ASIL tailorings in Step 2.4.1 is generated. This is done based on the
calculated ASIL propagation paths and ASIL allocation of the Steps 2.4.1 and 2.4.2.

50

3.5 Safety Analysis and ASIL Allocation

2.4. Calculate ASIL Allocation

CFTs

Function
Hierarchy

Function
Hierarchy
with ASILs

2.4.1 Calculate
ASILs for

Failure Modes
2.4.3 Generate

Safety Argument

2.4.2 Allocate
ASILs to

Functions

Safety
Argument

Figure 3.12: Process Step 2.4 - Calculate ASIL Allocation for Function Hierarchy

Figure 3.13 depicts the failure propagation model for the function hierarchy in form of
CFTs as result of Step 2.3. Figure 3.14 shows the function hierarchy with the resulting ASIL
allocation as result of Step 2.4.

In the failure propagation model, the hazard Hard Braking Omission from Figure 3.4
is represented by the fault tree event :HardBrakingOmission inside the Hazard CFT
HardBrakingOmissionCFT (cf. Figure 3.13). This Hazard CFT is the result of Step 2.3.1.
The hazard is caused by an omission failure of the function FEBEAS represented by the
CFT FEBEASCFT (automatically generated in Step 2.3.2). The omission failure propagates
through the function Ensure Passenger Safety (details omitted in Figure 3.13) and is caused
by an omission failure of the information activateEmergencyBraking of the function Make
Decision.

The failure propagation of the CFT MakeDecisionCFT is automatically derived from the
requirements in Figure 3.10. The information activateEmergencyBraking is not sent by the
function Make Decision, if the function has an internal failure :Crash (e.g., because the
system element realizing the function fails), or if the information reachingLastPointToBrake
and receivedEmcyBrakeWarning are both omitted.

The information reachingLastPointToBrake is sent by the function Analyze Situation.
So, the omission failure reachingLastPointToBrake:O is propagating from its CFT
AnalyzeSituationCFT. Similarly, the omission failure receivedEmcyBrakeWarning:O is
caused by the CFT CommunicateWithOtherVehiclesCFT.

The ASIL values annotated to failure modes, gates, and CFTs in Figure 3.13 result
from Step 2.4.1. The hazard Hard Braking Omission is an ASIL D hazard. So, ASIL D
propagates along the failure propagation path of the according omission failure into
FEBEASCFT, through EnsurePassengerSafetyCFT, and into MakeDecisionCFT. After the
AND gate the ASIL is decomposed, because both input failures reachingLastPointToBrake:O
and receivedEmcyBrakeWarning:O have to occur at the same time, in order for the
information activateEmergencyBraking not to be sent by Make Decision. According
to the ASIL tailoring rules, the ASILs of the two CFTs AnalyzeSituationCFT and
CommunicateWithOtherVehiclesCFT can be reduced to ASIL B(D) (cf. Section 2.5.2).

Figure 3.14 shows the function hierarchy from Figure 3.8 after Step 2.4.2. ASILs are
allocated to the sub-functions as prescribed by the failure propagation model in Figure 3.13.
The top-level function FEBEAS keeps the original ASIL D from the hazard Hard Braking
Omission. Ensure Passenger Safety and Make Decision remain ASIL D functions as

51

3 ASIL Tailoring Process on Functional Safety Requirements

«CFT» {ASIL = ASIL D}
:FEBEASCFT

 «CFT» {ASIL = ASIL D}
 :MakeDecisionCFT

o

:Crash

«OR»

oo

«AND»

«CFT» {ASIL = ASIL D}
:EnsurePassengerSafetyCFT

...

«CFT»
{ASIL = ASIL B(D)}

:AnalyzeSituationCFT
...

«CFT»
{ASIL = ASIL B(D)}

:Communicate
WithOtherVehiclesCFT

...

{ASIL =
ASIL D}

{ASIL = ASIL D}

{ASIL =
ASIL D}

o

o o

o

o

o

o
oo

...

«HazardCFT»
:HardBrakingOmissionCFT

«Event»
:HardBraking

Omission

o

ibd Failure Propagation Model

{ASIL = ASIL D}
activateEmergencyBraking:~O

{ASIL = ASIL B(D)}
receivedEmcy

BrakeWarning:O

{ASIL = ASIL B(D)}
reachingLast

PointToBrake:O

Figure 3.13: Failure propagation and ASIL allocation of function hierarchy (focused on Make
Decision)

52

3.5 Safety Analysis and ASIL Allocation

well. However, the ASILs of the functions Analyze Situation and Communicate With Other
Vehicles could be reduced to ASIL B(D).

ASIL = ASIL D

«Function»
FEBEAS

ASIL = ASIL B(D)

«Function»
Analyze
Situation

ASIL = ASIL B(D)

«Function»
Communicate

WithOtherVehicles

ASIL = ASIL D

«Function»
Ensure

PassengerSafety

ASIL = ASIL D

«Function»
Make

Decision

bdd Functions

Figure 3.14: EBEAS function hierarchy with allocated ASILs

Based on the ASIL allocation to functions, a safety argument is automatically derived in
Step 2.4.3. The safety argument for the calculated ASIL allocation is specified as GSN model
in Figure 3.15. The hazards H1 and H3 from Figure 3.4 are addressed by the safety goal SG1
which is refined by functional safety requirements FSR1 and others. FSR1 is decomposed
into the requirements FSR1.2, FSR2.2, and the tailored requirements FSR1.1 and FSR2.1
(cf. Figures 3.9 and 3.10).

FSR1.2 and FSR2.2 each make sure that the brake decision is made in the case of a
hard braking of the leading vehicle. Thus, they are the reason for the AND gate in the
CFT in Figure 3.13 that indicates a possibility of ASIL decomposition. This ASIL tailoring
technique was applied on the requirements FSR1.1 and FSR2.1 that redundantly make sure
that the information needed to make the brake decision is provided to the function Make
Decision (i.e., the requirement FSR1.2 or FSR2.2).

For valid ASIL decomposition upon the functions Analyze Situation and Communicate
With Other Vehicles that the requirements FSR1.2 and FSR2.2 belong to, the functions
have to be independent (cf. Section 2.5.2). Thus, the three requirements FSR1.5, FSR1.6,
and FSR1.7 for absence of cascading and common cause failures are added. That these
requirements are fulfilled is shown by the CFT FEBEASCFT in Figure 3.13: there is no
failure propagation path from one function’s CFT to the other and no common failure mode
as input to both function CFTs.

By executing the automated steps 2.3 and 2.4, ASIL values are allocated to the functions of
the function hierarchy and tailored where possible. The validity of applied ASIL tailorings
is assured by safety analysis on a failure propagation model and documented in a safety
argument. The applied ASIL tailoring can then be reviewed by the safety manager. He might
adapt and refine the function hierarchy and safety requirements to gain better ASIL tailoring
results in following iterations of the steps 2.1 to 2.4. Once the function hierarchy and its
ASIL allocation are considered final, the functions have to be allocated to system elements
of the system architecture that realize their functionality in Step 3.

53

3 ASIL Tailoring Process on Functional Safety Requirements

«SupportedBy»

req Safety Argument

Text = “In EmcyBrake situation,
activate braking or evading“
ASIL = ASIL D

«Goal»
SG1

«Context»
Hazard H1

ASIL = ASIL D

«Solution»
FEBEASCFT

«Strategy»
ASIL Decomposition

Text = “Argument over
sufficient independence“

Text = “Brake on
Warning“
ASIL = ASIL D

«Goal»
FSR1

Text = “...“
ASIL = ...

«Goal»
FSR...

«SupportedBy»

«InContextOf»

«SupportedBy»

Text = “Brake
Decision on Warning“
ASIL = ASIL D

«Goal»
FSR1.2

Text = “Brake
Decision by Sensor“
ASIL = ASIL D

«Goal»
FSR2.2

Text = “Execute
Brake Decision“
ASIL = ASIL D

«Goal»
FSR1.3

Text = “Pass Warnings
from leading“
ASIL = ASIL B(D)

«Goal»
FSR1.1

Text = “Determine
Time 4 Safe Braking“
ASIL = ASIL B(D)

«Goal»
FSR2.1

Text = “No cascading failures from
AnalyzeSituation to
CommunicateWithOtherVehicles“
ASIL = ASIL D

«Goal»
FSR1.5

Text = “No cascading failures from
CommunicateWithOtherVehicles to
AnalyzeSituation“
ASIL = ASIL D

«Goal»
FSR1.6

Text = “No common cause
failures of AnalyzeSituation and
CommunicateWithOtherVehicles“
ASIL = ASIL D

«Goal»
FSR1.7

«SupportedBy»«SupportedBy»

«SupportedBy»

«SupportedBy»

«SupportedBy»

«SupportedBy»

«SupportedBy»
«SupportedBy»

«SupportedBy»

«SupportedBy»

«Context»
Hazard H3

ASIL = ASIL D

«InContextOf»

«SupportedBy»

Text = “FSR1.1 and FSR2.1 are redundant“
ASIL = ASIL D

«Goal»
TG1

«SupportedBy»

Figure 3.15: Safety argument for ASIL allocation

54

3.6 Allocating Functions to System Architecture

3.6 Allocating Functions to System Architecture

In Step 3 of the ASIL tailoring process, the functions of the function hierarchy are allocated
to parts of the system architecture that realize them technically. In addition, the applied ASIL
tailoring on the functional level is checked for validity on the technical level after allocation.
Figure 3.16 shows the sub-actions of Step 3.

3. Define System Architecture and Allocate
Functions

3.2 Allocate Functions
to System Elements

3.1 Define
Active StructureFunction

Hierarchy
Active
Structure

3.3 Validate
ASIL Allocation

Figure 3.16: Process Step 3 - Define System Architecture and Allocate Functions to System
Elements

In Step 3.1, the system designer defines the system architecture in form of a CONSENS
active structure (cf. Section 2.6) based on the function hierarchy. This step is following the
CONSENS systems engineering method.

In Step 3.2, the system designer links the system elements of the system architecture to
the functions of the function hierarchy whose functionality (i.e., functional requirements)
they realize to maintain traceability from requirements to realization [FHM12]. The system
elements inherit the highest ASIL value of the functions they realize. In conjunction,
the safety manager refines the functional safety requirements addressing the functions into
technical safety requirements addressing the system elements.

In Step 3.3, the safety manager performs a safety analysis similar to that on the function
hierarchy (cf. Section 3.5) on the system architecture to validate that the inherited ASIL
values of the system elements are valid and independence claims hold. A safety analysis on
CONSENS active structures is presented by Gausemeier et al. [GPD+09].

Figure 3.17 shows the system architecture of the EBEAS and the allocated functions of
the function hierarchy from Figure 3.14. The interior of the EBEAS is defined in Step 3.1 by
the system designer and allocated to the realized functions in Step 3.2. The ASIL B(D)
functionality of the function Communicate With Other Vehicles is realized by software
on the core :PerformanceCore and a bus interface :V2XBusInterface to the Vehicle2X
Communication. The highly safety-critical ASIL D functionality of the functions Make
Decision and Ensure Passenger Safety is realized on separated cores running in lockstep
mode (:LockstepCores). The function Ensure Passenger Safety requires communication
with actuator ECUs and thus is also partly realized by the separated redundant bus interfaces
:ADASBusInterfaces. Safety analysis has shown that the function Analyze Situation can be
developed ASIL B(D). However, it requires communication with the functionality provided
by the Adaptive Cruise Control that is connected to the same bus as the more critical ECUs.
Thus, the function is realized by the :ADASBusInterfaces and :LockstepCore as well. This

55

3 ASIL Tailoring Process on Functional Safety Requirements

may result in the function having to be realized according to ASIL D if it cannot be safely
separated inside the two system elements (cf. ASIL tailoring by separation in Section 2.5.1).
The safety analysis on the system architecture in Step 3.3 provides assurance for that. The
Adaptive Cruise Control is assigned with ASIL B(D), because it only provides inputs for the
Analyze Situation function and does not interfere with the ASIL D functionality.

«SystemTemplate» {ASIL = ASIL D}
EBEAS

«SystemElementExemplar»
{ASIL = ASIL D}
:LockstepCores

...
«SystemElementExemplar»

{ASIL = ASIL B(D)}
:V2XBusInterface

«SystemElementExemplar»
{ASIL = ASIL B(D)}
:PerformanceCore

«SystemElementExemplar»
{ASIL = ASIL D}

:ADASBusInterfaces

«Realizes» «Realizes»

«Realizes»

«Realizes»

ASIL = ASIL D

«Function»
Ensure

PassengerSafety

ASIL = ASIL B(D)

«Function»
Analyze
Situation

ASIL = ASIL B(D)

«Function»
Communicate

WithOtherVehicles

«Realizes»

ASIL = ASIL D

«Function»
Make

Decision

«Realizes»

ASIL = ASIL B(D)

«EnvironmentElement
Template»

AdaptiveCruiseControl

ASIL = ASIL B(D)

«EnvironmentElement
Template»

Vehicle2XCommunication...

«Realizes»

Figure 3.17: EBEAS system architecture and function allocation

By allocating the functions of the function hierarchy to the system architecture the
traceability of functional (safety) requirements to the system architecture is maintained.
Furthermore, the ASILs allocated to the functions provide the system designer with
information how low the ASIL of system elements could be if no technical constraints (e.g.,
connection to buses) jeopardize the independence claims.

After the presented ASIL tailoring process is finished in Step 3 the discipline-specific
development starts (cf. Section 2.1) where the technical (safety) requirements are refined
into hardware and software (safety) requirements and the system architecture is refined into
discipline-specific designs like the software architecture. On those work products, again
safety analyses have to be repeated to validate that independence claims hold.

56

3.7 Assumptions & Limitations

3.7 Assumptions & Limitations

The safety-criticality tailoring process presented in this chapter is applied to the automotive
domain. It uses the terminology of automotive-specific standards and is embedded into an
automotive-specific development process. However, safety-criticality levels like the ASIL
also exist in other mechatronic systems domains (cf. Section 2.3). These domains have
safety standards similar to ISO 26262 with comparable concepts and terminology. In fact,
many of these standards are based on the same base standard IEC 61508 [Int10a]. The used
automotive-specific development process is compliant to Automotive SPICE [Aut10] which
is a specialization of the general software process maturity model SPICE [Int12a]. Thus, we
assume that the presented tailoring process is also applicable to other mechatronic systems
domains.

The tailoring process is embedded in a development process following the V model
compliant to Automotive SPICE (cf. Section 2.1). An embedding into agile development
processes like SCRUM [Sch97] has not been considered. However, there exists work
discussing the applicability of SPICE to agile processes [LF09]. So, the migration to agile
should be possible.

The automotive safety standard ISO 26262 has to be obeyed in the development
of embedded systems consisting of software and hardware (electrics/electronics). The
development of mechanics is not considered. Consequently, the ASIL tailoring process is
limited to tailoring among functions that are realized by software or hardware.

ISO 26262 specifies requirements for the development of a so-called Safety Element out of
Context (SEooC). “An SEooC is a safety-related element which is not developed for a specific
item. This means it is not developed in the context of a particular vehicle” [Int12b]. A typical
example of an SEooC is a platform project of a supplier that develops a system that shall be
delivered to different customers with only slight changes to its interfaces. For such a system
the concrete environment is not known initially. Thus, assumptions about the environment
and specifically the hazards, failure propagation, and allocated ASIL values have to be made.
In the presented process we assume that the environment of systems interacting with the SUD
is known. We did not take SEooC development into account.

3.8 Related Work

Existing approaches for ASIL tailoring are applied in the phases of system architectural
design or software design [APW+14; APW+13; PLB+10][MAL+12]. They calculate an
ASIL allocation to subsystems of a technical architecture with known failure propagation and
safety mechanisms already in place. They assume that ASIL tailoring measures (separation
and decomposition) have already been applied – both on requirements and architectural level.
Moreover, they do not consider the documentation of a corresponding safety argument.

Based on the EAST-ADL [EAS13] a safety engineering process has been defined
[SCL+10]. It distinguishes a functional and technical level but does not integrate an ASIL
tailoring process on functional safety requirements.

Beckers et al. present a process for derivation of functional safety requirements [BCF+14].
They specify textual requirements in UML class attributes using a UML profile (not
extending SysML). They do not use a function hierarchy. The functional safety requirements

57

3 ASIL Tailoring Process on Functional Safety Requirements

are arbitrarily structured and directly connected to safety goals. ASIL decomposition is part
of their process but as a completely manual step.

In summary, the existing approaches do not provide a process for ASIL tailoring in
the requirements analysis phase. They rather apply ASIL calculation and allocation on
system and software architectures based on the manually specified failure propagation of
subsystems. In addition, the approaches do not consider the documentation of safety
arguments for applied ASIL tailorings.

3.9 Conclusion

This chapter introduces the ASIL tailoring process working on functional safety
requirements. Figure 3.18 gives an overview of the EBEAS example work products in
their final state after the process was executed. The first step of the process is to specify
the system’s environment, identify hazards that the system can cause and determine their
ASIL values. In Figure 3.18, the top-left diagram Environment sketches the environment and
hazards of the EBEAS. There is an ASIL D hazard H1 named Hard Braking Omission that is
traced to an outgoing port of the SUD.

Afterward, safety requirements are derived for the functions that the system shall realize.
The Function Hierarchy diagram in Figure 3.18 shows the break down of the overall
functionality FEBEAS of the SUD into sub-functions like Make Decision. The diagram
FSR1.2 Brake Decision on Warning shows an example of a safety requirement for the
function Make Decision. If it receives the information of an emergency brake warning
receivedEmcyBrakeWarning, it shall decide to activate Emergency Braking.

Based on the structure of the function hierarchy and their requirements (especially
functional safety requirements), an automated safety analysis is performed to allocate tailored
ASIL values to the functions. The Failure Propagation Model diagram in Figure 3.18
describes which failures propagating through the function hierarchy lead to the Hard Braking
Omission hazard. The CFT Make Decision CFT in the middle of the diagram describes the
failure propagation through the function Make Decision. It shows that the function has to
Crash or two input failures have to occur at the same time (cf. the AND gate) in order for
an output failure to lead to the hazard. The AND gate in the CFT Make Decision CFT of
Figure 3.18 indicates a possibility for ASIL tailoring. Only if its two ingoing failures occur
simultaneously, an outgoing failure will propagate on to the OR gate. The analysis of the
failure propagation model provides assurance that the ASIL D propagating from the hazard
Hard Braking Omission can be decomposed into the two ASIL B(D) input failures of Make
Decision CFT. Thus, the two connected CFTs and their corresponding functions inherit that
lower ASIL.

The validity of applied ASIL tailorings is automatically documented in form of a model-
based safety argument in a safety case. The Safety Argument diagram in Figure 3.18
documents an argument for the validity of the applied ASIL tailoring. It connects the hazard
H1, the refined and decomposed safety requirements (i.e., MSDs), and the evidence for safety
requirement fulfillment in form of CFTs.

The function hierarchy and the functional safety requirements are refined by iteration and
finally allocated to the technical system architecture. In the example System Architecture
diagram of Figure 3.18 the EBEAS is comprised of four system elements. They are

58

3.9 Conclusion

re
q

 S
a

fe
ty

 A
rg

u
m

en
t

T
ex

t =
 “

...
“

A
S

IL
 =

 A
S

IL
 D

«G
oa

l»
S

G
1

«C
on

te
xt

»
H

az
ar

d
 H

1

A
S

IL
 =

 A
S

IL
 D

«S
ol

ut
io

n»
F

E
B

E
A

S
C

FT

A
S

IL
 =

 A
S

IL
 D

«G
oa

l»
F

S
R

1

A
S

IL
 =

 ..
.

«G
oa

l»
F

S
R

...

A
S

IL
 =

 A
S

IL
 D

«G
oa

l»
F

S
R

1.
2

A
S

IL
 =

 A
S

IL
 B

(D
)

«G
oa

l»
F

S
R

1.
1

A
S

IL
 =

 A
S

IL
 B

(D
)

«G
oa

l»
F

S
R

2.
1

T
ex

t =
 “

N
o

C
F

...
“

A
S

IL
 =

 A
S

IL
 D

«G
oa

l»
F

S
R

...

«S
tr

at
eg

y»
A

S
IL

 D
ec

om
po

si
tio

n

T
ex

t =
 “

F
S

R
1.

1
&

 2
.1

...
“

A
S

IL
 =

 A
S

IL
 D

«G
oa

l»
T

G
1

A
S

IL
 =

 A
S

IL
 D

«G
oa

l»
F

S
R

...

ib
d

 S
ys

te
m

 A
rc

h
ite

ct
ur

e

A
S

IL
 =

 A
S

IL
 D

«
S

ys
te

m
»

E
B

E
A

S

«
S

ys
te

m
E

le
m

en
t»

{A
S

IL
 =

 A
S

IL
 D

}
:.

..

«
S

ys
te

m
E

le
m

en
t»

{A
S

IL
 =

 A
S

IL
 B

(D
)}

:.
..

«
S

ys
te

m
E

le
m

en
t»

{A
S

IL
 =

 A
S

IL
 B

(D
)}

:.
..

«
S

ys
te

m
E

le
m

en
t»

{A
S

IL
 =

 A
S

IL
 D

}
:.

..

«
R

e
a

liz
es

»

«
R

e
a

liz
es

»

«
R

e
a

liz
es

»

A
S

IL
 =

 A
S

IL
 D

«
F

u
n

ct
io

n
»

..
.

A
S

IL
 =

 A
S

IL
 B

(D
)

«
F

u
n

ct
io

n
»

..
.

A
S

IL
 =

 A
S

IL
 B

(D
)

«F
u

n
ct

io
n

»
..

.

«
R

e
a

liz
es

»

A
S

IL
 =

 A
S

IL
 D

«
F

u
n

ct
io

n
»

M
ak

e
D

e
c

is
io

n

«
R

e
a

liz
es

»

A
S

IL
 =

 A
S

IL
 B

(D
)

«E
n

vi
ro

n
m

e
n

tE
le

m
e

n
t»

A
d

ap
ti

ve
C

ru
is

e
C

o
n

tr
o

l

A
S

IL
 =

 A
S

IL
 B

(D
)

«
E

n
vi

ro
n

m
e

n
tE

le
m

e
n

t»
V

eh
ic

le
2X

C
o

m
m

u
n

ic
at

io
n

..
.

«
R

e
a

liz
es

»

A
S

IL
 =

 A
S

IL
 D

«F
u

n
ct

io
n

»
F

E
B

E
A

S

 «

C
F

T
»

{A
S

IL
 =

 A
S

IL
 D

}
:F

E
B

E
A

S
C

F
T

 «

C
F

T
»

{A
S

IL
 =

 A
S

IL
 D

}

:M
ak

eD
ec

is
io

n
C

F
T

o

:C
ra

sh

«O
R

»

o
o

«A
N

D
»

«C
F

T
»

{A
S

IL
 =

 A
S

IL
 D

}
:.

..

«C
F

T
»

{A
S

IL
 =

 A
S

IL
 B

(D
)}

:.
..

«C
F

T
»

{A
S

IL
 =

 A
S

IL
 B

(D
)}

:.
..

o

o
o

o

o

o

o
o

o

{A
S

IL
 =

 A
S

IL
 D

}
a

ct
iv

a
te

E
m

er
g

e
n

cy
B

ra
ki

n
g

:~
O

m
d:

M
ak

e
D

e
ci

si
on

..
.

m
s

d
 F

S
R

1
.2

 B
ra

ke
 D

e
ci

si
on

 o
n

 W
a

rn
in

g

..
.

a
ct

iv
a

te
E

m
er

g
e

n
cy

B
ra

ki
n

g

re
ce

iv
e

d
E

m
cy

B
ra

ke
W

a
rn

in
g

«S
ys

te
m

»
{A

S
IL

 =
 A

S
IL

 D
}

:E
B

E
A

S

:.
..

«
E

n
vi

ro
n

m
e

n
tE

le
m

e
nt

»
:A

d
ap

ti
ve

C
ru

is
eC

o
n

tr
o

l

«
E

n
vi

ro
n

m
e

n
tE

le
m

e
nt

»
:V

eh
ic

le
2X

C
o

m
m

u
n

ic
at

io
n

«
H

a
za

rd
»

..
.

Id
 =

 “
H

1“
T

ex
t

=
 ..

.
A

S
IL

 =
 A

S
IL

 D

«
H

a
za

rd
»

H
ar

d
B

ra
k

in
g

O
m

is
si

o
n

«
tr

ac
e

»

«
tr

ac
e

»

ib
d

 E
n

vi
ro

n
m

e
n

t

b
d

d
 F

u
nc

tio
n

 H
ie

ra
rc

h
y

ib
d

 F
a

ilu
re

 P
ro

p
a

g
a

tio
n

 M
o

d
e

l

m
s

d
 F

S
R

...
m

s
d

 F
S

R
...

«H
az

ar
dC

F
T

»
:H

ar
d

B
ra

ki
n

g
O

m
is

si
o

n
C

F
T

«
E

ve
n

t»
:H

ar
dB

ra
ki

ng
O

m
is

si
on

o
«

tr
ac

e
»

«
tr

ac
e

»

«
tr

ac
e

»

{A
S

IL
 =

 A
S

IL
 B

(D
)}

..
.:O

{A
S

IL
 =

 A
S

IL
 B

(D
)}

re
ce

iv
e

d
E

m
cy

B
ra

ke
W

a
rn

in
g

:O

Fi
gu

re
3.

18
:S

ke
tc

h
of

A
SI

L
ta

ilo
ri

ng
pr

oc
es

s
w

or
k

pr
od

uc
ts

59

3 ASIL Tailoring Process on Functional Safety Requirements

connected to the functions that they realize and inherit the highest ASIL of the realized
functions.

This systematic ASIL tailoring process allows to plan safety measures and required effort
early in the development process (i.e. during system requirements analysis). Furthermore, its
automated steps remove error-prone and time-consuming manual tasks of the safety manager.
This fosters the application of ASIL tailoring already during requirements analysis which is
required due to the increasing complexity of mixed-criticality systems.

In the following Chapter 4, the method for specifying the function hierarchy and
corresponding functional safety requirements is described in detail. Chapter 5 contains the
details of the automated safety analysis and ASIL allocation on the function hierarchy. In
Chapter 6 the automatic documentation of safety arguments is elaborated.

60

4

SPECIFYING FORMAL FUNCTIONAL
SAFETY REQUIREMENTS

In Steps 2.1 and 2.2 of the ASIL tailoring process (cf. Figure 4.1), the function hierarchy
and its (safety) requirements are developed and refined. This chapter describes the details of
these process steps and the used methods.

act ASIL Tailoring Process

S
ys

te
m

 D
es

ig
ne

r,

S
af

et
y

M
an

ag
er

1. Analyze Environment and Hazards

2.3. Generate
Failure Propagation Model

for Function Hierarchy

2.4. Calculate
ASIL Allocation for
Function Hierarchy

2.2. Develop/Refine
(Safety) Requirements

for Functions

3. Define System Architecture and
Allocate Functions to System Elements

2.1. Develop/Refine
Function Hierarchy

Customer
Requirements

«datastore»
System Architecture

R
eq

ui
re

m
en

ts
 E

ng
in

ee
r,

S
af

et
y

M
an

ag
er

[functions sufficiently trivial and
ASIL allocation reasonable]

«datastore»
System

Requirements

Function
Hierarchy

Function
Hierarchy

Function
Hierarchy

Functional (Safety)
Requirements

FSRs

Environment and Hazards with ASILs

System Elements
with ASILs

Failure
Propagation

Model

FPM
«datastore»
Safety Case

Environment and Hazards with ASILs
or Function Hierarchy [ASILs Tailored]

Function
Hierarchy

Function
Hierarchy

[ASILs Tailored]

Function Hierarchy
[ASILs Tailored]

Safety
Argument

[else]

Figure 4.1: ASIL tailoring process with highlighted contents of Chapter 4

61

4 Specifying Formal Functional Safety Requirements

The function hierarchy describes and decomposes the system’s functionality.
Requirements on that functionality (functional requirements and functional safety
requirements) are specified using Modal Sequence Diagrams. These requirements consider
the occurrence, order, and timing of information exchange between functions. Requirements
on the functions of other classes can be specified in natural language and are linked to the
functions. Altogether, the function hierarchy and corresponding (safety) requirements are
consolidated in a system requirements specification.

This chapter is structured as follows. First, Section 4.1 summarizes the scientific
contributions of the formal specification of functional (safety) requirements. Section 4.2
describes how those requirements and related work products fit in a system requirements
specification. Section 4.3 contains the details of the ASIL tailoring process steps 2.1 and
2.2. Section 4.4 explains the semantics and use of Modal Sequence Diagrams for specifying
different classes of functional (safety) requirements. Section 4.5 describes the integration of
MSD-based and natural language requirements. Section 4.6 lists assumptions and limitations
of the formal specification of functional (safety) requirements. In Section 4.7, related work
is discussed. The final Section 4.8 concludes this chapter.

4.1 Contributions

The contributions of this chapter can be summarized as follows:

• A model- and scenario-based, hierarchically decomposed specification of functional
safety requirements to cope with the complexity of CPS functionality and requirements
(cf. Challenge C1 in Section 1.2).

• A formal specification of functional safety requirements that enables automated safety
analysis and ASIL allocation on requirements level (cf. Challenge C2 in Section 1.2).

• A catalog of formal, model-based requirement patterns for functional requirements
concerning chronological succession, real-time, and safety. It supports requirements
engineers and safety managers in building a high-quality requirements specification
for a safe system.

• The integration of model-based safety requirements with natural language safety
requirements that fosters the completeness and consistency of requirements
specifications whilst providing flexibility to specify requirements in the respectively
most suitable way.

4.2 System Requirements Specification Contents

The ASIL tailoring process presented in Chapter 3 is integrated into the SPICE phase system
requirements analysis. The purpose of that phase is to “transform the defined customer
requirements into a set of desired system technical requirements that will guide the design
of the system” [Aut10]. This set of requirements shall be documented in a so called System
Requirements Specification (SyRS). The required contents and their structure are defined in
the requirements engineering standard ISO 29148 [Int11i]. Hence, those work products of

62

4.2 System Requirements Specification Contents

the ASIL tailoring process that we consider part of the system requirements have to adhere
to this standard as well. Figure 4.2 shows how the requirements work products used in the
ASIL tailoring process are structured in accordance with ISO 29148 and ISO 26262.

System
Requirements

Environment

Functional
Safety

Requirement

Safety
Goal

Hazard

Function

Technical
Safety

Requirement

System
Environment

Element

Functional
Requirement

Technical
Requirement

prevents
OrMitigates

causes
interacts

With

refines

refines refines

satisfies

Function
Hierarchy

Technical
Requirements

describes
FunctionalityOf

Figure 4.2: Contents of the System Requirements Specification

ISO 29148 describes a so-called system context that shall contain “the major elements of
the system [...] and how they interact [...], defining all significant interfaces crossing the
system’s boundaries” [Int11i]. The environment specified in Step 1 of the ASIL tailoring
process (cf. Section 3.3) specifies the system’s boundary, its technical interfaces, and
surrounding environment elements that it has to interact with (cf. Section 2.6). Thus, the
Enviroment fits as system context.

ISO 26262 distinguishes between requirements on different abstraction levels (cf.
Section 2.2). We consider safety goals, functional safety requirements and technical safety
requirements as part of the SyRS. Safety goals are top-level safety requirements specified
for each identified hazard that lead to the functional safety requirements [Int11d]. Hazards
are caused by failures on the boundary of the system. Thus, we document safety goals and
hazards together with the environment.

63

4 Specifying Formal Functional Safety Requirements

ISO 29148 defines so-called system functions that shall describe “major system
capabilities, conditions, and constraints” [Int11i]. We specify system capabilities as functions
in the function hierarchy.

ISO 29148 prescribes no dedicated section for safety requirements, and ISO 26262 states
that safety requirements can be documented together with other requirements if they are
“unambiguously identifiable as safety requirements” (e.g., by an ASIL attribute) [Int11g].
Thus, we document safety requirements as part of the SyRS together with other requirements.

We specify functional safety requirements together with other functional requirements as
MSDs structured by the functions of the function hierarchy. This matches the organizational
approach for requirements structuring functional hierarchy suggested by ISO 29148 [Int11i].

Technical safety requirements shall be allocated to elements of the system architecture
[Int11e]. We document technical safety requirements together with other technical
requirements textually, and group them in a system requirements section (that we call
Technical Requirements in Figure 4.2) as suggested by ISO 29148.

4.3 Systematic Development and Refinement of Functional
Safety Requirements

This section describes the details about the substeps of the Steps 2.1 and 2.2 of the ASIL
tailoring process. In Step 2.1, the function hierarchy is developed and refined. Figure 4.3
shows the sub-actions of Step 2.1. In Step 2.2, the functional (safety) requirements for
the functions of the function hierarchy are developed and specified in form of Modal
Sequence Diagrams (cf. Section 2.7). Figure 4.4 shows the sub-actions of Step 2.2. After
the environment and hazards were specified in Step 1, the top-level function hierarchy is
derived from the environment in Step 2.1.a). This action consists of the specification of
the root function of the function hierarchy representing the full functionality of the SUD,
and the functional abstraction of the SUD’s technical interfaces to the environment into
input and output information. The top-level function hierarchy is afterward used as input
for Step 2.2.a). In Step 2.2.a), the according (safety) requirements for the top-level function
are developed. In following iterations of the process steps, the function hierarchy is refined in
Step 2.1.b). This refinement is the decomposition of the functionality of single functions (like
the top-level root function) into smaller functions on the next level of the function hierarchy,
including their input and output information. Furthermore, the structure of the function
hierarchy can be revised based on the ASIL tailoring results of Step 2.4 (cf. Chapter 5).
Afterward, in Step 2.2.b), the functional (safety) requirements are refined adhering to the
refinement of the function hierarchy.

Section 4.3.1 explains the systematic derivation of the top-level function hierarchy
from the environment (Step 2.1.a)). Section 4.3.2 describes the specification of (safety)
requirements on the function hierarchy using MSDs (Step 2.2.a)). Section 4.3.3 details the
refinement steps for the function hierarchy and requirements (Steps 2.1.b) and 2.2.b)).

4.3.1 Deriving the Top-Level Function Hierarchy from the Environment

The CONSENS environment model specifies the system’s boundary, its technical interfaces,
and surrounding elements that it has to interact with (cf. Section 2.6). The system is

64

4.3 Systematic Development and Refinement of Functional Safety Requirements

2.1. Develop/Refine Function Hierarchy

Environment and
Hazards with ASILs

Function Hierarchy
with Tailored ASILs

Function
Hierarchy

2.1.b) Refine
Function Hierarchy

2.1.a) Develop
Top-Level

Function Hierarchy

Figure 4.3: Process Step 2.1 - Develop/Refine Function Hierarchy

2.2. Develop/Refine (Safety) Requirements

2.2.b) Refine
(safety) MSDs

2.2.a) Develop
(safety) MSDs

for top-level functionFunction
Hierarchy

(Safety)
MSDs

[no MSDs
specified yet]

[else]

Figure 4.4: Process Step 2.2 - Develop/Refine (Safety) Requirements for Functions

considered as a black box. Its internals are specified during the system architectural design
phase in the system architecture. To come up with an adequate system architecture that
fulfills all requirements, we use a function hierarchy as an intermediate step. It is a means to
cope with complexity by decomposing the required functionality that has to be realized by
the system and its architecture.

Figure 4.5 shows the detailed environment of the EBEAS (refinement of Figure 3.4 on
page 44) as result of ASIL Tailoring Process Step 1 (cf. Section 3.3). The internal block
diagram in the bottom shows the system and its connections to the environment elements via
ports typed by the interfaces shown in the block definition diagram in the top.

The Vehicle2X Communication sends and receives messages to and from other vehicles
surrounding the ego vehicle. Information that is relevant for the EBEAS is passed on
to it (e.g., an emergency brake warning from a vehicle in front). In addition, the
EBEAS commands the Vehicle2X Communication to send messages to certain vehicles (e.g.,
emergency brake or evade requests and warnings). The Adaptive Cruise Control informs the
EBEAS about detected obstacles and vehicles in front, and continuously provides information
about the time it takes to reach those. The Electronic Stability Control continuously provides
the EBEAS with information about the current ego vehicle velocity and the maximal possible
deceleration (cf. maxDecel of interface EscEcu2EbeasEcu in Figure 4.5). The Electronic
Stability Control controls the vehicle’s brakes. Hence, in case the EBEAS decides to execute
emergency braking, it commands the Electronic Stability Control to perform a hard braking.
The Active Front Steering can control the steering column. So, in case the EBEAS decides to

65

4 Specifying Formal Functional Safety Requirements

«SystemExemplar»
:EBEAS

«EnvironmentElement
Exemplar»

:ElectronicStabilityControl

«EnvironmentElement
Exemplar»

:AdaptiveCruiseControl

«EnvironmentElement
Exemplar»

:Vehicle2XCommunication

«EnvironmentElement
Exemplar»

:ActiveFrontSteering

:~AccEcu2
EbeasEcu

:~EscEcu2
EbeasEcu

:~EbeasEcu
2EscEcu

:~V2xEcu2
EbeasEcu

:~EbeasEcu
2V2xEcu

:~EbeasEcu
2AfsEcu

:AccEcu2
EbeasEcu

:EscEcu2
EbeasEcu

:V2xEcu2
EbeasEcu

:EbeasEcu
2AfsEcu

:EbeasEcu
2V2xEcu

:EbeasEcu
2EscEcu

in obstacleDetected: bool
in timeToObstacle: ms
in frontVehicleDetected: bool
in timegapToFrontVehicle: ms
...

«InformationFlowSpecification»
AccEcu2EbeasEcu

«EnvironmentElement
Exemplar»
:ADASBus

«EnvironmentElement
Exemplar»
:V2XBus

:AdasBus
Signals

:~AdasBus
Signals

:~AdasBusSignals

:~AdasBus
Signals

:~AdasBus
Signals

:AdasBusSignals

:~V2xBus
Signals

:~V2xBus
Signals

:V2xBusSignals

:V2xBusSignals

:AdasBus
Signals

:AdasBusSignals

bdd Environment Interfaces

ibd Environment

«EnergyFlow
Specification»

AdasBusSignals

«EnergyFlow
Specification»

V2xBusSignals

out emcyBrakeRequest: Message
out emcyBrakeWarning: Message
out evadeRequest: Message
out evadeWarning: Message
...

«InformationFlowSpecification»
EbeasEcu2V2xEcu

out brakingRequest: m/s²

«InformationFlow
Specification»

EbeasEcu2EscEcu
in velocity: km/h
in maxDecel: m/s²

«InformationFlow
Specification»

EscEcu2EbeasEcu

in receivedEmcyBrakeWarning: Message
...

«InformationFlowSpecification»
V2xEcu2EbeasEcu

out trajectory: Trajectory

«InformationFlow
Specification»

EbeasEcu2AfsEcu

«EnvironmentElement
Exemplar»

:VehicleBody

«EnvironmentElement
Exemplar»

:VehiclePowerSupply

:ElectricalPower

:~ElectricalPower
«MechanicalConnection»

Screw Connection

«EnergyFlow
Specification»

ElectricalPower

commPartner: Vehicle
...

Message

Figure 4.5: Environment of the EBEAS with Interfaces

66

4.3 Systematic Development and Refinement of Functional Safety Requirements

evade, it commands the Active Front Steering to steer continuously according to a calculated
trajectory to perform a lane change maneuver.

Technically, the Vehicle2X Communication is connected to the EBEAS via the V2X Bus
(cf. energy flow V2xBusSignals). So, all information exchange specified as information
flow between the Vehicle2X Communication and the EBEAS is actually transferred over that
bus. All other ECUs are connected to the ADAS Bus. Thus, their information exchange
is transfered over that bus. The EBEAS receives its electrical power (cf. energy flow
ElectricalPower) from the Vehicle Power Supply. Moreover, the EBEAS is mechanically
connected to the Vehicle Body via screws (cf. mechanical connection Screw Connection).

Deriving the top-level function hierarchy from the environment (cf. Step 2.1.a) in
Figure 4.3) consists of the specification of the root function of the function hierarchy
representing the full functionality of the SUD, and the functional abstraction of the SUD’s
technical environment interfaces into input and output information. To support the derivation
process, the CONSENS function hierarchy (cf. Section 2.6) had to be extended: The
CONSENS function hierarchy does not specify ports or interfaces for functions. This means,
there is no direct traceability from the technical ports and interfaces in the environment
model to the functions of the function hierarchy. In addition, information flow through
the function hierarchy cannot be analyzed (e.g., for failure propagation). Thus, we add the
use of SysML ports and interfaces to the function hierarchy. Furthermore, the CONSENS
function hierarchy does not specify functions on the same level as the root function to
represent the functionality of environment elements. However, this is needed to specify
model-based requirements on the behavior of the root function based on input and output
information from/to the environment’s functionality. Thus, we also use CONSENS functions
as a functional abstraction of the environment elements that communicate with the root
function via ports and interfaces.

The derivation of the top-level function hierarchy with these extensions consists of the
following steps. For illustration, Figure 4.6 shows the top-level function hierarchy of the
EBEAS derived from the environment in Figure 4.5.

1. Derive Root Function: The SUD (the CONSENS system template) is represented by
a CONSENS function. Its name is prefixed with an ’F’ to distinguish it from the system
template. In the example, the EBEAS is represented by the root function FEBEAS.

2. Derive Functions for Environment Elements: Each environment element that
communicates with the SUD via information flow is added as a top-level function
(with an ’F’-prefixed name). In the example, this results in the ADAS Bus, V2X Bus,
Vehicle Power Supply, and Vehicle Body not being transformed.

3. Derive Ports: Each port of the system that is typed by an information flow is
represented by a port on the system’s root function. The ports of the environment
elements that are connected to these system ports are also transformed to ports of the
corresponding functions. This results in technical ports like energy flow from buses or
power supply and mechanical screw connections being omitted.

4. Derive Interfaces: Finally, the information flow interfaces have to be abstracted
to functional interfaces as types for the function ports. Whilst the previous steps
could be automated, this step requires the requirements engineer’s expertise. In the

67

4 Specifying Formal Functional Safety Requirements

obstacleOrFrontVehicleDetected()
setTimegapToFront(timegap: ms)
...

«interface»
Acc2Ebeas

«Function»
FEBEAS

«Function»
FElectronicStabilityControl

«Function»
FAdaptiveCruiseControl

«Function»
FVehicle2XCommunication

«Function»
FActiveFrontSteering

:~Acc2
Ebeas

:~Esc2
Ebeas

:Ebeas
2Esc

:~V2x2
Ebeas

:Ebeas
2V2x

:Ebeas
2Afs

:Acc2
Ebeas

:Esc2
Ebeas

:V2x2
Ebeas

:~Ebeas
2Afs

:~Ebeas
2V2x

:~Ebeas
2Esc

bdd Top-level Function Hierarchy

performHardBraking()

«interface»
Ebeas2Esc

setEgoVelocity(v: km/h)
setEgoMaxDeceleration(a: m/s²)

«interface»
Esc2Ebeas

steerForLaneChange()

«interface»
Ebeas2Afs

sendEmcyBrakeRequestToRear()
sendEmcyBrakeWarningToRear()
sendEvadeRequestToOvertaking()
sendEvadeWarningToOvertaking()
...

«interface»
Ebeas2V2x

receivedEmcyBrakeWarningFromFront()
...

«interface»
V2x2Ebeas

Figure 4.6: Top-level Function Hierarchy of the EBEAS

example’s environment, the V2X messages have a parameter :Vehicle to specify what
other vehicle around the ego vehicle is communicating. In the function hierarchy
that parameter is omitted and the messages are instead appended with “front”, “rear”,
and “overtaking” to describe what role the communicating vehicle has in the EBEAS
scenario, as only messages from those vehicles are relevant for the EBEAS. Also, the
information from the Adaptive Cruise Control that an obstacle or a vehicle was detected
is merged to one (cf.obstacleOrFrontVehicleDetected() in Figure 4.6). Furthermore,
continuously sent signals are abstracted to events: The function FEBEAS does not
sent a trajectory but a simplified command steerForLaneChange() to the Active Front
Steering.

Functional (safety) requirements for the top-level root function and each sub-function are
afterwards specified in Step 2.2 (cf. Figure 4.4). The details, how these requirements are
specified using MSDs are described in Sections 4.3.2 and 4.4. In following iterations of the
ASIL tailoring process, sub-levels of the function hierarchy are derived by decomposing the
complex functionality of the top-level root function (cf. Step 2.1.b) in Figure 4.3) and its
requirements. This refinement is described in Section 4.3.3.

4.3.2 Structure of MSD Specifications for Functional Safety
Requirements

Figure 4.7 shows the relation between the function hierarchy and its requirements specified
as MSDs. The top of the figure shows an excerpt of the top-level function hierarchy

68

4.3 Systematic Development and Refinement of Functional Safety Requirements

of the EBEAS from Figure 4.6 as a SysML block definition diagram. It describes the
functions and their required and provided information. This is specified via ports typed
by interfaces that define information as UML operations. The function FEBEAS has a
port p2 that is typed by the interface V2x2Ebeas. The interface defines the information
receivedEmcyBrakeWarningFromFront.

The middle of Figure 4.7 shows a SysML collaboration required for MSD specifications
(cf. Section 2.7). It is derived from the top-level function hierarchy and used to specify
the allowed communication paths between the functions (represented as SysML parts). For
instance, there is a connector between the port p1 of the function v2x and the port p2 of the
function ebeas. It specifies that the information defined in the interface V2x2Ebeas may be
sent by the function v2x to the function ebeas.

The bottom of Figure 4.7 shows an example MSD describing a requirement on the function
FEBEAS. If the function ebeas is informed by the function v2x about a received emergency
brake warning from the front vehicle and the last point to brake has not yet been passed,
the function ebeas shall command the function esc to perform a hard braking maneuver.
The cold condition in the MSD uses the boolean attribute passedLastPointToBrake of the
function FEBEAS as defined in the block definition diagram.

A lifeline of an MSD represents a part from the collaboration that has a block from the
function hierarchy as type (e.g., lifeline ebeas represents part ebeas of type FEBEAS). A
message in an MSD (e.g., receivedEmcyBrakeWarningFromFront) obeys the signature of a
UML operation from an interface (e.g., V2x2Ebeas) of the function hierarchy. Additionally,
a message represents information flow from one function to another over a connector from
the collaboration (e.g., from v2x to ebeas via p1 to p2).

4.3.3 Refining the Function Hierarchy and Safety Requirements

Requirements on the top-level function of a system under development are specified with
MSDs as described in the previous section and as shown in Figure 4.7. To cope with
the complexity of cyber-physical systems and their requirements, the top-level function is
decomposed into smaller functions with decreased size. Accordingly, also the top-level
requirements have to be broken down onto the smaller functions. To realize this, we
decompose the function hierarchy using SysML block definition diagrams and internal block
diagrams. The requirements specified as MSDs are decomposed following the structure
defined by those diagrams based on work by Holtmann and Meyer [HM13]. This results
in a function hierarchy with decomposed requirements specified as MSDs.

Figure 4.8 shows the structure and relation of the function hierarchy and its functional
(safety) requirements in form of MSDs. The left column shows the function hierarchy with
its functions and interfaces. The center column contains the function connections on the
different hierarchy levels and the internal structure of each function. The right column depicts
the functional (safety) requirements for the functions on the different hierarchy levels.

The top row of Figure 4.8 shows the top-level of the function hierarchy and its
requirements. Hence, the top left contains (an excerpt of) the top-level function hierarchy
that is derived from the environment model (cf. Section 4.3.1). The top center shows
the collaboration required for the MSD specification (cf. Section 4.3.2). It specifies the
connectors between the ports of the top-level function FEBEAS and its environment. The
top right shows an example of a requirement on the top-level function FEBEAS. The lifelines

69

4 Specifying Formal Functional Safety Requirements

passed…: Bool

«Function»
FEBEAS

«Function»
FElectronicStabilityControl

«Function»
FVehicle2XCommunication

:Ebeas
2Esc

p1:~V2x
2Ebeas

p2:V2x
2Ebeas

:~Ebeas
2Esc

bdd Top-level Function Hierarchy

performHardBraking()

«interface»
Ebeas2Esc

receivedEmcyBrakeWarningFromFront()
...

«interface»
V2x2Ebeas

Top-level Collaboration

ebeas:
FEBEAS

esc:
FElectronicStabilityControl

v2x:
FVehicle2XCommunication

:Ebeas
2Esc

p1:~V2x
2Ebeas

p2:V2x
2Ebeas

:~Ebeas
2Esc

v2x: FVehicle2X
Communication

ebeas: FEBEAS

receivedEmcyBrake
WarningFromFront

msd FSR1 Brake on Warning

performHardBraking

esc: FElectronic
StabilityControl

ebeas.passedLastPointToBrake
= false

signature

represents

connector

type

type

abstract syntax link:

Figure 4.7: Relations between function hierarchy and MSD specification

70

4.3 Systematic Development and Refinement of Functional Safety Requirements

«
F

u
nc

tio
n»

F
E

B
E

A
S

«
F

u
nc

tio
n»

F
E

le
c

tr
o

n
ic

S
ta

b
il

it
y

C
o

n
tr

o
l

«
F

u
nc

tio
n»

F
V

eh
ic

le
2X

C
o

m
m

u
n

ic
a

ti
o

n

:E
b

e
as

2E
sc

:~
V

2
x2

E
b

e
as

:V
2x

2
E

b
e

as
:~

E
b

e
as

2
E

sc

b
d

d
 F

u
n

ct
io

n
 H

ie
ra

rc
hy

p
er

fo
rm

H
a

rd
B

ra
ki

n
g(

)

«
in

te
rf

a
ce

»
E

b
ea

s
2

E
s

c

re
ce

iv
ed

E
m

cy
B

ra
ke

W
ar

ni
n

gF
ro

m
F

ro
n

t(
)

..
.

«i
nt

e
rf

a
ce

»
V

2
x

2E
b

ea
s «
F

u
nc

tio
n»

C
o

m
m

u
n

ic
at

e
W

it
h

O
th

e
rV

e
h

ic
le

s

«
F

u
nc

tio
n»

E
n

su
re

P
a

s
se

n
g

er
S

a
fe

ty

«
F

u
nc

tio
n»

M
a

ke
D

e
c

is
io

n

ib
d

 F
E

B
E

A
S cw

ov
:

C
o

m
m

u
n

ic
at

e
W

ith
O

th
er

V
eh

ic
le

s
e

ps
: E

n
su

re
P

a
ss

e
ng

er
S

af
et

y

m
d

: M
a

ke
D

e
ci

si
on

T
o

p
-l

ev
el

 C
o

lla
b

o
ra

ti
o

n

e
be

as
:

F
E

B
E

A
S

:F
E

le
ct

ro
ni

cS
ta

bi
lit

yC
o

nt
ro

l
:F

V
eh

ic
le

2
X

C
om

m
un

ic
a

tio
n

:E
b

e
as

2
E

sc
:~

V
2x

2
E

b
e

as

:V
2x

2
E

b
e

as
:~

E
b

e
as

2
E

sc

:C
w

ov
2

M
d

:~
M

d
2E

p
s

:V
2

x2
E

b
e

as

:~
C

w
ov

2
M

d

:M
d

2E
p

s
:~

E
b

e
as

2
E

sc

«i
nt

e
rf

a
ce

»
C

w
o

v
2M

d

«i
nt

e
rf

a
ce

»
M

d
2

E
p

s

:~
E

b
e

as
2E

sc
:M

d
2E

p
s

:~
C

w
ov

2
M

d

:V
2x

2
E

b
e

as

:~
M

d
2E

p
s

:C
w

ov
2M

d

ib
d

 C
o

m
m

u
n

ic
at

e
W

ith
O

th
er

V
e

h
ic

le
s

ib
d

 M
a

ke
D

e
ci

si
onib
d

 E
n

su
re

P
as

se
n

ge
rS

a
fe

ty

...
...

...
...

F
u

n
ct

io
n

s
an

d
 In

te
rf

ac
es

F
u

n
ct

io
n

 C
o

n
n

ec
ti

o
n

s
F

u
n

ct
io

n
al

 (
S

af
et

y)
 R

eq
u

ir
em

en
ts

Top-level Sublevel Sub-sublevel

m
s

d
 F

S
R

..
.

m
s

d
 F

S
R

..
.

m
s

d
 F

S
R

..
.

m
s

d
 F

S
R

..
.

m
s

d
 F

S
R

..
.

m
s

d
 F

S
R

..
.

cw
ov

:
C

om
m

un
ic

at
eW

ith
O

th
er

V
eh

ic
le

s

m
d:

M

ak
eD

ec
is

io
n

m
sd

 F
S

R
1.

1
P

as
s

W
ar

ni
ng

s
fro

m
 le

ad
in

g

re
ce

iv
ed

E
m

cy
B

ra
ke

W
ar

ni
ng

m
d:

M

ak
eD

ec
is

io
n

ac
tiv

at
eE

m
er

ge
nc

yB
ra

ki
ng

m
sd

 F
S

R
1.

3
E

xe
cu

te
 B

ra
ke

 D
ec

is
io

n

ep
s:

E

ns
ur

eP
as

se
ng

er
S

af
et

y
m

d:

M
ak

eD
ec

is
io

n

cw
ov

:
C

om
m

un
ic

at
eW

ith
O

th
er

V
eh

ic
le

s

m
sd

 F
S

R
1.

2
B

ra
ke

 D
ec

is
io

n
on

 W
ar

ni
ng

ep
s:

E

ns
ur

eP
as

se
ng

er
S

af
et

y

ac
tiv

at
e

E
m

er
ge

nc
yB

ra
ki

ng

re
ce

iv
ed

E
m

cy
B

ra
ke

W
ar

ni
ng

m
d.

pa
ss

ed
La

st
P

oi
nt

To
B

ra
ke

=

fa
ls

e

:F
V

eh
ic

le
2X

C
o

m
m

u
n

ic
at

io
n

e
be

as
:

F
E

B
E

A
S

re
ce

iv
ed

E
m

cy
B

ra
ke

W
a

rn
in

g
F

ro
m

F
ro

n
t

m
s

d
 F

S
R

1
 B

ra
ke

 o
n

 W
ar

ni
n

g

p
er

fo
rm

H
a

rd
B

ra
ki

n
g

:F
E

le
ct

ro
ni

c
S

ta
bi

lit
yC

o
n

tr
o

l

e
be

as
.p

as
se

dL
a

st
P

o
in

tT
o

B
ra

ke

=
 f

al
se

Fi
gu

re
4.

8:
H

ie
ra

rc
hi

ca
ls

tr
uc

tu
re

of
fu

nc
tio

ns
an

d
re

qu
ir

em
en

ts
(b

as
ed

on
[H

M
13

])

71

4 Specifying Formal Functional Safety Requirements

represent the parts in the collaboration and the messages represent information flowing over
connectors in the collaboration. For example, the message performHardBraking between the
lifelines ebeas: FEBEAS and :FElectronicStabilityControl flows over the connector between
the ports typed by the interface Ebeas2Esc.

The middle and bottom rows of Figure 4.8 depict sub-levels of the function hierarchy
and requirements resulting from the refinement of the required functionality. The middle
left shows three functions that decompose the top-level function FEBEAS. The ports of the
top-level function are delegated down to the subfunctions (e.g., the port :V2x2Ebeas down
to Communicate With Other Vehicles) and new ports and according interfaces are added to
describe information flow between the subfunctions (e.g., the two ports typed by the interface
Cwov2Md of the two functions Communicate With Other Vehicles and Make Decision). The
internal block diagram in the center specifies the internal structure of the function FEBEAS
(i.e., the connections between its subfunctions). The middle right shows the decomposition of
the requirement on the top-level function into three requirements on the subfunctions. Each
function and requirement of the first sublevel can be decomposed into further sub-levels in
the same way as indicated by the bottom row of Figure 4.8.

This structure is built row by row and from left to right, during Steps 2.1 and 2.2 of the
ASIL tailoring process (cf. Figure 4.3 and 4.4). These steps are based on the requirements
engineering process described in [FH14]. The top-level function hierarchy in the top-left is
developed in Step 2.1.a) as explained in Section 4.3.1. The collaboration in the top-center
and the top-level functional (safety) requirements in the top-right are specified in Step 2.2.a)
as described in Section 4.3.2. Afterward in Step 2.1.b), the top-level function hierarchy is
refined into subfunctions and their connections as shown in the middle-left and center. After
the structure of the function hierarchy has been refined, also the top-level functional (safety)
requirements are refined in Step 2.2.b) as shown in the middle-right. Further sub-levels as
depicted in the bottom row of Figure 4.8 are specified by iterating Steps 2.1.b) and 2.2.b).

4.4 Specifying Functional Safety Requirements with MSDs

As outlined in Section 4.3, we use MSDs to describe functional requirements and functional
safety requirements. ISO 26262 highly recommends the use of semi-formal notations (e.g.,
UML) and semi-formal verification (e.g., “by executable models”) as methods to specify and
verify safety requirements of ASIL C and ASIL D systems [Int11g]. As MSDs refine semi-
formal UML sequence diagrams to a formal notation, their concrete syntax is still close to
that semi-formal notation. In addition, an MSD specification is an executable model that can
be executed by the play-out algorithm (cf. Section 2.7) for semi-formal verification. The use
of formal notations (e.g., Z [Int02]) and formal verification is recommended for ASILs B to
D [Int11g]. MSDs have completely defined syntax and semantics, and thus, are considered
a formal notation by ISO 26262 [Int11a]. In addition, MSDs and the language they are
based on (Life Sequence Charts) can be used for formal verification [LLN+09][LYZ+11].
Also, Bitsch assembled a classification of typical safety requirements from industry [Bit00;
Bit01]. He proposes to also use formal sequence diagram like notations for specifying safety
requirements. Furthermore, MSDs have been successfully used to specify requirements in
a case study in the automotive industry [GHM+15]. For all these reasons, we use MSDs in
this thesis as a notation for safety requirements.

72

4.4 Specifying Functional Safety Requirements with MSDs

In the following Section 4.4.1, we recapitulate the MSD semantics from the foundations
(cf. Section 2.7) with focus on formulation of functional requirements. This is the formal
basis for Section 4.4.2, where we specify MSD requirement patterns for well-known classes
of chronological succession, real-time, and safety requirements.

4.4.1 MSD Semantics for Requirements

By following the model structure as described in Section 4.3, we use MSDs to describe
functional requirements and functional safety requirements on the function hierarchy. On this
level, requirements are formulated on an abstraction level that uses event-triggered, discrete
information flow. Technical realization (e.g., in form of continuous signals) is explicitly kept
undefined and simplified to events (e.g., rising or falling signal edges). In general, we use
MSDs to describe if-then requirements. If some information flow sequence occurs or some
condition holds, then some information flow shall (not) happen or some condition shall hold.

Figure 4.9 provides an overview of the semantics of the central MSD constructs execution
kind and temperature (cf. Section 2.7) and how we interpret them for requirements
specification. From the point of view of one MSD a monitored message can be observed
during the execution of the MSD but its occurrence is not required. An executed message, on
the contrary, is required to occur during the execution of an MSD. If it is not sent/received, a
liveness violation occurs. In that case, we say the MSD is violated and, thus, the requirement
is not fulfilled. A cold message may be sent/received after any preceding and before any
subsequent messages of the same MSD, but its execution is not required to occur in this
order (it is not strict). If any other message of the same diagram occurs when the cold
message is expected, a cold violation occurs. In that case, we say the MSD is discarded
(but the requirement is not violated). A hot message, on the contrary, has to strictly occur
in the order as specified in the MSD. If any other message of the same diagram occurs
when the hot message is expected, a hot violation occurs. In that case, we say the MSD
is violated and, thus, the requirement is not fulfilled. In addition to messages, MSDs also can
contain conditions. Cold violations of conditions lead to the MSD being discarded (but the
requirement is not violated), and hot/liveness violations lead to the MSD being violated and
the requirement being not fulfilled.

In Figure 4.9, the execution kind is annotated in the top over the two columns and the
temperature on the left of the two rows. Each diagram is connected to a note describing its
requirement (part) in natural language. The first message of an MSD is always monitored and
cold. It is the trigger that starts the execution of the diagram. Accordingly, the first message
a in all diagrams of Figure 4.9 is monitored and cold. The execution kind of conditions is
fixed to their temperature. Hence, there is only one example MSD for a cold and one for a
hot condition in the figure.

Monitored & Cold
The top left of Figure 4.9 shows two MSDs with monitored and cold semantics. The top
MSD contains two monitored and cold messages a and b. As they are both monitored, there
is no requirement for them to occur. In addition, they are both cold and, thus, not required
to occur in the order specified. In conclusion, this diagram shows a possible execution of
the two messages and describes no requirement at all. As sketched by the text in the note

73

4 Specifying Formal Functional Safety Requirements

msd Monitored and Cold

sen:Sender sys:System rec:Recipient

a

b

msd Executed and Cold

msd Monitored and Hot msd Executed and Hot

Monitored (“not required“) (dashed) Executed (“required“) (solid)

Cold
(“not strict“)

(blue)

Hot
(“strict“)

(red)

msd Cold Condition

msd Hot Condition

Once sen sends a,
sen may not send a until sys sends b.

Once sen sends a,
sys shall eventually send b.

Once sen sends a,
sys shall eventually send b.
Once sen sends a,
sen may not send a until sys sends b.

Once sen sends a,
c shall eventually hold.
Once sen sends a,
sen may not send a until c holds.

sen:Sender sys:System

a

c

sen:Sender sys:System rec:Recipient

a

b

sen:Sender sys:System rec:Recipient

a

b

Once sen sends a
followed by sys sending b, ...

Once sen sends a
and c holds, ...

sen:Sender sys:System rec:Recipient

a

b

sen:Sender sys:System

a

c

(c,m) (c,e)

(c)

(h,m) (h,e)

(h)

Figure 4.9: MSD semantics overview

74

4.4 Specifying Functional Safety Requirements with MSDs

annotated to the diagram, this diagram forms the if-condition of a requirement and could be
extended by an executed or hot message to add the then-statement.

The bottom MSD in the top left of Figure 4.9 contains a cold condition c. Cold conditions
are always executed immediately after their preceding message. Thus, in the diagram c holds
together with a. However, as the condition is monitored it is not required to hold, and as it
is cold it also is not required to hold together with (immediately after) a. Thus, this diagram
describes no requirement, but only the if-condition of a requirement that could be extended.
This fact is also described by the connected note in the same way as for the MSD above.

In conclusion, elements of an MSD that are monitored and cold can be used to describe
the if-condition of a requirement but specify no requirement by themselves.

Executed & Cold
The top right of Figure 4.9 shows an MSD with executed and cold semantics. Specifically,
the message b is executed and cold. This means, that if a occurs, b is required to occur as
well. As there are no timing constructs in this MSD, an arbitrary long time may pass until b
occurs but it has to occur eventually. Furthermore, arbitrary other messages may occur before
b because it is cold (not strict). In fact, even the message a may occur again. In conclusion,
an executed message always is part of the then-statement of a requirement as it is required to
be sent/received.

Monitored & Hot
The bottom left of Figure 4.9 shows an MSD with monitored and hot semantics. Specifically,
the message b is monitored and hot. This means, that if a occurs, b is required to follow
before a may occur again. However, b is not required to occur because it is monitored. As
there are no timing constructs in this MSD, an arbitrary long time may pass until b occurs but
during that time a is not allowed to occur. Furthermore, any other message that is not part of
this MSD may occur before b (but not a again). In conclusion, a hot message always is part
of the then-statement of a requirement as it puts a restriction on the order of messages being
sent/received.

Executed & Hot
The bottom right of Figure 4.9 shows two MSDs with executed and hot semantics. In the top
MSD, the message b is executed and hot. Thus, it combines the requirements specified in the
executed & cold MSD and the monitored & hot MSD. If a occurs, b is required to occur as
well. As there are no timing constructs in this MSD, an arbitrary long time may pass until b
occurs but it has to occur eventually. In addition, b is required to occur before a may occur
again. Furthermore, any other message that is not part of this MSD may occur before b (but
not a again).

The bottom MSD in the bottom right of Figure 4.9 contains a hot condition c. Contrary
to cold conditions, hot conditions are not always evaluated immediately after their preceding
message but they have to evaluate to true eventually (they have the execution kind executed).
Thus, in the diagram, if a occurs, c is required to hold after a eventually. As there are
no timing constructs in this MSD, an arbitrary long time may pass until c finally holds.
In addition, because the condition is hot, c is required to hold before a may occur again.
Furthermore, any other message that is not part of this MSD may occur before c holds (but
not a again).

75

4 Specifying Formal Functional Safety Requirements

In conclusion, elements of an MSD that are executed and hot are always part of the then-
statement of a requirement and combine the required and strict execution of a message or the
fulfillment of a condition.

4.4.2 Functional (Safety) Requirement Classes

We use MSDs to specify functional safety requirements and general functional requirements.
Thus, these types of requirements have to be expressible with the MSD language. Dwyer
et al. assembled typical classes of general requirements on chronological succession of
propositions (e.g., conditions that must hold) [DAC99]. Konrad and Cheng assembled
classes of general real-time requirements [KC05]. Bitsch assembled classes of typical safety
requirements [Bit00; Bit01]. All three sources based their requirement classes on experience
from industry. Hence, we assume they cover the majority of (safety) requirements and our
approach is applicable for typical industry projects if we can express their classes using
MSDs. Consequently, we take these sources of requirement classes and show how they
can be expressed with MSDs. Concepts presented in this section have been published in
[FHK+18].

All three sources provide examples for their requirement classes using Computation Tree
Logic (CTL)[EC82] or Timed CTL [ACD93] for real-time, respectively. MSDs are based
on Life Sequence Charts that can be translated to CTL [KHP+05]. Timed MSDs and Life
Sequence Charts can be translated to timed automata [BGH+14; LLN+09]. We translated
the chronological succession and safety requirement classes to MSDs based on the CTL
formulas provided by Dwyer et al.1 and Bitsch [Bit00], respectively. The real-time classes
were translated based on timed automata specified in [ZLG10] that were derived from the
TCTL formulas of Konrad and Cheng. (T)CTL propositions typically argue over conditions
that shall hold in certain states of a system. In this thesis we focus on requirements
about the information exchange between system functions. This information exchange is
specified using the scenario- and message-based MSDs. Each message exchange between
two functions is an event. Thus, we adapt the requirement classes to focus on events instead
of state-conditions where possible.

Table 4.1 shows the classification of general requirements based on the chronological
succession classes by Dwyer et al. and real-time requirement classes by Konrad and Cheng.
Each class is appended with an example requirement sketch. The variable u denotes a
condition, k a numeric time value, and n an integer value. All other variables denote
events. Each of the general requirement classes is subdivided into the five scopes shown
in Figure 4.10:
• Globally: Always, an event is required to (not) occur or a condition is required to hold.
• Before r: Before an event r, an event is required to (not) occur or a condition is

required to hold.
• After q: After an event q, an event is required to (not) occur or a condition to hold.
• Between q and r: Between two events q and r, an event is required to (not) occur or a

condition is required to hold.
• After q until r: After an event q and until an event r, an event is required to (not) occur

or a condition is required to hold.

1http://patterns.projects.cis.ksu.edu/documentation/patterns/ctl.shtml (last accessed 14.05.2016)

76

4.4 Specifying Functional Safety Requirements with MSDs

Table 4.1: General requirement classes (based on [DAC99; KC05])
General Requirement Pattern Class Real-Time Count
Occurrence
Existence - 5
p shall eventually occur.
Absence - 5
p shall never occur.
Bounded Existence - 5
p shall occur at most n times.
Bounded Recurrence x 5
p shall occur at least every k time units.
Universality - 5
u shall always hold.
Minimum Duration x 5
Once u becomes satisfied, it shall hold for at least k time units.
Maximum Duration x 5
Once u becomes satisfied, it shall hold for less than k time units.
Order
Response - 5
Once p occurs, s shall eventually occur.
Bounded Response x 5
Once p occurs, s shall occur after at most k time units.
Bounded Invariance x 5
Once p occurs, u shall hold for at least k time units.
Response Chain 1-n - 5
Once p occurs, s shall eventually occur and be succeeded by t. (n=2)
Response Chain n-1 - 5
Once s occurs and is succeeded by t, p shall eventually occur after t. (n=2)
Constrained Chain - 5
Once p occurs, s shall eventually occur and be succeeded by t,
but z shall not occur between s and t.
Precedence - 5
Once p occurs, s shall previously have occurred.
Precedence Chain 1-n - 5
Once s occurs and is succeeded by t, p shall have occurred before s. (n=2)
Precedence Chain n-1 - 5
Once p occurs, t shall previously have occurred, preceded by s. (n=2)

Total patterns: 80

77

4 Specifying Formal Functional Safety Requirements

Globally

Before q

After q

Between q and r

true

true

true

q

true

After q until r truetrue

r q

Figure 4.10: General requirement scopes from [DAC99]

Textually, the five scopes can be prepended to the example sentences for the requirement
classes shown in Table 4.1. For the Existence class with “After q” scope this would
be “After q, p shall eventually occur”. Figure 4.11 shows the MSD representation of
this pattern and its application for the example requirement “After the function FEBEAS
receives the information receivedEmcyBrakeWarningFromFront, it shall send the information
performHardBraking to the function FElectronicStabilityControl”.

In the pattern MSD, the initial message q is monitored and cold. It describes the
requirement’s if-condition – the “After q” scope. If q occurs, p has to occur. If q does not
occur, no requirement on p is made. If q occurs, p shall eventually follow. This is specified
by the executed and cold message p. It is not hot but cold, because q may occur arbitrarily
often before p finally occurs (p does not have to follow strictly after every q). For the example
requirement, this means that FEBEAS can be informed about the emergency braking of its
front vehicle several times before it decides to perform a hard braking maneuver. To enforce
a strict and timely response to the emergency brake warning, the real-time pattern Bounded
Response with scope Globally can be used: “Globally, once p occurs, s shall occur after at
most k time units”. In this pattern, “Globally” enforces that s has to occur strictly after every
p. Figure 4.12 shows this pattern and the refined example requirement as MSDs.

In the pattern MSD, the initial message p is monitored and cold (just like q in Figure 4.11).
It describes the requirement’s if-condition – the “Once p occurs”. If p occurs, s has to occur.
If p does not occur, no requirement on s is made. p is followed by the message s that is
executed and hot. If p occurs, s shall follow (it is executed just like p in Figure 4.11). s
is hot because it shall occur strictly after p and before the following clock condition that
states that not more than k time units passed since the initial p occurred. If the clock
condition is reached after more than k time units passed, the MSD is violated and the
requirement not fulfilled. The right MSD in Figure 4.12 shows the pattern application for the
refined example requirement “Globally, once the function FEBEAS receives the information

78

4.4 Specifying Functional Safety Requirements with MSDs

:Sender :Recipient

q

p

msd Existence - After q

:FEBEAS
:FElectronic

StabilityControl

perform
HardBraking

msd Example

:FVehicle2X
Communication

received
EmcyBrakeWarning
FromFront

(c,e)

(c,e)

Figure 4.11: General occurrence pattern “Existence (After q)” as MSD

:Sender :Recipient

msd Bounded Resp. - Globally

s

p

c <= k

:FEBEAS
:FElectronic

StabilityControl

msd Example (with real-time)

:FVehicle2X
Communication

perform
HardBraking

received
EmcyBrakeWarning
FromFront

c <= 100

(h,e)

(h) (h,e)

(h)

Figure 4.12: General real-time pattern “Bounded Response (Globally)” as MSD

receivedEmcyBrakeWarningFromFront, it shall send the information performHardBraking to
the function FElectronicStabilityControl after at most 100 time units”.

Table 4.2 shows the classification of safety requirements by Bitsch. Each class is appended
with an example requirement sketch. The variables a, b, c, and p denote events, the variable
u a condition, and the variable T an integer time value. The classes Static and General
Access Guarantee contain requirements describing global invariants for the system. The
three chronological succession classes contain requirements on events that have to (not) occur
or conditions that have to hold after/until a certain event. The class Explicit Time contains
requirements stating that events have to (not) occur or conditions have to hold within or
after a certain time frame. Bitsch divided this class into two subclasses for event-triggered
and time-triggered formalisms. In this thesis, we use MSDs on the function hierarchy as an
event-triggered formalism and, thus, only consider that class.

The chronological succession and real-time safety requirement classes from Table 4.2 are
subdivided into four categories:

a) Necessary: In the given time frame an event is required to occur or a condition is
required to hold.

b) Permitted: Only in the given time frame an event may occur or a condition may hold
(but is not required).

c) Necessary & Permitted: In the given time frame an event is required to occur or a
condition is required to hold and not allowed to occur/hold outside that time frame.

d) Conditional Guarantee: In the given time frame it must be possible for an event to
occur or a condition to hold if necessary.

79

4 Specifying Formal Functional Safety Requirements

Table 4.2: Safety requirement classes (based on [Bit00; Bit01])
Safety Requirement Pattern Class Count
Global
Static 2
Globally, u shall always hold.
General Access Guarantee 2
Globally, p shall eventually occur (if requested).
Chronological Succession
Beginning of Validity 20
After a occurs, it is necessary/permitted/possible that . . .
Duration of Validity 4
Before b occurs, it is necessary/permitted that . . .
Beginning & Duration of Validity 14
After a until c, it is necessary/permitted that . . .
Real-Time
Explicit Time 10
It is necessary/permitted/possible that after/within T time units . . .

Total patterns: 52

The combination of the classes and categories forms the requirement scopes as depicted
in Figures 4.13 and 4.14. The first figure shows the scopes for the three chronological
succession classes and the latter for the real-time class.

a) Necessary

b) Permitted

c) Necessary
& Permitted

d) Conditional
Guarantee

true

false

truefalse

Beginning

true

false

true false

Duration

true

false false

truefalse false

Beginning & Duration

a b a c

may be true may be true may be true

possible to be true

Figure 4.13: Chronological succession safety requirement scopes based on [Bit00; Bit01]

A complete textual example pattern from the safety requirement class Beginning with
category “Necessary & Permitted” is “After a occurs, it is necessary that b eventually
occurs and b is not permitted to occur before”. Figure 4.15 shows the MSD representation
of this pattern and its application for the example requirement “After the function
FEBEAS sends the information sendEmcyBrakeWarningToRear, it is necessary that it
sends the information performHardBraking and it may not send this information before
sendEmcyBrakeWarningToRear”. This phrasing is difficult to understand and violates the

80

4.4 Specifying Functional Safety Requirements with MSDs

a) Necessary

b) Permitted

c) Necessary
& Permitted

d) Conditional
Guarantee

true

false

truefalse

after

true

false

true false

within

T T

may be true may be true

possible to be true possible to be true

Explicit Time

Figure 4.14: Real-time safety requirement scopes based on [Bit00; Bit01]

requirement quality characteristic that each requirement shall be singular and not use any
conjunctions like “and” [Int11i]. Thus, we split the pattern into two MSDs shown in the top
of Figure 4.15.

The first MSD specifies the permission part of the pattern: “Before a occurs, b is not
permitted to occur”. The MSD specifies the event trace that is not allowed to occur and “the
way out”. The initial message start represents the system start (e.g., the vehicle’s ignition).
After system start, b is not allowed to occur as long as no a occurred. This is specified by
a monitored and cold message b, followed by a hot condition false, and a monitored and
cold message a. Because all messages are monitored and cold, none of them is required to
occur and there is no requirement on their order. However, if b occurs after start the MSD
is violated and the permission requirement is not fulfilled because the expression of the hot
condition always evaluates to false. The only exception is, if a occurs after start when b is
expected. In that case, a cold violation occurs and the MSD is discarded. Nevertheless, the
permission requirement is still fulfilled because no b occurred before a, and the MSD is no
longer required, as b is now permitted to occur. The second MSD specifies the necessity part
of the pattern: “After a occurs, it is necessary that b eventually occurs”. b is specified as
executed and cold because it is required to occur after a but a may occur several times before
b finally occurs.

The two MSDs in the bottom of Figure 4.15 show the application of the pattern to
the example requirement. Once an obstacle or a front vehicle is detected (represented by
the message obstacleOrFrontVehicleDetected) the functionality of the EBEAS is started.
Then, the EBEAS may not perform a hard braking maneuver until it warned the
rear vehicle (represented by the message sendEmcyBrakeWarningToRear to the function
FVehicle2XCommunication). Once it warned the rear vehicle, it shall eventually perform the
hard braking.

By comparing the safety requirement pattern shown in Figure 4.15 with the MSDs of
the general requirement classes, we realized that the safety pattern is a combination of the

81

4 Specifying Formal Functional Safety Requirements

:Sender :Recipient

a

b

msd Beginnnig - Nec. & Perm. 5 (2)

:Sender :Recipient

b

msd Beginnnig - Nec. & Perm. 5 (1)

a

false

:Environment

start

:FEBEAS
:FElectronic

StabilityControl

perform
HardBraking

msd Example (1)

:FAdaptive
CruiseControl

obstacleOr
FrontVehicle
Detected

:FVehicle2X
Communication

false

sendEmcyBrakeWarningToRear

:FEBEAS
:FElectronic

StabilityControl

msd Example (2)

:FVehicle2X
Communication

send
EmcyBrakeWarning
ToRear

performHardBraking

(c,e)
(h)

(c,m)

(c,m)

(h)

(c,m)

(c,m)
(c,e)

Figure 4.15: Safety pattern “Beginning - Necessary & Permitted 5” as MSDs

two patterns Absence (After q until r) and Existence (After q). This mapping is depicted in
Figure 4.16.

We found that all global and chronological succession safety requirement classes and
a subset of the explicit time class can be expressed by (a combination of) the general
requirement classes of Dwyer et al. and Konrad and Cheng. Table 4.3 shows the complete
mapping between the requirement classes. For example, the requirement patterns of the
classes Static and General Access Guarantee can be specified by a combination of patterns
of the classes Universality, Existence, and Response with the scope Globally.

Unfortunately, most of the requirement patterns from the explicit time class could not be
mapped to patterns of Dwyer et al. or Konrad and Cheng. Figure 4.17 shows the safety pattern
“Explicit Time - Permitted 2” as an example of that. In textual form it is phrased as “Only
after T time units it is permitted that a occurs”. Figure 4.17 shows the MSD representation
of this pattern and its application for the example requirement “Only 200 time units after the
function FEBEAS sent the information sendEvadeWarningToOvertaking, it is permitted that
it sends the information steerForLaneChange”.

In the pattern MSD, the initial message startTimer is monitored and cold. It specifies the
event after which the time has to be measured. The message is followed by a hot clock
condition c > T. It describes the requirement’s if-condition – only if T time units passed. If
startTimer occurs and T time units pass, a is allowed to occur. a is a monitored and cold
message after the clock condition. It is not required to occur but if it occurs, it may not occur
between startTimer and the clock condition evaluating to true. This order is encoded by the
clock condition being hot and, thus, being required to occur strictly before a.

82

4.4 Specifying Functional Safety Requirements with MSDs

:Sender :Recipient

a

b

msd Beginnnig - Nec. & Perm. 5 (2)

:Sender :Recipient

b

msd Beginnnig - Nec. & Perm. 5 (1)

a

false

:Environment

start

:Sender :Recipient

q

p

msd Existence - After q

:Sender :Recipient

p

msd Absence - After q until r

r

false

:Environment

q

(c,e)
(h)

(c,m)

(c,m)

(c,e)
(h)

(c,m)

(c,m)

Figure 4.16: Safety pattern “Beginning - Necessary & Permitted 5” mapped to Absence
(After q until r) and Existence (After q)

:Sender :Recipient

msd Explicit Time - Permitted 2

a

startTimer

c > T

:FEBEAS
:FActive

FrontSteering

msd Example

:FVehicle2X
Communication

sendEvadeWarning
ToOvertaking

c > 200

steerForLaneChange

(h)

(c,m)

(h)

(c,m)

Figure 4.17: Safety pattern “Explicit Time - Permitted 2” (“Time-constrained Absence 2”) as
MSD

83

4 Specifying Formal Functional Safety Requirements

Table 4.3: Relation of requirement classes
Safety General
Static, Universality, Existence, Response (Globally)
General Access Guarantee
Beginning
a) Necessary Universality, Existence (After q)
b) Permitted Absence (After q, After q until r)
c) Necessary & Permitted Absence (After q until r),

Universality, Existence (After q)
d) Conditional Guarantee Response, Absence (After q)
Duration
a) Necessary Universality (Before r)
b) Permitted Universality (After q)
c) Necessary & Permitted Universality (Before r, After q)
Beginning & Duration
a) Necessary Universality, Existence, Absence (After q until r)
b) Permitted Absence (After q, After q until r),

Universality (After q)
c) Necessary & Permitted Universality, Existence, Absence (After q until r)
Explicit Time
a) Necessary Bounded Response (Globally), -
b) Permitted -
c) Necessary & Permitted -
d) Conditional Guarantee Bounded Response (Globally), -

The right MSD in Figure 4.17 shows the application of the pattern to the example
requirement. Once the EBEAS sends a warning that it will evade (represented by the
message sendEvadeWarningToOvertaking), 200 time units have to pass before the EBEAS
may actually start to evade (represented by the message steerForLaneChange).

Independently from Bitsch, Autili et al. identified two real-time pattern classes that are
missing in the catalog of Konrad and Cheng [AGL+15]. They call those classes “Time-
constrained Existence” and “Time-constrained Absence”. We identified these as the same
as Bitsch’s “Explicit Time - Necessary” and “Explicit Time - Permitted”, respectively. We
find the names of Autili et al. more expressive and use those in the remainder of this thesis.
The class “Explicit Time - Necessary & Permitted” is a combination of the two that we thus
call “Time-constrained Absence & Existence”. The patterns of the class “Explicit Time -
Conditional Guarantee” can be mapped to patterns of the class “Explicit Time - Necessary”
(cf. [FHK+17] for details) and, thus, is not used in the following.

Table 4.4 shows the final set of requirement classes merged from Dwyer et al., Konrad and
Cheng, and Bitsch. The safety classes are mapped to the other classes where possible and
otherwise listed using the names proposed by Autili et al.. For each class it is annotated from
what source it originates, whether it is a real-time class, whether it is usable to specify safety
requirements (i.e. originating or mapped from Bitsch), and the number of contained patterns.
The complete catalog of requirement patterns of the different classes, including the detailed

84

4.5 Integrating MBRE and NLRE for Safety Requirements Engineering

mapping of the safety requirement classes, can be found in [FHK+17]. The catalog consists
of 86 distinct requirement patterns with MSD examples (55 non-real-time and 31 real-time
patterns).

Table 4.4: Merged requirement pattern classes
Pattern Class Source Real-Time Safety Count
Occurrence
1. Existence [DAC99] - x 5
2. Bounded Existence [DAC99] - - 5
3. Time-constrained Existence [Bit00] x x 2
4. Bounded Recurrence [KC05] x - 5
5. Universality [DAC99] - x 5
6. Minimum Duration [KC05] x - 5
7. Maximum Duration [KC05] x - 5
8. Absence [DAC99] - x 5
9. Time-constrained Absence [Bit00] x x 2

10. Time-constrained Absence & Existence [Bit00] x x 2
Order
11. Response [DAC99] - x 5
12. Bounded Response [KC05] x x 5
13. Bounded Invariance [KC05] x - 5
14. Response Chain 1-n [DAC99] - - 5
15. Response Chain n-1 [DAC99] - - 5
16. Constrained Chain [DAC99] - - 5
17. Precedence [DAC99] - - 5
18. Precedence Chain 1-n [DAC99] - - 5
19. Precedence Chain n-1 [DAC99] - - 5

Total patterns: 86

4.5 Integrating MBRE and NLRE for Safety Requirements
Engineering

Model-based requirements engineering (MBRE) as used in the previous sections has many
advantages over natural language requirements engineering (NLRE). For instance, their
semi-formal or formal semantics allow model-based requirements to be automatically
processed for verification and validation. On the contrary, informal natural language often
introduces ambiguity. Nevertheless, natural language can be used for any type of requirement
whilst model-based languages are tailored to specific types of requirements and need to
be learned before they can be used correctly. Thus, ISO 26262 proclaims that safety
requirements shall be specified “by an appropriate combination of” natural language and
“informal/semi-formal/formal notations for requirements specification” [Int11g]. Following
this requirement, in this thesis, we use the formal, model-based language Modal Sequence

85

4 Specifying Formal Functional Safety Requirements

Diagrams, and show in this section, how it can be integrated with semi-formal and informal
natural language.

In previous work, we presented a combined MBRE-NLRE approach [FH14; FH15]
[FHM14; DFH+13]. It contains a so-called analysis model specified in a SysML block
definition diagram that similarly to the CONSENS function hierarchy decomposes the
required functionality of a system. In addition, textual requirement patterns in form of a
semi-formal controlled natural language (CNL) are used to specify the analysis model and
its requirements in natural language. A bidirectional transformation between the analysis
model and the natural language requirements keeps both representations in sync.

In this thesis, we adapt that approach to the used CONSENS function hierarchy extended
by ports and interfaces (cf. Section 4.3). Figure 4.18 sketches the resulting work products
and their relations. The top left represents the model-based function hierarchy as explained
in Section 4.3. The bottom left shows the model-based (safety) requirements specified
as MSDs whose lifelines represent functions of the function hierarchy (cf. Section 4.4).
The top right is a textual representation of the function hierarchy specified in a CNL.
This representation can automatically be derived from its model-based equivalent using a
bidirectional transformation [FH14]. This transformation allows to synchronize changes
in either representation with the other. The bottom right depicts textual requirements that
have no model-based representation but still address functions of the function hierarchy.
This requirements representation is especially intended for types of requirements that are not
expressible with MSDs.

...

ID

1

2

3

... ...

Text

42

43

44

... ...

... ...

=

≠

CNL
Requirements

Model-based
Requirements

Function
Hierarchy

Functional (Safety)
Requirements

Figure 4.18: Overview of MBRE-NLRE integration

All information contained in a model-based function hierarchy (as explained in
Section 4.3) can be expressed in natural language using the eight requirement patterns RP 1
to RP 8 listed below. They are adapted from requirement patterns published in [FHM14] to
match the terms used in CONSENS.

86

4.5 Integrating MBRE and NLRE for Safety Requirements Engineering

Requirement Patterns for Function Hierarchies
RP 1: The top-level function is called FUNCTION.
RP 2: The function FUNCTION has the following purpose: PURPOSE.
RP 3: The functional device FUNCTIONALDEVICE has the following purpose: PURPOSE.
RP 4: The following information is received by the function FUNCTION [from the

functional device FUNCTIONALDEVICE]: INFORMATIONLIST.
RP 5: The following information is sent from the function FUNCTION [to the functional

device FUNCTIONALDEVICE]: INFORMATIONLIST.
RP 6: The function FUNCTION is a subfunction of the function PARENTFUNCTION.
RP 7: The following information is used by the function FUNCTION: INFORMATIONLIST.
RP 8: The following information is created by the function FUNCTION:

INFORMATIONLIST.

Requirement pattern RP 1 is used to specify the top-level root function of a function
hierarchy. RP 2 can be applied to summarize a function’s purpose. RP 3 does the same
for functions representing environment elements. RP 4 allows to specify information that the
top-level function receives from environment functions. RP 5 similarly specifies information
the top-level function sends to the environment. RP 6 is used to specify a subfunction of a
(top-level) function. RP 7 is used to specify input information that a subfunction uses. RP 8
similarly is used to specify output information that a subfunction creates.

Figure 4.19 shows an example excerpt from the model-based function hierarchy of the
EBEAS. The following requirements Req-1 to Req-18 form the CNL representation of
that diagram. The textual chapter structure of the CNL requirements follows the model
structure of the function hierarchy. This adheres to the organizational approach “Functional
Hierarchy” suggested by ISO 29148 for high-quality requirements specifications [Int11i].

«Function»
FEBEAS

«Function»
Analyze
Situation

p4:FV2x
2FEbeas

p2:FAcc
2FEbeas

p6:~FEbeas
2FV2x

p7:FAcc
2FEbeas

bdd Functions

obstacleOrFrontVehicleDetected()

«interface»
FAcc2FEbeas

sendEmcyBrakeWarningToRear()

«interface»
FEbeas2FV2x

receivedEmcyBrakeRequestFromFront()
receivedEmcyBrakeWarningFromFront()

«interface»
FV2x2FEbeas

«Function»
FACC

p1:~FAcc
2FEbeas

«Function»
FV2X

p3:~FV2x
2FEbeas

p5:FEbeas
2FV2x

«Function»
Communicate

WithOtherVehicles
p8:~FEbeas
2FV2x

Figure 4.19: Example excerpt from model-based function hierarchy for EBEAS

87

4 Specifying Formal Functional Safety Requirements

CNL Requirements for Function Hierarchy in Figure 4.19
Req-1: 1 FEBEAS
Req-2: The top-level function is called FEBEAS.
Req-3: 1.1 External Elements
Req-4: The functional device FACC has the following purpose: “It provides obstacle and

front vehicle information via sensors”.
Req-5: The functional device FV2X has the following purpose: “It sends and receives V2V

messages”.
Req-6: 1.2 Inputs & Outputs
Req-7: The following information is received by the function FEBEAS from the functional

device FACC: obstacleOrFrontVehicleDetected.
Req-8: The following information is received by the function FEBEAS from the functional

device FV2X: receivedEmcyBrakeRequestFromFront and
receivedEmcyBrakeWarningFromFront.

Req-9: The following information is sent from the function FEBEAS to the functional
device FV2X: sendEmcyBrakeWarningToRear.

Req-10: 1.3 Subfunctions
Req-11: 1.3.1 Analyze Situation
Req-12: The function AnalyzeSituation is a subfunction of the function FEBEAS.
Req-13: 1.3.1.1 Inputs & Outputs
Req-14: The following information is used by the function AnalyzeSituation:

obstacleOrFrontVehicleDetected.
Req-15: 1.3.2 Communicate With Other Vehicles
Req-16: The function CommunicateWithOtherVehicles is a subfunction of the function

FEBEAS.
Req-17: 1.3.2.1 Inputs & Outputs
Req-18: The following information is created by the function

CommunicateWithOtherVehicles: sendEmcyBrakeWarningToRear.

Model-based (safety) requirements on the functions are specified using MSDs as described
in Section 4.4. In future work, textual patterns could be defined for the MSD patterns defined
in Section 4.4.2. This could be based on existing textual patterns [KC05; AGL+15] and
requirements languages [GGK+16]. In addition to the requirement patterns described in
Section 4.4.2, there are requirements that cannot be specified using MSDs. Examples are
requirements on the independence of functions (i.e., no cascading or common cause failures
as specified in Figure 3.15 on page 54). However, these can be specified using natural
language. Examples of according textual patterns and their application are shown below
(RP 9 to RP 11 and Req-19 to Req-22).

Additional Requirement Patterns for Functions
RP 9: There shall not be any cascading failures from the function FUNCTION1 to

FUNCTION2.
RP 10: There shall not be any common cause failures of the functions FUNCTIONLIST.
RP 11: The function FUNCTION shall FREETEXT.

88

4.6 Assumptions & Limitations

Additional CNL Requirements for Function Hierarchy in Figure 4.19
Req-19: There shall not be any cascading failures from the function AnalyzeSituation to

CommunicateWithOtherVehicles.
Req-20: There shall not be any cascading failures from the function

CommunicateWithOtherVehicles to AnalyzeSituation.
Req-21: There shall not be any common cause failures of the functions AnalyzeSituation

and CommunicateWithOtherVehicles.
Req-22: The function AnalyzeSituation shall . . .

4.6 Assumptions & Limitations

Assumptions

For the derivation of the top-level function hierarchy from the environment (cf.
Section 4.3.1), we assume that the relevant input and output information is explicitly specified
as CONSENS information flow (e.g., not implicitly hidden as energy flow).

Some of the requirement patterns of the MSD pattern catalog (cf. Section 4.4.2) are subject
to assumptions as documented in the corresponding technical report [FHK+17].

Limitations

ISO 26262 defines the concept of Safety Element out of Context (SEooC) (cf. Section 3.7). If
a system like the EBEAS is not developed for a specific vehicle (i.e., context or environment),
assumptions about its environment have to be made. Once the system is integrated into a
vehicle, these assumptions have to be checked for validity. An MSD specification can contain
so-called environment assumption MSDs [BGP13]. These are used to specify assumptions
about the behavior of the environment. Thus, SEooC might also be tailored using the ASIL
tailoring process of this thesis, but they were not specifically considered.

If the MSD specification is hierarchically built up for the function hierarchy as described
in Section 4.3.3, a parallel simulation (play-out) of multiple function hierarchy levels is
currently not possible. The followed approach of Holtmann and Meyer requires the use
of UML interaction references to refine an MSD over different hierarchy levels [HM13].
This constrains the refinement such that one MSD cannot be refined into a combination of
multiple MSDs but has to be refined into a single MSD. Hence, we assume that each function
hierarchy level is simulated separately. In the end, the lowest level of functions specifies the
full functionality and only these functions are actually allocated to the system architecture.
Thus, we argue that this constraint is acceptable. However, in future work, the play-out
maybe can be adapted to remove this constraint, e.g., by adopting the work of Atir et al.
[AHK+08].

The integration of MBRE and NLRE described in Section 4.5 supports the bidirectional
synchronization of the function hierarchy (model and text). The requirements specified with
MSDs are not synchronized with a textual representation. However, in future work, textual
patterns could be defined for the MSD patterns defined in Section 4.4.2. This could be based
on existing textual patterns [KC05; AGL+15] and requirements languages [GGK+16].

89

4 Specifying Formal Functional Safety Requirements

4.7 Related Work

We divide the work related to our method for specifying functional (safety) requirements into
three categories: work related to the use of a function hierarchy (Section 4.7.1), to the use of
MSDs (Section 4.7.2), and to the integration of MSDs and natural language (Section 4.7.3).

4.7.1 Function Hierarchies

We use the so-called function hierarchy that is part of CONSENS [GRS14, Section 4.1]
to decompose the complex functionality of cyber-physical systems and to structure the
functional (safety) requirements. ISO 29148 suggests to use a functional structure to
decompose requirements [Int11i]. Other model-based systems engineering approaches also
use a functional abstraction of the system under development.

SYSMOD/FAS
SYSMOD [Wei14] and FAS [LW10] combined form a model-based systems engineering
method based on SysML. SYSMOD provides means to specify the system context,
requirements, use cases and a physical architecture. FAS is embedded, and derives a
functional architecture from the SYSMOD use cases as basis for the SYSMOD physical
architecture [LW14]. The functions are derived by grouping use cases with high cohesion.
The aim of the functional architecture is a solid model that abstracts from variations in the
physical architecture.

The SYSMOD system context is similar to the CONSENS environment and the physical
architecture to the CONSENS active structure. In contrast to how the CONSENS function
hierarchy is used in this thesis, SYSMOD/FAS links functions to use cases and not to
functional requirements directly.

SPES
The SPES Modeling Framework [BDH+12] is a development methodology for software-
intensive embedded systems. It is not based on a specific language like SysML. It
comprises four viewpoints: the requirements, functional, logical, and technical viewpoint.
The requirements viewpoint is used to specify model-based requirements. The functional
viewpoint starts with a functional black-box model consisting of user functions derived
from the requirements. It is followed by a functional white-box model to decompose user
functions and the according system behavior [VEF+12]. The logical viewpoint specifies the
logical components of the system that are realized by software or hardware in the technical
viewpoint.

In previous work, we tailored the SPES modeling framework to the automotive domain
and applied and evaluated it [FHH+12].

In contrast to CONSENS, SPES does not contain a specific environment or system
context viewpoint. This information is spread across the four existing viewpoints. The
functional viewpoint is similar to the CONSENS function hierarchy, but consists of two
sub-models (black-box and white-box). The logical viewpoint is related to the CONSENS
active structure. The technical viewpoint describes discipline-specific details like software
scheduling and deployment. Hence, there is no equivalent in CONSENS.

90

4.7 Related Work

EAST-ADL
EAST-ADL is an architecture description language for automotive electronic systems
[EAS13; BLH+13]. It is comprised of different modeling layers starting from vehicle
features, refined into a Functional Analysis Architecture, refined into a Functional Design
Architecture, and ending with the software and hardware specification for the automotive
specific AUTOSAR framework (Automotive Open System Architecture)2. Orthogonal to
these layers EAST-ADL also contains environment, requirements, and dependability aspects.
EAST-ADL provides a custom metamodel that is also available as UML profile [EAS10].

In contrast to CONSENS, EAST-ADL’s environment only contains elements in the
system’s context and not the system itself. The elements of the environment are connected to
elements in the functional analysis and the functional design architectures. In EAST-ADL,
requirements are specified as nodes with text like in SysML. They can be hierarchically
structured but that is not required.

The functional analysis architecture is related to the CONSENS function hierarchy. It
contains functions that can be hierarchically decomposed and that interact via connected
ports. These ports can specify flows or client-server interactions. In this thesis, we extend
the CONSENS function hierarchy by ports that specify abstract information flow, and do not
consider whether it is realized as energy flow or operations called by software. Furthermore,
the functional analysis architecture also contains special types of functions to model sensors
and actuators. In contrast to EAST-ADL, we do not specify these details in the function
hierarchy but in the following CONSENS active structure. The latter is similar to EAST-
ADL’s functional design architecture where decisions what is to be realized in software or
hardware are documented.

As EAST-ADL is specifically developed for the automotive domain (especially
AUTOSAR) its dependability part provides means to annotate ASILs to elements and to
model failure propagation that can be analyzed by an external safety analysis tool [CJL+08].

Summary
The three approaches SYSMOD/FAS, SPES, and EAST-ADL all have commonalities and
slight differences to CONSENS and the way its function hierarchy is used in this thesis.
All three provide a functional view of the system. In contrast to this thesis, SYSMOD/FAS
does not link the functions to requirements. The SPES functional viewpoint consists of
two distinct sub-models for a black-box and white-box view and is not based on a standard
modeling language like SysML. EAST-ADL is specifically designed for the automotive
domain, and integrates technical interface information into its functional analysis architecture
that we explicitly abstract from.

SPES and EAST-ADL provide safety modeling and analysis means. However, only EAST-
ADL integrates aspects for ASIL allocation. Although we use the automotive domain as
running example in this thesis, our approach is designed to work for other safety-relevant
domains as well.

4.7.2 Formal Functional Safety Requirements

ISO 26262 highly recommends the use of semi-formal notations (e.g., UML) and semi-
formal verification (e.g., “by executable models”) [Int11g]. The use of formal notations

2www.autosar.org

91

4 Specifying Formal Functional Safety Requirements

and formal verification is recommended by ISO 26262 [Int11g]. We use MSDs to specify
graphical, model- and scenario-based, formal functional (safety) requirements. MSDs
integrate with the semi-formal UML by a profile, and can be executed for semi-formal
verification via play-out.

The Scenario Modeling Language (SML) is a textual, scenario-based formal notation
[GGK+16]. It is based on MSDs, and supports semi-formal verification via play-out. In
contrast to MSDs, it is not a graphical language, and it has not been shown that it can express
the requirement patterns from Section 4.4.2.

Computation Tree Logic (CTL) is a textual formal notation [EC82] that is widely used for
formal verification. It can express all the non-real-time requirement patterns (cf. Table 4.4).
Timed CTL is a formal notation that extends CTL with real-time capabilities [ACD93]. It
can express all the real-time patterns. In contrast to MSDs, CTL and TCTL are neither
graphical nor scenario-based languages. Accordingly, they are not integrated with semi-
formal notations like UML and do not support semi-formal verification.

Property Sequence Charts (PSC) are a graphical, scenario-based, formal notation [AIP07].
They can be translated to CTL and express the general non-real-time patterns (cf. Table 4.1).
Timed PSCs are a real-time extension of PSCs that can express the general real-time patterns
[ZLG10]. In contrast to MSDs, it has not been shown that (T)PSCs can also express the safety
patterns (cf. Table 4.2). In addition, PSCs and TPSCs are not integrated with a semi-formal
notation like UML and do not support semi-formal verification.

4.7.3 MBRE-NLRE Integration for Safety

We integrate model-based safety requirements engineering with natural language safety
requirements engineering by synchronizing the function hierarchy in its model-based
representation with a textual representation in controlled natural language (CNL). The
requirement patterns introduced in Section 4.4.2 are expressed using MSDs, and
requirements that cannot be expressed using MSDs are specified in CNL.

Gordon and Harel generate Life Sequence Charts (basis of MSDs) from a CNL but
provide no transformation in the other direction [GH09]. A general survey on approaches
that generate models from natural language requirements has been conducted by Yue et al.
[YBL11]. A survey for the reverse direction has been presented by Nicolás et al. [NT09].
Both surveys did not find true synchronization approaches that transform in both directions.
Furthermore, no approach specifically focuses safety requirements engineering.

4.8 Conclusion

This chapter describes the details how functional (safety) requirements are specified and
refined in the ASIL tailoring process introduced in Chapter 3. Section 4.2 specifies the
contents of a requirements specification. The functional (safety) requirements are derived
from the system’s environment and systematically structured and refined as described in
Section 4.3. What types of requirements are relevant and how these can be expressed
using Modal Sequence Diagrams is explained in Section 4.4. For requirements that cannot
be expressed with MSDs, Section 4.5 specifies an integration of model-based and natural-
language-based safety requirements engineering.

92

4.8 Conclusion

The model- and scenario-based, hierarchically decomposed specification of functional
safety requirements provides a means to cope with the complexity of CPS functionality
and requirements (cf. Challenge C1 in Section 1.2). The formal specification of functional
safety requirements with MSDs enables the automated safety analysis and ASIL allocation
on requirements level (cf. Chapter 5). The catalog of formal, model-based MSD requirement
patterns for functional (safety) requirements supports requirements engineers and safety
managers in building a high-quality requirements specification for a safe system. The
integration of model-based requirements with natural language requirements fosters the
completeness and consistency of requirements specifications whilst providing flexibility to
specify requirements in the respectively most suitable way.

The following Chapter 5 contains the details of the automated safety analysis and ASIL
allocation that is based on the function hierarchy and MSD requirements described in this
chapter. In Chapter 6 an automatic documentation of safety arguments is elaborated that
links the hazards from the environment, the functions from the function hierarchy and the
corresponding MSD requirements.

93

5

SAFETY ANALYSIS AND ASIL ALLOCATION
ON FUNCTIONAL SAFETY REQUIREMENTS

In Steps 2.3 and 2.4 of the ASIL tailoring process (cf. Figure 5.1), a safety analysis is
performed on the function hierarchy to allocate tailored ASIL values to the functions. This
chapter describes the details of these process steps and the used methods.

act ASIL Tailoring Process

S
ys

te
m

 D
es

ig
ne

r,

S
af

et
y

M
an

ag
er

1. Analyze Environment and Hazards

2.3. Generate
Failure Propagation Model

for Function Hierarchy

2.4. Calculate
ASIL Allocation for
Function Hierarchy

2.2. Develop/Refine
(Safety) Requirements

for Functions

3. Define System Architecture and
Allocate Functions to System Elements

2.1. Develop/Refine
Function Hierarchy

Customer
Requirements

«datastore»
System Architecture

R
eq

ui
re

m
en

ts
 E

ng
in

ee
r,

S
af

et
y

M
an

ag
er

[functions sufficiently trivial and
ASIL allocation reasonable]

«datastore»
System

Requirements

Function
Hierarchy

Function
Hierarchy

Function
Hierarchy

Functional (Safety)
Requirements

FSRs

Environment and Hazards with ASILs

System Elements
with ASILs

Failure
Propagation

Model

FPM
«datastore»
Safety Case

Environment and Hazards with ASILs
or Function Hierarchy [ASILs Tailored]

Function
Hierarchy

Function
Hierarchy

[ASILs Tailored]

Function Hierarchy
[ASILs Tailored]

Safety
Argument

[else]

Figure 5.1: ASIL tailoring process with highlighted contents of Chapter 5

95

5 Safety Analysis and ASIL Allocation on Functional Safety Requirements

This chapter is structured as follows. First, Section 5.1 summarizes the scientific
contributions of safety analysis and ASIL allocation on functional safety requirements level.
Section 5.2 explains Step 2.3 where a failure propagation model is generated from the
function hierarchy and the functional (safety) requirements. In Section 5.3, Step 2.4 is
described where the failure propagation model is used to calculate valid ASIL tailorings
and allocate ASILs to the functions of the function hierarchy. Section 5.4 lists assumptions
and limitations of the presented safety analysis and ASIL allocation methods. In Section 5.5,
related work is discussed. The final Section 5.6 concludes this chapter.

5.1 Contributions

The contributions of this chapter can be summarized as follows:

• Definition of a failure propagation meta model with static semantics for specifying
different types of failures and their propagation through functions and functional
(safety) requirements to the occurrence of hazards.

• Translation of ISO 26262’s informal ASIL tailoring rules to the failure propagation
meta model to enable automatic reasoning about validity of applied ASIL tailoring
measures.

• Automatic derivation of failure propagation models from formal requirements
to reduce the effort and mistakes in safety analysis on functional requirements
(Challenge C2 in Section 1.2).

• Automatic ASIL allocation to functions and functional (safety) requirements to reduce
the effort and mistakes in ASIL allocation and tailoring on functional requirements
(Challenge C2 in Section 1.2).

• Support for early identification of ASIL tailoring options, decision-making, and
planning of safety measures (Challenges C1 and C2 in Section 1.2).

5.2 Safety Analysis on Functional Requirements

In Step 1 of the ASIL tailoring process, hazards and their criticalities (ASIL) are identified
(cf. Section 3.3). Hazards are caused by failures of the system. Hence, safety measures
have to be taken to avoid failures or mitigate their consequences. In Steps 2.1 and 2.2 of the
ASIL tailoring process, the functionality of the system under development is decomposed as
function hierarchy, and corresponding requirements on the functions are specified as Modal
Sequence Diagrams (cf. Chapter 4). This supports the requirements engineer in handling
system complexity during analysis and validation of safety requirements.

Depending on a hazard’s ASIL, safety measures require a different level of effort. To plan
safety efforts for individual system functions, it is required to know which hazards they are
involved in. Consequently, the failure propagation from failures of a function through the
function hierarchy to the hazards has to be determined.

A well-established method to determine failure propagation paths from a hazard down to
its root cause failures is the Fault Tree Analysis (FTA, cf. Section 2.4.1). It is suitable for the

96

5.2 Safety Analysis on Functional Requirements

analysis of systems that are complex (cf. Challenge C1 in Section 1.2) and newly developed
from scratch (e.g., CPS like autonomous driving). Furthermore, it is also suitable for
analyzing combinations of failures and for partitioning and allocating safety requirements.
Other analysis methods like Event Tree Analysis [Eri05], FMEA [Int06a], or HAZOP [Int01]
are considered unsuitable or are not recommended for this combination of purposes. Markov
analysis [Int06c] and petri-net analysis are suitable but require higher expertise and are less
accepted than FTA. [Int03, Table 2]

Traditional fault trees are not strongly connected to the model that is analyzed.
Specifically, they are not necessarily structured consistent to the model and provide no means
to follow the hierarchical structure of a function hierarchy. Hence, we use Component Fault
Trees (cf. Section 2.4.2) in this thesis that add these features to traditional fault trees. In this
way, we gain a direct traceability between failures and inputs/outputs of functions.

In Step 2.3, a failure propagation model in form of Component Fault Trees is generated
from the function hierarchy and the functional (safety) requirements. Figure 5.2 shows the
sub-actions of Step 2.3. Initially, in Step 2.3.1, the safety manager specifies a so-called
Hazard CFT for each hazard. It defines what (combinations of) top-level function failures
cause the respective hazard. Afterward, in Step 2.3.2, CFTs for the sub-functions of the
function hierarchy are automatically generated based on the requirements specified as MSDs.
These CFTs describe the failure propagation through the functions to the manually specified
failures of the Hazard CFTs. When changes to the function hierarchy or MSDs are made in
further iterations of the ASIL tailoring process, only the automated Substep 2.3.2 needs to be
repeated.

2.3. Generate Failure Propagation Model

Function
Hierarchy

(Safety)
MSDs

CFTs

2.3.2 Generate
CFTs

2.3.1 Specify
Hazard CFT

[no Hazard CFT
specified yet]

[else]

Figure 5.2: Process Step 2.3 - Generate Failure Propagation Model for Function Hierarchy

The following Section 5.2.1 describes how CFTs and different types of failures are
specified in this thesis. The details of Step 2.3.1 and Hazard CFTs are explained in
Section 5.2.2. The CFT generation of Step 2.3.2 is elaborated in Section 5.2.3.

97

5 Safety Analysis and ASIL Allocation on Functional Safety Requirements

5.2.1 Component Fault Tree Meta Model and Profile

To be able to automatically reason about the failure propagation of a function hierarchy for
ASIL tailoring, we need a definition of the CFT language. Figure 5.3 shows the meta model
for CFTs with modeling constraints (C1 to C10) as used in this thesis. This meta model is an
extension of the CFT meta model presented in [HTZ+12]. The existing elements are depicted
with gray background color and the new elements and constraints have a white background.
CFTs can be hierarchically structured, such that a CFT can contain subCFTs. Furthermore,
a CFT can contain a set of Gates, i.e., Input Failure Modes, Output Failure Modes, Basic
Events, Or Gates and And Gates (cf. Section 2.4.2).

CFT

HazardCFT

CFTLink

Event

BasicEvent

IntermediateGateFailureMode

OrGate AndGate

Gate FailureType

Input
FailureMode

Output
FailureMode

{C1: Contains exactly one Event typed by a
Hazard}
{C2: Contains at least one InputFailureMode}
{C3: Contains no OutputFailureMode}

{C4: Contains no HazardCFT}
{C5: Contains no Event typed by a Hazard}
{C6: If it contains a CFT, it contains no Event
nor IntermediateGate}subCFT

parentCFT 0..1

0..*

contains

0..1

0..*
contains

1

0..*
contains

0..*

1

type

10..*

source

10..*

target

{C9: Is no target of a CFTLink}
{C10: If it is contained in a
HazardCFT, it is directly linked
to AndGates only}

{C7: If it is the target of
a CFTLink, the source is
contained in a different
CFT on the same
hierarchy level or in the
parentCFT}

{C8: If it is the target of
a CFTLink, the source is
contained in the same
CFT or in a subCFT}

Figure 5.3: Extended meta model for Component Fault Trees (based on [HTZ+12])

In addition to these elements, we add Events. In traditional fault trees, they are used to
specify the main event (i.e., the fault tree root node) whose causes are analyzed by a FTA.
In this thesis, hazards are the main events whose causes are analyzed. We specify a CFT for
each function of the function hierarchy. As a hazard is not part of the system’s functionality,
we specify a special Hazard CFT for each hazard. Each Hazard CFT contains an Event typed

98

5.2 Safety Analysis on Functional Requirements

by the hazard and specifies what Output Failure Modes of the top-level CFT cause the hazard
(cf. constraints C1 to C6 and C10). In contrast to [HTZ+12], we specify the connections
between Gates explicitly in the meta model as CFT Link. This allows to specify constraints,
in what situations different types of Gates may be linked (cf. constraints C7 to C9).

Furthermore, we add Failure Types as type for Gates. Thereby, failures like omission and
commission can be distinguished. Figure 5.4 shows the failure types used in this thesis. The
failure types are based on the failure type hierarchy of Giese et al. who distinguish service,
value, and timing failures [GTS04] (also defined in [ALR+04]):
• Omission (O): An expected event does not occur.
• Commission (C): An event occurs unexpectedly or unintentionally.
• Crash (Cr): A function stops to deliver service (e.g., software crashes).
• Value (V): An event occurs with an unexpected content (e.g., parameter value).
• Timing Early (TE) / Late (TL): An event occurs too early / too late.

For a better diagram overview, we use the abbreviations shown below each failure type in this
thesis, and also depict them inside the triangular failure modes of the CFT concrete syntax.

«FailureType»
FailureType

«FailureType»
Service

FailureType

«FailureType»
Value

FailureType

«FailureType»
Timing

FailureType

«FailureType»
Omission

FailureType

«FailureType»
Commission
FailureType

«FailureType»
TimingEarly
FailureType

«FailureType»
TimingLate
FailureType

O C TE TL

V

«FailureType»
Crash

FailureType

Cr

bdd CFT Failure Types

Figure 5.4: Failure type library model for gates

The input models for generating the CFT failure propagation model are specified in
SysML/UML. The function hierarchy is specified using the SysML4CONSENS profile and
MSDs using a profile for UML sequence diagrams. To model failure propagation in the
same language with easy traceability to the other models and to be able to use the same
tool, we consequently specify a UML profile for Component Fault Trees. Figure 5.5 shows
the CFT profile definition derived from the meta model in Figure 5.3, and Figure 5.6 shows
an example CFT in abstract syntax (bare application of the CFT UML profile) and in the
concrete syntax used throughout this thesis (an integration of the CFT syntax and UML). A
CFT is a special UML Class whose Ports represent Failure Modes. Output failure modes
are specified as conjugated ports, input failure modes are not conjugated. Events, Basic
Events, OR-gates, and AND-gates are specialized UML Properties. All gates are connected
via directed CFT Links specializing UML Dependencies. The CFT meta model constraints

99

5 Safety Analysis and ASIL Allocation on Functional Safety Requirements

C1 to C10 are realized as OCL constraints in the profile. In the CFT meta model, gates are
typed by failure types. When using the UML profile, a Gate’s failure type is specified by the
UML type of its Port or Property. The failure types shown in Figure 5.4 are specified using
the UML profile. We specify the failure types in a library model, not as part of the UML
profile, to make them extensible for different application domains (e.g., [MZH+16]).

«profile» UML4CFT

«Metaclass»
Class

«Metaclass»
Property

«Stereotype»
CFT

«Metaclass»
Port

«Stereotype»
HazardCFT

«Metaclass»
Dependency

«Stereotype»
CFTLink

«Stereotype»
Event

«Stereotype»
BasicEvent

«Stereotype»
IntermediateGate

«Stereotype»
FailureMode

«Stereotype»
OR

«Stereotype»
AND

«Stereotype»
Gate

«Stereotype»
FailureType

Figure 5.5: UML Profile for Component Fault Trees

A CFT specifies the failure propagation of a function. The CFT Make Decision
CFT in Figure 5.6 specifies the failure propagation through the function Make
Decision. Its failure modes represent failures of the corresponding function’s input
and output information grouped by the function’s port interfaces. The failure mode
activateEmergencyBraking:∼O specifies that the function Make Decision does not send the
information activateEmergencyBraking over its port p4 when expected. It is caused either by
a crash :Cr of the function or by the two omission failures reachingLastPointToBrake:O and
receivedEmcyBrakeWarning:O occurring at once (specified by the combining AND-gate).

100

5.2 Safety Analysis on Functional Requirements

«Function»
FEBEAS

reachingLastPointToBrake()
...

«interface»
SituationalEvents «Function»

Make
Decision

p2:~Comm
Decisions

p4:~Acting
Decisions

p1:Received
Messages

p3:Situational
Events

sendEmcyBrakeWarning()
...

«interface»
CommDecisions

activateEmergencyBraking()
...

«interface»
ActingDecisions

receivedEmcyBrakeWarning()
...

«interface»
ReceivedMessages

«CFT»
 MakeDecisionCFT

o

:Cr

«OR»

oo

«AND»

o

reachingLast
PointToBrake:O

receivedEmcy
BrakeWarning:O

«trace»

«trace»

«trace»
«trace»

«trace»

sendEmcyBrake
Warning:~O

«CFT»
 MakeDecisionCFT

«OR»
or:FailureType

«AND»
and:FailureType

«BasicEvent»
:Cr

«CFTLink»
«CFTLink»

«FailureMode»
activateEmergency

Braking:~O

«FailureMode»
sendEmcyBrake
Warning:~O

«FailureMode»
receivedEmcy

BrakeWarning:O

«FailureMode»
reachingLast

PointToBrake:O

«CFTLink»

«CFTLink» «CFTLink»

«CFTLink»

Abstract Syntax (bare applied UML profile)

Concrete Syntax

activateEmergency
Braking:~O

Figure 5.6: Example CFT for function Make Decision in concrete and abstract syntax

101

5 Safety Analysis and ASIL Allocation on Functional Safety Requirements

5.2.2 Linking Hazards to Failures

In Step 1 of the ASIL tailoring process, hazards are specified, and in Step 2.1, the function
hierarchy is specified. Hazards occur if the system under development fails to deliver its
service, i.e., does not provide its functionality as expected. So, in terms of the function
hierarchy, a hazard occurs if an output information of the top-level function has a failure
(e.g., is omitted when expected).

Figure 5.7 shows an example hazard from Step 1 and its relation to CFTs and the function
hierarchy from Step 2.1. The hazard Hard Braking Omission describes that the vehicle
does not perform a hard braking in case of an obstacle, because the EBEAS fails to send
a respective brake request to the ESC (cf. Figure 3.4 on page 44). In Step 2.3.1 of the
tailoring process, this relation between hazard and brake request failure is specified by the
safety manager in form of the Hazard CFT Hard Braking Omission CFT. It contains a CFT
event :HardBrakingOmission that represents the occurrence of the hazard (because its type is
set to the hazard). The brake request is represented as the information performHardBraking
sent by the top-level function FEBEAS. Therefore, the safety manager specifies its failure as
input omission failure mode performHardBraking:O of the Hazard CFT, and links it to the
CFT event representing the hazard occurrence.

Id = “H1“
Text = “Missing
automatic hard braking.“
ASIL = ASIL D

«Hazard»
HardBrakingOmission

«CFT»
FEBEASCFT

«HazardCFT»
HardBrakingOmissionCFT

«Event»
:HardBraking

Omission

«Function»
FEBEAS

:~Ebeas2Esc

performHardBraking()

«interface»
Ebeas2Esc

«trace»

«trace»

«trace»

Step 1 Step 2.3.1

Step 2.1 Step 2.3.2

performHard
Braking:~O

o

o

performHard
Braking:O

Figure 5.7: Example Hazard CFT for hazard Hard Braking Omission

Hazard CFTs can contain the same gates as CFTs (except for output failure modes). If a
hazard is caused by different failures or only by certain combinations of failures, this can be
specified by using OR and AND gates. The CFTs for the function hierarchy (FEBEAS CFT
in Figure 5.7) with their failure modes and internal structure are automatically generated and
linked to the failure modes of Hazard CFTs in Step 2.3.2 of the tailoring process. The details
of this step are described in the following section.

102

5.2 Safety Analysis on Functional Requirements

5.2.3 Generating Component Fault Trees

We express the failure propagation through the function hierarchy by Component Fault Trees.
In Step 2.3.2 of the ASIL tailoring process, they are automatically derived from the functional
(safety) requirements specified as Modal Sequence Diagrams (cf. Section 4.4). Figure 5.8
sketches this CFT generation by an example. The top diagram is an MSD that specifies the
requirement that the function Make Decision shall decide to activate emergency braking once
it is informed that the vehicle is reaching the last point to brake. The bottom diagram shows
the function’s corresponding CFT Make Decision CFT with its failure modes and internal
elements generated from the MSD above.

«CFT»
MakeDecisionCFT

o c

o c

:Cr

ibd Failure Propagation

«OR»

msd Brake Requirement

:Make
Decision

:Ensure
Passenger

Safety

activateEmergency
Braking

:Analyze
Situation

reachingLast
PointToBrake

(c,e)

reachingLast
PointToBrake:O

reachingLast
PointToBrake:C

activateEmergency
Braking:~C

activateEmergency
Braking:~O

Figure 5.8: Example of CFT generation for function Make Decision

If the function Make Decision fails when the vehicle reaches the last point to
brake, it will not send the information activateEmergencyBraking. In other words,

103

5 Safety Analysis and ASIL Allocation on Functional Safety Requirements

the information activateEmergencyBraking is omitted (O) if the function crashes (Cr)
between the receiving of the information reachingLastPointToBrake and the sending
of activateEmergencyBraking. This is specified by the basic event :Cr linked to
the output failure mode activateEmergencyBraking:∼O. In addition, if the information
reachingLastPointToBrake is not received by Make Decision, the function will not send
the information activateEmergencyBraking. This is specified by the input failure mode
reachingLastPointToBrake:O linked to activateEmergencyBraking:∼O. As both the crash and
the input failure cause the output omission failure individually (single-point failures), they
are connected to the output failure via an OR gate.

If the information reachingLastPointToBrake is received unexpectedly by Make Decision
because Analyze Situation sends it unintentionally (C), Make Decision will send the
information activateEmergencyBraking as normal reaction adhering to the requirement. This
propagates the commission failure from Analyze Situation through Make Decision. It is
specified by the input failure mode reachingLastPointToBrake:C linked to the output failure
mode activateEmergencyBraking:∼C.

Section 4.4.2 lists patterns of functional requirements and functional safety requirements
expressible with MSDs. These patterns were consolidated from different sources that
identified them in industry requirements specifications. Hence, we assume these patterns
represent all relevant types of functional (safety) requirements. Consequently, we assume
that all MSD specifications, that we derive CFTs from, solely consist of MSDs applying
those patterns. From a systematic analysis of all MSD requirement patterns we derived
rules for the generation of CFTs as sketched in Figure 5.8. For omission and commission
failures we identified eight cases of MSDs in the patterns that we group into positive and
negative MSDs. Positive MSDs specify information exchange that shall occur. Negative
MSDs specify information exchange that must not occur. Negative MSDs can be identified
by a contained hot-false-condition, i.e., a hot condition with the expression “false” that can
never evaluate to true. Figure 5.9 shows the four positive MSD cases and the respective CFT
elements. Figure 5.10 shows the four negative MSD cases and the respective CFT elements.

Case 1 specifies the requirement excerpt “If the considered lifeline :L sends the information
q, followed by sending/receiving arbitrary further information, then :L has to send the
information p”. In this case, :L might crash between sending q and p resulting in an omission
failure of p. Case 1 results in no commission failure of p because :L receives no information
that could have a commission failure that would propagate to p. A commission failure of p
would have the same cause as the commission failure of q, and that cause is not visible in
this case’s MSD.

Case 2 is similar to Case 1 with the difference that initially the considered lifeline :L
receives the information q. In that case, again :L might crash between q and p resulting in
an omission failure of p. In addition, that omission might also be caused by an omission of
the ingoing information q. If q has a commission failure, it will propagate through L to a
commission failure of p, because that information would be correctly sent according to the
MSD requirement.

Case 3 specifies the requirement excerpt “If the considered lifeline :L sends/receives one
or more information, followed by receiving the information s, followed by sending/receiving
arbitrary further information, then :L has to send the information p”. This case describes the
fact that a required information p (then-part of the requirement) would not be sent by :L if
an information on its prechart (if-part of the requirement) is not received by :L. The prechart

104

5.2 Safety Analysis on Functional Requirements

msd MSD Case 4

:L :T

p

:S

q

(*,m)

...

s

...

(h,*)

«CFT»
LCFT

o c

o c

:Cr

ibd Failure Propagation Case 2

«OR»

p:~Cp:~O

msd MSD Case 3

:L :T:S

(*,e)

...

s

...

(c,m)

«CFT»
LCFT

o

o

ibd Failure Propagation Case 3

p:~O

«CFT»
LCFT

o

:Cr

ibd Failure Propagation Case 4

p:~O

msd MSD Case 2

:L :T

p

:S

q

(*,e)

...

msd MSD Case 1

:L :T

p

q

(*,e)

...

«CFT»
LCFT

o

:Cr

ibd Failure Propagation Case 1

p:~O

P
re

ch
ar

t o
f p

P
re

ch
ar

t o
f p

s:O

q:Cq:O

Figure 5.9: CFT generation cases for positive MSDs

105

5 Safety Analysis and ASIL Allocation on Functional Safety Requirements

msd MSD Case 5

:L :T:S

q

(h)

...

p
(c,m)

false

msd MSD Case 6

:L :T:S

s

(h)

...

p
(c,m)

false

msd MSD Case 8

:L :T:S

(h)

...

p
(c,m)

false

s
(c,m)

«CFT»
LCFT

o

c

ibd Failure Propagation Case 5

p:~O

...

(c,m)

«CFT»
LCFT

o

c

ibd Failure Propagation Case 6

p:~O

msd MSD Case 7

:L :T:S

q

(h)

...

p
(c,m)

false

s
(c,m)

«CFT»
LCFT

o

:Cr

ibd Failure Propagation Case 7

Crash
between
q and p

p:~O

«CFT»
LCFT

o

o

ibd Failure Propagation Case 8

p:~O

o

o

«OR»

Crash
between
q and s

s:~O

P
re

ch
ar

t
of

 p
P

os
tc

ha
rt

of
 c

on
di

tio
n

P
os

tc
ha

rt
of

 c
on

di
tio

n

q:O

s:O

s:C

q:C

P
re

ch
ar

t
of

 p

Figure 5.10: CFT generation cases for negative MSDs

106

5.2 Safety Analysis on Functional Requirements

of an MSD element consists of all elements above it on all lifelines. Case 3 results in no
commission failure of p because s is not the minimal message of the MSD that triggers the
evaluation of the requirement. The commission of s without the commission of the MSD’s
minimal message would not lead to p being sent unintentionally.

Case 4 specifies the requirement excerpt “If the considered lifeline :L receives the
information q, followed by sending/receiving arbitrary further information, followed by
sending the information s in strict order related to all other information in the MSD, followed
by sending/receiving arbitrary further information, then the information p may be sent by
:L”. In this case, :L might crash between sending q and p resulting in an omission failure
of p (although p is not required because it is monitored). If p is required by some other
MSD, it is blocked by this MSD once the execution reaches s. Then, p is not allowed to
occur until s occurred. If :L crashes before s occurs, p will not be sent. Case 4 results in no
commission failure of p because it is not required to occur (not executed but monitored), it is
only restricted.

The Cases 1 to 4 prescribe the rules for generating CFTs from positive MSDs. These
rules are aggregated as pseudo code in Algorithm 5.1. This algorithm was applied
in Figure 5.8. The top diagram in the figure is a Case 2 MSD. The failure mode
activateEmergencyBraking:∼O and the the basic event :Cr are created and linked by line 6
of Algorithm 5.1. The failure mode reachingLastPointToBrake:O is created and linked to the
already created failure mode activateEmergencyBraking:∼O by line 9. The failure modes
activateEmergencyBraking:∼C and reachingLastPointToBrake:C are created and linked by
line 10.

Algorithm 5.1 Creation of O and C failures from positive MSDs
1: m := the considered positive MSD
2: for all lifelines l of m do
3: for all messages p sent by l do
4: if p is executed then
5: if the minimal message of m is received/sent by l then . Cases 1 and 2
6: Create failure mode p:∼O caused by basic event :Cr of l
7: end if
8: if the minimal message q of m is received by l then . Case 2
9: Create failure mode p:∼O caused by failure mode q:O

10: Create failure mode p:∼C caused by failure mode q:C
11: end if
12: for all (c,m) messages s received by l on the prechart of p do . Case 3
13: Create failure mode p:∼O caused by failure mode s:O
14: end for
15: else . p is monitored
16: if the prechart of p contains a hot message sent by l then . Case 4
17: Create failure mode p:∼O caused by basic event :Cr of l
18: end if
19: end if
20: end for
21: end for

107

5 Safety Analysis and ASIL Allocation on Functional Safety Requirements

The four cases for negative MSDs are shown in Figure 5.10. Case 5 specifies the
requirement excerpt “If the considered lifeline :L receives the information q, followed by
sending arbitrary further information, then :L must not send the information p”. In this case,
the information p might be unintentionally forbidden if the last input to :L q (which is also
the minimal message) is unexpectedly received by :L. Therefore, a commission failure of q
results in an omission failure of p.

Case 6 specifies the requirement excerpt “If the considered lifeline :L sends/receives one
or more information, followed by receiving the information s, followed by sending arbitrary
further information, then :L must not send the information p”. This case is similar to Case 5,
except that s is not the minimal message but any other last input to :L on the prechart of
p. Accordingly, the omission failure of p is caused by this last input s instead of a minimal
message that is possibly received by :L.

Case 7 specifies the requirement excerpt “If the considered lifeline :L receives the
information q, followed by sending/receiving arbitrary further information, then :L must not
send the information p unless it sends s before”. This case describes the scenario that p
is forbidden after the minimal message q until any information s from the postchart of the
hot-false-condition is sent. The postchart of an MSD element consists of all elements below
it on all lifelines. In this case, p is only unintentionally forbidden if no information s from
the postchart of the hot-false-condition is sent. That is only the case if L crashes. Hence,
an omission failure of p is caused by a crash of L. Any information s on the postchart of the
hot-false-condition might be omitted if the minimal message q is not occurring and triggering
this requirement or if :L crashes before it can send s.

Case 8 specifies the requirement excerpt “If the considered lifeline :L sends/receives one
or more information, then :L must not send the information p until it receives s”. In this
case, p might be forbidden longer than intended if any information s on the postchart of the
hot-false-condition is unexpectedly not received. Hence, an omission failure of p is caused
by an omission failure of s.

All negative MSD cases do not lead to output commission failures because they are only
restricting information exchange (i.e., negative MSDs contain no executed messages). The
Cases 5 to 8 prescribe the rules for generating CFTs from negative MSDs. These rules are
aggregated as pseudo code in Algorithm 5.2.

Algorithms 5.1 and 5.2 create failure modes, basic events, and their connections treating
every input failure mode and basic event as single-point failure. However, some requirements
may be redundant such that two or more input failures have to occur at the same time for an
output failure to occur (multiple-point failure). Single-point failures are merged by an OR
gate, whereas multiple-point failures have to be merged by an AND gate. Hence, we apply
another transformation step (Algorithm 5.3) to identify redundant requirements and update
the CFT internals accordingly.

Figure 5.11 shows an example of redundant requirements, the resulting CFT after
execution of Algorithm 5.1, and the final CFT with integrated AND gates by Algorithm 5.3.
The first MSD G’1 specifies the requirement that mf shall be sent if mg1 is received. The
second MSD G’2 specifies that mf shall be sent if mg2 is received. So, these two MSDs
form redundant requirements with the two inputs mg1 and mg2 that redundantly require the
sending of mf. The third MSD G’3 specifies the requirement that mf shall be sent if mg3 is
received and followed by mg4. This is a third redundant requirement with the difference that

108

5.2 Safety Analysis on Functional Requirements

Algorithm 5.2 Creation of O and C failures from negative MSDs
1: m := the considered negative MSD
2: c := the hot-false-condition of m
3: p := the message directly followed by c
4: l := the lifeline p is sent by
5: if postchart of c is empty then
6: for all messages s received by l on the prechart of p do . Cases 5 and 6
7: if s is the last ingoing message of l on the prechart of p then
8: Create failure mode p:∼O caused by failure mode s:C
9: end if

10: end for
11: else . There are messages after c
12: if the postchart of c contains messages sent by l then . Case 7
13: Create failure mode p:∼O caused by basic event :Cr of l
14: for all messages s on the postchart of c sent by l do
15: Create failure mode s:∼O caused by basic event :Cr of l
16: if the minimal message q of m is received by l then
17: Create failure mode s:∼O caused by failure mode q:O
18: end if
19: end for
20: end if
21: for all messages s on the postchart of c received by l do . Case 8
22: Create failure mode p:∼O caused by failure mode s:O
23: end for
24: end if

Algorithm 5.3 Creation of AND gates for ∼O failures

1: for all ∼O failures f of a CFT c do
2: I := all input failure modes of c on the path to f
3: G := failure modes of I grouped by MSD that they originate from
4: if G contains more than one group then . AND gate(s) required
5: Remove the current links of all failure modes g ∈ G towards f
6: A := {} . The set of created AND gates
7: P :=

∏
G′∈GG′

8: for all cartesian products of failure modes P ′ ∈ P do
9: Link all g ∈ P ′ to a new AND gate a

10: Add a to A
11: end for
12: Link all a ∈ A to output failure mode f (or its preceding OR gate if existing)
13: end if
14: end for

109

5 Safety Analysis and ASIL Allocation on Functional Safety Requirements

the combination of the two inputs mg3 and mg4 is redundant to the inputs mg1 and mg2
from the other MSDs.

Algorithm 5.1 identifies Case 2 in all three MSDs and additionally Case 3 in MSD G’3.
Therefore, its result is the intermediate CFT in the middle of Figure 5.11 with a crash basic
event and four input omission failure modes for each of the four input messages. Each
of these failures could be involved in an omission of the output mf, and thus they are all
connected to the output omission failure mf:∼O via an OR gate.

Algorithm 5.3 separates the four input failure modes into three groups according to the
MSDs that they originate from. Because each MSD is redundant to the others, a failure
from each group of failure modes has to occur simultaneously for the output failure to
occur. Hence, the algorithm creates an AND gate for each combination (cartesian product)
of redundant failure modes. The CFT in the bottom of Figure 5.11 shows the result of
Algorithm 5.3 which is the final result of the CFT generation with consideration of redundant
requirements.

The prototypical implementation of the algorithms is described in Section 7.1. That
implementation was used to validate that the transformation rules (the eight cases) are
complete and to verify the correctness of the algorithms by testing the implementation against
the patterns of the MSD pattern catalog (cf. Section 4.4.2) and the expected CFT outputs.

5.3 ASIL Allocation on the Function Hierarchy

The function hierarchy decomposes the functionality of the system under development and
structures the functional (safety) requirements. The CFTs generated from the function
hierarchy and its requirements specify the failure propagation from input and basic failures
of the system to output failures causing hazards. Different hazards have different criticality
specified by their ASIL value. In general, each function has to be developed in accordance
with the maximum ASIL of all identified hazards. Thereby making sure that it is developed
with the required degree of rigor to avoid or mitigate the hazards. If ASIL tailoring shall be
applied to develop a function with lower degree of rigor, the validity of the tailoring has to
be checked.

To fulfill these requirements and find a valid ASIL allocation to functions, we calculate
the ASIL propagation from hazards over the failure modes of the CFTs. Afterward, we
derive the ASIL of each function based on the ASILs allocated to its corresponding CFT. All
this is done automatically in Step 2.4 of the ASIL tailoring process. Figure 5.12 shows the
sub-actions of that step.

In Step 2.4.1, ASILs are calculated for each failure mode of the CFTs based on the hazards
that they are involved in. The details of this step are described in the following Section 5.3.1.
Afterward, in Step 2.4.2, ASILs are allocated to functions and their requirements based on
the ASILs calculated for the CFT failure modes. The details of this step are explained in
Section 5.3.2. When changes to the function hierarchy or requirements are made in further
iterations of the ASIL tailoring process, these automated steps can be repeated. In Step 2.4.3
the validity of the ASIL allocation is documented. This is explained in Chapter 6.

110

5.3 ASIL Allocation on the Function Hierarchy

msd G‘1

:L

mf

mg1

(c,e)

msd G‘2

:L

mf

mg2

(c,e)

msd G‘3

:L

mf

mg3

(c,e)

mg4
(c,m)

«CFT»
LCFT

o

o
:Cr

ibd Intermediate Failure Prop.

«OR»

mf:~O

o
mg1:O mg2:O

o
mg3:O

o
mg4:O

«CFT»
LCFT

o

o

:Cr

ibd Final Failure Propagation

«OR»

mf:~O

o
mg1:O mg2:O

o
mg3:O

o
mg4:O

«AND»

Algorithm 5.1

Algorithm 5.3

Case 3Case 2

«AND»

Figure 5.11: Example of CFT generation for ∼O failure and redundant MSDs

111

5 Safety Analysis and ASIL Allocation on Functional Safety Requirements

2.4. Calculate ASIL Allocation

CFTs

Function
Hierarchy

Function
Hierarchy
with ASILs

2.4.1 Calculate
ASILs for

Failure Modes
2.4.3 Generate

Safety Argument

2.4.2 Allocate
ASILs to

Functions

Safety
Argument

Figure 5.12: Process Step 2.4 - Calculate ASIL Allocation for Function Hierarchy

5.3.1 Calculating ASILs on CFTs

The failure propagation model consists of hierarchically structured CFTs that represent the
failure propagation of the function hierarchy. In addition, the model contains Hazard CFTs
that specify what failures of the top-level CFT cause hazards. Figure 5.13 shows a sketch of
a failure propagation model. The hazard h1 is caused by failure o1 of CFT c1. The hazard h2
is caused by failure o2 of CFT c1. Each hazard has an ASIL value that specifies its safety-
criticality. In Figure 5.13, h1 has ASIL D and h2 has ASIL C. Thus, by default, the CFT
c1 and all its sub-CFTs inherit the maximum ASIL of both hazards, i.e., ASIL D. If ASIL
tailoring is applied, some CFTs can be allocated with a lower ASIL than others (cf. c3 and
c5). This ASIL reduction has to follow the rules defined by ISO 26262.

5.3.1.1 ASIL Tailoring Rules

ASIL tailoring can be done by applying one of the two measures separation and
decomposition. Both measures are applied on requirements. In separation, safety
requirements with lower criticality are separated from requirements with higher criticality
by allocating them to different functions, such that the more critical function is free
of interference from the less critical function (cf. Definition 2.24 on page 25). In
decomposition, a safety requirement with higher criticality is decomposed into a set
of redundant requirements that are allocated to sufficiently independent functions (cf.
Definition 2.26 on page 26). Hence, each redundant requirement may be considered less
critical because all requirements have to fail at once to violate the original requirement.

ASIL tailoring by separation or decomposition has to obey the rules of ISO 26262
described in Section 2.5. In the following, we transfer those rules to the elements of the CFT
failure propagation meta model. Each CFT specifies the failure propagation of a function.
The failure propagation inside a CFT is specified by a set of linked gates and is derived
from the requirements as explained in Section 5.2.3. If a CFT’s output failure mode occurs,
the corresponding requirement of a function is violated. Definition 5.1 specifies the basic
elements of a failure propagation model and their relations.

112

5.3 ASIL Allocation on the Function Hierarchy

«CFT» {ASIL D}

c1

«CFT» {ASIL D}

c2
«AND»

{ASIL D}

a1

«AND»
{ASIL C}

a2

«CFT»
{ASIL A(D)}

c3

«CFT»
{ASIL C(D)}

c4

«CFT»
{ASIL C}

c5

«HazardCFT» «HazardCFT»

{ASIL D}
h1

{ASIL C}
h2

{ASIL C} i2

{ASIL C}{ASIL C(D)}
i9

{ASIL C(D)}
o6 {ASIL C}

{ASIL C} o4

{ASIL A(D)}
o5

{ASIL A(D)}

{ASIL D} i3

{ASIL C(D)}
i6

{ASIL C} i4

{ASIL C}
i7

{ASIL C}
o8

{ASIL C}
i11

{ASIL D} i1

{ASIL C} o2{ASIL D} o1

{ASIL D} o3

{ASIL A(D)}
i5

Figure 5.13: Example of failure propagation model with allocated ASILs

DEFINITION 5.1 (CFT ELEMENTS)
A failure propagation model (cf. Figure 5.3) consists of a set of CFTs C and a set of gates
G that are contained in those CFTs (Gc). Gates consist of intermediate gates, failure modes
F , and events (including events H representing hazards). For failure modes of a CFT c, we
distinguish input failure modes Ic and output failure modes Oc. Two gates lie on a failure
propagation path () if they are directly connected via a CFT link or indirectly via a set of
gates and connecting CFT links leading towards a hazard. Each gate g can be assigned with
an ASIL value sg. ASILs are represented by the integer values 0 (QM) to 4 (ASIL D). Each
CFT c is assigned with the maximum ASIL of all failure modes it contains sc.

113

5 Safety Analysis and ASIL Allocation on Functional Safety Requirements

C = Set of all CFTs

G = Set of all gates

Gc = {g ∈ G | g contained in CFT c ∈ C}
F = {f ∈ G | f being a failure mode}
H = {h ∈ G | h being an event typed by a hazard}
Ic = {i ∈ Gc | i being an input failure mode}
Oc = {o ∈ Gc | o being an output failure mode}
 : G→ G = failure propagation path between two gates

S = Set of all ASIL values assigned to gates and CFTs in (C ∪G)

with sg ∈ S being the ASIL ∈ {0, 1, 2, 3, 4} assigned to gate g ∈ G

and sc ∈ S = max{sf | f ∈ (F ∩Gc)} being the ASIL assigned to CFT c ∈ C

Separation Rules
Separation is defined using the terms cascading failure (cf. Definition 2.21 on page 22) and
freedom from interference (cf. Definition 2.23 on page 24). A function a is separate from a
function b if b is free of interference from a concerning all safety requirements with higher
criticality than a’s requirements. The function b is free of interference from a if there are no
failures of a that lead (or cascade) to failures of b. To define these rules for valid separation
on CFTs, we need to define the above terms on the CFT meta model.

DEFINITION 5.2 (CFT CASCADING FAILURE)
An output failure mode o1 is a cascading failure from a CFT c1 to a CFT c2 if there exists a
failure propagation path from o1 to an input failure mode i2 of CFT c2.

CFc1,c2 = {o1 ∈ Oc1 | ∃ i2 ∈ Ic2 : o1 i2}

DEFINITION 5.3 (CFT FREEDOM FROM INTERFERENCE)
A CFT c1 interferes with a CFT c2 concerning a gate g3 if there exists a cascading failure o1
from c1 to c2 leading to g3.

Interc1,c2 = {g3 ∈ G\Gc1 | ∃ o1 ∈ CFc1,c2 , i2 ∈ Ic2 : o1 i2 g3}

DEFINITION 5.4 (CFT SEPARATION)
A CFT c1 is separate from a CFT c2 if c1 does not interfere with c2 concerning any output
failure mode o2 of c2 with an ASIL so2 higher than c1’s ASIL sc1 .

Sepc2 = {c1 ∈ C | ¬∃ o2 ∈ Oc2 : o2 ∈ Interc1,c2 ∧ so2 > sc1}

In Figure 5.13, the CFT c3 is separate from the CFT c5 because c3 does not interfere
with c5 concerning o8. There are no cascading failures from c3 to c5. Thus, c3 may have
any lower ASIL allocated than c5 (QM instead of ASIL C in this example). The CFT c5 is
separate from the CFT c4 because c5 does not interfere with c4 concerning any of its output
failure modes. There are no cascading failures from c5 to c4. Hence, c5 may have any lower
ASIL allocated than c4 (ASIL C instead of D).

114

5.3 ASIL Allocation on the Function Hierarchy

c5 is separate from c2. First, because c5 does not interfere with c2 concerning o3. There
is no cascading failure from c5 to o3. Thus, c5 may have a lower ASIL allocated than o3.
Second, there is a cascading failure o4 from c5 to c2’s output failure mode o4, but it is not
on a failure propagation path leading to o3. Thus, c5 may have a lower ASIL allocated than
o3 but not lower than o4 (ASIL C instead of D).

Decomposition Rules
Decomposition is defined using the terms common cause failure (cf. Definition 2.22 on
page 23) and independence (cf. Definition 2.25 on page 26). A safety requirement may
be decomposed into two redundant requirements of two functions a and b if a and b are
sufficiently independent. Independence requires freedom from interference between a and b
in both directions concerning the requirement. In addition, it requires the absence of common
cause failures of a and b (i.e., failures of both functions with the same cause). According
to the definition in ISO 26262, valid decomposition requires sufficient independence (cf.
Definition 2.26 on page 26). In our interpretation, this means that if common cause failures
exist, decomposition may still be applied but the common cause has to be safeguarded with
the degree of rigor before decomposition was applied (i.e., the original ASIL). To define
these rules for valid decomposition on CFTs, we need to define the above terms on the CFT
meta model.
DEFINITION 5.5 (CFT COMMON CAUSE FAILURE)
A failure mode f is the cause of two common cause failures (cf. Def. 2.22) i1 and i2 of two
resp. CFTs c1 and c2 if there exists a failure propagation path from f to the input failure
mode i1 of c1 and a path from f to the input failure mode i2 of c2.

CCFc1,c2 = {f ∈ F\(Gc1 ∪Gc2) | ∃ i1 ∈ Ic1 , i2 ∈ Ic2 : f i1 ∧ f i2}

DEFINITION 5.6 (CFT SUFFICIENT INDEPENDENCE)
A CFT c1 is sufficiently independent from a CFT c2 concerning a gate g3 if c1 does not
interfere with c2 concerning g3 and vice versa, and if there is no failure mode f that is the
common cause of failures of both CFTs leading to g3 with an ASIL sf lower than g3’s ASIL
sg3 .

SufIndepc1,c2 = {g3 ∈ G | g3 /∈ (Interc1,c2 ∪ Interc2,c1) ∧
(¬∃ f ∈ CCFc1,c2 : f g3 ∧ sf < sg3)}

DEFINITION 5.7 (CFT DECOMPOSITION)
A CFT c1 is part of a decomposition concerning an output failure mode o3 of a CFT c3 if c1
interferes with c3 concerning an AND gate a3 of c3 on a path to o3, there are other CFTs that
interfere with a3, and c1 is sufficiently independent from those CFTs. The sum of ASILs of
all CFTs that are part of a decomposition concerning the same output failure mode o3 must
be as high as the ASIL of o3 or higher.

Decompc1,c3 = {o3 ∈ Interc1,c3 | ∃ AND gate a3 ∈ Gc3 : a3 ∈ Interc1,c3 ∧ a3 o3 ∧
(∃ c2 ∈ C\{c1} : a3 ∈ Interc2,c3) ∧
(∀ c2 ∈ C\{c1} with a3 ∈ Interc2,c3 : o3 ∈ SufIndepc1,c2)}∑

c∈D
sc ≥ so3 ∀ c3 ∈ C, o3 ∈ Oc3 , D = {c ∈ C\{c3} | o3 ∈ Decompc,c3}

115

5 Safety Analysis and ASIL Allocation on Functional Safety Requirements

In Figure 5.13, valid decomposition was applied on CFTs c3 and c4 concerning o3 of c2
because c3 and c4 are sufficiently independent. There are no cascading failures from c3 to
c4 nor vice versa. So, there is freedom from interference between them. Failure mode i3 of
CFT c1 leads to common cause failures of c3 and c4 and is allocated with ASIL D of o3
to reach sufficient independence. In conclusion, c3 and c4 may have lower ASILs assigned
than c2 but their sum must meet ASIL D (in the figure D(4) = A(1) + C(3)). For the CFTs c4
and c5 no valid decomposition is possible because they are not sufficiently independent. c5
is not free of interference from c4, as there is a cascading failure of c4 leading to i11.

Conclusion
In conclusion, if a CFT has a lower ASIL than others, ASIL tailoring was applied (i.e.,
separation or decomposition).

PROPOSITION 5.1 (CFT ASIL TAILORING)
A CFT c1 may have a lower ASIL sc1 than a CFT c2 if c1 is separate from c2 or if c1 is part
of a decomposition concerning an output failure mode of c2.

sc1 < sc2 ⇒ c1 ∈ Sepc2 ∨ Decompc1,c2 6= ∅

The ASIL allocation to the CFTs of the example in Figure 5.13 is one solution that obeys
the ASIL tailoring rules. There is another valid solution where c3 and c4 are allocated
with different ASILs. c3 and c4 are part of an ASIL decomposition. Thus, the sum of
the ASILs of o5 and o6 must be greater or equal to ASIL D of o3. This allows five
permutations of ASIL allocations to c3/c4: ASIL A(D)/ASIL C(D), ASIL C(D)/ASIL A(D),
ASIL B(D)/ASIL B(D), QM(D)/ASIL D(D), and ASIL D(D)/QM(D). As i11 is allocated
with ASIL C and there is a cascading failure of c4 leading to i11, c4 is constrained to an
ASIL greater or equal to ASIL C. Hence, only two of the ASIL decomposition permutations
are possible: ASIL A(D)/ASIL C(D) as shown in Figure 5.13, and QM(D)/ASIL D(D).

This shows that the ASIL tailoring rules open a constrained space of different ASIL
allocations. To find allocations that obey all constraints, and thus are valid for the whole
failure propagation model, the rules have to be checked for all gates and CFTs.

5.3.1.2 ASIL Allocation as Optimization Problem

As shown in the previous section, there can be more than one valid ASIL allocation for a
given failure propagation model. Each CFT represents the failure propagation of a function.
Consequently, each function inherits the ASIL allocated to its corresponding CFT. The ASIL
of a function dictates the required safety effort for realizing the function. The goal of the
safety engineer is to find an ASIL allocation to functions that reduces the overall safety effort
as much as possible. The search for an ASIL allocation that obeys the ASIL tailoring rules
and has minimal safety effort can be expressed as an optimization problem, i.e., an integer
linear program (ILP).

The following ILP (P) is an example program derived from the failure propagation model
shown in Figure 5.13. The objective (P.1) specifies the goal to minimize the sum of ASILs
of all CFTs. The two constraints (P.2) and (P.3) specify the fixed ASIL values ASIL D and
ASIL C of the two hazard events h1 and h2. The constraints (P.4) to (P.6) specify that each
CFT’s ASIL is the maximum of its failure mode ASILs (cf. Definition 5.1). The constraints

116

5.3 ASIL Allocation on the Function Hierarchy

from (P.2) to (P.6) represent static rules for ASIL allocation. The following constraints from
(P.7) onwards apply the ASIL tailoring rules to the given failure propagation model.

minimize
5∑

j=1

scj (P.1)

subject to sh1 = 4 . Fixed ASIL constraints (P.2)

sh2 = 3 (P.3)

sc1 ≥ max{so1 , so2 , si3 , si4} . CFT constraints (P.4)

. . . (P.5)

sc5 ≥ max{so8 , si11} (P.6)

si6 ≥ sa2 . Prohibited ASIL decomposition (P.7)

si7 ≥ sa2 (P.8)

si3 ≥ sa1 . Constrained ASIL decomposition (P.9)

si5 + si6 ≥ sa1 . AND gate constraints (P.10)

si6 + si7 ≥ sa2 (P.11)

si1 ≥ sh1 . Default gate constraints (P.12)

so1 ≥ si1 (P.13)

so3 ≥ so1 (P.14)

sa1 ≥ so3 (P.15)

. . . (P.16)

sk ∈ {0, 1, 2, 3, 4} ∀k (P.17)

The following Figures 5.14 to 5.16 describe patterns in a failure propagation model that,
if identified, lead to constraints as from (P.7) onwards. The patterns are specified in abstract
syntax conforming to the CFT meta model in Figure 5.3 with two additional relations pathTo
and pathToFirst defined as follows:

pathTo : G→ G = reverse failure propagation path between two gates

with g1 pathTo g2 ⇔ g2 g1

pathToFirst : G→ F = reverse failure propagation path to the first non-delegating

failure mode of a type

with g pathToFirst f1 ⇔
g pathTo f1 ∧ (¬∃ f2 of same type as f1 : g pathTo f2 pathTo f1)

For an input failure mode i1 and an output failure mode o2, i1 pathToFirst o2 means that
o2 causes i1 and the failure propagation path between them consists either of a single CFT
link or solely of failure modes connected via delegating CFT links that bridge CFT hierarchy
levels between the two failure modes.

Figure 5.14 describes two default constraints between gates. Figure 5.14 a) shows the
pattern of a gate g2 that is directly linked to a gate g1 that is no AND gate. This represents

117

5 Safety Analysis and ASIL Allocation on Functional Safety Requirements

the default model excerpt of cascading failure modes (cf. Definition 5.2), events, and OR
gates. In this case, the gate g2 inherits the ASIL of gate g1 or another linked gate with
a higher ASIL. This constraint is required to enforce the ASIL separation rules. For the
example failure propagation model in Figure 5.13, the pattern of Figure 5.14 a) leads to the
constraint (P.12) and following. These constraints are derived from the model by following
the path form the event h1 to the AND gate a1.

Figure 5.14 b) shows the pattern of a set of gates g that are directly linked to an AND
gate a. This represents the basic model excerpt required for ASIL decomposition. In this
case, the sum of ASILs of all gates g equals the ASIL of the AND gate a or is higher if this
ASIL decomposition is influenced by other constraints (e.g., Figure 5.15). For the example
in Figure 5.13, the pattern of Figure 5.14 b) leads to the constraints (P.10) and (P.11) for the
two AND gates a1 and a2.

g2:Gate

:CFTLink

source

g1:Gate

g2:Gate

{Not an
AndGate}

:CFTLink

target

source

a)

a:AndGate

g:Gate

:CFTLink

source

b)

targettarget

g2.ASIL ≥ g1.ASIL Σg g.ASIL ≥ a.ASIL

Figure 5.14: Default ASIL allocation constraints

Figure 5.15 describes three patterns that prohibit the application of ASIL decomposition
(cf. Definition 5.7). All three patterns have a common upper part: A CFT c0 containing two
input failure modes ifm1 and ifm2 that lie on failure propagation paths to an AND gate a, and
that are caused by two output failure modes ofm1 and ofm2, respectively. The AND gate a
inherits the ASIL of an output failure mode of its CFT c0 by the pattern in Figure 5.14 a) (a
being mapped to g2). If ASIL decomposition concerning a is prohibited, the ASIL of input
failure modes of c0 lying on failure propagation paths to a may not be reduced as specified
by the pattern in Figure 5.14 b). Instead, the input failure modes ifm1 and ifm2 have to inherit
the ASIL of a or any higher ASIL, similar to the pattern in Figure 5.14 a).

In addition to the common upper part, Figure 5.15 a) contains a single CFT c1 that contains
both output failure modes ofm1 and ofm2. In this case, ASIL decomposition concerning

118

5.3 ASIL Allocation on the Function Hierarchy

pathTo pathTo

a:AndGate

c1:CFT contains

contains

c2:CFT

pathTo

contains

c0:CFT contains

contains

contains

pathToFirstpathToFirst

ifm2:Input
FailureMode

ifm1:Input
FailureMode

ofm2:Output
FailureMode

ofm3:Output
FailureMode

ofm1:Output
FailureMode

c1:CFT

contains

c2:CFT

pathTo

contains

pathToFirstpathToFirst

ofm2:Output
FailureMode

ofm1:Output
FailureMode

c1:CFT contains

contains

pathToFirstpathToFirst

ofm2:Output
FailureMode

ofm1:Output
FailureMode

a)

b)

c)

ifm1.ASIL ≥ a.ASIL
ifm2.ASIL ≥ a.ASIL

Figure 5.15: Prohibited ASIL decomposition constraints

119

5 Safety Analysis and ASIL Allocation on Functional Safety Requirements

a is prohibited because c1 causes both input failures ifm1 and ifm2. There is only one
corresponding function, and thus no redundancy.

Figure 5.15 b) extends the common part by two CFTs c1 and c2 that contain the output
failure mode ofm1 and ofm2, respectively. Additionally, there is a failure propagation path
from ofm1 to ofm2. In this case, ASIL decomposition concerning a is prohibited because c2
is not free of interference from c1. ofm1 is a failure that cascades to c2’s ofm2. Accordingly,
there is no sufficient independence between c1 and c2.

Figure 5.15 c) contains the same elements as b) extended by a second output failure mode
ofm3 contained in CFT c1. In contrast to b), there is no failure propagation path from ofm1
to ofm2 but from ofm3 to ofm2. In this case, ASIL decomposition concerning a is prohibited
for the same reason as in b): ofm3 is a cascading failure to c2’s ofm2. For the example
in Figure 5.13, the pattern of Figure 5.15 c) leads to the constraints (P.7) and (P.8). These
constraints are derived from the cascading failure between the CFTs c4 and c5.

Figure 5.16 describes the pattern that constrains ASIL decomposition because of common
cause failures (cf. Definition 5.6). It shows the same upper part as Figure 5.15: a CFT c0
containing two input failure modes ifm1 and ifm2 that lie on failure propagation paths to an
AND gate a, and that are caused by two output failure modes ofm1 and ofm2, respectively.

pathTo pathTo

a:AndGate

c0:CFT contains

contains

contains

c1:CFT

contains

contains

pathToFirstpathToFirst

pathTo pathToc2:CFT

contains

contains

ifm2:Input
FailureMode

ifm1:Input
FailureMode

ofm2:Output
FailureMode

ofm1:Output
FailureMode

fm5.ASIL ≥ a.ASIL

pathTo pathTo
fm5:

FailureMode

ifm4:Input
FailureMode

ifm3:Input
FailureMode

Figure 5.16: Constrained ASIL decomposition constraint

120

5.3 ASIL Allocation on the Function Hierarchy

In addition, ofm1 is contained in a CFT c1 that also contains an input failure mode ifm3
lying on a failure propagation path to ofm1. Similarly, ofm2 is contained in a CFT c2 with
an input failure mode ifm4. Furthermore, there is a failure mode fm5 that lies on a failure
propagation path to both ifm3 and ifm4. In this case, the CFTs c1 and c2 are free from
interference but ifm3 and ifm4 are common cause failures (both caused by fm5). Hence, c1
and c2 are only sufficiently independent if fm5 is allocated with the same ASIL as a or a
higher ASIL. If this constraint is fulfilled, ASIL decomposition concerning a is allowed. For
the example in Figure 5.13, the pattern of Figure 5.16 leads to the constraint (P.9). It is
derived from the failure i3 that is a common cause for the CFTs c3 and c4 concerning a1.

Algorithm 5.4 sketches how ILP constraints are derived from a failure propagation model
based on the patterns from Figures 5.14 to 5.16. Combined with the ASIL minimization
objective (P.1) the ILP can be passed to an ILP solver. Afterward, the resulting solution’s
variables contain the ASILs to be allocated to gates and CFTs of the failure propagation
model.

5.3.2 Allocating ASILs to Functions and Functional Safety
Requirements

ASILs are assigned to hazards to categorize their safety-criticality. Functional safety
requirements are specified to prevent or mitigate hazards and inherit the addressed hazard’s
ASIL. Functions are used to decompose the required functionality and group the functional
(safety) requirements. During decomposition and refinement of functions and requirements,
the corresponding ASILs can be lowered for sub-functions and -requirements by applying
ASIL tailoring measures. The set of applied, valid ASIL tailoring measures dictates the
allocation of ASILs to functions and functional safety requirements.

Figure 5.17 shows all model elements that can be assigned with an ASIL and their ASIL
allocation constraints. Each Hazard’s safety-criticality is specified by an ASIL. The failure
propagation model consists of CFTs that represent the failure propagation of the function
hierarchy. The ASIL of a hazard propagates along the paths of CFT Gates that are involved
in the occurrence of the hazard and is reduced where valid ASIL tailoring is applied.
This allocation of ASILs to gates and CFTs follows the rules and constraints described in
Section 5.3.1. As each CFT represents the failure propagation of a Function, each function
inherits the ASIL of its corresponding CFT. Safety requirements on functions are specified
using MSDs (cf. Chapter 4). The failure propagation of each function is derived from its
MSDs as described in Section 5.2.3. A failure in the fulfillment of an MSD requirement
leads to an output failure mode of the corresponding function’s CFT. Therefore, each MSD
inherits the maximum ASIL of all output failure modes that were derived from it.

Figure 5.18 shows an example result of ASIL allocation to MSD requirements. ASILs
are annotated on model elements using the stereotype Safety Classified Element from the
safety profile (cf. Figure 3.5 on page 45). The diagram in the top shows an excerpt of a
failure propagation model after a valid ASIL allocation was calculated by an ILP solver
(cf. Section 5.3.1.2). There are two Hazard CFTs with events representing the ASIL D
hazard Hard Braking Omission and the ASIL B hazard Emcy Brake Warning Omssion from
Figure 3.4 on page 44. There is a failure propagation path from the sub-CFT Make Decision
CFT to each Hazard CFT (illustrated by a dashed CFT link). The ASIL of both hazards
propagates down to the two output failure modes of the CFT and on to an AND gate where

121

5 Safety Analysis and ASIL Allocation on Functional Safety Requirements

Algorithm 5.4 Collecting ASIL Allocation Constraints

1: for all Events e typed by a Hazard do . Fixed ASIL constraints from Hazards
2: Add constraint: e.ASIL = <ASIL value of Hazard>
3: end for
4: for all FailureModes f not contained in a HazardCFT do . CFT constraints
5: c := CFT containing f
6: Add constraint: c.ASIL ≥ f .ASIL
7: end for
8: for all Gates g0 do . Default ASIL constraints
9: if g0 is an AndGate then

10: A := all Gates directly succeeding g0
11: Add constraint:

∑
g∈A g.ASIL ≥ g0.ASIL

12: else
13: for all Gates g1 directly succeeding g0 do
14: Add constraint: g1.ASIL ≥ g0.ASIL
15: end for
16: end if
17: end for
18: for all AndGates a do . Prohibited and constrained ASIL decomposition constraints
19: c := CFT containing a
20: I := All InputFailureModes contained in c and succeeding a
21: for all pairs of InputFailureModes (i1, i2) in I × I with i1 6= i2 do
22: o1 := First non-delegating OutputFailureMode succeeding i1
23: o2 := First non-delegating OutputFailureMode succeeding i2
24: if o1 or o2 does not exist then
25: continue for loop . i1 or i2 is not caused by a function of the SuD
26: end if
27: c1 := CFT containing o1
28: c2 := CFT containing o2
29: if (c1 = c2) or (c1 contains an OutputFailureMode succeeding o2) or (c2 contains

an OutputFailureMode succeeding o1) then . Prohibited ASIL decomposition
30: Add constraint: i1.ASIL ≥ a.ASIL
31: Add constraint: i2.ASIL ≥ a.ASIL
32: else
33: J1 := All InputFailureModes contained in c1 succeeding o1
34: J2 := All InputFailureModes contained in c2 succeeding o2
35: for all pairs of InputFailureModes (j1, j2) in J1 × J2 with j1 6= j2 do
36: if j1 and j2 are both succeeded by the same FailureMode f then .

Constrained ASIL decomposition
37: Add constraint: f .ASIL ≥ a.ASIL
38: end if
39: end for
40: end if
41: end for
42: end for

122

5.3 ASIL Allocation on the Function Hierarchy

ASIL D
ASIL D(D)
ASIL C(D)
ASIL C
ASIL C(C)
ASIL B(D)
ASIL B(C)
ASIL B
ASIL B(B)
ASIL A(D)
ASIL A(C)
ASIL A(B)
ASIL A
ASIL A(A)
QM(D)
QM(C)
QM(B)
QM(A)
QM

«Enumeration»
ASILKind

CFT

Gate

Function

MSD

{ASIL = (cf.
constraints in
previous section)}

{ASIL = max. ASIL
of contained
FailureModes}

{ASIL = ASIL of
corresponding CFT}

{ASIL = max. ASIL
of derived
OutputFailureModes}

ASIL: ASILKind

Hazard

ASIL: ASILKind

SafetyClassifiedElement

Figure 5.17: Meta model elements considered by ASIL allocation and their ASIL relations

valid ASIL decomposition was applied. Hence, the two input failure mode’s ASILs were
reduced to ASIL B(D). The CFT inherits ASIL D as maximum ASIL of its failure modes.
Consequently the function Make Decision whose failure propagation is represented by the
CFT inherits ASIL D as well.

The failure propagation model was derived from the MSDs shown in the bottom
of the figure. The two Brake Requirements require the sending of the information
activateEmergencyBraking and are traced to the corresponding omission output failure mode
of Make Decision CFT. The two Warn Requirements require the sending of the information
sendEmcyBrakeWarning and are traced to the other omission output failure mode. The
two sketched Pre Requirements require the sending of the information needed by the other
requirements and are traced to corresponding omission output failure modes that lead to the
input failure modes of the CFT shown in the top diagram. The CFTs containing those output
failure modes are not shown in the figure. Each MSD inherits the ASIL of the output failure
mode that was derived from it.

5.3.3 Application to other Safety-Critical Domains

Different domains have different safety standards (cf. Section 2.3) but they all have SILs to
classify the safety-criticality of hazards. The SIL of a hazard classifies its safety-criticality
by the risk of its occurrence and is determined during hazard analysis and risk assessment
(cf. Section 2.2). The risk of a hazard is defined as the combination of its probability of
occurrence and the severity if it occurs (Risk = Probability × Severity). A hazard occurs
if one or more failures of a system’s functions occur. Hence, the probability of hazard
occurrence is dependent on the probability of function failures. If a hazard h is caused by
a single failure f , the hazard probability Ph is equal to the failure probability Pf , and the

123

5 Safety Analysis and ASIL Allocation on Functional Safety Requirements

«CFT» {ASIL = ASIL D}
:MakeDecisionCFT

o

:Cr

«OR»

oo

«AND»

o

«HazardCFT»
:HardBrakingOmissionCFT

«Event» {ASIL = ASIL D}
:HardBraking

Omission

o

«HazardCFT»
:EmcyBrakeWarningOmissionCFT

«Event» {ASIL = ASIL B}
:EmcyBrakeWarning

Omission

o

{ASIL = ASIL B(D)}
reachingLast

PointToBrake:O

{ASIL = ASIL D}
msd Brake Requirement 2

:Make
Decision

{ASIL = ASIL D}
msd Brake Requirement 1

:Make
Decision

{ASIL = ASIL B}
msd Warn Requirement 2

sendEmcyBrake
Warning

receivedEmcy
BrakeWarning

:Make
Decision

{ASIL = ASIL B}
msd Warn Requirement 1

sendEmcyBrake
Warning

reachingLast
PointToBrake

:Make
Decision

{ASIL = ASIL B(D)}
msd Pre Requirement 1

reachingLast
PointToBrake

...

:Make
Decision

{ASIL = ASIL B}
sendEmcyBrake

Warning:~O

{ASIL = ASIL D}

{ASIL = ASIL D}

{ASIL = ASIL D}

{ASIL = ASIL B(D)}
receivedEmcy

BrakeWarning:O

{ASIL = ASIL D}
activateEmergency
Braking:~O

{ASIL = ASIL B(D)}
msd Pre Requirement 2

receivedEmcy
BrakeWarning

...

:Make
Decision

ibd Failure Propagation Model with Allocated ASILs

Figure 5.18: Example failure propagation model and ASIL allocation to MSDs

124

5.3 ASIL Allocation on the Function Hierarchy

severity of that failure f is equal to the severity of the caused hazard h. Thus, the function
causing that failure has the same risk as h and inherits its SIL.

In addition to that simple rule, in the automotive domain, ISO 26262 explicitly defines
rules for SIL tailoring (cf. Section 2.5). The argument behind the ASIL tailoring rule
Separation is that if a function f1 cannot cause a more critical function f2 to fail, it does
not contribute to f2’s probability of failure, i.e., risk. Thus, f1 has a lower risk and may be
assigned with a lower ASIL than f2 as specified in Definition 5.4.

The argument behind the ASIL tailoring rule Decomposition is as follows: If a hazard h
only occurs if two failures f1 and f2 occur simultaneously, the hazard probability Ph is equal
to the probability of both failures occurring simultaneously Pf1f2 . If the two failures are
caused by independent functions (such that Pf1f2 = Pf1 × Pf2), the two functions share the
risk of h. In this case, the risk of h (its ASIL) may be arbitrarily distributed among the two
functions as specified in Definition 5.7 (Ph = Pf1 × Pf2 ⇒ sf1 + sf2 = sh).

Not all safety standards provide explicit SIL tailoring rules. We claim that the reasoning
behind ASIL tailoring can be adopted for other domains. Separation is applicable to any
domain: If a function cannot cause a hazard, there is no reason for it to be developed to the
degree of rigor required for that hazard’s risk. Decomposition rules need to be individually
defined and their validity argued if the domain standard provides no explicit rules.

In aerospace, ARP4754A specifies the concept of DAL decomposition [SAE10]. Similarly
to the ASIL, the DAL (Development Assurance Level) represents the required degree of rigor
during development of a system. It is also categorized into five values. The values range from
DAL A (highest) to DAL E (lowest). The DAL decomposition rules can be summarized as
follows [RPS+17]:
• Option 1: One of the functions that are part of a decomposition concerning the same

failure f must keep the DAL of f , all other functions may be assigned with a DAL up
to two levels lower than f ’s DAL.
• Option 2: Two of the functions that are part of a decomposition concerning the same

failure f are assigned with a DAL one level lower than f ’s DAL, all other functions
may be assigned with a DAL up to two levels lower than f ’s DAL.

DEFINITION 5.8 (DAL DECOMPOSITION)
The sum of DALs of all CFTs that are part of a decomposition concerning an output failure
mode o3 must be greater or equal to the number of involved CFTs D times the DAL that is
two levels lower than o3’s DAL so3 plus 2. The DAL of each of the involved CFTs D must
be greater or equal to the DAL that is two levels lower than o3’s DAL so3 .

∑
c∈D

sc ≥ |D|(so3 − 2) + 2 ∀ c3 ∈ C, o3 ∈ Oc3 , D = {c ∈ C\{c3} | o3 ∈ Decompc,c3}

sc ≥ so3 − 2 ∀ c ∈ D

To find valid DAL allocations to CFTs, safety classified elements must be allocated with
DAL A to DAL E instead of ASIL D to QM. The ILP constraints remain the same as for
ASIL allocation, except the default constraint for AND gates (cf. Figure 5.14 b)). It has to
be exchanged with the following two constraints:

125

5 Safety Analysis and ASIL Allocation on Functional Safety Requirements

∑
g∈D

g.DAL ≥ |D|(a.DAL− 2) + 2 with D = {g ∈ G | a pathToFirst g}

g.DAL ≥ a.DAL− 2 ∀ g ∈ D

From the definitions of ASIL decomposition and DAL decomposition one can see that
there is a lower risk tolerance in the aerospace domain than in the automotive domain. In
ASIL decomposition, the decomposed function SILs have to add up to the original SIL.
Even in the extreme case of ASIL D decomposition, one function may be considered non-
safety-critical (QM(D)). In DAL decomposition, the decomposed function SILs have to add
up to more than the original SIL, and no function may have a SIL lower than two levels below
the original SIL.

The automated ASIL allocation presented in this chapter can be applied to both domain
standards. Hence, we claim that the (A)SIL tailoring process as a whole is applicable to
embedded systems domains and the development of safety-critical cyber-physical systems.

5.4 Assumptions & Limitations

Assumptions
For the derivation of the failure propagation model from requirements, we assume that all
requirement MSDs are instances of the requirement patterns of Section 4.4.2.

Limitations
We use CFTs for the failure propagation model that are based on traditional fault trees and
inherit their limitations (cf. [Int03]): Traditional fault trees are not considered applicable for
failures that are dependent on (1) the current state of the system (e.g., initialization, running,
degraded, diagnosis), or (2) the order or timing of events. We mitigate these shortcomings by
our use of MSDs: (1) ASIL tailoring requires the analysis of cascading and common cause
failures (cf. Section 5.3.1.1) that exist in any state of the system. MSD specifications can be
grouped by use cases that can represent different system states. Hence, we can generate a
failure propagation model for each system state and compare their ASIL allocation results
to find a valid solution for all system states. (2) MSDs support specifying and analyzing the
order and timing of events (cf. Section 2.7). As we need to consider any system state for
ASIL tailoring, we generate omission and commission failure modes if there is at least one
order of events leading to such a failure. Furthermore, we use failure types for early and late
timing failures that can be derived from timed MSDs.

The current implementation for generating CFTs does not consider any MSD conditions
other than hot false conditions, no negative fragments, and no message parameters. Hence,
failure modes typed by timing or value failure types are not generated.

The ILP we use for ASIL allocation calculates only one optimal allocation result although
there may be more than one optimal result that the safety manager could choose from (cf.
conclusion in Section 5.3.1.1). However, one could use additional constraints to specify fixed
ASILs for certain functions that might be required due to reuse of legacy components with
a specific ASIL or project cost constraints. Moreover, instead of an ILP solver, we could
use meta heuristics that are more scalable for bigger failure propagation models. However,

126

5.5 Related Work

the implementation that we use for deriving allocation constraints is independent from any
concrete solver, such that we could use different ILP solver implementations and also meta
heuristics.

5.5 Related Work

We divide the work related to our method of safety analysis and ASIL allocation into
two categories: work related to deriving failure propagation models from requirements
(Section 5.5.1), and to allocating ASILs to functions (Section 5.5.2).

5.5.1 Generating Failure Propagation Models

HiP-HOPS is a failure propagation analysis solution that generates fault trees from
component-based architectures [PM99]. The fault trees are generated from the structure of
the components and their connections. Each component has to be annotated with its internal
failure specification. HiP-HOPS does not distinguish different failure types.

McKelvin et al. present an approach that derives fault trees from software deployments to
ECUs [MEP+05]. The purpose is to check for valid redundancy of ECUs. The software is
specified in their own language called Fault Tolerant Data Flow. A fault tree is derived from
the SW/HW deployment model. The approach supports only the omission failure type.

Lauer et al. derive fault trees from software architectures and their deployment to ECUs
[LGP11]. Their objective is to ease the comparison of different architecture alternatives.
Behavior is specified by UML activities that are allocated to software components.
Additionally, they define a UML profile to specify failures of components. The fault trees
are derived from component failures and control flow of activities. The generated fault trees
do not distinguish different failure types.

Mader et al. generate fault trees and FMEA tables from an EAST-ADL model [MAL+11].
They aim at safety analysis to show how safety goals can be violated by failures of the
modeled embedded system. For that, an error model is specified for each system component.
The fault trees and FMEA tables are derived from that error models. The error model does
not differentiate between different types of failures.

Priesterjahn et al. derive failure propagation models from software behavior specifications
with the objective to analyze the timing of failure propagations [PHS13]. The behavior is
specified by timed automata. The failure propagation model is specified as timed petri net that
is derived from the state transitions and their timing conditions. Consequently, the approach
focuses on timing failures.

All mentioned approaches focus on software and hardware architectures, whereas we
target requirements specifications in this thesis. Furthermore, all approaches except [PHS13]
require the manual specification of failures and merely connect those local failure conditions
to global failure propagation models (i.e., fault trees) for the overall system. In this thesis,
failures and failure propagations are completely generated from requirements specified as
MSDs.

127

5 Safety Analysis and ASIL Allocation on Functional Safety Requirements

5.5.2 ASIL Allocation

Safar developed an approach for ASIL calculation on fault trees [Saf17]. The ASIL values
are allocated to the failure modes of the fault trees. The fault tree structure and the ASIL
decomposition rules are specified in a textual syntax for Satisfiability Modulo Theories. The
ASIL allocation result is not transfered to a system or requirements model.

Mader et al. present an ASIL allocation approach for EAST-ADL models [MAL+12]. The
approach uses traditional fault trees, one for each hazard of the system. Allocation constraints
are specified over minimal cut sets of the fault trees. One optimal ASIL allocation to system
components is calculated by an ILP solver that respects a safety manager’s ASIL preferences
for certain components. The approach does not use a complete failure propagation model (all
failure modes of all fault trees) for ASIL allocation but only allocates ASILs to components.
Thus, the safety manager cannot see ASIL propagation paths that would support identifying
and deciding on system changes to gain a better (e.g., cheaper) ASIL allocation result.

Dhouibi et al. allocate ASILs to EAST-ADL elements based on minimal cut sets of fault
trees [DPS+14]. They use a system of linear equations to calculate all possible ASIL
allocations to the elements (not to failure modes). The identification of an optimal allocation
is left to the safety manager.

Papadopoulos et al. also developed an approach for ASIL allocation to EAST-ADL models
[PLB+10]. It uses HiP-HOPS [PM99] and presents all valid and optimal permutations of
ASIL allocations (without safety manager preferences). In contrast to the approaches of
Mader et al. and Dhouibi et al., ASILs are not allocated to components but to their failure
modes. The approach was improved by Azevedo et al. by using a meta heuristic to reduce
the result permutations [APW+13]. Their allocation result is not necessarily optimal but
the computation is more scalable than solving an ILP. In 2014, they added the use of a cost
heuristic that specifies a cost value for each ASIL [APW+14]. This allows to express the
relative savings of reducing from one ASIL to another.

The existing approaches for ASIL tailoring are applied in the phases of system
architectural design or software design. They calculate an ASIL allocation to subsystems
of a technical architecture with known failure propagation. They assume that ASIL tailoring
measures (separation and decomposition) have already been applied – both on requirements
and architectural level – only the permutation of ASILs is left to decide. Furthermore,
there is no ASIL allocation to requirements although ASIL decomposition is defined on
requirements (cf. Definition 2.26). Moreover, the approaches do not consider independence
(cf. Definition 2.25) nor sufficient independence (cf. Definition 5.6). Instead, they leave the
analysis of dependent failures to the safety manager.

The ASIL allocation approach in this thesis, allocates ASILs to all failure modes of the
failure propagation model and to corresponding requirements. This supports the safety
manager in deciding on safety requirements changes for better ASIL allocation results.
Furthermore, the rules for sufficient independence are considered by additional allocation
constraints.

128

5.6 Conclusion

5.6 Conclusion

This chapter describes the details about automated safety analysis and ASIL allocation on
functional (safety) requirements as part of the ASIL tailoring process introduced in Chapter 3.
Section 5.2 explains the used failure propagation meta model, the manual linkage of hazards
and top-level failures, and the automatic generation of CFTs. Section 5.3 specifies the ASIL
tailoring rules on CFTs for separation and decomposition, and how ASILs are allocated to
functions and functional (safety) requirements by solving an ILP. Moreover, Section 5.3.3
shows the applicability to more than the automotive domain.

The automatic derivation of a failure propagation model from functions and corresponding
(safety) requirements supports early safety analysis by saving time and reducing manually
introduced errors. This is a step towards solving the safety requirements engineering
dilemma (cf. Challenge C2 in Section 1.2). Moreover, the automatic allocation of ASILs
to functions and requirements that inherently checks for valid application of ASIL tailoring
reduces manual effort and mistakes, and supports early planning of ASIL tailoring measures
and safety effort.

The following Chapter 6 adds an automatic documentation of safety arguments that link
hazards, safety analysis results, functions, and corresponding requirements to assure valid
ASIL tailoring.

129

6

DOCUMENTING ASIL TAILORING
ARGUMENTS

In Step 2.4 of the ASIL tailoring process (cf. Figure 6.1), together with the ASIL allocation,
a safety argument is developed that provides assurance that all hazards are addressed by
functional safety requirements and the ASIL tailoring is valid.

act ASIL Tailoring Process

S
ys

te
m

 D
es

ig
ne

r,

S
af

et
y

M
an

ag
er

1. Analyze Environment and Hazards

2.3. Generate
Failure Propagation Model

for Function Hierarchy

2.4. Calculate
ASIL Allocation for
Function Hierarchy

2.2. Develop/Refine
(Safety) Requirements

for Functions

3. Define System Architecture and
Allocate Functions to System Elements

2.1. Develop/Refine
Function Hierarchy

Customer
Requirements

«datastore»
System Architecture

R
eq

ui
re

m
en

ts
 E

ng
in

ee
r,

S
af

et
y

M
an

ag
er

[functions sufficiently trivial and
ASIL allocation reasonable]

«datastore»
System

Requirements

Function
Hierarchy

Function
Hierarchy

Function
Hierarchy

Functional (Safety)
Requirements

FSRs

Environment and Hazards with ASILs

System Elements
with ASILs

Failure
Propagation

Model

FPM
«datastore»
Safety Case

Environment and Hazards with ASILs
or Function Hierarchy [ASILs Tailored]

Function
Hierarchy

Function
Hierarchy

[ASILs Tailored]

Function Hierarchy
[ASILs Tailored]

Safety
Argument

[else]

Figure 6.1: ASIL tailoring process with highlighted contents of Chapter 6

131

6 Documenting ASIL Tailoring Arguments

In this chapter, the details how this safety argument is derived from the function hierarchy,
functional safety requirements, and failure propagation model is described.

This chapter is structured as follows. First, Section 6.1 summarizes the scientific
contributions of automated documentation of ASIL tailoring arguments. Section 6.2 explains
the used safety argument language, and how the arguments are derived from an ASIL
allocated failure propagation model and related requirements. Section 6.3 lists assumptions
and limitations of the generation of safety arguments. In Section 6.4, related work is
discussed. The final Section 6.5 concludes this chapter.

6.1 Contributions

The contributions of this chapter can be summarized as follows:

• A method and tool-support for safety case construction embedded in an ASIL tailoring
process to foster model-based safety assessment.

• Support for traceability from safety arguments to related work products (i.e., hazards,
safety requirements, functions, and safety evidence) in order to improve safety case
impact analysis and maintenance.

• Automated safety case construction (including traceability) to reduce manual effort
and errors.

• Automated derivation of validity arguments for applied ASIL tailorings.

• Support for building the safety case from the beginning of development (i.e., functional
safety requirements analysis, cf. Challenge C3 in Section 1.2).

6.2 Safety Case Construction

There is no guarantee for 100% safety. Hence, the risk of hazards is determined, and
measures are taken to reduce the risk as low as reasonably possible. Safety standards like
ISO 26262 define SILs that categorize the risk of hazards into different levels. For each SIL
they list state-of-practice measures that should be taken to prevent a hazard’s occurrence or
mitigate its consequences.

As safety cannot be proven, confidence that the risk has been reduced as low as reasonably
possible, has to be provided by other means. The so-called safety case shall provide
this confidence by compiling safety-relevant work products and linking them by a safety
argument (cf. Section 2.2). For each hazard, a safety argument shall link derived safety
requirements with evidence for their fulfillment and contribution to hazard mitigation. This
also includes argumentation for the validity of applied ASIL tailorings. Thus, the safety case
provides an overview of system safety, and is the central entry point for safety assessments.

In practice, safety arguments are usually written as free text documents [Kel98]. Free
text arguments can be ambiguous and usually require lots of cross-references. Thus, these
documents are difficult to analyze for completeness and validity of arguments. Especially
in early development phases, requirements change regularly, and it is time-consuming and
error-prone to keep the free text arguments in sync and consistent with linked work products.

132

6.2 Safety Case Construction

Hence, safety arguments are specified late in the development process where changes are few
[Kel98]. If mistakes in the arguments and missing safety measures are discovered late in the
development, this causes expensive process iterations to integrate additional measures and
update the safety case. The industry already identified the need to start building the safety
case from the beginning of the development process, but still misses supporting methods and
tools [ZRH16].

To overcome the problems of safety argument ambiguity and structural complexity, the use
of model-based languages is proposed by research [Kel98; CJL+08] and ISO 26262 [Int12b].
Therefore, in this thesis, we chose the Goal Structuring Notation (GSN, cf. Section 2.8) to
model safety arguments, as it is suggested in ISO 26262 [Int12b]. As part of the ASIL
tailoring process, we automatically generate a GSN safety argument that can be regenerated
whenever an ASIL tailoring is applied on functional requirements, to support the construction
and maintenance of a safety case from the beginning of development.

This approach fosters an unambiguous overview of the safety-relevant work products
and navigation through the safety case by a graphical and model-based notation. The
automatic generation avoids manually introduced errors and saves time because it can be
repeated whenever changes occur. In addition, it simplifies impact analyses by automatically
maintaining the traceability to other safety-related work products.

The following Section 6.2.1 describes how GSN safety arguments are specified in this
thesis. The details of safety argument generation are elaborated in Section 6.2.2.

6.2.1 Safety Arguments in Goal Structuring Notation Profile

The safety case links safety requirements with safety evidence by safety arguments. In
ISO 26262, safety requirements exist at different levels, starting from safety goals that are
derived from hazards, over functional safety requirements that are refined into technical
safety requirements down to hardware and software safety requirements (cf. Section 2.2).
Safety evidence are safety analysis results, like FMEA tables and fault trees, that show
absence of failures or independence of subsystems. On technical, software, and hardware
level, also test results that verify safety requirement fulfillment, can be safety evidence.
Safety arguments specify why given safety evidence contributes to the fulfillment of safety
requirements (i.e., mitigation of hazards) and why applied ASIL tailoring measures are valid.

On functional level, the safety case contains the CFT failure propagation model as safety
evidence and GSN safety arguments that link the CFTs to functional safety requirements in
form of MSDs (cf. Figure 3.2 on page 41).

In this thesis, we specify GSN safety arguments as UML models using a profile that
extends the SysML. This way, all work products of the ASIL tailoring process are based
on a single modeling language (the UML), which makes it easier to learn and understand
their use. Furthermore, this enables the use of a single modeling environment. In addition,
this supports the use of a common traceability concept, which is essential for safety case
navigation.

Figure 6.2 shows the elements of our GSN profile. All GSN nodes are represented by
UML classes with specialized SysML Requirement stereotypes. The nodes are linked by
specialized UML Trace stereotypes. Figure 6.3 shows the application of the profile for an
example safety argument. It specifies how an ASIL D hazard H1 is mitigated by a Safety

133

6 Documenting ASIL Tailoring Arguments

Goal 1 and refining functional safety requirements (FSRs) with valid application of ASIL
Decomposition and ASIL Separation.

As explained in Section 2.8, the main nodes of GSN models are Goals, Strategies, and
Solutions. Goals represent safety requirements or subparts of a safety argument that are
claimed to hold. In Figure 6.3, Safety Goal 1 and the several FSRs are examples of safety
requirements specified as goals. The two Tailoring Goals are examples of argument subparts.
They specify the goal of the two ASIL tailorings.

Strategies represent implications that form the line of argument. In adherence to the
concrete syntax of GSN, we denote strategies as parallelograms. In Figure 6.3, two applied
ASIL tailorings are specified by the strategies ASIL Decomposition and ASIL Separation.

Solutions represent safety evidence. To adhere to the concrete syntax of GSN, we denote
solutions as circles. In Figure 6.3, the solution FEBEASCFT represents a failure propagation
model that provides evidence for the connected claimed goals.

Goals and Strategies refer to subgoals, strategies, and solutions (evidence) that
support/refine their argument by SupportedBy traces. These links specify the line of
argument which is usually visualized in a tree layout from top to bottom. To adhere to
the concrete syntax of GSN, we denote this link type by a rounded arrow with a solid head
and annotated with the SupportedBy stereotype.

Goals and Strategies can be marked as undeveloped by the respective stereotype’s attribute
isUndeveloped. In original GSN syntax, this is denoted by a diamond below the element. We
do not adopt this syntax to avoid confusion with UML aggregations. Undeveloped elements
need further refinement by supporting goals and evidence. In Figure 6.3, the goals FSR1.1,
FSR2.1, FSR1.2, FSR2.2, and FSR1.3 are marked as undeveloped because they are not
linked to further supporting goals (e.g., refining functional or technical safety requirements)
or solutions.

Additionally, Goals and Strategies can be elaborated by Contexts, Justifications, and
Assumptions. Akin to the concrete syntax of GSN, we denote these as rectangles with
rounded corners. These elements are linked by InContextOf traces. We denote this link
type by a rounded arrow with a narrow, hollow head and annotated with the InContextOf
stereotype, to adhere to the concrete syntax of GSN. In Figure 6.3, Safety Goal 1 is linked
to the context Hazard H1 to specify which hazard it addresses. The two strategies ASIL
Decomposition and ASIL Separation are linked to justifications that name the corresponding
clauses of ISO 26262 that define and allow the two ASIL tailoring measures.

The example safety argument in Figure 6.3 is derived from the safety relevant work
products shown in Figure 6.4. To support traceability from a GSN safety argument to the
corresponding work products, contexts, goals, and solutions are linked to hazards, functions,
MSD requirements, and CFTs via UML traces. Table 6.1 lists the traces for the example
safety argument in Figure 6.3. The context Hazard H1 is traced to the hazard H1 referred to
by the event in the Hazard CFT HCFT. To be able to show the ASIL of traced work products,
elements of the GSN safety argument are also applied with the SafetyClassifiedElement
stereotype of the Safety Profile (cf. Figure 3.5 on page 45). Hence, the context Hazard H1
inherits ASIL D from the Hazard CFT’s event. The Safety Goal 1 is traced to the omission
failure of the information brake shall be prevented or mitigated because it directly leads to
the occurrence of the hazard H1. The goals FSR1 and FSR2 are traced to the MSDs with
the same name. These MSDs specify requirements on the top-level function FEBEAS whose
CFT is directly connected to the Hazard CFT. Similarly, the five supporting goals FSR1.1 to

134

6.2 Safety Case Construction

«profile» SysML4GSN

Text: String

«Stereotype»
SysML::

Requirement

isUndeveloped: Boolean

«Stereotype»
Goal

«Stereotype»
UML::Trace

«Stereotype»
GSNLink

«Stereotype»
InContextOf

«Stereotype»
SupportedBy

«Stereotype»
Solution

«Stereotype»
Context

«Stereotype»
Reason

«Stereotype»
Justification

«Stereotype»
Assumption

isUndeveloped: Boolean

«Stereotype»
Strategy

{C1: Client is
Goal or Strategy}
{C2: Supplier is
Context or Reason}

{C3: Client is Goal or Strategy}
{C4: Supplier is Goal, Strategy, or
Solution}
{C5: If client is Strategy, supplier is
Goal}

Figure 6.2: UML Profile for the Goal Structuring Notation with constraints

FSR1.3 are traced to MSDs that specify requirements on the decomposed functions whose
CFTs lie on failure propagation paths to the omission failure of brake.

From the CFT model one can see that ASCFT and CWOVCFT are part of an ASIL
decomposition concerning the brake failure. The corresponding MSDs FSR1.1 and FSR2.1
specify redundant requirements with lowered ASIL. Hence, the Tailoring Goal 1 is traced to
those MSDs to argue the application of ASIL decomposition by the supporting strategy ASIL
Decomposition and the following goals on absence of cascading and common cause failures
FSR1.4 to FSR1.6. The solution FEBEASCFT traces to the CFT with the same name that
shows the absence of those failures between the functions AS and CWOV.

The CFT LCFT has no failure modes that lie on a failure propagation path to the omission
of brake. Hence, its corresponding function L is separate from the other functions on the
same hierarchy level. This application of ASIL separation is argued by the Tailoring Goal 2
that is traced to L and its supporting ASIL Separation strategy and goal FSR1.7. The goal
specifies the required absence of cascading failures to the other functions and is supported
by the solution FEBEASCFT that references the CFT with that name as evidence.

135

6 Documenting ASIL Tailoring Arguments

«SupportedBy»

req Safety Argument

Text = “Prevent or mitigate brake:~O“
ASIL = ASIL D

«Goal»
Safety Goal 1

«Context»
Hazard H1

ASIL = ASIL D

«Solution»
FEBEASCFT

ASIL = ASIL D

«Goal»
FSR1

ASIL = ASIL D

«Goal»
FSR2

«SupportedBy»

«InContextOf»

«SupportedBy»

isUndev. = true
ASIL = ASIL D

«Goal»
FSR1.2

isUndev. = true
ASIL = ASIL D

«Goal»
FSR1.3

isUndev. = true
ASIL = ASIL D

«Goal»
FSR2.2

isUndev. = true
ASIL = ASIL B(D)

«Goal»
FSR1.1

isUndev. = true
ASIL = ASIL B(D)

«Goal»
FSR2.1

Text = “No CF
from AS to CWOV
concerning brake:~O“
ASIL = ASIL D

«Goal»
FSR1.4

Text = “No CF
from CWOV to AS
concering brake:~O“
ASIL = ASIL D

«Goal»
FSR1.5

Text = “No CCF
of AS and CWOV
concerning brake:~O“
ASIL = ASIL D

«Goal»
FSR1.6

«SupportedBy»

«SupportedBy»

«SupportedBy»

«SupportedBy»

Text = “No CF from L to
AS, CWOV, MD, or EPS
concerning brake:~O“
ASIL = ASIL D

«Goal»
FSR1.7

«SupportedBy»

«SupportedBy»

«Justification»
ISO 26262-9:5

«Justification»
ISO 26262-9:6

«InContextOf»

«InContextOf»

Text = “L is separated“
ASIL = ASIL D

«Goal»
Tailoring Goal 2

Text = “FSR1.1 and FSR2.1 are redundant“
ASIL = ASIL D

«Goal»
Tailoring Goal 1

«Strategy»
ASIL Decomposition

Text = “Argument over
sufficient independence“

«Strategy»
ASIL Separation

Text = “Argument over
freedom from interference“

«SupportedBy»«SupportedBy»

«SupportedBy»

Figure 6.3: Example GSN safety argument for hazard H1

136

6.2 Safety Case Construction

«F
un

ct
io

n»
{A

S
IL

 D
}

F
E

B
E

A
S

«F
un

ct
io

n»
{A

S
IL

 B
(D

)}
A

S

«F
un

ct
io

n»
{A

S
IL

 B
(D

)}
C

W
O

V

«F
un

ct
io

n»
{A

S
IL

 D
}

E
P

S

«F
un

ct
io

n»
{A

S
IL

 D
}

M
D

{A
S

IL
 D

}
m

sd
 F

S
R

1

:F
E

B
E

A
S

tim
e

{A
S

IL
 D

}
m

sd
 F

S
R

2

:F
E

B
E

A
S

w
ar

n

:A
S re

a
ch

tim
e

{A
S

IL
 D

}
m

s
d

 F
S

R
1.

2

:M
D

ac
t

re
a

ch

{A
S

IL
 D

}
m

s
d

 F
S

R
1.

3

:E
P

S br
ak

e

ac
t

{A
S

IL
 B

(D
)}

m
s

d
 F

S
R

2.
1

:C
W

O
V re

c

w
ar

n

{A
S

IL
 D

}
m

sd
 F

S
R

2.
2

:M
D

ac
t

re
c

«C
F

T
»

{A
S

IL
 D

}
:F

E
B

E
A

S
C

F
T

«C
F

T
»

{A
S

IL
 D

}
:M

D
C

F
T

o

o
o

«C
F

T
»

{A
S

IL
 D

}
:E

P
S

C
F

T

«C
F

T
»

{A
S

IL
 B

(D
)}

:A
S

C
F

T
«C

F
T

»
{A

S
IL

 B
(D

)}
:C

W
O

V
C

F
T

o

o
o

o

o

o o

«H
az

ar
dC

F
T

»
:H

C
F

T

«E
ve

nt
»

{A
S

IL
 D

}
:H

1

o o

«F
un

ct
io

n»
{Q

M
}

L

«C
F

T
»

{Q
M

}
:L

C
F

T

{A
S

IL
 B

(D
)}

m
sd

 F
S

R
1.

1

{A
S

IL
 B

(D
)}

tim
e:

O
{A

S
IL

 B
(D

)}
w

ar
n

:O

{A
S

IL
 B

(D
)}

re
c:

~
O

{A
S

IL
 B

(D
)}

re
a

ch
:~

O

{A
S

IL
 B

(D
)}

re
a

ch
:O

{A
S

IL
 B

(D
)}

re
c:

O

{A
S

IL
 D

}
ac

t:~
O

{A
S

IL
 D

}
ac

t:O

o
«t

ra
ce

»
{A

S
IL

 D
}

br
ak

e:
~

O

«t
ra

ce
»

Fi
gu

re
6.

4:
E

xa
m

pl
e

fu
nc

tio
n

hi
er

ar
ch

y,
M

SD
s,

an
d

C
FT

137

6 Documenting ASIL Tailoring Arguments

Table 6.1: Traceability links of GSN safety argument
GSN Source Element Target Element Target Work Product
«Context» Hazard H1 «Hazard» H1 Environment model
«Goal» Safety Goal 1 «FailureMode» brake:∼O CFT model
«Goal» FSR1 MSD FSR1 MSD specification
«Goal» FSR2 MSD FSR2 MSD specification
«Goal» FSR1.1 MSD FSR1.1 MSD specification
«Goal» FSR2.1 MSD FSR2.1 MSD specification
«Goal» FSR1.2 MSD FSR1.2 MSD specification
«Goal» FSR2.2 MSD FSR2.2 MSD specification
«Goal» FSR1.3 MSD FSR1.3 MSD specification
«Goal» Tailoring Goal 1 MSDs FSR1.1 and FSR2.1 MSD specification
«Goal» Tailoring Goal 2 «Function» L Function hierarchy
«Solution» FEBEASCFT «CFT» FEBEASCFT CFT model

6.2.2 Generating Safety Arguments

Safety arguments for valid ASIL tailoring on functional safety requirements inherently
have a strong relation to the work products of the ASIL tailoring process presented in
previous chapters of this thesis. The example safety argument and its traceability table
shown in the previous section demonstrate this claim. Thus, we automatically derive safety
arguments from the failure propagation model, the function hierarchy, and the functional
safety requirements to avoid manually introduced errors, save time, and maintain the safety
case in sync with functional safety requirements and applied ASIL tailoring measures.

The root node of a safety argument is always a hazard. The safety argument has to show
how the hazard is prevented or mitigated and why the taken measures are valid. Hence, for
each identified hazard, a safety argument has to be build up, that links the hazard with derived
safety requirements and their refinement. We call this the default requirement hierarchy. If a
requirement in that hierarchy is assigned with a lower ASIL than the hazard, ASIL tailoring
was applied. The validity of such a tailoring has to be argued within the safety argument and
underpinned by safety evidence (cf. ASIL tailoring rules in Section 5.3.1.1).

Algorithm 6.1 specifies the automatic derivation of GSN safety arguments from CFT
failure propagation models. It is based on the bachelor’s thesis of Trentinaglia [Tre18]. The
failure propagation model contains a Hazard CFT for each hazard. Hence, a safety argument
is generated from each Hazard CFT. First, the root nodes of the argument are generated.
Then, the default argument hierarchy is derived from the requirement hierarchy. Afterward,
that argument hierarchy is adapted where ASIL separation or ASIL decomposition was
applied on CFTs. These sub-steps are specified in the following Algorithms 6.2 to 6.5 and
visualized in Figures 6.5 to 6.8. In the figures, elements with gray background already exist
before application of the respective algorithm, and terms in angle brackets are placeholders
for element names or ASIL values.

Figure 6.5 sketches the generation rule for the root node of a safety argument specified in
Algorithm 6.2. For each hazard <H>, a Hazard CFT exists in the failure propagation model.
A context linked to a goal is generated for <H>. The context represents the hazard that is

138

6.2 Safety Case Construction

Algorithm 6.1 Generation of GSN safety arguments

1: for all HazardCFTs ch do
2: GSNmodel G := GENERATESAFETYARGUMENTROOT(ch). Algo. 6.2 and Fig. 6.5
3: GENERATEDEFAULTARGUMENTHIERARCHY(G, ch) . Algo. 6.3 and Fig. 6.6
4: for all OutputFailureModes f on failure propagation paths to ch do
5: GENERATESEPARATIONARGUMENT(G, f) . Algo. 6.4 and Fig. 6.7
6: GENERATEDECOMPOSITIONARGUMENT(G, f) . Algo. 6.5 and Fig. 6.8
7: end for
8: end for

also represented by the event inside the Hazard CFT. It is annotated with the ASIL <ASILX>
of the hazard (i.e., the event). The generated goal Safety Goal 1 represents the safety goal
that is derived from the hazard. It states the requirement that all failures <P> to <Q> of the
top-level function <F> have to be prevented or mitigated that lead to the hazard (i.e., lie on
a failure propagation path to the Hazard CFT’s event). As the safety goal is directly derived
from the hazard, it is annotated with its ASIL <ASILX>.

«CFT»
:<F>CFT

«HazardCFT»
:<H>CFT

«Event»
{<ASILX>}

:<H>

ibd HazardCFT FMs

<P> <Q>
...

req Safety Argument

Text = “Prevent or mitigate
<P>, …, and <Q>“
ASIL = <ASILX>

«Goal»
Safety Goal 1

«Context»
Hazard <H>

ASIL = <ASILX>

«InContextOf»

Figure 6.5: GSN generation for hazard

Figure 6.6 sketches the generation rule for the default requirement hierarchy specified
in Algorithm 6.3. The CFTs of the failure propagation model follow the structure of the
function hierarchy. Concerning the CFTs in the figure, the functions F2 and F3 are children
of the function F1. For each function of the function hierarchy, MSDs specify requirements.
An MSD is traced by the failure modes of a function’s CFT that are caused by violation of
the requirement. In the figure, MSD <R1> specifies a requirement on the function F1 and
causes the failure mode p∼.

The default requirement hierarchy in the GSN safety argument follows the failure
propagation paths starting from the hazard down to the deepest CFT hierarchy level. Starting
from the hazard’s safety goal (e.g., Safety Goal 1) all MSDs that are traced by failure modes
on the paths are mapped to a goal with the same name. Each of those goals is annotated with

139

6 Documenting ASIL Tailoring Arguments

Algorithm 6.2 GSN generation for hazard

1: function GENERATESAFETYARGUMENTROOT(HazardCFT ch)
2: Create an empty GSNmodel G
3: Add a context th for the hazard that the event of ch is typed by
4: Set the ASIL of the context th to sx of the event/hazard
5: Add a goal gs with ASIL sx of the event/hazard
6: Let O be the set of OutputFailureModes directly linked to InputFailureModes of ch
7: Set gs’s text to “Prevent or mitigate <List of all o ∈ O>”
8: Connect the goal gs to the context th via an InContextOf link
9: return G

10: end function

req Safety Argument

Text = “Prev. or mitigate p~“
isUndeveloped = false
ASIL = <ASILX>

«Goal»
Safety Goal 1

isUndev. = false
ASIL = <ASILX>

«Goal»
<R1>

«SupportedBy»

isUndev. = true
ASIL = <ASILX>

«Goal»
<R2>

isUndev. = true
ASIL = <ASILX>

«Goal»
<R3>

«SupportedBy»

«CFT»
:F1CFT

«CFT»
:F3CFT

ibd CFT Hierarchy

{<ASILX>}
msd <R1>

{<ASILX>}
msd <R2>

{<ASILX>}
msd <R3>

«trace»

«CFT»
:F2CFT

«trace»

«trace»

{<ASILX>} p~

Figure 6.6: GSN generation for default requirement hierarchy

140

6.2 Safety Case Construction

the ASIL of the corresponding MSD. All goals referring to MSDs on the same function/CFT
hierarchy level, are on the same goal hierarchy level. In the figure, the MSDs <R2> and
<R3> are on the same hierarchy level below MSD <R1> because F2 and F3 are children of
F1. Thus, the corresponding goals <R2> and <R3> are on the same hierarchy level below
goal <R1>. The goal attribute isUndeveloped is set to false for each goal that has subgoals
and to true for each goal without subgoals (e.g., <R2> and <R3>).

Algorithm 6.3 GSN generation for default requirement hierarchy

1: function GENERATEDEFAULTARGUMENTHIERARCHY(GSNmodel G, HazardCFT h)
2: for all InputFailureModes f of HazardCFT h do
3: for all OutputFailureModes p directly linked to f do
4: for all MSDs mr1 traced from p do
5: Add a goal gr1 with the ASIL sx of the MSD mr1

6: Connect the existing safety goal gs to gr1 via a SupportedBy link
7: Set isUndeveloped to false for goal gs
8: Set isUndeveloped to true for goal gr1
9: end for

10: RECURSIVEGENDEFAULTHIERARCHY(p, p’s CFT)
11: end for
12: end for
13: end function
14: function RECURSIVEGENDEFAULTHIERARCHY(OutputFailureMode p, CFT c)
15: for all OutputFailureModes o of direct subCFTs of c on paths to p do
16: for all MSDs mr2 traced from o do
17: Add a Goal gr2 with the ASIL sx of the MSD mr2

18: for all MSDs mr1 traced from p do
19: if mr1 is a parent MSD of mr2 concerning p then
20: Connect the goal gr1 derived from mr1 to gr2 via a SupportedBy link
21: Set isUndeveloped to false for goal gr1
22: end if
23: end for
24: Set isUndeveloped to true for goal gr2
25: end for
26: RECURSIVEGENDEFAULTHIERARCHY(o, o’s CFT)
27: end for
28: end function

Figure 6.7 sketches the generation rule for ASIL Separation arguments specified in
Algorithm 6.4. If a CFT <F3>CFT has a lower ASIL than another CFT <F2>CFT and it
has no output failure modes on a path to a higher ASIL output failure mode of <F2>CFT,
ASIL separation was applied (cf. Definition 5.4 in Section 5.3.1.1). In the figure, the CFT
<F3>CFT is assigned with an ASIL <ASILZ> that is lower than the ASIL <ASILX> of the
CFT <F2>CFT. The failure mode q of CFT <F2>CFT is on a failure propagation path to the
failure mode <P> of <F1>CFT. The CFT <F3>CFT has no failure mode that is on a failure
propagation path to either q nor <P>. Hence, its ASIL <ASILZ> is lower than the ASILs

141

6 Documenting ASIL Tailoring Arguments

assigned to the two failure modes. The failure mode <P> originates from the requirement
<R1>. <R2> refines this requirement and is the source of q .

req Separation Argument

ASIL = <ASILW>

«Goal»
<R1>

ASIL = <ASILY>

«Goal»
<R2>

«Solution»
<F1>CFT

Text = “No CF from <F3>
to <F2> concerning <P>“
ASIL = <ASILW>

«Goal»
FSR1.2

«SupportedBy»

«SupportedBy»

«SupportedBy»

«CFT»
:<F1>CFT

«CFT»
{<ASILX>}
:<F2>CFT

«CFT»
{<ASILZ>}
:<F3>CFT

ibd Separated CFT

{<ASILY>}
msd <R2>

«trace»

<ASILX> ≥ <ASILY> > <ASILZ>
<ASILW> ≥ <ASILY> > <ASILZ>

«Justification»
ISO 26262-9:6

«InContextOf»

Text = “<F3> is separated“
ASIL = <ASILW>

«Goal»
Tailoring Goal 1

«Strategy»
ASIL Separation

Text = “Argument over
freedom from interference“

«SupportedBy»

{<ASILY>} q~

{<ASILW>}
msd <R1>

«trace»

{<ASILW>} <P>

Figure 6.7: GSN generation for ASIL separation

The right of Figure 6.7 shows the safety argument derived from the elements on the left.
The goals <R1> and <R2> represent the requirement MSDs with the same name and are
generated by the default requirement hierarchy rule (cf. Figure 6.6). All other elements are
generated to argue valid separation of <F3> from <F2> concerning the sub-requirements of
<R1>. The Tailoring Goal 1 claims that <F3> is separated from <F2> (i.e., <R2>). The
strategy ASIL Separation specifies the application of ASIL tailoring in accordance with
ISO 26262-9, Clause 6 (cf. Justification ISO 26262-9:6). The supporting goal FSR1.2
specifies the required claim that there are no cascading failures from the function <F3> to
<F2> concerning the failure mode <P>. This claim is supported by the solution <F1>CFT
referring to the CFT that contains the two CFTs <F2>CFT and <F3>CFT.

142

6.2 Safety Case Construction

Algorithm 6.4 GSN generation for ASIL separation

1: function GENERATESEPARATIONARGUMENT(GSNmodel G, OutputFailureMode p)
2: Let cf1 be the CFT containing p
3: Let C be the set of all direct child CFTs of cf1
4: Let D ⊂ C be the set of CFTs with FailureModes on a path to p
5: Let sw be the ASIL of p
6: for all CFTs cf3 ∈ C\D with an ASIL lower than sw do
7: Let f3 be the function traced by cf3
8: Add a goal gt with the text “f3 is separated” and ASIL sw
9: for all MSDs mr1 traced from p do

10: Connect the existing goal gr1 representing mr1 to gt via a SupportedBy link
11: end for
12: Add a strategy y with name “ASIL Separation”
13: Connect the goal gt to the strategy y via a SupportedBy link
14: Add a justification j with name “ISO 26262-9:6”
15: Connect the strategy y to the justification j via an InContextOf link
16: Add a solution e referencing the CFT cf1
17: for all CFTs cf2 ∈ D with an ASIL higher than cf3 do
18: Let f2 be the function traced by cf2
19: Add a goal g2 with ASIL sw
20: Set g2’s text to “No CF from f3 to f2 concerning p”
21: Connect the strategy y to the goal g2 via a SupportedBy link
22: Connect the goal g2 to the solution e via a SupportedBy link
23: end for
24: end for
25: end function

Figure 6.8 sketches the generation rule for ASIL Decomposition arguments specified in
Algorithm 6.5. If a CFT <F2>CFT contains an AND gate and at least one output failure
mode s∼ of a directly preceding CFT <F3>CFT on a path to the AND gate has a lower
ASIL than the output failure mode <P> of <F2>CFT on a path from the AND gate, ASIL
decomposition was applied (cf. Definition 5.7 in Section 5.3.1.1). In the figure, the CFT
<F2>CFT contains an AND gate on a failure propagation path to an output failure mode
<P> with ASIL <ASILX>. In addition, two input failure modes s and t are on a path to the
AND gate. As s has a lower ASIL <ASILV> than <P>, ASIL decomposition concering <P>
has been identified as possible during ASIL allocation. The preceding output failure mode
s∼ must have an ASIL <ASILY> that is greater or equal to the ASIL of s because of the
default ASIL allocation constraint (cf. Figure 5.14 a) on page 118). If ASIL decomposition
concerning <P> has been applied, <ASILY> is lower than the ASIL <ASILX> of <P>.

The requirements <R3> and <R4> are the reason for the AND gate in the CFT <F2>CFT.
Each of them leads to the output failure mode <P> but caused by a different input failure
mode. The requirements <R1> and <R2> lead to those input failure modes.

The right of Figure 6.8 shows the safety argument derived from the elements on the left.
The goals <R1> to <R4> represent the requirement MSDs with the same name and are
generated by the default requirement hierarchy rule (cf. Figure 6.6). All other elements

143

6 Documenting ASIL Tailoring Arguments

«SupportedBy»

«SupportedBy»

req Decomposition Argument «Goal»
FSR1

ASIL = <ASILX>

«Goal»
<R3>

«Solution»
<F1>CFT

Text = “No CF
from <F3> to <F4>
concerning <P>“
ASIL = <ASILX>

«Goal»
FSR1.5

«SupportedBy»

Text = “No CF
from <F4> to <F3>
concerning <P>“
ASIL = <ASILX>

«Goal»
FSR1.6

Text = “No CCF
of <F3> and <F4>
concerning <P>“
ASIL = <ASILX>

«Goal»
FSR1.7

ASIL = <ASILX>

«Goal»
<R4>

ASIL = <ASILY>

«Goal»
<R1>

ASIL = <ASILZ>

«Goal»
<R2>

«SupportedBy»

«CFT»
:<F1>CFT

«CFT»
:<F2>CFT

«CFT»
:<F3>CFT

«CFT»
:<F4>CFT

ibd Decomposition CFT

{<ASILX>}
msd <R3>

«AND»

{<ASILX>}
msd <R4>

{<ASILY>}
msd <R1>

{<ASILZ>}
msd <R2>

«trace»

«trace» «trace»

«trace»

«Justification»
ISO 26262-9:5

«InContextOf»

Text = “<R1> and
<R2> are redundant“
ASIL = <ASILX>

«Goal»
Tailoring Goal 1

«Strategy»
ASIL Decomposition

Text = “Argument over
sufficient independence“

«SupportedBy»

«SupportedBy»

{<ASILX>} <P>

{<ASILY>}
s~

{<ASILZ>}
t~

{<ASILW>}
t

{<ASILV>}
s

<ASILX> > <ASILY> ≥ <ASILV>

Figure 6.8: GSN generation for ASIL decomposition

are generated to argue valid decomposition concerning the output failure mode <P>. The
Tailoring Goal 1 claims that <R1> and <R2> are redundant. The strategy ASIL Decomposition
specifies the application of ASIL tailoring in accordance with ISO 26262-9, Clause 5 (cf.
Justification ISO 26262-9:5). The supporting goals FSR1.5 and FSR1.6 specify the required
claims that there are no cascading failures from the function <F3> to <F4> concerning the
failure mode <P>, and vice versa. The supporting goal FSR1.7 specifies the required claim
that there are no common cause failures of the functions <F3> and <F4> concerning the
failure mode <P>. These claims are supported by the solution <F1>CFT referring to the CFT
that contains the two CFTs <F3>CFT and <F4>CFT.

6.3 Assumptions & Limitations

The ASIL tailoring process presented in this thesis focuses on functional safety requirements.
Hence, safety argument claims (i.e., GSN goals) only refer to safety goals and functional
safety requirements, not to later technical, software, or hardware safety requirements (cf.

144

6.3 Assumptions & Limitations

Algorithm 6.5 GSN generation for ASIL decomposition

1: function GENERATEDECOMPOSITIONARGUMENT(GSNmodel G, OutputFM p)
2: Let sx be the ASIL of p
3: for all AndGates a of p’s CFT cf2 on a path to p do
4: Let I be the set of all InputFailureModes of cf2 on a path to a
5: Let O be the set of the first OutputFailureModes on paths to i ∈ I
6: if ∃ os ∈ O on a path to is ∈ I both with lower ASILs than sx then
7: Let R be the set of all MSDs traced from any o ∈ O
8: Let C be the set of all CFTs containing any o ∈ O
9: Let F be the set of functions represented by the CFTs in C

10: Let G be the set of existing goals supported by goals representing all r ∈ R
11: Add a goal gt with ASIL sx
12: Set gt’s text to “<List of all r ∈ R> are redundant”
13: Connect all goals in G to the goal gt via a SupportedBy link
14: Add a strategy y with name “ASIL Decomposition”
15: Connect the goal gt to the strategy y via a SupportedBy link
16: Add a justification j with name “ISO 26262-9:5”
17: Connect the strategy y to the justification j via an InContextOf link
18: Add a goal g7 with ASIL sx
19: Set g7’s text to “No CCF of <List of all f ∈ F> concerning p”
20: Connect the strategy y to the goal g7 via a SupportedBy link
21: Add a solution e referencing the CFT containing all c ∈ C
22: Connect the goal g7 to the solution e via a SupportedBy link
23: for all combinations f1, f2 ∈ F × F with f1 6= f2 do
24: Add a goal g5 with ASIL sx
25: Set g5’s text to “No CF from f1 to f2 concerning p”
26: Connect the strategy y to the goal g5 via a SupportedBy link
27: Connect the goal g5 to the solution e via a SupportedBy link
28: end for
29: end if
30: end for
31: end function

145

6 Documenting ASIL Tailoring Arguments

Section 2.2). In line with that, safety evidence (i.e., GSN solutions) only refer to safety
analysis results (i.e., CFTs) and not to evidence from later development phases like test
results. We assume that GSN goals referring to functional safety requirements that are
not further refined/supported by additional GSN elements (their attribute isUndeveloped
is true), will be extended by GSN goals referring to technical safety requirements in later
development phases.

6.4 Related Work

We divide the work related to our method of documenting safety arguments into two
categories: work related to the used safety argument representation (Section 6.4.1), and to
generating safety arguments (Section 6.4.2).

6.4.1 Safety Argument Notations

The EAST-ADL is an architecture description language for automotive electronic systems
[EAS13]. It is comprised of a variety of modeling aspects. In its dependability part, it
includes a safety argument notation of claims, warrants, and evidence that is also available as
UML profile [EAS10]. In contrast to the UML profile used in this thesis, it does not contain
any constraints to restrict the language’s static semantics. Although the latests EAST-ADL
version defines the mentioned own safety argument notation, an earlier version used GSN
(cf. [CJL+08]) as we do in this thesis.

Similarly to our approach, Beckers et al. define a UML profile for GSN including OCL
constraints for static semantics [BCF+14]. In contrast to our profile, theirs does not extend
the SyML, and thus, does not rely on the SysML requirement stereotype but instead defines
its own requirement stereotype. Moreover, their profile extends GSN to distinguish different
types of goals. For instance, they specialize the stereotype “Goal” into “Safety Goal”
and “Functional Safety Requirement”. We see this as a mixture of concerns between
requirements engineering and safety assurance. In this thesis, we use MSDs for specifying
safety requirements and GSN for specifying safety assurance arguments. The goals in safety
arguments only link to MSD requirements for traceability. Furthermore, their profile is
incomplete because it does not contain GSN solutions. These are essential to specify safety
argument evidence (e.g., safety analysis or test results).

6.4.2 Generating Safety Arguments

Kelly and McDermid extend the GSN language to be able to specify patterns of safety
arguments [KM97]. This language extension contains placeholders for variable element texts
and multiplicities for edges. Kelly and McDermid provide a set of example patterns using
the GSN extension but they do not define SIL tailoring argument patterns. The semantics of
the extension are not formally defined. For instance, if a Supported-By link with multiplicity
n is connected to a goal containing a placeholder, it is unclear whether the placeholder is
instantiated n times with the same value or whether it represents a list of n values. Hence,
this GSN extension cannot be used to automatically generate safety arguments.

Denney and Pai present a formalization of Kelly and McDermid’s GSN extension for
safety argument patterns [DP13]. Based on the formalization they provide an algorithm

146

6.5 Conclusion

to automatically instantiate patterns. This algorithm requires as input a table of value
populations for a pattern’s placeholders to instantiate the pattern. The algorithm does not use
existing work products, like requirements specifications or safety analysis results, to derive
the placeholder values. Consequently, SIL tailoring arguments are not automatically derived
from other work products as we do in this thesis.

In [SPB16], Sorokos et al. generate SIL tailoring arguments for the aerospace domain
based on SIL allocations calculated via HiP-HOPS [APW+14]. However, they neither
present generation rules nor an algorithm for automatic derivation of the SIL tailoring
arguments, they only show example results. In addition, they only generate arguments for
SIL tailoring, and do not include the hierarchical safety argument structure following the
safety requirement hierarchy from the hazards down to applied SIL tailorings. Furthermore,
they do not consider traceability from safety arguments to related work products for safety
impact analysis. Eventually, their approach is not applied in early requirements engineering
but works on system components instead of functions or functional safety requirements.

Retouniotis et al. extend the approach of Sorokos et al. by traceability to design models
and related fault trees [RPS+17]. This approach still is only presented by example, sketching
a generation rule and the applying algorithm in a figure. They present a custom meta
model for GSN arguments and trace links to system components and fault trees. This meta
model is an extension of the meta model used by HiP-HOPS. Hence, their approach is not
relying on a standard modeling language like UML, and thus, is not easily integrated in
a standard modeling environment. On the contrary, the approach presented in this thesis
solely extends the UML and SysML by profiles, and thus, can be adopted in any UML
modeling environment. Similarly to Sorokos et al., Retouniotis et al. still do not include
the hierarchical safety argument structure following the safety requirement hierarchy from
the hazards down to applied SIL tailorings. Furthermore, the traceability is limited to system
design components and system level fault trees. They do not trace to functions, corresponding
failure propagation models, nor requirements. Hence, their approach is not applicable in
early requirements engineering, which is the focus of the approach presented in this thesis.

6.5 Conclusion

This chapter describes the details about automated derivation of safety arguments from work
products of the ASIL tailoring process presented in Chapter 3. Section 6.2.1 describes how
we apply the model-based safety argument notation GSN, and its integration with the other
ASIL tailoring process work products. Moreover, Section 6.2.2 describes the automatic
generation of GSN safety arguments from ASIL allocated failure propagation models (cf.
Chapter 5) and corresponding functions and functional safety requirements (cf. Chapter 4).

The use of GSN for documenting safety arguments and its integration with the related
UML-based work products fosters model-based safety assessment in early development
phases. The use of a common base language enables integration in a single modeling
environment and improves safety case impact analysis and maintenance. The automatic
generation of safety arguments saves time in safety case construction and reduces manually
introduced errors. Especially, the automatic generation also considers applied ASIL
tailorings and derives validity arguments conforming to standards like ISO 26262. All in

147

6 Documenting ASIL Tailoring Arguments

all, this approach supports time-saving construction of safety cases right from the beginning
of development (cf. Challenge C3 in Section 1.2).

148

7

EVALUATION

This chapter presents the evaluation of the ASIL tailoring process. Section 7.1 gives an
overview of the prototype implementation of the automated process steps. In Section 7.2, the
applied case study is explained.

7.1 Prototype Implementation

To support and evaluate the concepts from Chapters 3 to 6, we implemented a software
prototype. Figure 7.1 shows the components and dependencies of that implementation.
Components that were implemented as part of this thesis are depicted with white background,
and preexisting components that they depend on, have a gray background.

Eclipse
Papyrus

QVTo

Eclipse
RMF/ProR

UML4CFT
Profile

SysML4GSN
Profile

SysML4CONSENS
Profile

ScenarioTools
Modal Profile

Safety
Profile

CFT Generation

ASIL Allocation

Eloquent
ILP Transformation

LP Solve

GSN Generation

ReqPat2SysML/
SysML2ReqPat

Xtext

Figure 7.1: Prototype components (white) and dependencies (gray)

149

7 Evaluation

All components were implemented as plug-ins for the IDE Eclipse1. All models
are specified using the UML/SysML editor Eclipse Papyrus2. Hence, all required and
developed UML profiles are dependent on Papyrus. We use the Modal Profile provided by
ScenarioTools3 to specify MSDs and the SysML4CONSENS Profile for CONSENS model
elements (i.e., environment, function hierarchy, and system architecture; cf. Section 2.6). We
defined the Safety Profile to specify hazards and safety classified elements (cf. Figure 3.5 on
page 45). The UML4CFT Profile is used to model CFTs and Hazard CFTs (cf. Figure 5.5 on
page 100). To specify GSN arguments, we defined the SysML4GSN Profile (cf. Figure 6.2
on page 135). The use of the single modeling environment Papyrus allows to have all work
products in one SysML model with a single traceability concept from GSN safety arguments
to CFT failure propagation and MSD requirements (cf. Figure 3.18 on page 59).

The CFT Generation described in Section 5.2.3 is realized as model-to-model
transformation using QVTo4. Its implementation is based on student work from members
of the project group Aramid [BBB+16]. The ASIL Allocation as explained in Section 5.3
also uses QVTo. The CFT model is transformed into an ILP model based on a meta model
provided by Eloquent5. The Eloquent ILP Transformation transforms that ILP into input for
the ILP solver LP Solve6. Eloquent provides an interface to several ILP solvers and also
meta heuristics. Hence, the usage of LP Solve is only an example here. We can also switch
to other solvers. The ILP solution provided by Eloquent is used to allocate ASILs to the CFT
elements, functions, and MSDs.

The GSN Generation explained in Section 6.2.2 uses QVTo to derive safety argument
models from hazards, CFTs, and MSDs. Its implementation is based on the bachelor’s thesis
of Roman Trentinaglia [Tre18].

To be able to also specify textual requirements on functions as described in
Section 4.5 (e.g., requirements on absence of cascading and common cause failures),
we integrate the function hierarchy model with textual requirements using our plug-
in ReqPat [FH15]. It is integrated into the requirements editor Eclipse RMF/ProR7

and uses Xtext8 for the specification of textual requirement patterns. Our component
ReqPat2SysML/SysML4ReqPat is an adaptation of the transformation described in [FH14]
to use QVTo and the CONSENS function hierarchy.

Figure 7.2 shows the implemented ASIL tailoring transformation chain with input and
output models. In Step 1 of the ASIL tailoring process, the CONSENS Environment
and Hazards are specified using Eclipse Papyrus, the SysML4CONSENS profile, and
our safety profile. In Step 2.1, the CONSENS Function Hierarchy is specified with the
SysML4CONSENS profile. In Step 2.2, the MSD Requirements are specified using the
Modal profile provided by ScenarioTools. In Step 2.3.1, the Hazard CFTs are specified
using our UML4CFT profile.

1www.eclipse.org
2www.eclipse.org/papyrus
3www.scenariotools.org
4www.eclipse.org/mmt/qvto
5www.github.com/upohl/eloquent
6lpsolve.sourceforge.net
7www.eclipse.org/rmf
8www.eclipse.org/xtext

150

7.1 Prototype Implementation

CFT Generation

CONSENS Environment
and Hazards

CONSENS
Function Hierarchy MSD Requirements

CFT Failure Propagation Model

ASIL allocated
CFT Failure Propagation Model

GSN Safety Argument

ASIL Allocation

GSN Generation

ASIL allocated
CONSENS Function Hierarchy

ASIL allocated
MSD Requirements

act Transformation Chain with Inputs and Outputs

Step 1 Step 2.1 Step 2.2

Step 2.3.2

Steps 2.4.1/2

Step 2.4.3

Hazard
CFTs

Step 2.3.1

Figure 7.2: Chain of transformations with input and output models

These four models are input to the QVTo transformation CFT Generation that generates the
CFT Failure Propagation Model using the UML4CFT profile in Step 2.3.2. In addition, the
CFT Generation creates traceability links from generated CFT elements to the functions and
MSDs that they originate from. The CFT model is used by the QVTo transformation ASIL
Allocation in Steps 2.4.1 and 2.4.2 to calculate and allocate ASILs using the Safety Classified
Element stereotype of our safety profile. The result is an ASIL allocated CFT Failure
Propagation Model, an ASIL allocated CONSENS Function Hierarchy, and ASIL allocated
MSD Requirements. Finally, in Step 2.4.3, these ASIL allocated models and the hazards
from the CONSENS Environment and Hazards are used by the QVTo transformation GSN
Generation to derive the GSN Safety Argument using our SysML4GSN profile. Additionally,
it connects safety argument elements via traceability links to hazards, functions, MSD
requirements, and CFTs.

151

7 Evaluation

7.2 Case Study

To evaluate the applicability and effectiveness of the ASIL tailoring process presented in this
thesis, we perform a case study. In that study, the manual and automated process steps are
applied on two cases. The automated steps are executed using the prototype implementation
explained in Section 7.1.

We perform the case study on the basis of the guidelines defined by Kitchenham et al.
[KPP95] and Runeson and Höst [RH08]. Section 7.2.1 describes the posed evaluation
questions and the two cases. In Section 7.2.2, hypotheses on the evaluation results and criteria
of fulfillment are specified. In Section 7.2.3, the preparations of the case study are described.
Section 7.2.4 contains the procedure of collecting and analyzing result data. Section 7.2.5
concludes with the interpretation of the results, and Section 7.2.6 discusses threats to validity.

7.2.1 Context and Cases

The goal of this case study is to evaluate the applicability and effectiveness of the ASIL
tailoring process presented in this thesis. Therefore, we evaluate the evaluation questions
listed in Section 7.2.1.1. We perform the case study on two cases: a rear door system
that automatically opens/closes and locks/unlocks a vehicle’s rear door (cf. Section 7.2.1.2),
and the EBEAS assistance system for crash avoidance introduced in Section 1.1 (cf.
Section 7.2.1.3)

7.2.1.1 Evaluation Questions

To evaluate the applicability and effectiveness of the ASIL tailoring process, we pose the
following evaluation questions:

Q1: Does the ASIL tailoring process work for realistic examples?
Q2: Do the automated process steps produce correct results?
Q3: Does the ASIL tailoring process reduce manual effort?

7.2.1.2 Case 1: Rear Door System

Case 1 is a rear door system (RDS) of a car. It automatically opens/closes and unlocks/locks
the car’s rear door. These actions can be triggered by the car’s remote key or by other ECUs
of the car.

The rear door system is a realistic example because such systems are already part of
series production vehicles. In fact, the case is based on a textual requirements specification
document of an automotive OEM that we also used in [Foc16].

The rear door system is a safety-critical ASIL B system because the rear door shall not
open while the car is moving, and the door shall be unlocked in case of an accident.

7.2.1.3 Case 2: EBEAS

Case 2 is the Emergency Braking and Evasion Assistance System (EBEAS) as introduced in
Section 1.1 and used as running example throughout this thesis. It automatically decides to

152

7.2 Case Study

brake or evade in emergency situations based on coordination with the surrounding vehicles
via Vehicle-to-Vehicle communication.

We consider the EBEAS a realistic example because of the following reasons. First,
Autonomous Emergency Braking systems are part of series production vehicles already and
considered by the Euro NCAP test for vehicle safety since 2014 [Eur14]. Second, examples
of Autonomous Emergency Steering systems have been presented by automotive suppliers
like Continental [Tut10] and ZF [ZF 16]. Though, they have not yet made it into series
production. Third, the combination of autonomous emergency braking and steering has been
prototyped in a research project [ISS08]. Fourth, the theoretic feasibility of combining
autonomous emergency braking and steering with Vehicle-to-Vehicle communication for
decision making has been investigated in [HFK+16]. In conclusion, we argue that systems
like the EBEAS are the consequent next step of advanced driver assistance systems towards
complex cyber-physical systems.

The EBEAS is highly safety-critical (ASIL D), as it interferes with brakes and steering. If
drivers rely on the system, it may not fail to brake or evade when necessary.

7.2.2 Hypotheses

We set the following evaluation hypotheses for this case study. The hypotheses H1 and H2
refer to evaluation question Q1, hypotheses H3 to H5 refer to evaluation question Q2, and
hypotheses H6 to H9 refer to evaluation question Q3.

H1: The functional (safety) requirements for the two cases can be specified using MSDs as
described in Chapter 4.
We rate this hypothesis as fulfilled if the requirements can be specified using solely the
MSD patterns defined in Table 4.4 on page 85.

H2: The CFT Generation supports all MSD patterns defined in Chapter 4.
We rate this hypothesis as fulfilled if each specified MSD pattern results in a CFT
obeying the CFT generation rules defined in Section 5.2.3.

H3: The CFT Generation produces correct failure propagation models for the two cases.
We rate this hypothesis as fulfilled if the generated CFTs obey the syntax and semantics
of CFTs as defined in Figure 5.3 on page 98, and the model content is as we expected.

H4: The ASIL Allocation produces valid results for the two cases.
We rate this hypothesis as fulfilled if the calculated ASILs obey the ASIL tailoring rules
defined in Section 5.3.1.1.

H5: The GSN Generation produces correct safety arguments for the two cases.
We rate this hypothesis as fulfilled if the generated GSN models obey the syntax and
semantics of GSN as defined in Figure 6.2 on page 135, and the model content is as we
expected.

H6: The performance of the CFT Generation for the two cases is reasonable.
We rate this hypothesis as fulfilled if the execution time of the CFT Generation is below
an hour for both cases.

153

7 Evaluation

H7: The performance of the ASIL Allocation for the two cases is reasonable.
We rate this hypothesis as fulfilled if the execution time of the ASIL Allocation is below
an hour for both cases.

H8: The performance of the GSN Generation for the two cases is reasonable.
We rate this hypothesis as fulfilled if the execution time of the GSN Generation is below
an hour for both cases.

H9: The effort saved by the automated process steps outweighs the effort required for
specifying MSD requirements.
We rate this hypothesis as fulfilled if the number of generated model elements is greater
than the number of specified MSD model elements.

7.2.3 Preparation of the Data Collection

In preparation for the case study, we set up an Eclipse installation that includes the prototype
implementation and its dependencies (cf. Section 7.1). In that installation, we prepare a
separate project with an empty Papyrus SysML model for both cases. For the performance
measurements we use a business laptop with an Intel Core i7-4800MQ (2.7 GHz) with 8 GB
RAM. It runs 64 bit Windows 7 SP 1 with 32 bit Java 1.8. We use Eclipse Neon 3.

7.2.4 Data Collection Procedure

We perform the evaluation by going through the steps of the ASIL tailoring process as
described in Chapter 3 for both cases.

In Step 1, the environment of the case is specified as defined in the CONSENS systems
engineering method. Afterward, the model is extended by hazards with ASIL values as
identified in HARA. The hazards are caused by failures later specified in the CFT failure
propagation model. The resulting diagram shall look as sketched in Figure 3.4 on page 44.

In Step 2.1, the function hierarchy is specified as defined in the CONSENS method. Each
function is extended by ports and interfaces that are required for the message exchange in
MSD requirements. The resulting diagram shall look as sketched in Figure 3.8 on page 47.

In Step 2.2, the functional (safety) requirements of the case are specified using the MSD
patterns from Section 4.4.2. For each informal requirement from the case’s source document,
a fitting MSD pattern is chosen and instantiated in the requirements model. We document
the chosen patterns and the number of requirements for which no fitting pattern is found to
evaluate Hypothesis H1.

In Step 2.3, the CFT failure propagation model is automatically generated from the
previous work products using the prototype’s CFT Generation (cf. Figure 7.2). First, for
each hazard from Step 1, a Hazard CFT is manually specified that defines what failures of
the top-level function lead to the occurrence of the hazard. Afterward, the internal failure
propagation of the function hierarchy is automatically generated and linked to the Hazard
CFTs.

We check each generated CFT model for correctness (cf. Hypothesis H3) using the model
validation of Papyrus. It allows to automatically check OCL constraints contained in UML
profiles. To be able to use this feature, we translated the informal constrains shown in
Figure 5.3 on page 98 into OCL constraints included in our UML4CFT profile (cf. Figure 5.5

154

7.2 Case Study

on page 100). In addition, we manually review each generated CFT model to check whether
the CFT generation rules (cf. Figures 5.9 and 5.10 on page 105 ff.) were applied correctly.
For completeness, separately from the two cases, we specify an instance of each MSD pattern
that is not used in the two cases, generate a CFT, and apply the same correctness checks as
on the two cases (to evaluate Hypothesis H2). Furthermore, for each case, we measure the
execution time of three runs of the CFT Generation and document the mean value (to evaluate
Hypothesis H6).

In Steps 2.4.1 and 2.4.2, the ASILs of failure modes, functions, and MSDs are
automatically calculated based on the CFT model using the prototype’s ASIL Allocation (cf.
Figure 7.2). First, the ASILs of failure modes and CFTs are calculated, afterward, the ASILs
of corresponding functions and MSDs are derived.

We check each calculated ASIL allocation for correctness (cf. Hypothesis H4) by
reviewing whether the result obeys the ASIL tailoring rules defined on the CFT meta model
(cf. Section 5.3.1.1) and in Figure 5.17 on page 123. Furthermore, for each case, we measure
the execution time of three runs of the ASIL Allocation and document the mean value (to
evaluate Hypothesis H7).

In Step 2.4.3, GSN safety arguments that assure the validity of applied ASIL tailorings,
are automatically generated from the previous work products using the prototype’s GSN
Generation (cf. Figure 7.2). For each hazard specified in Step 1, a separate GSN argument is
generated.

We check each generated GSN argument for correctness (cf. Hypothesis H5) using the
model validation of Papyrus. To be able to use this feature, we translated the informal
constrains shown in the SysML4GSN profile in Figure 6.2 on page 135 into OCL constraints.
In addition, we manually review each generated GSN argument to check its semantic
correctness concerning the corresponding MSD requirements and the ASIL allocated CFT
model. Furthermore, for each case, we measure the execution time of three runs of the GSN
Generation and document the mean value (to evaluate Hypothesis H8).

In Step 3, the system architecture of the case is specified as defined in the CONSENS
systems engineering method. This includes the allocation of the leaf functions of the function
hierarchy to elements of the architecture. The resulting diagram would look as sketched in
Figure 3.17 on page 56. As this is a default step of the systems engineering method, and it is
not enhanced by the ASIL tailoring process, we do not apply this step in the case study.

In all steps of the ASIL tailoring process, we count the number of manually specified
model elements that are not part of the default CONSENS method. Additionally, we count
the number of model elements that are automatically generated by the prototype. This
information is used to evaluate Hypothesis H9.

7.2.5 Interpreting the Results

For the analysis of results we rate each hypothesis individually and afterward draw
conclusions for the referred evaluation questions.

H1: The functional (safety) requirements for the two cases can be specified using MSDs
as described in Chapter 4.
The result of our case study shows that, in both cases, during specification of MSD
requirements no MSD pattern was missing. Thus, all requirements could be specified using

155

7 Evaluation

one of the defined MSD patterns. Therefore, we rate our first evaluation hypothesis H1 as
fulfilled.

H2: The CFT Generation supports all MSD patterns defined in Chapter 4.
In addition to the MSD patterns used in the two cases, we generated CFTs for each of the
other MSD patterns. The review of these generated CFTs showed no violation of any CFT
generation rule from Section 5.2.3. Hence, we also rate our evaluation hypothesis H2 as
fulfilled.

H3: The CFT Generation produces correct failure propagation models for the two
cases.
For both cases, we checked correctness of the generated CFT model via OCL constraint
checking and manual review. The manual review compared the model with the CFT
generation rules. In addition, the model was checked for consistency with the hazards
specified in the environment model, the function hierarchy, and the MSD requirements. In
both cases, no OCL constraint was violated and the manual review showed no deficiencies.
Therefore, we rate the evaluation hypothesis H3 as fulfilled.

H4: The ASIL Allocation produces valid results for the two cases.
For both cases, we checked correctness of the ASIL allocation result by manual review of
the CFT model that was annotated with ASIL values by the ASIL Allocation. The manual
review compared the model with the ASIL tailoring rules. In addition, the model was
checked for consistency with the hazard ASILs. In both cases, the manual reviews showed
no deficiencies. Therefore, we rate the evaluation hypothesis H4 as fulfilled.

H5: The GSN Generation produces correct safety arguments for the two cases.
For both cases, we checked correctness of the generated GSN model via OCL constraint
checking and manual review. The manual review checked for consistency with the hazards
specified in the environment model, the function hierarchy, the MSD requirements, and the
ASIL allocation. In both cases, no OCL constraint was violated and the manual review
showed no deficiencies. Therefore, we rate the evaluation hypothesis H5 as fulfilled.

H6/H7/H8: The performance of the CFT Generation/ASIL Allocation/GSN Generation
for the two cases is reasonable.
To evaluate the performance of the automated process steps, we measured the execution
times. The results are shown in the bottom of Table 7.1. The execution times of all three
automated steps (CFT Generation, ASIL Allocation, and GSN Generation) are below one
minute for both cases. Hence, all three together can be executed numerous times a day.
Hence, we rate our evaluation hypotheses H6, H7, and H8 as fulfilled.

H9: The effort saved by the automated process steps outweighs the effort required for
specifying MSD requirements.
During evaluation, we counted the number of manually specified elements that are solely
specified to enable the automated steps of the ASIL tailoring process. This are
• hazards,
• function ports, their interfaces, and their operations,

156

7.2 Case Study

• MSDs, their lifelines, messages, and conditions, and
• Hazard CFTs, their gates and CFT links.

Additionally, we counted the number of automatically generated elements. This are
• CFT elements (i.e., CFTs, CFT gates, and CFT links),
• ASIL annotations (Safety Classified Element stereotypes),
• GSN elements, and
• trace links between elements of the different models for traceability.

The resulting numbers are shown in Table 7.1.
For successful application of the ASIL tailoring process, in sum 124 model elements have

to be specified manually for Case 1 (323 for Case 2). If these are specified, 345 (797)
model elements are automatically generated. This is a ratio of 2.8 for Case 1 and 2.5 for
Case 2. Therefore, we argue that the number of generated elements outweighs the number of
manually specified elements and evaluation hypothesis H9 is fulfilled.

Table 7.1: Evaluation results
Metric Case 1 (RDS) Case 2 (EBEAS)
No. of specified hazards 2 4
No. of specified function elements 25 54
No. of specified MSD elements 78 249
No. of specified Hazard CFT elements 19 16
No. of manually specified elements 124 323
No. of generated CFT elements 110 263
No. of generated ASIL annotations 91 186
No. of generated GSN elements 64 136
No. of generated traceability links 80 212
Sum of generated elements 345 797
Mean execution time of CFT Generation 3s 7s
Mean execution time of ASIL Allocation 3s 14s
Mean execution time of GSN Generation 3s 27s
Sum of mean execution times 9s 48s

Evaluation Questions
Evaluation question Q1 asks whether the ASIL tailoring process works for realistic examples.
The two related hypotheses H1 and H2 are fulfilled. The requirements of the two cases could
be specified using solely our MSD patterns. As the MSD patterns are derived from a set of
pattern catalogs that were developed based on industry requirements specifications, we argue
that our MSD patterns also work for more industry cases. We showed that from our MSD
patterns, correct CFT failure propagation models can automatically be generated. Hence, all
other process steps that rely on the CFT model can be executed. In conclusion, we see our
ASIL tailoring process as ready for realistic projects and rate the evaluation question Q1 as
fulfilled.

Evaluation question Q2 targets correctness of automated process step results. We evaluated
the correctness of the CFT Generation, the ASIL Allocation, and the GSN Generation by the

157

7 Evaluation

hypotheses H3, H4, and H5. The results show that they all are fulfilled. Hence, we rate
evaluation question Q2 as fulfilled.

Evaluation question Q3 asks whether the ASIL tailoring process reduces manual effort
for safety engineering and ASIL tailoring on requirements level. To answer this question,
we evaluated if the automated process steps can be used by the safety manager in his daily
work. Hypotheses H6, H7, and H8 target reasonable execution times of the automated steps.
In his daily work, the safety manager shall be able to execute all automated steps regularly.
The results show that they can be executed numerous times, as their execution takes less
than a minute for the two cases. In addition to execution time, we compared the number
of additional work for the safety manager (i.e., model elements he/she has to specify for
the ASIL tailoring process) with the number of omitted work (i.e., model elements that are
automatically generated). The results show that the number of automatically generated model
elements outweighs the number of model elements that need to be specified manually. For the
two cases, more than twice as much elements are generated as manually specified. In general,
the number of generated CFT elements is strongly dependent on the number of function
ports and their interface operations. For each operation of a function, a requirement (MSD)
is specified that can result in failure modes of different types for the respective operation.
The number of generated GSN elements is strongly dependent on the number of hazards.
For each hazard, a separate safety assurance argument is generated. Hence, our approach
is especially valuable for highly safety-critical systems with many hazards and complex
functionality (many interactions between functions). Independent from safety engineering,
the usage of MSDs for requirements engineering is beneficial for complex functionality, as
they support automated requirements validation and verification (cf. Section 2.7). If MSDs
are already specified for that purpose, the additional effort of our ASIL tailoring process
is even lower than described above. In conclusion, we rate the evaluation question Q3 as
fulfilled.

7.2.6 Threats to Validity

Case studies have limitations and their results rely to a large extent on the research design.
Thus, we see the following threats to validity for this case study.

7.2.6.1 Construct Validity

The case study was designed and conducted by the same researcher that developed the
approach. Therefore, a threat is that the construction of the case study by the same person
has a bias towards the developed approach. To mitigate this, the case study design and the
research questions have been discussed with other researchers.

In addition, case study results have not been evaluated by safety engineering experts from
industry. As a mitigation strategy, Case 1 was based on a requirements specification from
industry that already contained ASIL allocations for requirements and functions (including
applied ASIL tailorings). Hence, the evaluation results of Case 1 were compared to expert
results from industry.

The selected cases might be too few and small to viably measure scalability of
transformation execution times. However, the measured execution times allow numerous
executions per day, and we consider even one execution per day as less effort than manually

158

7.2 Case Study

applying the steps that are automated by our approach. Similarly, the selected cases might
be too few and small to viably measure scalability of the ratio of generated model elements
vs. manually specified elements. To mitigate this threat, we chose a small case (Case 1) and
a larger case (Case 2), such that a possible dependency of the ratio on the case size is more
visible than with equally sized cases.

7.2.6.2 External Validity

Concerning the generalizability of the case study results, a threat is that the execution time
of the transformations might differ on other platforms. As a mitigation strategy, we used
a platform that we consider a standard business environment that would also be found in
industry, and documented the used platform in Section 7.2.3.

Furthermore, the number of used cases might be too small to draw generalizable
conclusions. To mitigate this threat, we included hypothesis H2 that is checked independently
from the cases. For that hypothesis, we check whether the CFT Generation works with a
whole catalog of MSD patterns that were derived from industry requirements specifications
(cf. Section 4.4.2).

Additionally, the selected cases might not be representative. This threat is mitigated
by using a case representing an existing industry system (Case 1) and an advanced case
(Case 2) that we consider a realistic, complex cyber-physical system of the near future
(cf. Section 7.2.1.3). Both cases stem from the automotive industry but we showed in
Section 5.3.3 that safety standards from other domains have similar SILs that can be
translated to integer numbers for ILP solving.

7.2.6.3 Reliability

Concerning the reproducibility of our case study results, a threat is that the execution times
might differ if the used platform is no longer available. To mitigate this threat, we described
the used platform in Section 7.2.3. Therefore, an equal platform can be set up, or if that is not
possible, execution times on a different platform (e.g., more powerful) can be set in relation.

Another threat to reproducibility is that the input requirements specification of Case 1 is
not publicly available. The input of Case 2 is available as technical report [HFK+16]. To
mitigate this threat and ease reproduction, we provide model screenshots in Appendix A.

A further threat is that the used prototype implementation might not be available in the
future. To mitigate this, the implemented conceptual algorithms are defined in Chapters 5
and 6 and can be reimplemented.

Finally, all manual review results are dependent on the reviewer’s expertise. To minimize
the extent and complexity of manual reviews, we defined OCL rules that can be automatically
checked, and translated the informal ASIL tailoring rules (cf. Section 2.5) to the CFT
language (cf. Section 5.3.1.1) to ease manual verifiability.

159

8

CONCLUSION

In this thesis, we counter the challenge of early safety effort planning with a SIL tailoring
process that is integrated in the development phases of requirements engineering. It supports
the safety manager and requirements engineer by automated steps to generate and analyze
failure propagation models and to derive safety assurance arguments.

This chapter summarizes the challenges and contributions of this thesis in Section 8.1, and
points to directions for future work in Section 8.2.

8.1 Summary

The high degree of innovation in mechatronic systems domains leads to so-called cyber-
physical systems that are characterized by their complex functionality and communication
with other systems and surroundings. Exemplary for this development is the increasing
complexity of advanced driver assistance systems (ADAS) that are realized by connecting
ECUs which previously had separate functionality. These ADAS make use of huge amounts
of sensory data and Vehicle-to-X communication to automatically take decisions and control
brakes or steering. Such systems are not only complex but also highly safety-critical. If an
ADAS unintentionally steers or fails to brake when necessary, people are in danger. Central
ECUs in those systems realize functions with different levels of safety-criticality and, by that,
form so-called mixed-criticality systems. For example, in an emergency braking system,
the function activating the brakes is more safety-critical than the function that warns the
following traffic by activating the hazard lights. A function’s safety-criticality stems from
the hazards that are caused by its possible failures. Hazard safety-criticality is categorized
by so-called safety integrity levels (SIL) that are defined by safety standards like ISO 26262.

The safety-criticality (i.e., the determined SIL) not only describes the risk of potential
harm to people. It also dictates the required degree of rigor to be applied in the development
of a system to prevent the hazards or mitigate their consequences. A SIL that is determined
for a hazard, propagates through all development process phases and work products. Thus, a
high SIL requires the application of safety measures with a high degree of rigor in all phases
of development. A high SIL accordingly implies a high safety effort. Additionally, if system
failures that would cause a hazard, are detected late in the process, this causes expensive
iterations to repeat safety measures or apply additional ones.

In mixed-criticality systems, less critical parts should not require the same high safety
effort. If parts of the safety requirements (and the subsystems satisfying them) can be
assigned with a lower SIL, this can reduce safety effort because less rigorous safety

161

8 Conclusion

measures are required. To reduce the number of high SIL requirements and subsystems,
the safety manager can apply so-called SIL tailoring. For example, if the non-safety-
critical infotainment system of a vehicle is separated from safety-critical systems, it may
keep a lower SIL. For the automotive domain, SIL tailoring rules are explicitly defined in
ISO 26262. The underlying principles are transferable to other mechatronic systems domains
as described in Section 5.3.3. To reduce safety effort (e.g., the number and complexity of
high-SIL system parts), the safety manager’s goal is to find possible failures and plan safety
measures as early as possible. Due to the complexity and mixed-criticality of ADAS and
cyber-physical systems in general, reaching this goal is challenging.

The contribution of this thesis is a systematic, tool-supported SIL tailoring process applied
in safety requirements engineering (cf. Chapter 3) that copes with the three challenges
identified in Section 1.2 as follows:

C1: Complexity of Mixed-Criticality Systems
The complexity and mixed-criticality of systems put a challenge on applying early SIL
tailoring because the validity of each tailoring has to be assured by safety analysis. This
requires knowledge about possible failures and their propagation paths through the system
and its subsystems. The system complexity infers complex failure propagation paths that
have to be derived from complex requirements which are typically only specified in informal
language. Informal language is prone to ambiguity, incompleteness, and inconsistency. This
leads to error-prone and incomplete safety analysis results.

To cope with Challenge C1, the SIL tailoring process is integrated into the model-based
systems engineering method CONSENS that supports the interdisciplinary development of
complex cyber-physical systems. CONSENS uses a functional abstraction of the system
under development prior to specifying the system architecture. We extend and use this
function hierarchy to structure and decompose functional requirements and functional safety
requirements in form of Modal Sequence Diagrams (MSD) (cf. Chapter 4). This functional
decomposition is suggested by the requirements engineering standard ISO 29148 [Int11i].
We use MSDs as a graphical, formal, scenario-based modeling language to cope with the
complexity of different application scenarios. MSDs can be simulated for requirements
validation and verified for requirements consistency. To further support the specification of
correct, formal MSD requirements, we set up an MSD requirement pattern catalog comprised
of patterns concerning the occurrence and order of information exchange, including real-time
and safety. In addition, we combine the function hierarchy with safety analysis models in
form of Component Fault Trees (CFT), such that failure propagation paths can be specified on
the function hierarchy to analyze its mixed-criticality (i.e., the required SIL of each function
and requirement).

C2: Safety Requirements Engineering Dilemma
To apply valid SIL tailoring, possible failures and their propagation paths through the system
need to be analyzed. Unfortunately, there is a problem known as the safety requirements
engineering dilemma [Ber98]. It states that a system’s possible failures and resulting hazards
can best be found late in the development process, but are ideally already known during
requirements engineering. In the later phases of the development process, most system
details are known, so it is easier to identify possible failures. However, changing the system
to prevent or mitigate a failure, then causes expensive development iterations. Because of

162

8.1 Summary

the missing knowledge about possible failures and their propagation paths, safety analyses
on the requirements level are prone to incompleteness. Whenever new information about
failures is gained, the safety analyses have to be repeated. As this produces manual effort,
in practice, safety analyses are currently not applied on the requirements level, and existing
research approaches apply SIL tailoring on technical architectures only.

To cope with Challenge C2, we contribute a concept and prototypical implementation
that automatically generates CFT failure propagation models for a function hierarchy based
on functional (safety) requirements specified as MSDs (cf. Section 5.2). Furthermore,
we contribute a concept and prototypical implementation that uses the failure propagation
models to automatically calculate a SIL allocation to functions and requirements,
incorporating applied SIL tailorings (cf. Section 5.3). These automated process steps
minimize the manual effort to a review of the generated models and SIL allocation.
Additionally, these automated steps can be repeated whenever changes to the function
hierarchy or requirements are made.

C3: Safety Case Construction and Maintenance
Safety standards like the ISO 26262 require a so-called safety case, which provides the
“argument that the safety requirements for an item are complete and satisfied by evidence
compiled from work products of the safety activities during development” [Int11a]. The
safety manager has to argue the validity of each applied SIL tailoring in the safety case.
As safety analyses are time-consuming and error-prone in early development stages (cf.
previous challenges), SIL tailoring is applied on technical architectures rather than functional
models of the requirements analysis phase. Consequently, safety cases are not built in
that phase either. Building a safety case with arguments for valid early SIL tailoring
requires traceability throughout the whole development process (from the initial hazards
to the safety requirements, to introduced safety mechanisms, to safety analysis results).
Reverse engineering that information to build the safety case in the end of development, is
a tedious and error-prone task that may identify missing safety measures and, thus, cause
expensive process iterations. Existing research approaches describe ways to document
model-based safety cases and safety case patterns. However, there is no approach that
automatically constructs and maintains the safety case according to applied SIL tailorings on
the requirements level. Safety case automation in general was identified as open challenge
[HWK+14].

To cope with Challenge C3, we contribute a concept and prototypical implementation that
automatically derives model-based safety cases using the Goal Structuring Notation (GSN)
from the SIL allocated functions, MSD requirements, and CFT failure propagation model
(cf. Chapter 6). The generated safety cases include assurance arguments for the validity of
applied SIL tailorings. This automated derivation of safety arguments minimizes manual
effort for safety case maintenance, as it can be repeated to update the safety case whenever
new hazards are identified or changes to the safety requirements are made.

Altogether, the presented SIL tailoring process integrates concepts of model-based safety
engineering with model-based requirements and systems engineering to support the safety
manager in planning safety effort on early functional requirements. The evaluation (cf.
Chapter 7) showed that the automated process steps for safety analysis, SIL allocation, and
safety argumentation save time and avoid manually introduced errors.

163

8 Conclusion

8.2 Future Work

The results of this thesis give rise to possibilities for future research that we highlight in the
following. Firstly, future work may enhance the contributions of this thesis by overcoming
the limitations and relaxing the assumptions that we described in the corresponding Sections
3.7, 4.6, 5.4, and 6.3. In addition, the presented SIL tailoring process should be evaluated in
further projects and mechatronic systems domains. In the following paragraphs, we discuss
further directions for future research.

For generating CFT failure propagation models, we assume that requirements are specified
solely using our catalog of MSD requirement patterns. In future work, it could be evaluated
what has to be changed, such that the CFT generation works for arbitrary MSDs that do
not necessarily conform to any of the patterns. Although the catalog is helpful to specify
requirements correctly to one’s intents, this would increase the applicability and robustness
of our approach.

For requirements that cannot be specified as MSDs (e.g., quality requirements concerning
the failure rate of a system), we provide a bidirectional transformation of the function
hierarchy to textual requirements using patterns in a controlled natural language (cf.
Section 4.5). To support requirements engineers that do not understand the MSD language,
and to support requirements exchange with purely textual requirements management tools,
it would be beneficial to also synchronize MSD requirements with a textual representation.
This is a complex task, as a single MSD can be comprised of several atomic requirements
and a single requirement can be formalized using multiple MSDs. In addition, one has to find
the right balance between ambiguity and formality to not reinvent languages like Z [Int02]
or CTL [EC82].

A further direction for future research is to adapt our approach to also work for following
development phases. Functional safety requirements are refined into technical safety
requirements that have to be satisfied by the system architecture. For instance, if technical
safety requirements can be specified using MSDs on the structural basis of the CONSENS
active structure, CFT failure propagation models could be generated from those MSDs. Then,
the SIL allocation and GSN generation could be reused. The challenge of this research is
to extend MSDs to work on the technical level or to find a different formal language that
can be used for CFT generation. Especially requirements on continuous information flow
like feedback loops or flow of hydraulic fluids cannot be specified using the MSD language
definition used in this thesis [HFK+16].

The approach presented in this thesis supports the safety manager in analyzing and
arguing safety of functions and their requirements including the validity of applied SIL
tailorings. As innovations and complexity of cyber-physical systems will increase, so will
their requirements specifications. Hence, it will get more difficult to find valid SIL tailoring
possibilities. Therefore, it would support the safety manager, if there was an approach that
makes suggestions how to change or evolve the function hierarchy and its requirements to
enable or improve SIL tailorings. This is a huge challenge because the suggestion mechanism
will have to understand the semantics of requirements and incorporate knowledge about
functionality cohesion and cost. Otherwise it will suggest many unreasonable solutions.

164

BIBLIOGRAPHY

The bibliography is structured into three parts: my own publications, the theses I supervised,
and foreign literature. Details about my contributions to the papers listed under my own
publications are given in Appendix B.

Own Publications

[FHK+18] FOCKEL, MARKUS; HOLTMANN, JÖRG; KOCH, THORSTEN;
SCHMELTER, DAVID: “Formal, Model- and Scenario-based Requirement
Patterns”. In: 6th International Conference on Model-Driven Engineering and
Software Development (MODELSWARD 2018). Funchal, Portugal, Jan. 2018.

[FHK+17] FOCKEL, MARKUS; HOLTMANN, JÖRG; KOCH, THORSTEN;
SCHMELTER, DAVID: Model-based Requirement Patterns. Tech. rep.
tr-ri-17-354. Software Engineering Department, Fraunhofer IEM / Software
Engineering Group, Heinz Nixdorf Institute, Oct. 2017.

[Foc16] FOCKEL, MARKUS: “ASIL Tailoring on Functional Safety Requirements”.
In: 5th International Workshop on Next Generation of System Assurance
Approaches for Safety-Critical Systems (SASSUR). Ed. by
SKAVHAUG, AMUND; GUIOCHET, JÉRÉMIE; SCHOITSCH, ERWIN;
BITSCH, FRIEDEMANN. Vol. 9923. LNCS. Co-located with SAFECOMP
2016. Trondheim, Norway: Springer International Publishing, Sept. 2016.
DOI: 10.1007/978-3-319-45480-1_24.

[HFK+16] HOLTMANN, JÖRG; FOCKEL, MARKUS; KOCH, THORSTEN;
SCHMELTER, DAVID; BRENNER, CHRISTIAN; BERNIJAZOV, RUSLAN;
SANDER, MARCEL: The MechatronicUML Requirements Engineering
Method: Process and Language. Tech. rep. tr-ri-16-351. Software
Engineering Department, Fraunhofer IEM / Software Engineering Group,
Heinz Nixdorf Institute, Dec. 2016.

[FH15] FOCKEL, MARKUS; HOLTMANN, JÖRG: “ReqPat: Efficient Documentation
of High-quality Requirements using Controlled Natural Language”. In: Proc.
of the 23rd International Requirements Engineering Conference 2015 (RE
2015). Ottawa, Canada: IEEE, Aug. 2015, pp. 280–281. DOI:
10.1109/RE.2015.7320438.

165

http://dx.doi.org/10.1007/978-3-319-45480-1_24
http://dx.doi.org/10.1109/RE.2015.7320438

Supervised Theses

[MFH15] MEYER, JAN; FOCKEL, MARKUS; HOLTMANN, JÖRG: “Systementwurf
unter Einbeziehung funktionaler Sicherheit bei automobilen Steuergeräten”.
In: Tag des Systems Engineering 2015 (TdSE 2015). (in German). Ulm,
Germany, Nov. 2015.

[FH14] FOCKEL, MARKUS; HOLTMANN, JÖRG: “A Requirements Engineering
Methodology Combining Models and Controlled Natural Language”. In: 4th
International Model-Driven Requirements Engineering Workshop (MoDRE).
Co-located with RE 2014. Karlskrona, Sweden: IEEE, Aug. 2014, pp. 67–76.
DOI: 10.1109/MoDRE.2014.6890827.

[FHM14] FOCKEL, MARKUS; HOLTMANN, JÖRG; MEYER, MATTHIAS: “Mit
Satzmustern hochwertige Anforderungsdokumente effizient erstellen”. In:
OBJEKTspektrum RE/2014 (June 2014). (Online Themenspecial
Requirements Engineering) (in German).

[DFH+13] DAUN, MARIAN; FOCKEL, MARKUS; HOLTMANN, JÖRG;
TENBERGEN, BASTIAN: Goal-Scenario-Oriented Requirements Engineering
for Functional Decomposition with Bidirectional Transformation to
Controlled Natural Language. Case Study "Body Control Module". Tech. rep.
ICB-Research Report No. 55. Universität Duisburg-Essen, May 2013.

[FHH+12] FOCKEL, M.; HEIDL, P.; HOLTMANN, J.; HORN, W.; HÖFFLINGER, J.;
HÖNNINGER, H.; MEYER, J.; MEYER, M.; SCHÄUFFELE, J.: “Application
and Evaluation in the Automotive Domain”. In: Model-Based Engineering of
Embedded Systems: The SPES 2020 Methodology. Ed. by POHL, KLAUS;
HÖNNINGER, HARALD; ACHATZ, REINHOLD E.; BROY, MANFRED.
Springer, 2012. Chap. 12, pp. 157–175. ISBN: 978-3-642-34614-9 (Online),
978-3-642-34613-2 (Print).

[FHM12] FOCKEL, MARKUS; HOLTMANN, JÖRG; MEYER, JAN: “Semi-automatic
Establishment and Maintenance of Valid Traceability in Automotive
Development Processes”. In: 2nd International Workshop on Software
Engineering for Embedded Systems (SEES). Co-located with ICSE 2012.
Zürich, Switzerland, June 2012, pp. 37–43. ISBN: 978-1-4673-1853-2.

Supervised Theses

[BBB+16] BASAK, AINDRILA; BERNIJAZOV, RUSLAN; BÖRDING, PAUL;
EIKERLING, HENDRIK; ENSTE, PATRICK; FLOHRE, ANDREAS;
NEUMANN, CONRAD; STOLTE, FLORIAN: “Project Group Aramid”. Final
Documentation. Paderborn: Paderborn University, 2016.

[Tre18] TRENTINAGLIA, ROMAN: “Deriving Pattern-based Safety Arguments”.
Bachelor’s Thesis. Paderborn: Paderborn University, May 2018.

166

http://dx.doi.org/10.1109/MoDRE.2014.6890827

Foreign Publications

Foreign Publications

[Aca11] ACATECH, ed.: Cyber-Physical Systems – Innovationsmotor für Mobilität,
Gesundheit, Energie und Produktion. acatech POSITION. Berlin/Heidelberg:
Springer, 2011.

[ACD93] ALUR, R.; COURCOUBETIS, C.; DILL, D.: “Model-Checking in Dense
Real-Time”. In: Information and Computation 104.1 (1993), pp. 2–34. DOI:
http://dx.doi.org/10.1006/inco.1993.1024.

[Ass18] ASSURANCE CASE WORKING GROUP (ACWG): Goal Structuring
Notation Community Standard. Version 2. Jan. 2018.

[AHK+08] ATIR, YORAM; HAREL, DAVID; KLEINBORT, ASAF; MAOZ, SHAHAR:
“Object Composition in Scenario-Based Programming”. In: Fundamental
Approaches to Software Engineering: 11th International Conference (FASE
2008). Ed. by FIADEIRO, JOSÉ LUIZ; INVERARDI, PAOLA. Budapest,
Hungary: Springer Berlin Heidelberg, Mar. 2008, pp. 301–316. DOI:
10.1007/978-3-540-78743-3_23.

[AGL+15] AUTILI, M.; GRUNSKE, L.; LUMPE, M.; PELLICCIONE, P.; TANG, A.:
“Aligning Qualitative, Real-Time, and Probabilistic Property Specification
Patterns Using a Structured English Grammar”. In: IEEE Transactions on
Software Engineering 41.7 (July 2015), pp. 620–638. DOI:
10.1109/TSE.2015.2398877.

[AIP07] AUTILI, M.; INVERARDI, P.; PELLICCIONE, P.: “Graphical scenarios for
specifying temporal properties: an automated approach”. In: Automated
Software Engineering 14.3 (2007), pp. 293–340. DOI:
10.1007/s10515-007-0012-6.

[Aut10] AUTOMOTIVE SPECIAL INTEREST GROUP (SIG): Automotive SPICE:
Process Reference Model, v4.5. 2010.

[ALR+04] AVIZIENIS, A.; LAPRIE, J.-C.; RANDELL, B.; LANDWEHR, C.: “Basic
concepts and taxonomy of dependable and secure computing”. In: IEEE
Transactions on Dependable and Secure Computing 1.1 (Jan. 2004),
pp. 11–33. DOI: 10.1109/TDSC.2004.2.

[APW+14] AZEVEDO, L. S.; PARKER, D.; WALKER, M.; PAPADOPOULOS, Y.;
ARAUJO, R. E.: “Assisted Assignment of Automotive Safety Requirements”.
In: IEEE Software 31.1 (Jan. 2014), pp. 62–68. ISSN: 0740-7459. DOI:
10.1109/MS.2013.118.

[APW+13] AZEVEDO, LUIS SILVA; PARKER, DAVID; WALKER, MARTIN;
PAPADOPOULOS, YIANNIS; ARAUJO, RUI ESTEVES: “Automatic
Decomposition of Safety Integrity Levels: Optimization by Tabu Search”. In:
2nd Workshop on Critical Automotive applications: Robustness & Safety,
CARS 2013. 2013.

[Bah14] BAHR, NICHOLAS J.: System Safety Engineering and Risk Assessment. 2nd
edition. CRC Press, 2014. ISBN: 9781466551619.

167

http://dx.doi.org/http://dx.doi.org/10.1006/inco.1993.1024
http://dx.doi.org/10.1007/978-3-540-78743-3_23
http://dx.doi.org/10.1109/TSE.2015.2398877
http://dx.doi.org/10.1007/s10515-007-0012-6
http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1109/MS.2013.118

Foreign Publications

[Bai15] BAILEY, BRIAN: The Wild West of Automotive. Apr. 9, 2015. URL: http:
//semiengineering.com/the-wild-west-of-automotive/.

[BCF+14] BECKERS, KRISTIAN; CÔTÉ, ISABELLE; FRESE, THOMAS;
HATEBUR, DENIS; HEISEL, MARITTA: “Systematic Derivation of Functional
Safety Requirements for Automotive Systems”. In: Proceedings of the 33rd
International Conference on Computer Safety, Reliability, and Security
(SAFECOMP 2014). Ed. by BONDAVALLI, ANDREA;
DI GIANDOMENICO, FELICITA. Florence, Italy: Springer International
Publishing, 2014, pp. 65–80. DOI: 10.1007/978-3-319-10506-2_5.

[Ber98] BERRY, D. M.: “The safety requirements engineering dilemma”. In: Procs.
of the ninth Int. Workshop on Software Specification and Design. Apr. 1998,
pp. 147–149. DOI: 10.1109/IWSSD.1998.667930.

[Bit00] BITSCH, FRIEDEMANN: “Classification of Safety Requirements for Formal
Verification of Software Models of Industrial Automation Systems”. In:
Procs. of the 13th Int. Conf. on Software and Systems Engineering and their
Applications (ICSSEA). Paris, France, 2000.

[Bit01] BITSCH, FRIEDEMANN: “Safety Patterns – The Key to Formal Specification
of Safety Requirements”. In: Proceedings of the 20th International
Conference on Computer Safety, Reliability and Security (SAFECOMP
2001). Ed. by VOGES, UDO. Budapest, Hungary: Springer Berlin Heidelberg,
Sept. 2001, pp. 176–189. DOI: 10.1007/3-540-45416-0_18.

[BAB+12] BLANQUART, JEAN-PAUL; ASTRUC, JEAN-MARC;
BAUFRETON, PHILIPPE; BOULANGER, JEAN-LOUIS; DELSENY, HERVÉ;
GASSINO, JEAN; LADIER, GÉRARD; LEDINOT, EMMANUEL;
LEEMAN, MICHEL; MACHROUH, JOSEPH; QUÉRÉ, PHILIPPE;
RICQUE, BERTARND: “Criticality categories across safety standards in
different domains”. In: Embedded Real Time Software and Systems (ERTS
2012). Toulouse, France, Feb. 2012.

[BLH+13] BLOM, HANS; LÖNN, HENRIK; HAGL, FRANK;
PAPADOPOULOS, YIANNIS; REISER, MARK-OLIVER;
SJÖSTEDT, CARL-JOHAN; CHEN, DE-JIU; KOLAGARI, RAMIN TAVAKOLI:
EAST-ADL – An Architecture Description Language for Automotive
Software-Intensive Systems. White Paper. Version 2.1.12. 2013.

[BGH+14] BRENNER, CHRISTIAN; GREENYER, JOEL; HOLTMANN, JÖRG;
LIEBEL, GRISCHA; STIEGLBAUER, GERALD; TICHY, MATTHIAS:
“ScenarioTools Real-Time Play-Out for Test Sequence Validation in an
Automotive Case Study”. In: 13th Int. Workshop on Graph Transformation
and Visual Modeling Techniques (GTVMT 2014). 2014.

[BGP13] BRENNER, CHRISTIAN; GREENYER, JOEL;
PANZICA LA MANNA, VALERIO: “The ScenarioTools Play-Out of Modal
Sequence Diagram Specifications with Environment Assumptions”. In: 12th
Int. Workshop on Graph Transformation and Visual Modeling Techniques
(GTVMT 2013). 2013.

168

http://semiengineering.com/the-wild-west-of-automotive/
http://semiengineering.com/the-wild-west-of-automotive/
http://dx.doi.org/10.1007/978-3-319-10506-2_5
http://dx.doi.org/10.1109/IWSSD.1998.667930
http://dx.doi.org/10.1007/3-540-45416-0_18

Foreign Publications

[BDH+12] BROY, M.; DAMM, W.; HENKLER, S.; POHL, K.; VOGELSANG, A.;
WEYER, T.: “Introduction to the SPES Modeling Framework”. In:
Model-Based Engineering of Embedded Systems: The SPES 2020
Methodology. Ed. by POHL, KLAUS; HÖNNINGER, HARALD;
ACHATZ, REINHOLD; BROY, MANFRED. Springer, 2012. Chap. 3,
pp. 31–49. ISBN: 978-3-642-34614-9 (Online), 978-3-642-34613-2 (Print).

[CEN11] CENELEC: EN 50128:2011: Railway applications – Communication,
signalling and processing systems – Software for railway control and
protection systems. 2011.

[Cha09] CHARETTE, ROBERT: “This Car Runs on Code”. In: IEEE Spectrum (Feb.
2009).

[CJL+08] CHEN, DEJIU; JOHANSSON, ROLF; LÖNN, HENRIK;
PAPADOPOULOS, YIANNIS; SANDBERG, ANDERS; TÖRNER, FREDRIK;
TÖRNGREN, MARTIN: “Modelling Support for Design of Safety-Critical
Automotive Embedded Systems”. In: 27th International Conference on
Computer Safety, Reliability, and Security (SAFECOMP 2008). Ed. by
HARRISON, MICHAEL D.; SUJAN, MARK-ALEXANDER. Newcastle upon
Tyne, UK: Springer Berlin Heidelberg, Sept. 2008, pp. 72–85. DOI:
10.1007/978-3-540-87698-4_9.

[Cot13] COTNER, JOHN: Functional Safety and ISO 26262 Compliance -
APF-AUT-T0503. presentation. Sept. 2013.

[Cro15] CROLLA, DAVID: Encyclopedia of Automotive Engineering. John Wiley &
Sons, 2015. ISBN: 9780470974025.

[DP13] DENNEY, EWEN; PAI, GANESH: “A Formal Basis for Safety Case Patterns”.
In: Proc. of the 32nd International Conference on Computer Safety,
Reliability, and Security (SAFECOMP 2013). Ed. by BITSCH, F.;
GUIOCHET, J.; KAANICHE, M. Vol. 8153. LNCS. Toulouse, France:
Springer, Sept. 2013, pp. 21–32. DOI:
10.1007/978-3-642-40793-2_3.

[Dep12] DEPARTMENT OF DEFENSE, USA: MIL-STD-882E: Department of Defense
Standard Practice – System Safety. 2012.

[DPS+14] DHOUIBI, MOHAMED SLIM; PERQUIS, JEAN-MARC; SAINTIS, LAURENT;
BARREAU, MIHAELA: “Automatic Decomposition and Allocation of Safety
Integrity Level Using System of Linear Equations”. In: Proc. of the 4th
International Conference on Performance, Safety and Robustness in Complex
Systems and Applications (PESARO 2014). 2014. ISBN: 978-1-61208-321-6.

[Dor14] DOROCIAK, RAFAL: “Systematik zur frühzeitigen Absicherung der
Sicherheit und Zuverlässigkeit fortschrittlicher mechatronischer Systeme”.
PhD thesis. Paderborn, Germany: Paderborn University, 2014.

[DAC99] DWYER, M. B.; AVRUNIN, G. S.; CORBETT, J. C.: “Patterns in property
specifications for finite-state verification”. In: Proceedings of the 1999
International Conference on Software Engineering (ICSE 99). Los Angeles,
USA, May 1999, pp. 411–420. DOI: 10.1145/302405.302672.

169

http://dx.doi.org/10.1007/978-3-540-87698-4_9
http://dx.doi.org/10.1007/978-3-642-40793-2_3
http://dx.doi.org/10.1145/302405.302672

Foreign Publications

[EAS10] EAST-ADL ASSOCIATION: UML Profile of EAST-ADL Domain Model
Specification, v2.1.0. 2010.

[EAS13] EAST-ADL ASSOCIATION: EAST-ADL Domain Model Specification,
v2.1.12. 2013.

[EJ09] EBERT, C.; JONES, C.: “Embedded Software: Facts, Figures, and Future”. In:
IEEE Computer 42.4 (Apr. 2009), pp. 42–52. ISSN: 0018-9162. DOI:
10.1109/MC.2009.118.

[EC82] EMERSON, E. ALLEN; CLARKE, EDMUND M.: “Using branching time
temporal logic to synthesize synchronization skeletons”. In: Science of
Computer Programming 2.3 (1982), pp. 241–266. DOI:
http://dx.doi.org/10.1016/0167-6423(83)90017-5.

[Eri05] ERICSON, CLIFTON A.: “Event Tree Analysis”. In: Hazard Analysis
Techniques for System Safety. John Wiley & Sons, Inc., 2005, pp. 223–234.
ISBN: 9780471739425.

[Eur14] EUROPEAN NEW CAR ASSESSMENT PROGRAMME (EURO NCAP): Test
protocol – AEB systems v1.0. Jan. 2014. URL: http:
//euroncap.blob.core.windows.net/media/1569/aeb-
test-protocol-v-10.pdf.

[GRS14] GAUSEMEIER, J.; RAMMIG, F.-J.; SCHÄFER, W.: “Design Methodology for
Intelligent Technical Systems”. In: Lecture Notes in Mechanical Engineering.
Springer, 2014.

[GPD+09] GAUSEMEIER, JÜRGEN; PÖSCHL, MARTIN; DEYTER, SEBASTIAN;
KAISER, LYDIA: “Modeling and analyzing fault-tolerant mechatronic
systems”. In: Proceedings of the 17th International Conference on
Engineering Design (ICED 09). Stanford, USA, Aug. 2009.

[GTS04] GIESE, HOLGER; TICHY, MATTHIAS; SCHILLING, DANIELA:
“Compositional Hazard Analysis of UML Component and Deployment
Models”. In: SAFECOMP 2004. Potsdam, Germany: Springer, 2004. DOI:
10.1007/978-3-540-30138-7_15.

[GH09] GORDON, MICHAL; HAREL, DAVID: “Generating Executable Scenarios
from Natural Language”. In: Computational Linguistics and Intelligent Text
Processing. Ed. by GELBUKH, ALEXANDER. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 456–467. DOI:
10.1007/978-3-642-00382-0_37.

[Gre11] GREENYER, JOEL: “Scenario-based Design of Mechatronic Systems”.
PhD thesis. Paderborn, Germany: Paderborn University, 2011.

[GBC+13] GREENYER, JOEL; BRENNER, CHRISTIAN; CORDY, MAXIME;
HEYMANS, PATRICK; GRESSI, ERIKA: “Incrementally Synthesizing
Controllers from Scenario-based Product Line Specifications”. In: 9th Joint
Meeting of the ESEC/FSE. New York, NY, USA: ACM, 2013, pp. 433–443.
DOI: 10.1145/2491411.2491445.

170

http://dx.doi.org/10.1109/MC.2009.118
http://dx.doi.org/http://dx.doi.org/10.1016/0167-6423(83)90017-5
http://euroncap.blob.core.windows.net/media/1569/aeb-test-protocol-v-10.pdf
http://euroncap.blob.core.windows.net/media/1569/aeb-test-protocol-v-10.pdf
http://euroncap.blob.core.windows.net/media/1569/aeb-test-protocol-v-10.pdf
http://dx.doi.org/10.1007/978-3-540-30138-7_15
http://dx.doi.org/10.1007/978-3-642-00382-0_37
http://dx.doi.org/10.1145/2491411.2491445

Foreign Publications

[GGK+16] GREENYER, JOEL; GRITZNER, DANIEL; KATZ, GUY; MARRON, ASSAF:
“Scenario-Based Modeling and Synthesis for Reactive Systems with
Dynamic System Structure in ScenarioTools”. In: MoDELS 2016 Demo and
Poster Sessions. Vol. 1725. 2016, pp. 16–32.

[GHM+15] GREENYER, JOEL; HAASE, MAX; MARHENKE, JÖRG; BELLMER, RENE:
“Evaluating a Formal Scenario-based Method for the Requirements Analysis
in Automotive Software Engineering”. In: Proceedings of the 10th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE 2015).
ESEC/FSE 2015. Bergamo, Italy: ACM, 2015, pp. 1002–1005. DOI:
10.1145/2786805.2804432.

[HM08] HAREL, DAVID; MAOZ, SHAHAR: “Assert and negate revisited: Modal
semantics for UML sequence diagrams”. In: Software & Systems Modeling
7.2 (2008), pp. 237–252.

[HWK+14] HATCLIFF, JOHN; WASSYNG, ALAN; KELLY, TIM; COMAR, CYRILLE;
JONES, PAUL: “Certifiably Safe Software-dependent Systems: Challenges
and Directions”. In: Future of Software Engineering. FOSE 2014. Hyderabad,
India: ACM, 2014, pp. 182–200. DOI: 10.1145/2593882.2593895.

[HTZ+12] HÖFIG, KAI; TRAPP, MARIO; ZIMMER, BASTIAN; LIGGESMEYER, PETER:
“Modeling Quality Aspects: Safety”. In: Model-Based Engineering of
Embedded Systems: The SPES 2020 Methodology. Ed. by POHL, KLAUS;
HÖNNINGER, HARALD; ACHATZ, REINHOLD; BROY, MANFRED.
Springer-Verlag, 2012, pp. 107–118. ISBN: 978-3-642-34613-2.

[HBM+16] HOLTMANN, JÖRG; BERNIJAZOV, RUSLAN; MEYER, MATTHIAS;
SCHMELTER, DAVID; TSCHIRNER, CHRISTIAN: “Integrated and iterative
systems engineering and software requirements engineering for technical
systems”. In: Journal of Software Evolution and Process (May 2016).

[HM13] HOLTMANN, JÖRG; MEYER, MATTHIAS: “Play-out for Hierarchical
Component Architectures”. In: 11th Workshop Automotive Software
Engineering. Vol. P-220. GI-Edition - Lecture Notes in Informatics (LNI).
Bonner Köllen Verlag, 2013.

[Ins12] INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE):
IEEE 802.11-2012: IEEE Standard for Information technology –
Telecommunications and information exchange between systems, Local and
metropolitan area networks – Specific requirements Part 11. 2012.

[Int15] INTERNATIONAL COUNCIL ON SYSTEMS ENGINEERING (INCOSE):
Systems Engineering Handbook: A guide for system life cycle processes and
activities. 4th edition. Wiley, 2015. ISBN: 9781118999400.

[Int01] INTERNATIONAL ELECTROTECHNICAL COMMISSION (IEC): IEC
61882:2001: Hazard and operability studies (HAZOP studies) – Application
guide. 2001.

[Int03] INTERNATIONAL ELECTROTECHNICAL COMMISSION (IEC): IEC
60300-3-1:2003: Dependability management – Part 3-1: Application guide –
Analysis techniques for dependability – Guide on methodology. 2003.

171

http://dx.doi.org/10.1145/2786805.2804432
http://dx.doi.org/10.1145/2593882.2593895

Foreign Publications

[Int05] INTERNATIONAL ELECTROTECHNICAL COMMISSION (IEC): IEC
62061:2005: Safety of machinery – Functional safety of safety-related
electrical, electronic and programmable electronic control systems. 2005.

[Int06a] INTERNATIONAL ELECTROTECHNICAL COMMISSION (IEC): IEC
60812:2006: Analysis techniques for system reliability – Procedure for
failure mode and effects analysis (FMEA). 2006.

[Int06b] INTERNATIONAL ELECTROTECHNICAL COMMISSION (IEC): IEC
61025:2006: Fault tree analysis (FTA). 2006.

[Int06c] INTERNATIONAL ELECTROTECHNICAL COMMISSION (IEC): IEC
61165:2006: Application of Markov techniques. 2006.

[Int10a] INTERNATIONAL ELECTROTECHNICAL COMMISSION (IEC): IEC
61508:2010: Functional safety of electrical/electronic/programmable
electronic safety-related systems. 2010.

[Int02] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO): ISO
13568:2002: Information technology – Z formal specification notation –
Syntax, type system and semantics. 2002.

[Int08] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO): ISO
15288:2008(E): Systems and software engineering – System life cycle
processes. 2008.

[Int10b] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO): ISO
25119:2010: Tractors and machinery for agriculture and forestry –
Safety-related parts of control systems. 2010.

[Int11a] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO): ISO
26262-1:2011(E): Road vehicles – Functional safety. Part 1: Vocabulary.
2011.

[Int11b] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO): ISO
26262:2011(E): Road vehicles – Functional safety. 2011.

[Int11c] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO): ISO
26262-2:2011(E): Road vehicles – Functional safety. Part 2: Management of
functional safety. 2011.

[Int11d] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO): ISO
26262-3:2011(E): Road vehicles – Functional safety. Part 3: Concept phase.
2011.

[Int11e] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO): ISO
26262-4:2011(E): Road vehicles – Functional safety. Part 4: Product
development at the system level. 2011.

[Int11f] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO): ISO
26262-6:2011(E): Road vehicles – Functional safety. Part 6: Product
development at the software level. 2011.

[Int11g] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO): ISO
26262-8:2011(E): Road vehicles – Functional safety. Part 8: Supporting
processes. 2011.

172

Foreign Publications

[Int11h] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO): ISO
26262-9:2011(E): Road vehicles – Functional safety. Part 9: ASIL-oriented
and safety-oriented analyses. 2011.

[Int11i] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO): ISO
29148:2011(E): Systems and software engineering – Life cycle processes –
Requirements engineering. 2011.

[Int12a] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO): ISO
15504-5:2012: Information technology – Process assessment – Part 5: An
exemplar software life cycle process assessment model. 2012.

[Int12b] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO): ISO
26262-10:2012(E): Road vehicles – Functional safety. Part 10: Guideline on
ISO 26262. 2012.

[IG14] INTERNATIONAL REQUIREMENTS ENGINEERING BOARD IREB E.V.;
GLINZ, MARTIN: A Glossary of Requirements Engineering Terminology –
Standard Glossary for the Certified Professional for Requirements
Engineering (CPRE) Studies and Exam. Version 1.6. May 2014.

[Inv14] INVENSITY GMBH: Automobilindustrie: 90 Prozent der Innovationen finden
bei Elektronik und Software statt. press release. Apr. 29, 2014. URL: http:
//blog.invensity.com/2014/04/29/automobilindustrie-
90-prozent-der-innovationen-finden-bei-elektronik-
und-software-statt/.

[ISS08] ISERMANN, R.; SCHORN, M.; STÄHLIN, U.: “Anticollision system
PRORETA with automatic braking and steering”. In: Vehicle System
Dynamics 46.sup1 (2008), pp. 683–694. DOI:
10.1080/00423110802036968.

[IKD+13] IWANEK, PETER; KAISER, LYDIA; DUMITRESCU, ROMAN;
NYSSEN, ALEXANDER: “Fachdisziplinübergreifende Systemmodellierung
mechatronischer Systeme mit SysML und CONSENS”. In: Tag des Systems
Engineering 2013. 2013.

[KLM03] KAISER, BERNHARD; LIGGESMEYER, PETER; MÄCKEL, OLIVER: “A New
Component Concept for Fault Trees”. In: 8th Australian workshop on Safety
critical systems and software. 2003.

[KDH+13] KAISER, LYDIA; DUMITRESCU, ROMAN; HOLTMANN, JÖRG;
MEYER, MATTHIAS: “Automatic Verification of Modeling Rules in Systems
Engineering for Mechatronic Systems”. In: Proceedings of the ASME
International Design Engineering Technical Conferences & Computers and
Information in Engineering Conference. ASME, July 2013.

[Kel98] KELLY, T. P.: “Arguing Safety - A Systematic Approach to Safety Case
Management”. PhD thesis. York, UK: University of York, Sept. 1998.

173

http://blog.invensity.com/2014/04/29/automobilindustrie-90-prozent-der-innovationen-finden-bei-elektronik-und-software-statt/
http://blog.invensity.com/2014/04/29/automobilindustrie-90-prozent-der-innovationen-finden-bei-elektronik-und-software-statt/
http://blog.invensity.com/2014/04/29/automobilindustrie-90-prozent-der-innovationen-finden-bei-elektronik-und-software-statt/
http://blog.invensity.com/2014/04/29/automobilindustrie-90-prozent-der-innovationen-finden-bei-elektronik-und-software-statt/
http://dx.doi.org/10.1080/00423110802036968

Foreign Publications

[KM97] KELLY, T. P.; MCDERMID, J. A.: “Safety Case Construction and Reuse
Using Patterns”. In: Proceedings of the 16th International Conference on
Computer Safety, Reliability and Security (SAFECOMP 97). Ed. by
DANIEL, PETER. York, UK, Sept. 1997, pp. 55–69. DOI:
10.1007/978-1-4471-0997-6_5.

[KPP95] KITCHENHAM, B.; PICKARD, L.; PFLEEGER, S. L.: “Case studies for
method and tool evaluation”. In: IEEE Software 12.4 (July 1995), pp. 52–62.
DOI: 10.1109/52.391832.

[KC05] KONRAD, SASCHA; CHENG, BETTY H. C.: “Real-time specification
patterns”. In: Proceedings of the 27th International Conference on Software
Engineering (ICSE 2005). 2005, p. 372. DOI:
10.1145/1062455.1062526.

[KHP+05] KUGLER, HILLEL; HAREL, DAVID; PNUELI, AMIR; LU, YUAN;
BONTEMPS, YVES: “Temporal Logic for Scenario-Based Specifications”. In:
Proceedings of the 11th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 2005). Ed. by
HALBWACHS, NICOLAS; ZUCK, LENORE D. Edinburgh, UK: Springer
Berlin Heidelberg, Apr. 2005, pp. 445–460. DOI:
10.1007/978-3-540-31980-1_29.

[Kus16] KUSS, INGO: Audi zFAS – Enorme Datenmengen bewältigen. July 1, 2016.
URL: http://www.elektroniknet.de/automotive/
assistenzsysteme/artikel/131797/.

[LF09] LAMI, GIUSEPPE; FALCINI, FABIO: “Is ISO/IEC 15504 Applicable to Agile
Methods?” In: Proceedings of the 10th International Conference on Agile
Processes in Software Engineering and Extreme Programming (XP 2009).
Ed. by ABRAHAMSSON, PEKKA; MARCHESI, MICHELE;
MAURER, FRANK. Pula, Italy: Springer Berlin Heidelberg, May 2009,
pp. 130–135. DOI: 10.1007/978-3-642-01853-4_16.

[LW10] LAMM, J. G.; WEILKIENS, T.: “Funktionale Architekturen in SysML”. In:
Tag des Systems Engineering 2010. Ed. by MAURER, M.; SCHULZE, S.-O.
Munich, Germany: Carl Hanser Verlag, 2010.

[LW14] LAMM, JESKO G.; WEILKIENS, TIM: “Method for Deriving Functional
Architectures from Use Cases”. In: Syst. Eng. 17.2 (June 2014), pp. 225–236.
DOI: 10.1002/sys.21265.

[Lam77] LAMPORT, LESLIE: “Proving the Correctness of Multiprocess Programs”. In:
IEEE Transactions on Software Engineering SE-3.2 (Mar. 1977),
pp. 125–143. DOI: 10.1109/TSE.1977.229904.

[LLN+09] LARSEN, KIM G.; LI, SHUHAO; NIELSEN, BRIAN; PUSINSKAS, SAULIUS:
“Verifying Real-Time Systems against Scenario-Based Requirements”. In:
Formal Methods: Second World Congress (FM 2009). Proceedings. Ed. by
CAVALCANTI, ANA; DAMS, DENNIS R. Eindhoven, The Netherlands:
Springer Berlin Heidelberg, Nov. 2009, pp. 676–691. DOI:
10.1007/978-3-642-05089-3_43.

174

http://dx.doi.org/10.1007/978-1-4471-0997-6_5
http://dx.doi.org/10.1109/52.391832
http://dx.doi.org/10.1145/1062455.1062526
http://dx.doi.org/10.1007/978-3-540-31980-1_29
http://www.elektroniknet.de/automotive/assistenzsysteme/artikel/131797/
http://www.elektroniknet.de/automotive/assistenzsysteme/artikel/131797/
http://dx.doi.org/10.1007/978-3-642-01853-4_16
http://dx.doi.org/10.1002/sys.21265
http://dx.doi.org/10.1109/TSE.1977.229904
http://dx.doi.org/10.1007/978-3-642-05089-3_43

Foreign Publications

[LGP11] LAUER, CHRISTOPH; GERMAN, REINHARD; POLLMER, JENS: “Fault Tree
Synthesis from UML Models for Reliability Analysis at Early Design
Stages”. In: SIGSOFT Softw. Eng. Notes 36.1 (Jan. 2011), pp. 1–8. DOI:
10.1145/1921532.1921558.

[LYZ+11] LI, W.; YANG, Z.; ZHANG, P.; WANG, Z.: “Model Checking WS-BPEL with
Universal Modal Sequence Diagrams”. In: 10th IEEE/ACIS International
Conference on Computer and Information Science. May 2011, pp. 328–333.
DOI: 10.1109/ICIS.2011.58.

[MAL+11] MADER, ROLAND; ARMENGAUD, ERIC; LEITNER, ANDREA;
KREINER, CHRISTIAN; BOURROUILH, QUENTIN; GRIESSNIG, GERHARD;
STEGER, CHRISTIAN; WEISS, REINHOLD: “Computer-Aided PHA, FTA and
FMEA for Automotive Embedded Systems”. In: Computer Safety, Reliability,
and Security (SAFECOMP 2011). Ed. by FLAMMINI, FRANCESCO;
BOLOGNA, SANDRO; VITTORINI, VALERIA. Springer Berlin Heidelberg,
2011, pp. 113–127. DOI: 10.1007/978-3-642-24270-0_9.

[MAL+12] MADER, ROLAND; ARMENGAUD, ERIC; LEITNER, ANDREA;
STEGER, CHRISTIAN: “Automatic and optimal allocation of safety integrity
levels”. In: Proc. of the Annual Reliability and Maintainability Symposium,
RAMS 2012. IEEE, 2012, pp. 1–6. ISBN: 978-1-4577-1849-6. DOI:
10.1109/RAMS.2012.6175431.

[MEP+05] MCKELVIN Jr., MARK L.; EIREA, GABRIEL; PINELLO, CLAUDIO;
KANAJAN, SRI; SANGIOVANNI-VINCENTELLI, ALBERTO L.: “A Formal
Approach to Fault Tree Synthesis for the Analysis of Distributed Fault
Tolerant Systems”. In: Proceedings of the 5th ACM International Conference
on Embedded Software. EMSOFT ’05. Jersey City, NJ, USA: ACM, 2005,
pp. 237–246. DOI: 10.1145/1086228.1086272.

[MZH+16] MÖHRLE, FELIX; ZELLER, MARC; HÖFIG, KAI; ROTHFELDER, MARTIN;
LIGGESMEYER, PETER: “Automating Compositional Safety Analysis Using
a Failure Type Taxonomy for Component Fault Trees”. In: 26th European
Safety and Reliability Conference (ESREL 2016). Glasgow, UK, Sept. 2016.

[NT09] NICOLÁS, J.; TOVAL, A.: “On the Generation of Requirements
Specifications from Software Engineering Models: A Systematic Literature
Review”. In: Information and Software Technology 51.9 (2009),
pp. 1291–1307. DOI: 10.1016/j.infsof.2009.04.001.

[Obj15a] OBJECT MANAGEMENT GROUP (OMG): OMG Systems Modeling
Language (OMG SysML). Version 1.4. 2015.

[Obj15b] OBJECT MANAGEMENT GROUP (OMG): OMG Unified Modeling Language
(OMG UML). Version 2.5. 2015.

[PBF+06] PAHL, G.; BEITZ, W.; FELDHUSEN, J.; GROTE, K.-H.: Engineering Design:
A Systematic Approach. Springer, 2006. ISBN: 978-1846283185.

175

http://dx.doi.org/10.1145/1921532.1921558
http://dx.doi.org/10.1109/ICIS.2011.58
http://dx.doi.org/10.1007/978-3-642-24270-0_9
http://dx.doi.org/10.1109/RAMS.2012.6175431
http://dx.doi.org/10.1145/1086228.1086272
http://dx.doi.org/10.1016/j.infsof.2009.04.001

Foreign Publications

[PLB+10] PAPADOPOULOS, Y.; LONN, H.; BERNTSSON, L.; JOHANSSON, ROLF;
TAGLIABO, F.; TORCHIARO, S.; SANDBERG, ANDERS; WALKER, M.;
REISER, M.-O; WEBER, M.; CHEN, D.; TÖRNGREN, M.; SERVAT, DAVID;
ABELE, A.; STAPPERT, F.: “Automatic allocation of safety integrity levels”.
In: 1st Workshop on Critical Automotive applications: Robustness & Safety,
CARS. 2010. DOI: 10.1145/1772643.1772646.

[PM99] PAPADOPOULOS, YIANNIS; MCDERMID, JOHN A.: “Hierarchically
Performed Hazard Origin and Propagation Studies”. In: Proc. of the 18th Int.
Conf. on Computer safety, reliability, and security, SAFECOMP 99. Ed. by
FELICI, M.; KANOUN, K.; PASQUINI, A. Vol. 1698. LNCS. Springer, 1999.
DOI: 10.1007/3-540-48249-0_13.

[PHS13] PRIESTERJAHN, CLAUDIA; HEINZEMANN, CHRISTIAN;
SCHÄFER, WILHELM: “From Timed Automata to Timed Failure Propagation
Graphs”. In: Proceedings of the Fourth IEEE Workshop on Self-Organizing
Real-time Systems (SORT 2013). IEEE, 2013.

[RPS+17] RETOUNIOTIS, ATHANASIOS; PAPADOPOULOS, YIANNIS;
SOROKOS, IOANNIS; PARKER, DAVID; MATRAGKAS, NICHOLAS;
SHARVIA, SEPTAVERA: “Model-Connected Safety Cases”. In: Model-Based
Safety and Assessment. Ed. by BOZZANO, MARCO;
PAPADOPOULOS, YIANNIS. Springer International Publishing, 2017,
pp. 50–63. DOI: 10.1007/978-3-319-64119-5_4.

[RH08] RUNESON, PER; HÖST, MARTIN: “Guidelines for conducting and reporting
case study research in software engineering”. In: Empirical Software
Engineering 14.2 (Dec. 19, 2008). DOI:
10.1007/s10664-008-9102-8.

[SAE10] SAE INTERNATIONAL: ARP4754A:2010: Guidelines for Development of
Civil Aircraft and Systems. 2010.

[Saf17] SAFAR, MONA: “ASIL decomposition using SMT”. In: 2017 Forum on
Specification and Design Languages (FDL). Sept. 2017. DOI:
10.1109/FDL.2017.8303902.

[SCL+10] SANDBERG, ANDERS; CHEN, DEJIU; LÖNN, HENRIK; JOHANSSON, ROLF;
FENG, LEI; TÖRNGREN, MARTIN; TORCHIARO, SANDRA;
TAVAKOLI-KOLAGARI, RAMIN; ABELE, ANDREAS: “Model-Based Safety
Engineering of Interdependent Functions in Automotive Vehicles Using
EAST-ADL2”. In: Proceedings of the 29th International Conference on
Computer Safety, Reliability, and Security (SAFECOMP 2010). Ed. by
SCHOITSCH, ERWIN. Vienna, Austria: Springer Berlin Heidelberg, Sept.
2010, pp. 332–346. DOI: 10.1007/978-3-642-15651-9_25.

[SSK14] SCHARL, ADAM; STOTTLAR, KEVIN; KADY, RANI: “Functional Hazard
Analysis (FHA) Methodology Tutorial”. In: International System Safety
Training Symposium 2014. St. Louis, USA, Aug. 2014.

176

http://dx.doi.org/10.1145/1772643.1772646
http://dx.doi.org/10.1007/3-540-48249-0_13
http://dx.doi.org/10.1007/978-3-319-64119-5_4
http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1109/FDL.2017.8303902
http://dx.doi.org/10.1007/978-3-642-15651-9_25

Foreign Publications

[Sch97] SCHWABER, KEN: “SCRUM Development Process”. In: Business Object
Design and Implementation: OOPSLA ’95 Workshop Proceedings (16th
October 1995). Ed. by SUTHERLAND, JEFF; CASANAVE, CORY;
MILLER, JOAQUIN; PATEL, PHILIP; HOLLOWELL, GLENN. Austin, USA:
Springer London, 1997, pp. 117–134. DOI:
10.1007/978-1-4471-0947-1_11.

[She96] SHEARD, SARAH A.: “Twelve Systems Engineering Roles”. In: Proceedings
of the INCOSE Sixth Annual International Symposium. Boston, USA, 1996.

[SPB16] SOROKOS, IOANNIS; PAPADOPOULOS, YIANNIS; BOTTACI, LEONARDO:
“Maintaining Safety Arguments via Automatic Allocation of Safety
Requirements”. In: Proc. of the 3rd IFAC Workshop on Advanced
Maintenance Engineering, Services and Technology (AMEST 2016). 2016.
DOI: https://doi.org/10.1016/j.ifacol.2016.11.005.

[Tes16] TESLA MOTORS: A Tragic Loss. press release. June 30, 2016. URL:
https://www.tesla.com/blog/tragic-loss.

[Tut10] TUTU, ANDREI: Continental Emergency Steer Assist Explained. June 24,
2010. URL:
https://www.autoevolution.com/news/continental-
emergency-steer-assist-explained-21731.html.

[VDI04] VDI: VDI 2206: Design methodology for mechatronic systems. Verein
Deutscher Ingenieure, 2004.

[VEF+12] VOGELSANG, A.; EDER, S.; FEILKAS, M.; RATIU, D.: “Functional
Viewpoint”. In: Model-Based Engineering of Embedded Systems: The SPES
2020 Methodology. Ed. by POHL, KLAUS; HÖNNINGER, HARALD;
ACHATZ, REINHOLD; BROY, MANFRED. Springer, 2012. Chap. 5,
pp. 69–83. ISBN: 978-3-642-34614-9 (Online), 978-3-642-34613-2 (Print).

[WC12] WARD, D. D.; CROZIER, S. E.: “The uses and abuses of ASIL
decomposition in ISO 26262”. In: 7th IET Int. Conf. on System Safety,
incorporating the Cyber Security Conference 2012. Oct. 2012, pp. 1–6. DOI:
10.1049/cp.2012.1523.

[Wei14] WEILKIENS, T.: Systems Engineering mit SysML/UML: Anforderungen,
Analyse, Architektur. dpunkt.verlag, 2014. ISBN: 9783864915444.

[WHL+16] WINNER, H.; HAKULI, S.; LOTZ, F.; SINGER, C., eds.: Handbook of Driver
Assistance Systems. Springer, 2016. ISBN: 978-3-319-12351-6. DOI:
10.1007/978-3-319-12352-3.

[YBL11] YUE, T.; BRIAND, L.; LABICHE, Y.: “A systematic review of transformation
approaches between user requirements and analysis models”. In:
Requirements Engineering 16.2 (2011), pp. 75–99. DOI:
10.1007/s00766-010-0111-y.

177

http://dx.doi.org/10.1007/978-1-4471-0947-1_11
http://dx.doi.org/https://doi.org/10.1016/j.ifacol.2016.11.005
https://www.tesla.com/blog/tragic-loss
https://www.autoevolution.com/news/continental-emergency-steer-assist-explained-21731.html
https://www.autoevolution.com/news/continental-emergency-steer-assist-explained-21731.html
http://dx.doi.org/10.1049/cp.2012.1523
http://dx.doi.org/10.1007/978-3-319-12352-3
http://dx.doi.org/10.1007/s00766-010-0111-y

Foreign Publications

[ZRH16] ZELLER, MARC; RATIU, DANIEL; HÖFIG, KAI: “Towards the Adoption of
Model-Based Engineering for the Development of Safety-Critical Systems in
Industrial Practice”. In: 5th International Workshop on Next Generation of
System Assurance Approaches for Safety-Critical Systems (SASSUR). Ed. by
SKAVHAUG, AMUND; GUIOCHET, JÉRÉMIE; SCHOITSCH, ERWIN;
BITSCH, FRIEDEMANN. Vol. 9923. LNCS. Springer International Publishing,
Sept. 2016, pp. 322–333. DOI: 10.1007/978-3-319-45480-1_26.

[ZF 16] ZF FRIEDRICHSHAFEN AG: ZF Mitigates Rear-End Collisions with New
Electronic Safety Assistant for Trucks. press release. June 29, 2016. URL:
https://press.zf.com/site/press/en_de/microsites/
press/list/release/release_23367.html.

[ZLG10] ZHANG, PENGCHENG; LI, BIXIN; GRUNSKE, LARS: “Timed Property
Sequence Chart”. In: Journal of Systems and Software 83.3 (2010),
pp. 371–390. DOI:
http://dx.doi.org/10.1016/j.jss.2009.09.013.

178

http://dx.doi.org/10.1007/978-3-319-45480-1_26
https://press.zf.com/site/press/en_de/microsites/press/list/release/release_23367.html
https://press.zf.com/site/press/en_de/microsites/press/list/release/release_23367.html
http://dx.doi.org/http://dx.doi.org/10.1016/j.jss.2009.09.013

LIST OF ABBREVIATIONS

ADAS Advanced Driver Assistance System, page 1

AgPL Agriculture Performance Level, page 22

ASIL Automotive Safety Integrity Level, page 1

bdd SysML block definition diagram, page 29

CCF Common Cause Failure, page 23

CF Cascading Failure, page 22

CFT Component Fault Tree, page 24

CNL Controlled natural language, page 86

CONSENS CONceptual design Specification technique for the ENgineering of complex
Systems, page 28

CPS Cyber-Physical System, page 1

DAL Development Assurance Level, page 22

E/E Electrics/Electronics, page 2

EBEAS Emergency Braking & Evasion Assistance System, page 3

ECU Electronic Control Unit, page 1

FMEA Failure Mode and Effects Analysis, page 2

FSR Functional Safety Requirement, page 19

FTA Fault Tree Analysis, page 23

GSN Goal Structuring Notation, page 37

HARA Hazard Analysis & Risk Assessment, page 19

HW Hardware, page 7

ibd SysML internal block diagram, page 29

179

List of Abbreviations

ILP Integer Linear Program, page 116

MBRE Model-based Requirements Engineering, page 85

MSD Modal Sequence Diagram, page 34

NLRE Natural Language Requirements Engineering, page 85

RDS Rear Door System, page 152

SEooC Safety Element out of Context, page 57

SIL Safety Integrity Level, page 1

SUD System under development, page 9

SW Software, page 2

SyRS System Requirements Specification, page 62

SysML Systems Modeling Language, page 29

TBD To be determined, page 45

TSR Technical Safety Requirement, page 19

UML Unified Modeling Language, page 9

V2V Vehicle-to-Vehicle (communication), page 3

180

LIST OF DEFINITIONS

Definition 2.1 Safety Manager . 17
Definition 2.2 Requirements Engineer . 17
Definition 2.3 System Requirements Engineer . 17
Definition 2.4 Software Requirements Engineer . 17
Definition 2.5 System Designer . 18
Definition 2.6 Safety Measure . 18
Definition 2.7 Safety Mechanism . 18
Definition 2.8 Safety Activity . 18
Definition 2.9 Safety Analysis . 18
Definition 2.10 Safety Case . 19
Definition 2.11 Hazard . 19
Definition 2.12 Hazard Analysis & Risk Assessment 19
Definition 2.13 Functional Safety . 21
Definition 2.14 Functional Safety Requirement . 21
Definition 2.15 Functional Requirement . 21
Definition 2.16 Non-Functional Requirement . 21
Definition 2.17 Single-Point Failure . 22
Definition 2.18 Multiple-Point Failure . 22
Definition 2.19 Dual-Point Failure . 22
Definition 2.20 Dependent Failures . 22
Definition 2.21 Cascading Failure . 22
Definition 2.22 Common Cause Failures . 23
Definition 2.23 Freedom from Interference . 24
Definition 2.24 ASIL Separation . 25
Definition 2.25 Independence . 26
Definition 2.26 ASIL Decomposition . 26

Definition 5.1 CFT Elements . 113
Definition 5.2 CFT Cascading Failure . 114
Definition 5.3 CFT Freedom from Interference . 114
Definition 5.4 CFT Separation . 114
Definition 5.5 CFT Common Cause Failure . 115
Definition 5.6 CFT Sufficient Independence . 115
Definition 5.7 CFT Decomposition . 115
Definition 5.8 DAL Decomposition . 125

181

LIST OF FIGURES

1.1 Interdisciplinary development process with work products and ASIL
propagation . 2

1.2 EBEAS scenario . 3
1.3 EBEAS ECU, interacting systems, and hazards 4
1.4 Overview of ASIL tailoring process steps and work products 10

2.1 VDI 2206 V model [VDI04] . 14
2.2 Automotive SPICE V model . 14
2.3 ISO 26262 V model . 16
2.4 Interdisciplinary development process for cyber-physical systems 16
2.5 Roles in the development process . 17
2.6 Excerpt of ISO 26262 safety life cycle phases with work products and ASIL

propagation . 20
2.7 Example fault free . 23
2.8 Example Component Fault Tree . 25
2.9 ASIL tailoring measure: Separation . 26
2.10 ASIL tailoring measure: Introduction of redundancy 27
2.11 Simplified CONSENS process with partial models 29
2.12 Excerpt of SysML4CONSENS profile . 30
2.13 Example of CONSENS environment . 31
2.14 Example of CONSENS function hierarchy 32
2.15 Example of CONSENS active structure . 33
2.16 Example of an MSD specification . 35
2.17 Example of an argument in Goal Structuring Notation 37

3.1 ASIL tailoring process steps and work products 40
3.2 ASIL tailoring process work product relations 41
3.3 Process Step 1 - Analyze Environment and Hazards 43
3.4 EBEAS system, environment, and hazards 44
3.5 UML Profile for hazards and safety classified elements 45
3.6 Process Step 2.1 - Develop/Refine Function Hierarchy 46
3.7 Process Step 2.2 - Develop/Refine (Safety) Requirements for Functions . . . 46
3.8 EBEAS function hierarchy . 47

183

List of Figures

3.9 Requirements for functions Analyze Situation and Communicate With Other
Vehicles . 49

3.10 Requirements for function Make Decision 49
3.11 Process Step 2.3 - Generate Failure Propagation Model for Function Hierarchy 50
3.12 Process Step 2.4 - Calculate ASIL Allocation for Function Hierarchy 51
3.13 Failure propagation and ASIL allocation of function hierarchy (focused on

Make Decision) . 52
3.14 EBEAS function hierarchy with allocated ASILs 53
3.15 Safety argument for ASIL allocation . 54
3.16 Process Step 3 - Define System Architecture and Allocate Functions to

System Elements . 55
3.17 EBEAS system architecture and function allocation 56
3.18 Sketch of ASIL tailoring process work products 59

4.1 ASIL tailoring process with highlighted contents of Chapter 4 61
4.2 Contents of the System Requirements Specification 63
4.3 Process Step 2.1 - Develop/Refine Function Hierarchy 65
4.4 Process Step 2.2 - Develop/Refine (Safety) Requirements for Functions . . . 65
4.5 Environment of the EBEAS with Interfaces 66
4.6 Top-level Function Hierarchy of the EBEAS 68
4.7 Relations between function hierarchy and MSD specification 70
4.8 Hierarchical structure of functions and requirements (based on [HM13]) . . . 71
4.9 MSD semantics overview . 74
4.10 General requirement scopes from [DAC99] 78
4.11 General occurrence pattern “Existence (After q)” as MSD 79
4.12 General real-time pattern “Bounded Response (Globally)” as MSD 79
4.13 Chronological succession safety requirement scopes based on [Bit00; Bit01] . 80
4.14 Real-time safety requirement scopes based on [Bit00; Bit01] 81
4.15 Safety pattern “Beginning - Necessary & Permitted 5” as MSDs 82
4.16 Safety pattern “Beginning - Necessary & Permitted 5” mapped to Absence

(After q until r) and Existence (After q) . 83
4.17 Safety pattern “Explicit Time - Permitted 2” (“Time-constrained Absence 2”)

as MSD . 83
4.18 Overview of MBRE-NLRE integration . 86
4.19 Example excerpt from model-based function hierarchy for EBEAS 87

5.1 ASIL tailoring process with highlighted contents of Chapter 5 95
5.2 Process Step 2.3 - Generate Failure Propagation Model for Function Hierarchy 97
5.3 Extended meta model for Component Fault Trees (based on [HTZ+12]) . . . 98
5.4 Failure type library model for gates . 99
5.5 UML Profile for Component Fault Trees . 100
5.6 Example CFT for function Make Decision in concrete and abstract syntax . . 101
5.7 Example Hazard CFT for hazard Hard Braking Omission 102
5.8 Example of CFT generation for function Make Decision 103
5.9 CFT generation cases for positive MSDs . 105
5.10 CFT generation cases for negative MSDs 106

184

List of Figures

5.11 Example of CFT generation for ∼O failure and redundant MSDs 111
5.12 Process Step 2.4 - Calculate ASIL Allocation for Function Hierarchy 112
5.13 Example of failure propagation model with allocated ASILs 113
5.14 Default ASIL allocation constraints . 118
5.15 Prohibited ASIL decomposition constraints 119
5.16 Constrained ASIL decomposition constraint 120
5.17 Meta model elements considered by ASIL allocation and their ASIL relations 123
5.18 Example failure propagation model and ASIL allocation to MSDs 124

6.1 ASIL tailoring process with highlighted contents of Chapter 6 131
6.2 UML Profile for the Goal Structuring Notation with constraints 135
6.3 Example GSN safety argument for hazard H1 136
6.4 Example function hierarchy, MSDs, and CFT 137
6.5 GSN generation for hazard . 139
6.6 GSN generation for default requirement hierarchy 140
6.7 GSN generation for ASIL separation . 142
6.8 GSN generation for ASIL decomposition 144

7.1 Prototype components (white) and dependencies (gray) 149
7.2 Chain of transformations with input and output models 151

A.1 RDS - Function Hierarchy . 190
A.2 RDS - Hazard CFTs . 191
A.3 EBEAS - Function Hierarchy . 192
A.4 EBEAS - Function interfaces . 193
A.5 EBEAS - Hazard CFTs . 193

185

LIST OF TABLES

2.1 Requirements for separation . 26
2.2 Requirements decomposition for ASIL tailoring 28

4.1 General requirement classes (based on [DAC99; KC05]) 77
4.2 Safety requirement classes (based on [Bit00; Bit01]) 80
4.3 Relation of requirement classes . 84
4.4 Merged requirement pattern classes . 85

6.1 Traceability links of GSN safety argument 138

7.1 Evaluation results . 157

187

A

CASE STUDY MODELS

This appendix contains screenshots of the models used for the case study in Chapter 7.

Case 1: Rear Door System (RDS)

Figure A.1 shows the manually specified function hierarchy of the RDS with the interfaces
used for its ports.
Figure A.2 shows the Hazard CFTs that were manually specified for the RDS. The event
event_RearDoorOpeningCommission represents a corresponding hazard with ASIL B. The
event event_RearDoorUnlockingOmission represents a corresponding hazard with ASIL A.

Case 2: Emergency Braking & Evasion Assistance System
(EBEAS)

Figure A.3 shows the manually specified function hierarchy of the EBEAS.
Figure A.4 shows the interfaces used for the function hierarchy ports.
Figure A.5 shows the Hazard CFTs that were manually specified for the EBEAS. The
event event_HardBrakingOmission represents a corresponding hazard with ASIL D. The
event event_SteeringOmission represents a corresponding hazard with ASIL D. The event
event_EmcyBrakeWarningOmission represents a corresponding hazard with ASIL B. The
event event_EvadeWarningOmission represents a corresponding hazard with ASIL B.

189

Appendix A Case Study Models

Figure
A

.1:R
D

S
-Function

H
ierarchy

190

Figure A.2: RDS - Hazard CFTs

191

Appendix A Case Study Models

Figure
A

.3:E
B

E
A

S
-Function

H
ierarchy

192

Figure A.4: EBEAS - Function interfaces

Figure A.5: EBEAS - Hazard CFTs

193

B

PAPER CONTRIBUTIONS

This appendix describes my contributions to the papers of my own publications where I am
not the only author.

[FHK+18] and [FHK+17]
I was the main author of this paper and associated technical report. I contributed to all
presented patterns and to all document sections, especially the main content.

[HFK+16]
This technical report consolidates the MSD syntax and semantics that this thesis works with,
and introduces the EBEAS. I was one of the main authors of the EBEAS and a section that
describes the usage of MSDs by example requirements on the EBEAS. In addition, I reviewed
other sections of the report.

[FH15], [FH14], and [FHM14]
Jörg Holtmann and I were the main authors of these papers and jointly developed the
underlying concepts of the controlled natural language and its synchronization with model-
based development.

[MFH15]
As a co-author of this paper I contributed the section on related work and reviewed others.

[DFH+13]
This technical report describes a requirements engineering approach integrating two existing
approaches, and the application of that integrated approach to a case study. I am one of the
main authors of this report, and contributed to the sections on the integrated approach and its
application.

[FHH+12]
This book chapter reports results of a national research project. I participated in the project
and contributed to the concepts presented in Section 12.3.2. As a co-author of that section, I
contributed text and reviewed several revisions.

[FHM12]
Jörg Holtmann and I were the main authors of this paper. We jointly developed the underlying
concepts for semi-automatic traceability between requirements engineering and systems
engineering using model-to-model transformations and constraint checks.

195

	Abstract
	Zusammenfassung
	Danksagung
	1 Introduction
	1.1 Advanced Driver Assistance System EBEAS
	1.2 Problem Statement
	1.3 Overview of the Solution
	1.4 Thesis Structure

	2 Foundations
	2.1 Development Process for Safe Cyber-Physical Systems
	2.2 Automotive Safety Standard ISO 26262
	2.3 Safety Integrity Levels in other Safety Standards
	2.4 Safety Analysis using Fault Trees
	2.4.1 Fault Tree Analysis (FTA)
	2.4.2 Component Fault Trees (CFTs)

	2.5 ASIL Tailoring
	2.5.1 Separation
	2.5.2 Decomposition

	2.6 Model-based Systems Engineering with CONSENS
	2.7 Modal Sequence Diagrams (MSDs)
	2.8 Goal Structuring Notation (GSN)

	3 ASIL Tailoring Process on Functional Safety Requirements
	3.1 Contributions
	3.2 Overview of Process Steps and Work Products
	3.3 Analyzing the Environment and Hazards
	3.4 Specifying Functions and Requirements
	3.5 Safety Analysis and ASIL Allocation
	3.6 Allocating Functions to System Architecture
	3.7 Assumptions & Limitations
	3.8 Related Work
	3.9 Conclusion

	4 Specifying Formal Functional Safety Requirements
	4.1 Contributions
	4.2 System Requirements Specification Contents
	4.3 Systematic Development and Refinement of Functional Safety Requirements
	4.3.1 Deriving the Top-Level Function Hierarchy from the Environment
	4.3.2 Structure of MSD Specifications for Functional Safety Requirements
	4.3.3 Refining the Function Hierarchy and Safety Requirements

	4.4 Specifying Functional Safety Requirements with MSDs
	4.4.1 MSD Semantics for Requirements
	4.4.2 Functional (Safety) Requirement Classes

	4.5 Integrating MBRE and NLRE for Safety Requirements Engineering
	4.6 Assumptions & Limitations
	4.7 Related Work
	4.7.1 Function Hierarchies
	4.7.2 Formal Functional Safety Requirements
	4.7.3 MBRE-NLRE Integration for Safety

	4.8 Conclusion

	5 Safety Analysis and ASIL Allocation on Functional Safety Requirements
	5.1 Contributions
	5.2 Safety Analysis on Functional Requirements
	5.2.1 Component Fault Tree Meta Model and Profile
	5.2.2 Linking Hazards to Failures
	5.2.3 Generating Component Fault Trees

	5.3 ASIL Allocation on the Function Hierarchy
	5.3.1 Calculating ASILs on CFTs
	5.3.2 Allocating ASILs to Functions and Functional Safety Requirements
	5.3.3 Application to other Safety-Critical Domains

	5.4 Assumptions & Limitations
	5.5 Related Work
	5.5.1 Generating Failure Propagation Models
	5.5.2 ASIL Allocation

	5.6 Conclusion

	6 Documenting ASIL Tailoring Arguments
	6.1 Contributions
	6.2 Safety Case Construction
	6.2.1 Safety Arguments in Goal Structuring Notation Profile
	6.2.2 Generating Safety Arguments

	6.3 Assumptions & Limitations
	6.4 Related Work
	6.4.1 Safety Argument Notations
	6.4.2 Generating Safety Arguments

	6.5 Conclusion

	7 Evaluation
	7.1 Prototype Implementation
	7.2 Case Study
	7.2.1 Context and Cases
	7.2.2 Hypotheses
	7.2.3 Preparation of the Data Collection
	7.2.4 Data Collection Procedure
	7.2.5 Interpreting the Results
	7.2.6 Threats to Validity

	8 Conclusion
	8.1 Summary
	8.2 Future Work

	Bibliography
	Own Publications
	Supervised Theses
	Foreign Publications

	List of Abbreviations
	List of Definitions
	List of Figures
	List of Tables
	A Case Study Models
	B Paper Contributions

