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Abstract

In the past decades, static analysis tools have been known to have specific user-experience issues
such as a high number of false positives, a lack of responsiveness, or the poor warning descriptions
that they provide. Their increasing use in industry makes those issues more relevant, especially
as static analysis tools become more powerful, detect more complex bugs and vulnerabilities,
and support an increasing number of languages, third-party libraries and coding concepts. The
way in which an analysis interprets the code it analyzes may differ from how the developer views
the analyzed code, causing major user-experience issues such as warning misunderstandings or
wrong fixes.

To address user-experience issues in static analysis tools, we apply the user-centered design
methodology, first aiming to understand the users’ motivations for using the tools, and what they
need to easily interact with them. With this knowledge, we then derive design recommendations
for building static analysis tools, which differ from the ones identified in past studies that only
focus on the user-experience issues themselves. Finally, we prototype and evaluate tools for static
analysis following the recommendations, showing the usefulness of the user-centered process.

In this thesis, we focus on two groups of users. First, we study analysis developers—who
write the code of a static analysis—to discover how to assist them in writing and debugging
static analysis code. Through a survey of professional analysis developers, we show that current
development tools do not sufficiently support static analysis development. To help analysis de-
velopers handle two codebases (the analysis code and the analyzed code), we identify desirable
design requirements for a debugging tool for static analysis, such as displaying internal analysis
results, providing graph visualizations, or introducing two sets of breakpoints for the two code-
bases. We apply some of those requirements in VisuFlow, a coding environment we designed
specifically for static analysis. Through a user study, we were able to show that VisuFlow
allows analysis developers to debug static analyses more efficiently than with currently used
coding environments.

Second, we focus on software developers—who write the code that is analyzed by an anal-
ysis tool—and report on developer motivations and strategies through a study consisting of a
survey of professional developers, a study of analysis logs from a large software company, and a
small-scale cognitive walkthrough. Through our study, we discover that the usage of static anal-
ysis tools in industry is heavily influenced by time constraints: the decisions made by software
developers depend on how much time they can allocate to understanding and fixing analysis
warnings. We thus derive a set of design recommendations for analysis tools, such as improving
the responsiveness of the tools to provide developers with quicker updates, including developer
knowledge in the analysis to reduce the rate of false positives, or improving the explainability
of analysis results to help developers understand warnings more efficiently. We address some
of those recommendations through the Just-in-Time Static Analysis concept with which devel-
opers can guide the analysis towards results of interest, postponing other paths for later. This
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allows our implementation, Cheetah, to be responsive enough to be integrated in an Integrated
Development Environment. Focusing at the overlooked use case of analysis configuration, we
address other recommendations through the concept of rule markers. The concept is used to
expose internal analysis information to the developer and help them better understand how the
analysis works and why it reports certain results, so that they can adjust the analysis rules.
Through user studies and empirical evaluations, we show that when addressing our design rec-
ommendations, the two concepts of Just-in-Time analysis and rule markers allow developers to
perform their tasks better than with current tools.

Through this thesis, we motivate the need for more user-centered approaches for addressing
decades-old user-experience issues in static analysis, putting the user at the center of the design
process in order to create tools that suit their needs.



Zusammenfassung

In den letzten Jahrzehnten waren statische Programmanalyse-Tools berüchtigt für User-
Experience-Probleme wie die hohen Anzahl von Fehlalarmen, das langsame Produzieren von
Ergebnissen oder für unvollständige Warnungen. Die zunehmende Nutzung der Tools in der
Industrie macht diese Probleme noch relevanter, insbesondere da statische Programmanalyse-
Tools immer mächtiger werden, mehr Sprachen, externe Bibliotheken und Coding-Konzepte
unterstützen und komplexere Bugs und Schwachstellen erkennen. Die Art und Weise wie
eine Analyse den analysierten Code interpretiert, kann sich vom Verständnis des Entwicklers
des Codes unterscheiden und so zu signifikanten User-Experience-Problemen führen, wie z.B.
missverständliche Warnungen oder falsche Fehlerbehebungen.

Um die Probleme mit statischen Programmanalyse-Tools zu adressieren, wenden wir be-
nutzerzentriertes Design an, um zu verstehen, wie und warum Programmanalyse-Tools benutzt
werden. Dabei untersuchen wir die Motivation der Anwender zur Verwendung der Tools und
ihre Bedürfnisse in der Interaktion mit diesen Tools. Mit diesem Wissen extrahieren wir De-
signempfehlungen für den Aufbau statischer Programmanalyse-Tools, die sich von denen früherer
Studien unterscheiden, welche sich nur auf die User Experience-Probleme konzentrieren. Dann
erstellen wir Prototypen, bewerten diese nach den Designempfehlungen und zeigen den Nutzen
von benutzerzentriertem Design.

Zu diesem Zweck konzentrieren wir uns auf zwei Benutzergruppen. Zuerst studieren wir die
Analysenentwickler—die den Code einer statischen Analyse schreiben—um herauszufinden, wie
man sie beim entwickeln und debuggen des Codes der statischen Analyse unterstützen kann.
Durch eine Umfrage unter professionellen Analysenentwicklern zeigen wir, dass aktuelle En-
twicklungswerkzeuge die Entwicklung statischer Analysen nicht ausreichend unterstützen. Um
den Analysenentwicklern zu helfen, mit zwei Codebasen (dem Analysecode und dem analysierten
Code) umzugehen, bestimmen wir Designanforderungen eines Debugging-Werkzeugs für statis-
che Analyse, z.B. die Anzeige interner Analyseergebnisse, der Bereitstellung von Diagrammvisu-
alisierungen oder der Einführung zweier Breakpoint-Systeme für die beiden Codebasen. Einige
dieser Anforderungen implementieren wir in VisuFlow, einer Programmierumgebung, die wir
speziell für statische Analyse entwickelt haben. Durch eine Nutzerstudie konnten wir zeigen,
dass VisuFlow es Analysenentwicklern ermöglicht, statische Analysen effizienter zu debuggen
als dies mit aktuellen Entwicklungswerkzeugen möglich ist.

Zweitens konzentrieren wir uns auf Softwareentwickler—die den Code schreiben, welcher von
einem Analysetool analysiert wird—und berichten über Motivationen und Strategien der En-
twickler. Dies tun wir durch eine Studie, die eine Umfrage unter professionellen Entwicklern,
eine Auswertung von Log-Dateien der Code-Analysen eines großen Softwareunternehmens, und
einen kleinen Cognitive Walkthrough umfasst. Die Studie zeigt, dass die Nutzung von statischen
Programmanalyse-Tools in der Industrie stark durch Zeitdruck beeinflusst wird: die Entschei-
dungen der Softwareentwickler hängen davon ab, wie viel Zeit sie haben, um Analysewarnungen
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zu verstehen und zu beheben. Wir bestimmen Designempfehlungen für Programmanalyse-Tools,
z.B. schnellere Ergebnisse durch die Tools, Integration von Entwicklerwissen in die Analyse, um
die Anzahl der Fehlalarme zu reduzieren oder die Verbesserung der Erklärbarkeit der Analyse-
warnungen, um Entwicklern zu helfen, Warnungen effizienter zu verstehen. Wir setzen einige
dieser Designempfehlungen durch das Just-in-Time Static Analysis Konzept um, mit welchem
Softwareentwickler die Analyse zu ausgewählten Schwerpunkten leiten und andere Teile auf
später verschieben können. Dies ermöglicht es unserer Implementierung, Cheetah, schnell
genug zu sein, um in einer integrierten Entwicklungsumgebung effizient zu laufen. Darüber hin-
aus stellen wir das Rule Markers-Konzept vor, welches den Softwareentwicklern interne Analy-
seinformationen zur Verfügung stellt, um ihnen zu helfen, die Funktion der Analyse besser zu
verstehen, und warum bestimmte Ergebnisse gemeldet werden, sodass die Entwickler die Analy-
seregeln zielorientiert umkonfigurieren können. Durch Nutzerstudien und empirische Bewertun-
gen zeigen wir, dass die beiden Konzepte der Just-in-Time-Analyse und der Rule Markers es den
Entwicklern ermöglichen, ihre Aufgaben besser zu erfüllen als mit aktuellen Programmanalyse-
Tools.

Wir begründen daher die Notwendigkeit von benutzerzentrierteren Ansätzen, um die
Jahrzehnte alten User-Experience-Probleme der statischen Analyse zu lösen. Dabei stellen
wir den Benutzer in das Zentrum der Designmethodik, um Programmanalyse-Werkzeuge zu
entwickeln, die den Bedürfnissen des Benutzers entsprechen.
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Introduction
1

This chapter motivates and presents the main research question of this thesis: can we build more
usable tools for data-flow analysis by putting the user at the center of the design process? It
presents the five main contributions of the thesis, and details their corresponding publications.

1.1 Motivation and Research Question

Static program analysis is a method of automatically analyzing the the source code or the
bytecode of a program without running it [98]. From assistant utilities for compiler optimiza-
tions [51, 140] to simple style-checking analyses to the detection of complex software bugs and
security vulnerabilities [136], the use of static analysis is widespread in industry, from the indi-
vidual developer to large companies [22,47,65]. One particular type of static analysis, data-flow
analysis [52, 98], is able to perform complex reasoning and to report warnings covering a large
range of software issues such as privacy leaks [9,71], data races [49,84], and API misuses [2,60].
Because static analysis reasons about the program without running it, it needs to approximate
all potential runtime scenarios. As a result, the users of static analysis tools, in particular of
analysis tools that perform complex reasoning, often encounter common user-experience issues
such as poor responsiveness [22, 47] (as the analysis needs time to run through all scenarios
and is thus slow to provide updates), or dissatisfactory warning explainability [14, 65] (because
explaining the analysis’ complex reasoning to the user can be challenging). Such mismatches
between how an analysis tool works and how its end-user—the software developer—thinks it
should work are often caused by unadapted tool design, in which the features offered by the
analysis tool do not appropriately support the developer in their tasks. Those user-experience
issues can cause warning mishandlings and tool abandonment, thus preventing developers from
appropriately using the analysis tools to their full potential [10, 11,14,22,47,65].

When designing software, methods of user-experience design focus on the user’s needs in
order to bridge mismatches between the user’s perception of the environment and tasks, and
the tool’s [25, 40, 108]. Unlike functional design, user-experience design approaches the design
of an interface from the angle of the user’s needs rather than from the functionalities a given
program can support, thus yielding more usable interfaces and new functionalities that are closer
to the user’s expectations. For example, in this thesis, we discover the need to support analysis
developers in debugging static-analysis code, a topic that has seldom been researched in the past,
and design dedicated functionalities that are more adapted to static analysis than currently used
debugging tools.
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1.2 Contributions and Structure of the Dissertation

In this thesis, we explore the application of user-centered methods to the design of tools
for static analysis to address current user-experience issues. We consider two distinct user
groups: the software developers (who are the main target users of analysis tools), and the
analysis developers (who write and debug the static analysis code used by the former group).
While analysis developers do not use static analysis tools to write and debug analyses, the
code editors and debuggers that they use to write the analysis code still need to be able to
run analyses and explain the inner-workings of the analyses for debugging purposes. As a
result, analysis developers also run into similar static analysis-specific user-experience issues as
software developers. We refer to analysis tools used by software developers and code editors and
debuggers used by analysis developers as tools for static analysis, or tools for data-flow analysis.

Throughout the thesis, we apply a user-centered approach to design tools to support both
user groups. We first conduct surveys and studies to understand user-experience issues with the
current state-of-the-art tools. We then focus on particular issues found in our studies, design
tools that address those specific issues, and evaluate them through empirical evaluations for
soundness and precision, and user studies for usability, with the goal of answering the main
research question of this thesis:

Can we build more usable tools for data-flow analysis by
putting the user at the center of the design process?

1.2 Contributions and Structure of the Dissertation

For the two user group of interest to this thesis—software developers and analysis developers—
we assess the current state-of-the-art tools for static analysis, survey how they use those tools,
determine user-experience issues and design recommendations when building tools to support
them, and propose, implement, and evaluate approaches to address the user-experience issues.
After presenting background information on static analysis and user-centered design in Chap-
ter 2, the thesis makes five contributions. The related work specific to each contribution is
detailed at the beginning of the corresponding chapter.

In a first contribution, the thesis presents the current state-of-the-art tools used by analysis
developers to write and debug static analysis, and details their known user-experience problems.
This is achieved through a survey of 115 analysis developers in which we determine which
problems analysis developers typically encounter when debugging static analysis code, which
tools they use to help fix those problems, which user-experience issues they encounter with
those tools, and which debugging features would best support analysis developers write and
debug static analysis. This contribution is presented in Chapter 3.

The second contribution of the thesis is the design and evaluation of VisuFlow, a debugging
environment built to support the development of data-flow analysis. VisuFlow is designed
to address the main user-experience issues found in the survey from Chapter 3 and focuses in
particular on features that provide more clarity in the interactions the of two codebases (i.e., the
analysis code and the analyzed code) instead of just one, like in traditional debugging scenarios.
A user study conducted over 20 analysis developers showed that when debugging data-flow
analyses, VisuFlow allows analysis developers to identify 25% and fix 50% more errors than
with a traditional debugging environment. This contribution is detailed in Chapter 4.

Chapter 5 reports on the third contribution of the thesis. It explores the current state-of-the-
art static analysis tools used by software developers to detect bugs and security vulnerabilities
in their application code, and expands on their user-experience issues. Through a survey of
87 developers in industry, a study of analysis logs, and a small-scale cognitive walkthrough on
eight software developers, we determine where and when developers typically use static analysis
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tools, what their motivations are when using those tools, which user-experience issues they
encounter, and how those aspects influence their strategies when fixing analysis warnings. From
this information, we identify requirements for designing usable static analysis tools for software
developers.

The fourth contribution of the thesis focuses on a prominent user-experience issue encoun-
tered by software developers: the lack of responsiveness of certain analysis tools, which we
present in Chapter 6. We address this issue by introducing the concept of Just-in-Time data-
flow analysis that prioritizes certain analysis paths based on developer preferences. We present a
framework for adapting existing data-flow analysis solvers to support that concept, and present
Cheetah, an instantiation of the concept for Android taint analysis. In an empirical evalua-
tion, Cheetah was able to report its first analysis results in less than a second. Its user study
conducted over 18 developers showed that participants were able to fix data leaks twice as fast
with Cheetah than with a traditional taint analysis.

The fifth contribution of this thesis is presented in Chapter 7, in which we target another
prominent user-experience issue reported by software developers: the poor explainability shown
by some analysis tools when detailing a warning, which is particularly needed when developers
configure an analysis tool. We address the issue by introducing the concept of rule graphs, which
gather analysis-internal information—which is traditionally not exposed to the end-user—and
uses it to assist the developer in the following tasks: improve warning understanding, classify
warnings in given categories, and learn analysis patterns for which the analysis is more likely
to make a mistake. A user study over 22 participants on Mudarri, an implementation of the
usage of rule graphs, shows that using analysis-based information helps developers understand
warnings significantly better than without. An empirical evaluation also reveals that rule graphs
allow the automated classification of data leaks and can help identify causes for false positives
in data-flow analysis.

Chapter 8 summarizes the improvements in usability gained from a user-centered approach
for tool design for both analysis developers and software developers, and suggests potential
future work in the area, advocating for the importance of integrating usability from the start of
the tool design process.

1.3 Publications Details

The work presented in Chapter 3 and Chapter 4 on debugging environments for analysis de-
velopers has been published in the IEEE Transactions on Software Engineering journal (TSE)
in 2018 [91]. The VisuFlow debugging environment was presented at the tool track of the
International Conference on Software Engineering (ICSE) in 2018 [92].

The study on the usage of static analysis tools in industry described in Chapter 5, with the
exception of Section 5.5.2 on gamification, is currently under submission [93].

The work on gamification from Section 5.5.2 was presented at the New Ideas and Emerging
Results track of the ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering [89] in 2018.

The concept of Just-in-Time analysis from Chapter 6 has been presented at the ACM
SIGSOFT International Symposium on Software Testing and Analysis conference (ISSTA) in
2017 [88] for which it received an ACM SIGSOFT Distinguished Paper Award. Early work
on this concept was presented at the ACM conference on Programming Language Design and
Implementation (PLDI) in 2016, where it won the first place at the ACM Student Research
Competition. Cheetah was demonstrated at the tool track of the International Conference on
Software Engineering (ICSE) in 2017 [87].

The work on rule graphs presented in Chapter 7 is currently under submission [90].
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1.3 Publications Details

We make the evaluation artifacts for all five contributions available online [86]. The arti-
facts contain—when applicable—the survey questions and anonymized answers, the user study
questionnaires and results, the benchmark suites used for evaluation, the source code of the
implementations, and video demonstrations of the interfaces.

The author of this thesis is the main and lead contributor to all of the publications mentioned
above.
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2

This chapter presents background information on static analysis and user-centered design. In
particular, we focus on taint analysis, a static data-flow analysis, and present two data-flow
analysis frameworks: the monotone framework [50, 55] and the IFDS framework [15, 110], both
of which we use in this thesis. We also introduce the notion of user-centered design, and how
we apply it to the design of tools for static analysis. Further background information on the
specific topics addressed by each chapter (e.g., responsiveness of static analysis tools) is given
in the corresponding chapters.

2.1 Taint Analysis

Taint analysis is a type of static data-flow analysis that tracks tainted data through a program.
It is typically used to detect injection flaws or data leaks.

Injection flaws are reported by OWASP as the first category of their current top ten applica-
tion security risks [102,103]. They occur when a program executes untrusted data, as illustrated
in Listing 2.1. The code example is an excerpt from a web servlet written in Java, which answers
GET requests through the method doGet(). It contains a simple SQL injection (CWE-89) [79]
where a potentially attacker-controlled string enters the program through one of the request’s
parameters at line 2, is appended to the variable query, and is executed on the database at
line 5. Because the program uses the parameter as is, an attacker can get malicious payloads
executed by issuing GET requests with well-crafted parameters, and can thus run arbitrary SQL
queries on the database. To avoid injection flaws, it is recommended to sanitize external inputs.
Manually crafted sanitizers should be avoided in favor of trusted existing libraries, as illustrated
in the example with the sanitize() method at line 3 that does not sanitize and returns the
parameter instead. In the particular case of SQL injections, developers should prefer prepared
statements instead.

To detect an injection flaw, a taint analysis marks program variables that contain potentially
malicious data. Here, uId is marked (tainted) at line 2, because it receives the external data
from getParameter(). The variable input is then tainted in the sanitize() method (line 9),
because the argument passed to the method at line 3 is tainted. id is therefore tainted at
line 10, and since it is the return value of the function, userId is tainted in turn at line 3. At
line 4, the potentially malicious string is appended to query, which is thus tainted. The call
to executeQuery() at line 5 is executed with the tainted variable query as a parameter, which
causes the taint analysis to report a potential injection.
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1 protected void doGet(HttpServletRequest request, HttpServletResponse response) throws
Exception {

2 String uId = request.getParameter('userId');
3 String userId = sanitize(uId);
4 String query = "SELECT * FROM User WHERE userId='" + userId + "';";
5 ResultSet res = statement.executeQuery(query);
6 ...
7 }
8
9 private String sanitize(String input) {

10 String id = input;
11 return id;
12 }

Listing 2.1: SQL injection from line 2 to line 5. The sanitize() method is incomplete and does not
sanitize the input correctly.

Methods that create taints such as getParameter() are called sources, methods at which
taints are reported (e.g., executeQuery()) are referred to as sinks, and methods that kill taints
(thus preventing the malicious data from being propagated) are sanitizers (e.g., sanitize(), if it
was correct).

As with injection flaws, taint analysis can also be used to detect data leaks—vulnerabilities
which were part of the OWASP top 10 in 2007 [100,101] but that have now been absorbed by the
injection flaws category [102, 103]. Data leaks present a problem of information exposure [75],
where private data such as banking credentials, passwords, or other application information
can be disclosed via email, or by being written to a log for example. To detect this category
of vulnerabilities, we configure the taint analysis with the sources being accessor methods to
private information, and the sinks being methods that send information out of the system.

Depending on which sources, sinks, and sanitizers it uses, a taint analysis can detect a large
array of bugs and vulnerabilities, for example, 17 of MITRE’s top 25 most dangerous software
errors [80] (e.g., SQL injections (CWE-89) [79], use of hard-coded credentials (CWE-798) [78],
or use of a broken or risky cryptographic algorithm (CWE-327) [76]) can be found with taint
analysis [106]. In this thesis, we use the example of taint analysis for the detection of data leaks
in Android, and thus use dedicated sources and sinks definitions described by Rasthofer et al. [8]
for the Android framework.

Other types of data-flow analysis can detect other types of bugs and vulnerabilities. For
instance, typestate analysis, a generalization of taint analysis, can detect another five of MITRE’s
top 25 errors, nullness analysis can find null pointer dereferences (CWE-476) [77]. In this thesis,
we focus on the case of taint analysis, but our approaches can be generalized to all types of data-
flow analysis, as long as they can be expressed in the frameworks we present in the next sections.

2.2 The Monotone Framework

The monotone framework is often used to define and solve classical data-flow analysis problems.
First introduced by Kildall [55] through the example of a constant propagation analysis used for
compiler optimization, it has then been refined by Kam et al. [50] for the general case of data-
flow analysis. In the monotone framework, an analysis problem is expressed with the following
five properties:

• A Control-Flow Graph (CFG) representing all possible paths of a method that can be
executed at runtime. The nodes of the CFG typically represent statements of the method.
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2: String uId = request.getParameter(’userId’)

3: String userId = sanitize(uId)

4: String query = "SELECT * FROM
User WHERE userId=’" + userId + "’;"

5: ResultSet res = statement.executeQuery(query)

10: String id = input

11: return id

{ }

{uId}

{uId, userId}

{uId, userId, query}

{uId, userId, query}

{input}

{input, id}

{userId}

Figure 2.1: Interprocedural Control-Flow Graph (ICFG) of the example Listing 2.1, and the
data-flow sets generated at each statement for a forward taint analysis.

Extended to a full program, the combination of multiple CFGs connected with call and
return edges is called an Interprocedural Control-Flow Graph (ICFG). Figure 2.1 depicts
the ICFG of the example from Listing 2.1.

• A data-flow domain D containing the data-flow facts, which are the values that the analysis
results can take. For the example Listing 2.1 with a taint analysis, the lattice D contains
the different combinations of the data-flow facts: the program’s variables.

• A flow function fn : D 7→ D defining how n—a node in the ICFG—is interpreted by
the analysis. Given the program statement n and an in-set of data-flow facts in ∈ D
representing the analysis results before n is executed, fn(in) determines the out-set out ∈ D
that represents the analysis results after n’s execution. The flow function thus encodes
the rules of the analysis. For example, in the case of a taint analysis, it can encode
the generation of a taint at a source statement, the transfer of a taint at an assignment
statement, or the kill of a taint when a variable is sanitized, among other rules.

• An initial set d0 ∈ D corresponding to the in-set at the program’s entry point e. It is used
to initialize the analysis. In Figure 2.1, e corresponds to line 2, and d0 is the empty set.

• A join operator or merge function u : D×D 7→ D defines how to merge two in-sets at meet
points of the ICFG, which are places where a node n has multiple predecessors (e.g., after
if/else branches, or after method calls such as line 4 in Listing 2.1). There, the out-sets of
the parents are merged into a single in-set for n, before the flow function can be applied.

Once an analysis is defined with the five properties, the monotone framework can compute
the analysis results. The Kildall approach computes MOPn, the “meet over all paths” solution
for each node n. For a given node n, the MOP is obtained by first calculating the analysis results
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Algorithm 1 Fixed point iteration algorithm
1: procedure analyze
2: waiting_list := e
3: IN[e] := d0
4: while waiting_list 6= ∅ do
5: pop n off waiting_list
6: OLD := OUT[n]
7: IN[n] := u { OUT[m] | m ∈ predecessors(n) }
8: OUT[n] := fn(IN[n])
9: if OLD 6= OUT[n] then

10: wl ∪ = successors(n)

along every single execution path of the ICFG from the entry point to n, and by merging them
to obtain the general results over all paths of the program leading to n.

MOPn = u
p∈paths(n)

fp(d0)

While the MOP solution yields sound and precise results, it is generally undecidable, for
example in the case of loops where an infinite number of paths exist. To remediate the issue,
an over-approximation of the MOP, the MFP (maximal fixed point) is introduced by the Kam
et al. approach [50]. Instead of merging the results at the end, the results are merged at each
meet point of the ICFG. The meet information thus encompasses multiple paths at once, and
at each meet point, it limits the number of paths that are explored by the analysis.

MFPe = d0

MFPn = u
m∈predecessors(n)

fm(MFPm)

We see that MFP over-approximates MOP: for each node n, MFP is a superset (w) of MOP,
making the analysis results obtained with MFP still sound, but less precise.

The monotone framework computes the analysis results by using a fixed-point iteration al-
gorithm over the nodes of the ICFG, as shown in Algorithm 1. Once the fixed point is reached
and the out-sets do not change anymore, the analysis results correspond to the MFP solution.
In Figure 2.1, the MFP results of the taint analysis can be read in the edge labels and can be
interpreted as such: if a variable is included in a set, it is tainted at the corresponding point of
the program.

Intermediate Representation

In this thesis, we use the monotone framework provided by the Soot analysis framework [139,140]
for the analysis used in our evaluation of VisuFlow in Section 4.2. To simplify the analysis
rules, many analysis frameworks first transform the source code or bytecode into an intermediate
representation that is semantically easier to analyze. In the case of Soot, the intermediate
representation is called Jimple. Jimple contains 15 types of statements, while Java bytecode
contains more than 200, making Jimple programs easier to analyze. In addition, Jimple makes
all classes and methods explicit by using their fully qualified names, so the analysis does not
need to infer them. Jimple programs are also expressed in three-address code, making each call
and each assignment explicit and simpler to analyze than more complex constructs.
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Distributivity

The original approach by Kildall assumes the distributivity property on the flow functions,
requiring that ∀x, y ∈ D, f(xu y) = f(x)u f(y), meaning that whether the join operator is
applied before or after the flow function, the results of the analysis are the same. Because many
analysis problems are not distributive, and can therefore not be expressed with distributive
flow functions, the Kam et al. approach relaxes the requirement to satisfy only monotonicity:
∀x, y ∈ D, f(xu y) v f(x)u f(y) (withv the partial order of the latticeD), from which the name
of the framework—the monotone framework—originates. If the problem is distributive, the MFP
is equal to the MOP, which the case for taint analysis, a distributive problem. Distributivity
allows us to define the Just-in-Time analysis concept in Chapter 6, and to express taint analysis
problems in the IFDS framework (which we detail in Section 2.3), as done with the analyses
presented in Section 6.4 and Section 7.6.

Soundness and Precision

The flow functions of an analysis describe how each statement of a program is interpreted by the
analysis. Real-world programs can be very complex, for example, containing constructs that are
difficult to express in an analysis, such as multithreading, or by using external libraries or native
code which cannot be analyzed easily. It is impossible to predict all of the code constructs used
by all real-world programs, making it impossible to write an analysis that is completely sound
and precise [67]. However, analysis developers can improve the soundness and precision of their
analyses as much as possible by precisely analyzing aliasing, or the analysis being field-sensitive,
object-sensitive, flow-sensitive, or context-sensitive [104,120,126,129].

The taint analysis we use in Section 4.2 is field-sensitive, up to a maximum access path
length of 4, meaning that objects with more than 4 nested fields can lower the precision of
the analysis. The analysis does not support aliasing, but is flow-sensitive, object-sensitive, and
context-sensitive, the latter being achieved through inlining. Despite the low performance caused
by inlining and the lack of aliasing support, this analysis is sufficient to evaluate VisuFlow in
the context of the user studies presented in Section 4.2, as they do not evaluate the analysis’
soundness or precision, but the usability of the tool that presents the analysis results.

The two taint analyses used in Section 6.4 and Section 7.6 support fields, up to access
path lengths of 5 and 3, respectively. Both analyses support aliasing by relying on a black-
box, field-sensitive alias analysis derived from Soot’s intraprocedural LocalMayAliasAnalysis1.
The analyses are flow-sensitive, object-sensitive, and context-sensitive. Context-sensitivity is
provided through the framework that is used to express the analyses: IFDS, which we introduce
in the next section.

2.3 The IFDS Framework
Context-sensitivity is a major issue when defining a data-flow analysis: the analysis must keep
track of the different call sites it visits, so that it can return back to the correct caller method
when it finishes analyzing a callee method. If not, the analysis must return to all callers to
ensure soundness, causing a loss in both precision and scalability. To address this, the call-
strings approach [120] explicitly records the call sites along with the data-flow facts, while the
functional approach computes general analysis summaries that can be reused in any context.

The Interprocedural Finite Distributive Subset (IFDS) framework [110] belongs to the latter
category. The taint analyses used in Section 6.4 and Section 7.6 use the IFDS implementation

1https://github.com/secure-software-engineering/cheetah/blob/master/Cheetah/src/
layeredtaintplugin/icfg/LocalMayAliasAnalysisWithFields.java

9

https://github.com/secure-software-engineering/cheetah/blob/master/Cheetah/src/layeredtaintplugin/icfg/LocalMayAliasAnalysisWithFields.java
https://github.com/secure-software-engineering/cheetah/blob/master/Cheetah/src/layeredtaintplugin/icfg/LocalMayAliasAnalysisWithFields.java


2.3 The IFDS Framework

0 uId userId query

0 input id2:

3:

4:

5:

:10

:11

Normal flow function
Call flow function
Summary

Return flow function
Call-to-return flow function

Figure 2.2: Exploded Super Graph (ESG) of the example Listing 2.1 for a forward taint analysis.
The statements are represented by their line numbers (highlighted in gray).

Heros [15]. Built on top of the monotone framework, IFDS requires an analysis to be expressed
as an interprocedural finite distributive subset problem, namely adding the constraints of dis-
tributivity, and the join operator being ∪, the set union. In addition, the framework separates
the flow function into four distinct ones:

• normal flow functions, which encode the propagation of the data-flow facts in a method,

• call flow functions, which are used at call sites to map data-flow facts from the context of
the caller to the context of the callee,

• return flow functions, which are also used at call sites and map data-flow facts back to the
caller,

• and call-to-return flow functions, which transfer the data-flow facts that are not influenced
by a call at a call site.

Figure 2.2 illustrates all four types of flow functions on an Exploded Super Graph (ESG).
Unlike the monotone framework which only uses an ICFG, IFDS runs its fixed-point iteration by
building an additional ESG. In an ESG, the statements are displayed vertically (represented by
their line numbers in Figure 2.2), and the in-sets are separated in their individual data-flow facts
and are represented horizontally. At a statement, the flow functions are called for each existing
data-flow fact of the in-set instead of the entire in-set. Just like the in-sets are transferred to
the out-sets in the monotone framework, each data-flow fact of the in-set is transferred to the
data-flow facts composing the out-set. This separation of the data-flow facts is made possible
due to the distributivity constraint of the flow functions: whether the join operator (∪ in IFDS)
or the flow function is run first, the analysis results are identical. Thus, the union of all data-
flow facts at any program point will always be the same as the in-set or out-set the monotone
framework would compute at that point.

IFDS transforms the analysis problem into a reachability problem: if a data-flow fact is
reachable from the original data-flow fact 0 at the program’s entry point, it means that the fact
holds. In the example in Figure 2.2, if a data-flow fact can be reached from the 0 at line 2, it is
tainted. For example, the data-flow fact query after line 5 can be reached from the original 0
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through id, input, and uId, denoting that query is tainted after that statement. On the other
hand, userId is not tainted after line 2, because it cannot be reached from the original 0. 0 is an
artificial data-flow fact introduced in IFDS that is always reachable at any point of the program,
ensuring that all parts of the program have the possibility to be reached from the original 0.

Since the analysis problem is a reachability problem in IFDS, the framework can analyze a
callee once per data-flow fact and reuse the computations at the next call. This results in the
creation of summaries that can be plugged into the caller methods regardless of the context. In
the example in Figure 2.2, the sanitize() method has three summaries: 0 → 0, input → input,
and input → id. If sanitize() is called a second time, the summaries can be reused without
reanalyzing the method. The use of summaries allows analyses expressed in IFDS to be context-
sensitive by default and to reduce the number of times a callee is analyzed, by only computing
information along individual data-flow facts instead of entire in-sets.

We define below the flow-functions of the taint analyses we use in Section 6.4 and Section 7.6,
marking with 〈stmt〉(α) the flow function applied to an access path α ∈ D at a statement stmt.

Normal-flow function

〈x← y〉(α) = {α} \ {x.∗} ∪ {x.λ | α = y.λ}
〈x← y ⊗ z〉(α) = {α} \ {x.∗} ∪ {x | α = y ∨ α = z}

〈other〉(α) = {α}

The normal-flow function is the identity function except for assignment statements where one of
the right-hand side operands is tainted. For a direct assignment, we remove all taints for the left
operand (x and all of its fields), and apply to its base variable the taints that exist for the right
operand and its fields (x.λ). In the case of a binary operator ⊗, Jimple requires all operands to
be local variables, so we taint the left operand if any of the right operands are tainted.

Call-flow function

〈x← a.m(p)〉(α) =


{α} if α is static ∨ α = 0
{this.λ} if α = a.λ

{arg.λ} if α = p.λ

∅ otherwise

For the call-flow function, taints for the base variable and the parameters are propagated into
the callee. They are mapped to the this variable and the method’s arguments in the scope of
the callee. Static variables are propagated as well.

Return-flow function

〈x← a.m(p)〉(α) =



{α} if α is static ∨ α = 0
{a.λ} if α.λ = this.λ

{p.λ} if α.λ = arg.λ ∧ |λ| > 0
{x.λ} if α.λ = retV al.λ

∅ otherwise

The return-flow function maps the this variable and the arguments back to the base variable
and parameters of the caller scope. Static variables are propagated back into the caller.
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Call-to-return-flow function

〈x← a.m(p)〉(α) =



∅ if α is static ∨ α.λ = p.λ ∨
α.λ = a.λ

{α} \ {x.∗} ∪ {newTaints(m) |
α = 0 ∧ isSource(m)}

otherwise

The call-to-return-flow function ensures that the variables that are affected by the call are not
just propagated across the call on the side of the caller. Static variables, parameters, and the
base variable are killed by returning ∅. Their taints, as well as that of the overwritten variable
x, are carried over by the corresponding return flow function, depending on what happens in
the callee(s). The function also propagates further such access paths not referenced by the call.
If the method m is a source method, the newly tainted variables are added to the tainted set.
Sinks are also handled in the call-to-return flow function: if the method m is a sink and if it
leaks a tainted variable α, it is reported.

The Interprocedural Distributive Environment Framework

The Interprocedural Distributive Environment (IDE) framework is a generalization of IFDS to
analyze problems that compute more data-flow information than a simple taint analysis, e.g.,
a linear constant propagation. While the presence or absence of a variable is enough to encode
whether or not it is tainted, a linear constant propagation needs to convey the constant value
of the variable. To do so, the IDE framework first runs an IFDS pass to determine all reachable
data-flow facts, and then annotates the edges of the ESG with the so-called environment trans-
formers that can, for instance, compute the constant values. Naturally, the requirements for
expressing an analysis in IFDS also apply to IDE. In Heros, the IFDS solver is a specialization
of the IDE solver.

2.4 User-Centered Design
Many different design strategies can be adopted when designing a software product. A popular
one is functional design, in which the product is divided in different functionality-specific modules
to reduce the coupling between modules. Unlike functional design which focuses on optimizing
the product’s implementation, user-centered design aims at optimizing the product’s usability, by
understanding the user’s needs and requirements and including them at every step of the design
process [68,143]. The goal of user-centered design is to create products with high usability, that
answer the users’ needs as closely as possible, as opposed to functional design where the product’s
functionality is the first priority, and the user is expected to adapt to the product. An example
is the introduction of the desktop metaphor [1] in 1970 which proposed a new interface for
interacting with computers: instead of a command-line interface proposing abstract commands
to the users, it presented the computer like an abstraction of the user’s work desk, with a file
system, folders, and a trash can, in a graphical format. This metaphor matched the working
environment of computer users at the time, and allowed them to understand and use computers
more efficiently. The desktop metaphor quickly became the standard on all platforms, and is
still in use today.

User-centered design is an iterative process along which prototypes are designed and tested,
involving the user at every step of the process. Different versions of the user-centered design
process exist, all revolving around three main steps: user research, design, and evaluation, as
shown in Figure 2.3 [68,112,138,143].
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User
research

DesignEvaluation

Surveys, interviews,
interaction studies

Prototyping,
storyboardingUsability testing

Figure 2.3: User-centered design process and tools for each step of the process.

User research is the first step to take when designing software for particular users. Its aim
is to identify the users’ needs and establish the requirements that the software must meet to
satisfy those needs. At this stage, creating personas, scenarios, or user stories helps building an
understanding of the users and their needs. More information can be gathered through surveys,
interviews, or studies of the usage of existing tools, in which knowledge is gathered about the
context in which the users interact with the tool, and what they expect from it. With those
needs, software designers then derive requirements and functionalities for their tool. The software
architecture that results from this process can differ from the one that the functional design
would yield: a small change in the interface can have large consequences on the implementation
in the background.

The design step comes after identifying the user requirements. Designers produce alternative
designs, focusing on how the user interface supports those requirements. Here, we refer to the
user interface as not necessarily a graphical interface, but any means through which the user
may interact with the system. Interfaces can be designed using various levels of prototypes, from
low-fidelity sketches or paper prototypes, to high-fidelity wireframes or working software. The
design step must be performed with the user in mind, and can lead to going back to the user
research to determine use cases through storyboarding, or to conduct more studies that can help
validate the design ideas.

In the evaluation step, software designers validate the design of their product. To involve
users as much as possible in the design process, the evaluation typically includes user studies
of different types, such as comparative studies where the differences between two prototypes
are evaluated. In this thesis, we mainly conduct within-subjects studies [96], in which each
participant tests all prototypes. As opposed to a between-subjects study—where a participant
only interacts with a single prototype, this design allows us to compare a participant’s behavior
across different prototypes and to minimize the noise created by the personal knowledge of the
participants. This is especially effective since our studies are held in a controlled lab environ-
ment. To reduce the learning effect between the different prototypes, we change the order in
which the prototypes are shown to the participants. To ensure learning-fairness between the
different prototypes, we follow a latin-square design [30]. In our studies, we also prime [97] our
participants, so that they start the study with the same background knowledge. For example,
we ask participants to perform with a simple example task, to reduce uncertainties due to task
understanding or rule out usability issues unrelated to the prototypes. Another evaluation for-
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mat is cognitive walkthroughs, in which the participant walks through a prototype step by step,
detailing their reasons for taking specific actions, thus providing insight into how they interpret
the interface. Once the evaluation is finished, the design process can stop if the prototype meets
the requirements to satisfaction. Most often, new constraints and user-experience issues are
revealed through the user studies, and the prototype is taken to the design step for adjustments,
or back to the user research for a new iteration.

In this thesis, we apply the user-centered design process to create tools for analysis developers
and software developers. For the first user group, we first research the usage context and user
needs for debugging tools through a survey of analysis developers, and derive tool requirements
from the survey results (Chapter 3). We then build VisuFlow based on those requirements,
evaluate it through a comparative user study with an existing debugging tool, and report the
outcomes of the study (Chapter 4). For software developers, we run a survey, study usage logs
of an analysis tool, and interview users using a paper prototype as part of the user research step
(Chapter 5). Focusing on different user-experience issues, we design the tools Cheetah and
Mudarri, and conduct comparative studies to verify the validity of our design ideas (Chapter 6
and Chapter 7).

Khoo Yit Phang’s thesis [53] on User-centered Program Analysis Tools creates visualizations
for analysis paths, and combines the results of multiple static and dynamic analyses together in a
single, user-friendly tool. Unlike Khoo’s approach which focuses on design and only evaluates one
of its tools with the end-users, we apply the full cycle of the user-centered design process, starting
with thorough studies to understand user motivations and needs. While Khoo’s research address
some of the requirements that we identify (e.g., visualizations to enhance warning explainability),
we focus on others (e.g., responsiveness, or the integration of developer-specific knowledge in
the analysis).
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3
In practice, static analysis tools are used by companies and individual developers to opti-
mize programs, verify their compliance to security or quality guidelines, or to vet third party
applications—for example in Google’s Play Store, static analysis helped take down over 700,000
malicious applications in 2017, 99% of which were removed before anyone could install them [4].

As applications grow with new features, code concepts, frameworks, and libraries, static
analysis tools must model increasingly complex systems and analyze larger codebases to properly
support their users. However, static analysis code is also prone to bugs itself. An error in the
rules of the analysis could have a large security impact on the applications made available to
the public every day: over 86,000 applications were released on the Google Play Store in April
2018 [5]. While more complex analyses are written and used in production systems every day,
the cost of debugging and fixing them also increases tremendously.

In this chapter, we focus on tool support given to analysis developers to write and debug
their analysis code. We will refer to such tooling as debugging environments. We first introduce
related work on existing tools and approaches for writing and debugging static analysis. Then,
to understand the difficulties of debugging static analysis, we conducted a survey on 115 static
analysis developers, which aims at understanding the context of use of debugging tools for static
analysis code (e.g, when and why analysis developers use those tools), which user-experience
issues they encounter with those tools, and which features would best support them when
developing analyses. From the survey results, we derive a list of requirements for building
debugging environments for static analysis tools [91].

The work presented in this chapter has been published in the IEEE Transactions on Software
Engineering journal (TSE) [91].

3.1 Related Work
Debugging static analysis has been overlooked in the software engineering community, and to
our best knowledge, our work is the first one on the topic. Therefore, in this section, we
discuss currently popular debugging tools and techniques for general software, and prior work
on visualizing static analysis information.

3.1.1 Debugging Tools

The runtime environments of most programming languages are shipped with debuggers provided
by the language maintainers (e.g., GDB [132]). Many IDEs, such as Eclipse [32] and IntelliJ [46],
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integrate debugging functionalities for major programming languages natively in their tool sets.
As a result, many analysis developers use IDE-integrated debuggers to debug static analysis
code. As our survey shows, such tools are designed for general application code, and do not
have specific support for static analysis. More complex debugging techniques such as delta
debugging [150], omniscient debugging [64], and interrogative debugging [57] also suffer from
the same issue. Moreover, they are not integrated into commonly used debugging tools.

3.1.2 Debugging Static Analysis

The problem of debugging static analysis code compared to more general application code re-
volves around the nature of the program’s input: the analyzed code. Because the analyzed code
is a program, it is typically more complex than other types of input (e.g., parameters for a web
request, or text file to parse). An analysis must reason about how its input program behaves
when it is run, adding another layer of indirection to the development and debugging tasks.

We are not aware of any tool that is tailored to address issues specific to debugging static
analysis. In past work, Andreasen et al. [3] suggest to employ soundness testing, delta debug-
ging, and blended analysis to debug static analysis. Through examples, they discuss how the
combination of these techniques (both pairwise and all three of them) have helped them lo-
cate and fix bugs in their static analyzer TAJS. In our approach, we aim to determine feature
requirements based on what analysis developers need to build an appropriate debugging tool.

Other tools provide a subset of the features that we identify in this chapter for a static analysis
debugger, especially in terms of visualization of information and data flows. For example,
Atlas [27] visualizes data-flow paths based on the abstract syntax tree (AST) of a given program.
Phang et al. [54] present a tool that visualizes program paths to help the user track where an
error originates from to improve user understanding and error report evaluation. However, none
of these tools enable static analysis developers to debug their own analyses, but are rather
tailored to the users of static analysis tools (e.g., software developers), and therefore focus more
on visualization features than debugging features.

A similar domain to static analysis is metaprogramming, in which a program can operate on
other programs—in most cases, itself. In this domain, the work closest to our own is Porkoláb
et al.’s [107], on debugging C++ template metaprograms. Porkoláb et al. name feature require-
ments similar to the ones we discover for static analysis, such as the need to make the CFG
and intermediate analysis values visible to the developer. Our study is focused on the domain
of static analysis, and aims to identify all requirements needed to build a debugger for this use
case. Unlike Porkoláb et al., we study the usage context and motivations of analysis developers,
and identify additional requirements, such as omniscient debugging for example.

3.2 Survey: Debugging Tools for Static Analysis

We designed the following survey to understand the usage context of debugging tools for static
analysis and their user-experience issues. In the survey, we asked the participants to distinguish
between analysis code (the static analysis code) and application code (the code that is typically
analyzed by the analysis code). The latter may range from small test cases to large, complex
systems, and encompasses all programs that are not analysis code.

With the survey, we aim to answer the following research questions:

• RQ1: Which types of analysis are most commonly written?

• RQ2: Which errors are most frequently debugged in analysis code and application code?
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• RQ3: Do analysis writers think that analysis code is harder/easier to debug than appli-
cation code, and why?

• RQ4: Which tools do analysis writers use to support the debugging of analysis code and
application code?

• RQ5: What are the limitations of those tools and which features are needed to debug
analysis code?

The survey contains 32 questions (grouped into five thematic sections) that we refer to as
Q1–Q32, in the order in which they were presented to participants. Unless specified otherwise,
all questions are multiple-choice questions, with an open “Others” text field. The questions are
detailed in Appendix A.

1. Participant information: We use Q1–Q10 to gather information about the par-
ticipants. Q1 asks for their background—academia or industry, Q2 for their research
topic—in free text, and Q3 for how long they have been writing analysis code. In Q8,
we also ask the participants if they have written analysis code for commercial tools, and
which commercial tools those are.

2. Hardness of debugging: We ask which type of code is easier to debug on a Likert
scale from 1 (application code) to 10 (analysis code) (Q11), and why (Q12), in free text.
Q13 then queries participants on how long they spend on writing analysis code compared
to debugging it on a Likert scale from 0 (100% writing, 0% debugging) to 10 (0% writing,
100% debugging). Q20 is the same question as Q13, but for application code.

3. Debugging context: To understand when and how analysis developers use debugging
tools, we ask questions about the analyses participants have written in the past. Q4
queries participants about the programming languages they have written analyses for,
Q5 asks them which purposes those analyses serve (e.g, security, program optimization,
etc.), Q6 for the types of analyses (e.g, data-flow, abstract interpretation, etc.), Q7 for
the program level at which the analyses operate (e.g., line-based analyses, full-program
analyses, etc.), Q9 for the analysis frameworks they used, and Q10 for a few examples
of analyses that they have written, in free text. In free text, we then ask for the reasons
why the participants start debugging the analysis code (Q14), and what the root causes
of errors are (Q15). Q21 is the same question as Q15, for application code.

4. Debugging tools: This section gathers information about the debugging environments
used by analysis developers. We first ask them in Q28 if their preferred editor is a
text editor (e.g., vim, emacs) or an Integrated Development Environment (IDE) (e.g.,
Eclipse, IntelliJ). We then ask which particular editors they use (Q29), and why they
prefer those those editors (Q30), both in free text. Also in free text, we ask participants
which debugging features they most use (Q16), like (Q17), dislike (Q18), and would
like to have (Q19) when debugging analysis code. Q22–Q25 are the same as Q16–Q19,
applied to application code. Finally, with Q26, participants rated how important certain
debugging features are to them on the following Likert scale: not important, neutral,
important, very important, and not applicable.

5. Contact information: In Q31 and Q32, we ask participants if they would be willing
to participate in further studies, and if yes, which email address we could contact them at.
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Figure 3.1: Number of valid (gray) and invalid answers (white) per question.

Pilot Survey

We sent a pilot survey to ten pilot participants (both students and researchers). Using their
feedback about length, quality, and understandability, we modified the survey and obtained the
final version described above. We namely shortened the survey from 48 to 32 questions, removing
questions that were too specific to particular areas of static analysis. The pilot participants also
noted that similar questions such as the ones that became Q13 and Q20 in the new survey were
confusing when asked directly one after the other. We thus grouped the questions about static
analysis together and those about application code together, clearly focusing the first part of
the survey on the participants and their analyses, the second part on analysis development, and
the last part on application development.

Participants

Analysis developers in industry were more difficult to find and approach, and could not divulge
some of the information that we requested. Although most of our participants are from academia
(85.2%), we also include analysis developers from industry (15.7%), with three participants af-
filiated to both (Q1). For our survey, we emailed authors of static-analysis papers published
between 2014 and 2016 at the following top conferences in Software Engineering and Program-
ming Languages, and their co-located workshops: ICSE, FSE, ASE, OOPSLA, ECOOP, PLDI,
POPL, SAS. We manually extracted the static-analysis related papers from the conference pro-
ceedings, and reached out to the 450 authors we gathered. We received responses from 117
researchers, and discarded two for quality issues.

Most participants are experienced static analysis developers. Approximately 31.3% of the
participants have 2–5 years of experience writing analysis code, 22.3% have 5–10 years of expe-
rience, 26.8% have more than ten years of experience, and only 9.8% have less than two years.
The rest has never developed an analysis, or did not answer Q3.

Survey Analysis

In the following sections, we present the answers given by analysis developers to our survey.
Because some of the survey questions were in free text format, and the participants were given
the choice of an open “Others” answer to the multiple choice questions, we applied an open card
sort [45] methodology to distribute such answers in different categories. In this type of card
sorting, the categories are derived as the answers are classified. Two researchers created the
categories as they were classifying the answers, and a third researcher then classified the answers
into the categories derived by the first two. Answers that could match multiple categories were
sorted in all matching categories, such as “I use breakpoints and stepping”, which matches both of
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the “Breakpoint” and “Stepping” categories. Responses that do not answer the question were
classified in an “Invalid” category (e.g., “n/a” Q24). Such answers were more often found in the
last part of the survey about application code, where some participants were confused by the
familiarity of the questions to the analysis code part, and did not notice that they now applied
to application code. Answers such as “I think I just answered this one.” (Q22) were thus classified
into the “Invalid” category.

To verify the validity of the classification, we compared the agreement between the two
rounds of classifications between the first two researchers and the third one. Since one answer
can be classified into multiple categories, we calculated the agreement for each category of each
question. Because of the imbalance in the distribution of the answers, we ran into a paradox of
inter-rater agreement [141], making the Cohen’s Kappa [61] an unreliable statistic for this survey
(average κ = 0.66, median κ = 0.7, min = -0.08, max = 1, σ = 0.33). We thus computed the
percent agreement instead. The average percent agreement over all categories for all questions
is 96.3% (median = 98%, min = 65.2%, max = 100%, standard deviation σ = 0.05).

We only report the most relevant answers to the survey questions: in general answers that
are chosen by more than one participant. Our statistical tests include all valid answers. All
questions and anonymized answers are available online [86]. Since participants were given the
possibility to choose multiple answers to the same multiple-choice question and an answer to a
free-text question could match multiple categories, the percentages we report for each question
may add up to more than 100%. Due to optional questions and participants who did not finish
the survey, some questions received fewer answers than others. Figure 3.1 reports the number
of valid (gray) and invalid (white) answers per question. The percentages we report for each
question are based on the number of valid answers, and not on all 115 answers.

3.3 Usage Context and Developer Motivation

To gain a better understanding of how analysis developers use their debugging tools, we first
gather information about the types of analysis written by the developers, the reasons for which
they start to debug an analysis, and the root causes of the analysis bugs they find at the end
of a debugging session. We also report on which type of codebase (analysis code or application
code) the participants think is harder to debug, and why.

3.3.1 Most Commonly Developed Analyses

Table 3.1 presents an overview of the different types of analyses written by the participants.
The main analyzed language is Java, with 62.3% of the participants writing analyses for this
language. C/C++ comes second with 59.4%, and JavaScript is third, with 23.6%. After that, 34
more languages were named, but the number of participants analyzing each of them was under
8%. Those results are consistent with the state of research in static analysis at the time of the
survey (in 2017), which was mostly applied to Java and its related programming languages (e.g.,
Android) (Q4).

Most of the analyses revolve around four main uses: security and privacy analyses aiming at
finding security vulnerabilities and data leaks (58.5%), analyses that support software developers
in program understanding (55.7%), analyses that detect functional bugs (52.8%), and analyses
that support performance optimization (29.4%). All other 20 types of analyses are reported by
less than 2% of the participants (Q5). This is also consistent with current analysis tools used
in industry: the vast majority of them aim to find security vulnerabilities (e.g., Checkmarx [20],
Coverity [26], FindBugs [121], etc.)
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Table 3.1: Analyses developed by the participants.

Analyzed Language (Q4)
Java 62.26%
C / C++ 59.43%
JavaScript 23.58%
Every other language ≤ 7,55%

Purposes (Q5)
Security and privacy 58.49%
Program understanding 55.66%
Functional correctness 52.83%
Performance optimization 27.36%
Every other purpose ≤ 1.89%

Framework (Q9)
Soot 55.41%
WALA 31.08%
LLVM 21.62%
Every other framework ≤ 9.46%

Analysis Type (Q6)
Data-flow 74.53%
Abstract interpretation 65.09%
Symbolic execution 36.79%
Model checking 21.70%
Every other type ≤ 3.77%

Analysis Level (Q7)
Program-based 71.15%
Function-based 50.96%
Line-based 40.38%
Module-based 26.92%
System-based 14.42%

The same trend appears with the branches of static analysis that participants write for
(Q6). Data-flow analysis is the most popular (74.5%), because it can be used to find most of
the top security vulnerabilities (e.g., SANS top 25 [106,117]). Abstract interpretation, symbolic
execution, and model checking come next, with 65.1%, 36.8%, and 21.7% of the participants
respectively. The remaining nine categories are each used by less than 4% of the participants.

Depending on the property that the analysis aims to verify and the complexity of the analysis,
the analysis considers different subsets of the program (Q7). For example, simple style checkers
typically verify properties based on one line of code, while the detection of injection flaws may
traverse an entire program or system so an analysis must be able to consider system-wide data
flows. The program level that is most used is program-based, with 71.2% of the participants
writing analyses that take the entire program as a context, 51% write intra-procedural analyses—
on the method level, and 40.4%, on the line level. Analyses considering modules (e.g., packages)
or entire systems are less popular (26.9% and 14.4%, respectively).

We asked the participants which frameworks they use to write static analyses, and received
three main answers: Soot [140] is the most popular framework, with 55.4% of the participants
using it. WALA [135] and LLVM [133] are second and third (31.1% and 21.6%, respectively).
The 32 other frameworks named by the participants are used by less than 10% of them (Q9).

3.3.2 Most Frequently Debugged Errors

Knowing what kind of analyses are written most often, we now focus on the types of errors
that are debugged most often. Asking for why analysis developers start a debugging session
(Q14), we find that the top three reasons revolve around analysis correctness. As shown in
Table 3.2, 47.1% of the participants start debugging because the analysis did not produce the
correct results, and 31.4% and 29.4% explain that they debug because the respective precision
and soundness of their analysis is not satisfying. Unlike general application code, static analysis
code has stricter requirements for correctness: wrongly handling one statement can result in
a wrong data-flow fact being propagated throughout the entire codebase, in turn causing the
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Table 3.2: Reasons why analysis developers start a debug session (Q14).

Reason % of Devs
Unexpected results 47.06%
Precision 31.37%
Soundness 29.41%
Performance 15.69%
Bad termination 13.73%
Program understanding 5.88%
Memory issues 3.92%
Intermediate representation handling 3.92%
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Figure 3.2: Root causes of the errors found when debugging analysis code (gray) and application
code (white) (Q15 and Q21).

propagation of other wrong data-flow facts, resulting in false positives or false negatives. More
minor reasons for starting a debugging session are due to the bad performance of the analysis
(15.7%), and the wrong termination of the analysis algorithm (13.7%).

At the end of a debugging session, analysis developers know the root cause of the error.
Figure 3.2 presents the most typical root causes found when debugging analysis code (Q15) and
application code (Q21), classified in six categories. We notice that when debugging analysis
code, the main cause for errors is handling corner cases, which is twice as prevalent as when
writing analysis code. This category includes overlooked cases that the developer normally
knows of. For example, for Q15, a participant answered “Forgot to consider the effect of certain, rare
instructions”. On the other hand, domain knowledge refers to code behavior that the developer
is unaware of in the application code or the analyzed code, such as “Unexpected values returned by
an API”. This category has the smallest difference between analysis code and application code.

Programming errors are also found in both analysis code and application code, but they
occur twice as often in application code. This category includes implementation errors, such as
“wrong conditions, wrong loops statements”, as opposed to algorithmic errors, which contain errors
due to a wrong design of the program’s algorithm (e.g., “non-convergence” of the analysis) (Q15).
Algorithmic errors are 3.5× more prevalent in analysis code than in application code.

Two categories are specific to analysis code: semantics mismatch, which is specific to how
the analysis interprets the analyzed code (for example “The code does not take [into] account the
abstract semantics correctly”), and underlying infrastructure, which is similar to domain knowledge,
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Figure 3.3: Difficulty of debugging analysis code compared to application code on a scale from
1 (analysis code is harder) to 10 (application code is harder) (Q11).

but instead of the knowledge of the analyzed code, it is about the knowledge of the analysis
framework, e.g., “Can’t load classes/methods successfully”.

We observe different interests when debugging analysis code or application code. While bugs
in application code are mainly due to programming errors, the root causes of static analysis
bugs are distributed over multiple categories. We attribute this to the heightened interest of
analysis developers to produce not only functional analyses, but sound and correct ones. Testing
functional correctness typically requires validating input/output relationships. For analysis code,
those relationships are always imperfect due to necessary approximations. Hence, it is difficult to
define functional correctness for static analysis. Another specificity of static analysis, handling
two code-bases, is also the cause of errors belonging to analysis-specific categories: semantics
mismatch, and underlying infrastructure.

Because of the specific requirements of static analysis, the bugs that developers investigate
in application code have different causes than the bugs found in analysis code. Therefore, there
is a need for supporting debugging analysis code for the specific kind of errors that are of interest
to analysis developers.

3.3.3 Comparison with Application Code

Based on the knowledge of which errors are most commonly found in analysis code compared
to application code, we ask participants which errors are easier to debug, and why.

In Q11, participants rated how hard debugging analysis code is compared to debugging
application code on a Likert scale from 1 (analysis code is harder to debug) to 10 (application
code is harder to debug). The average rate is 4.0 (standard deviation σ = 2.1). Figure 3.3 shows
that 50.5% of the participants find static analysis harder to debug than application code, 28.2%
are neutral, and 9.5% think that application code is harder to debug.

This observation is confirmed with Q13 and Q20, where participants reported that they
spend more time debugging a piece of static analysis code than writing it, and the contrary
for a piece of application code. On average, they spend 46.8% of their time writing analysis
code, and 53.2% of their time debugging it. For application code, they spend 57.5% of their
time writing, and 42.5% debugging. A X 2 test of independence does not detect significant
correlations (p > 0.05) between the rating of Q11 and the participants’ background (seniority,
coding languages, editor type, or analysis frameworks), suggesting that no matter the type of
analysis, debugging analysis code is perceived as more difficult than debugging application code.

When asked why they found one type of code harder to debug than the other (Q12), partici-
pants gave different answers. We classified them and present them in Table 3.3. The classification
yields ten reasons for which static analysis is more difficult to debug than application code, seven
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Table 3.3: Reasons why developers think that analysis code is harder to debug than application
code, and vice versa (Q12).

Harder to debug Reason % of Devs

Analysis code

Abstracting two types of code 15.7%
Greater variety of cases 15.7%
More complex structure of static analysis tools 6.0%
Evaluating correctness is harder 6.0%
Soundness is harder to achieve 3.6%
Intermediate results are not directly accessible 4.8%
Static analysis is harder to debug 3.6%

Both
Both are application code 13.3%
They cannot be compared 7.2%
No opinion 3.6%

Application code
Used to developing static analysis 6.0%
Application code is more complex 2.4%

reasons for why they are equally difficult to debug, and nine reasons for why application code
is harder to debug.

The main reasons cited by participants who thought that static analysis was harder to debug
focused on the complexity of handling two codebases at the same time: the analysis code and
the analyzed code: “Static Analysis requires to switch between your analysis code and the Intermediate
Representation which you actually analyze”. This difficulty creates more corner cases that need to be
handled by the analysis developer. Another argument was the requirements of static analysis
tools. While both the application code and the analysis code need to be functional, static
analyses also have to ensure soundness, making static analysis code more complicated to write.
To quote a participant: “’correct’ is better defined [in application code]”. The last reason mentioned
by the participants is that “static analysis is harder to debug”, pointing to one particular cause:
the intermediate results of the analysis are not directly verifiable, as opposed to the output of
application code: “Static analysis code usually deals with massive amounts of data, i.e., large programs.
Therefore, it is harder to see where a certain state is computed, or even worse, why it is not computed at
some point.”

Participants who noted that static analysis and application code were equally hard to debug
were split between two main arguments. One was that both codebases were application code:
“a static analyzer is an application, albeit a sophisticated one”, and the other, that they were so dif-
ferent that they could not be compared: “These two difficulties are qualitatively different and hence
incomparable.”

Participants who find application code more difficult to debug than static analysis mentioned
that application code was more complex than static analysis code and can contain a high number
of corner cases the application developer has to comprehend: “Static analysis code usually includes
very limited number of possible cases.” Some participants also wrote that the reason why they found
application code harder to debug was that they were used to developing static analysis.

Discussion (RQ1–RQ3)

We observed that the most analyzed programming language is Java, that analyses most often
target security vulnerabilities, that data-flow analyses, and program-level analyses are written
more often than other types of analysis, and that Soot is the most popular analysis framework.
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The primary concern of analysis developers when starting a debugging session is the cor-
rectness (soundness and precision) of their analysis. When debugging such errors, the most
recurrent root causes are corner cases, algorithmic errors, semantics mismatches, and unhan-
dled cases in the underlying analysis infrastructure. In comparison, programming errors are the
one main cause of bugs in application code. We see that because of the specific requirements
of static analyses, the bugs that developers investigate in application code and analysis code
have different causes, thus motivating the need for supporting debugging static analysis for the
specific kind of errors that are of interest to analysis developers.

Static analysis developers spend 10.7% more time debugging static analysis than they spend
debugging application code. In fact, more than half of the participants (50.5%) find static
analysis harder to debug because of three main reasons: handling two codebases at the same
time, the soundness requirements of analysis tools, and the lack of debugging support for static
analysis. With this knowledge, we explore how to best design features to support analysis
debugging in the next section.

3.4 Desirable Features for Debugging Static Analysis

Knowing why developers debug analyses, we now focus on the tools analysis developers use to
debug analyses, in particular which features are most useful, inconvenient, and wanted. We
compare tool features for debugging analysis code compared to application code, and derive a
list of requirements for building a debugging environment for static analysis.

3.4.1 Debugging Tools Used by Analysis Developers

When asked which editors they use to write analysis code in Q28 and Q29, 56.0% of the
participants answered that they use an Integrated Development Environment (IDE) such as
Eclipse or IntelliJ, 42.7% use text editors like vim or emacs, and 1.3% use another solution that
they did not specify. The most popular editor is vim [16], used by 33.3% of the participants.
Eclipse [32] is second, with 28.0%. Emacs [38] and IntelliJ [46] come third and fourth, with 21.3%
and 17.3%, respectively. The other 21 tools are each used by less than 10% of the participants.
We note that all of the tools named here are general debugging tools for application code, thus
motivating the need for analysis-specific debugging environments.

We asked participants which features of their coding environments are most useful when
debugging analysis code (Q17) or application code (Q23). Table 3.4 shows the features men-
tioned by more than one participant. We group the answers in four categories: IDE users writing
analysis code, text editor users writing analysis code, IDE users writing application code, and
text editor users writing application code.

We can see that many features are common to all four groups of users. Breakpoints are used
by 35.2% of the participants when debugging application code, and 28.2% of the participants
when debugging analysis code. Coding support (such as auto-completion), is appreciated by
29.6% of the participants when writing analysis code, and 20.4% when writing application code.
Variable inspection functionalities are used by 27.8% of the participants when debugging appli-
cation code, and 19.7% when debugging analysis code. Debugging tools such as “GDB/JDB” are
also used: 20.4% of the participants use them when writing application code, and 16.9% when
writing analysis code. In addition, IDE users highlight IDE-specific features such as type check-
ers, stepping, and hot-code replacement. It is interesting to note that printing the intermediate
results is a popular solution for debugging both analysis and application code.

A X 2 test of independence shows a strong correlation between the type of editor (IDE or
text editor) and the most useful debugging features (p = 0.01 ≤ 0.05) for application code. The
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Table 3.4: Useful features for debugging analysis code and application code for IDE users and
text editor (TE) users (Q17 and Q23).

Analysis code Application code
Feature IDE TE IDE TE
Printing 3 3 3 3

Breakpoints 3 3 3 3

Debugging tools 3 3 3 3

Coding support 3 3 3 3

Variable inspection 3 3 3 3

Automated testing 3 3 3 3

Expression mode 3 3 3 3

Memory tools 3 3 3

Graph visualizations 3 3

Stepping 3 3

Type checker 3 3

Hot-code replacement 3 3

Visualizations 3

Stack traces 3

Drop frames 3

Documentation 3

test does not find such a correlation for analysis code, indicating that the debugging features
used when writing analysis code are the same in both types of coding environments.

Overall, we observe that the most popular debugging features are traditional debugging
functionalities. Regardless of the coding environment, analysis developers use the same debug-
ging features to debug analysis code and application code, e.g., breakpoints, variable inspection,
coding support, and printing intermediate results.

3.4.2 User-Experience Issues with Current Debugging Tools

Through Q18 and Q24, we focus on the limitations of the debugging tools presented in Sec-
tion 3.4.1. The two questions ask participants about which features of their coding environments
are inconvenient to use when debugging analysis code and application code, respectively. We
show the features mentioned by more than one participant in Table 3.5.

We see that the features that gather the most dissatisfaction from the participants are general
debugging features. Of all participants, 29.5% find the standard debugging tools lacking when
debugging analysis code, against 25% for application code. The lack of immediate feedback when
a change is made in the code is pointed by 11.4% of the analysis developers, and 17.9% of the
application code developers. Coding support is also disliked by 18.2% of the participants when
writing analysis code, against 25% when writing application code.

To our surprise, two of the most disliked features—debugging tools (disliked by 29.5% when
debugging analysis code and 25% when debugging application code) and coding support (18.2%
for analysis code and 25% for application code)—are also among the most used and appreciated
(Table 3.4). This contradiction suggests that although current tools are useful, analysis develop-
ers require more specific features to fully support their needs. For example, a participant wrote:
“While the IDE can show a path through [my] code for a symbolic execution run, it doesn’t show analysis states
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Table 3.5: Unsatisfactory features for debugging analysis code and application code for IDE
users and text editor (TE) users (Q18 and Q24).

Analysis code Application code
Feature IDE TE IDE TE
Debugging tools 7 7 7 7

Immediate feedback 7 7 7 7

Coding support 7 7 7 7

Multiple environments 7 7 7

Intermediate results 7 7

Handling data structures 7 7

Support for system setup 7 7

Scalability 7

Visualizations 7

Conditional breakpoints 7

Memory tools 7

Bad documentation 7

along that path”. Debugging tools could thus be improved by showing more of the intermediate
results of the analysis, and by providing more support to handle different environments (e.g.,
participants complained about the “Manual work to setup complex build/test systems”).

In particular, participants using an IDE to write analysis code find that debugging tools
are not scalable, lack visualizations of analysis constructs (e.g., “It’s mostly text-based”), and need
special breakpoints that can be controlled from both the analysis code and the analyzed code,
allowing them to step into both codebases independently (e.g., “Missing an easy way to add a
breakpoint when the analysis reaches a certain line in the input program (hence having to rerun an analysis)”).

Following from our survey results, we see that current debugging tools lack specific function-
alities to support static analysis such as showing the analysis’ intermediate results, or providing
clear visualizations of the analysis and special breakpoints.

3.4.3 Tool Features for Debugging Analysis Code

To identify which debugging functionalities would best support analysis developers, we asked
participants to suggest useful features for debugging analysis code (Q19), and application code
(Q25). We present the features mentioned more than once in Table 3.6.

We see a clear distinction between the features requested for debugging application code and
analysis code. For application code, participants ask for better hot-code replacement, and coding
support (including help with handling complex data structures: “Better support to record complex
data coming from external services”). For static analysis code, 18.4% of the participants ask for
better visualizations of the analysis constructs, and 23.7% indicate that they would like to have
graph visualizations: “Easier way to inspect “intermediate” result of an analysis, easier way to produce state
graphs and inspect them with tools”. Omniscient debugging is requested by 13.2% of participants
to help show the intermediate results of the analysis: “Stepping backwards in the execution of a
program”. Participants also request better test generation tools and special breakpoints. We
also see demands for better test generation, better debugging tools in general, and the special
breakpoints mentioned in Section 3.4.2.
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Table 3.6: Requested features for debugging analysis code and application code for IDE users
and text editor (TE) users (Q19 and Q25).

Analysis code Application code
Feature IDE TE IDE TE
Graph visualizations 3 3

Omniscient debugging 3 3

Visualizations 3 3

Hot-code replacement 3 3

Coding support 3 3

Test generation 3

Debugging tools 3

Intermediate results 3

Conditional breakpoints 3

Handling data structures 3

A X 2 test on the features of Table 3.6 shows a correlation between the type of code (anal-
ysis code or application code) and the features requested by participants (p = 0.04 ≤ 0.05),
motivating the need for specific tooling for debugging static analysis code in particular. The
same test does not yield significant correlation coefficients between the type of code and the
features marked as useful or inconvenient by participants, with p-values of 0.97 and 0.69, respec-
tively. This correlation suggests that while analysis developers use currently available debugging
tools—which are designed for general application code—debugging functionalities that are more
specific to static analysis would be needed to properly support the development of analysis code.

In addition, the test shows strong correlations between the type of editor (IDE or text
editor) and the requested features for analysis code (p = 0.02) and application code (p = 0.04).
Such correlations cannot be found for features that participants deemed useful or inconvenient,
suggesting that the tools used to debug application code and analysis code contain features that
all types of users equally like and dislike. We see that regardless of the editor, the requested
features for writing analysis code and application code are quite different.

We further evaluate the importance of the features identified with Q19 in a debugging
environment for static analysis. The participants were asked to grade the features shown in
Figure 3.4 on a Likert scale from Not important to Very Important (Q26).

All features are generally well-received. Namely, four features are deemed Important or more
by over 73% of the participants. Among visualizations, graph representations are considered
most important. Access to the intermediate representation and to the intermediate results of
the analysis is also very important, along with breakpoints that take both the analysis code and
the analyzed code into account, and their associated stepping functionalities. Those features
have the particularity of considering both the analysis code and the analyzed code. Although
they are less popular, other features such as Other types of visualizations, better test generation,
and quick updates are considered Important or more by at least 52% of the participants.

A X 2 test of independence with the participants’ backgrounds (seniority, coding languages,
editor type, or analysis frameworks) only shows a strong correlation between the desirable fea-
tures and the editor type (text editor or IDE) (p = 0.02 ≤ 0.05). This observation suggests
that the desirable features are generalizable to the different types of static analysis and analysis
developers represented by our participants, and that the set of desirable features only differs
according to whether the analysis developer uses a text editor or an IDE.
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Figure 3.4: Ranking the importance of features for debugging static analysis (Q26).

Discussion (RQ4–RQ5)

We saw that to debug their code, analysis developers mainly use the traditional debugging tools
and features included in their coding environments such as breakpoints and variable inspection.
While those tools are helpful, they are not sufficient to fully support static analysis: debugging
features such as simple breakpoints fall short to filling the requirements debugging static anal-
ysis entails, and force analysis developers to handle parts of the debugging process manually.
Debugging analysis code therefore requires features that are not provided by current debugging
tools. Those features revolve around improving the visibility of how the analysis code repre-
sents and analyses the analyzed code, a process that is typically hidden when using traditional
debuggers that only handle one codebase.

3.5 Limitations and Threats to Validity

In our survey, we reached out to 450 authors of static analysis papers published between 2014 and
2016. The 117 participants who answered the survey are mainly researchers in static analysis,
with only 15.7% from industry, so our sample may not fully represent analysis developers in
general. We argue that the requirements and tools used by analysis developers in academia or
in industry should not widely differ, as researchers in industry gave us information consistent
with the other participants’. Another survey gathering information from the industry may be
interesting to conduct, to verify the outcomes of our survey.

Because the survey participants were specialists in static analysis, their experience of de-
veloping and debugging application code may not be on par to their experience with debug-
ging analysis code. An interesting observation is the reported 42.5% of the participants’ time
dedicated to debugging application code (Q20), which is different from the average time pro-
grammers spend on debugging their code shown in a study conducted by the University of
Cambridge: 49.9% [17]. While a better option would have been to report on two surveys: one
aimed at analysis developers and one for code developers, only few software developers know
about static analysis development so the answers we would have gathered would be less com-
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plete. In addition, we conducted a similar survey aimed at developers in industry, but only
received ten answers over the span of two months, so we did not report on it.

We classified the free-text answers into categories by hand, which is, of course, subjective. To
make the classification as objective as possible, two of the authors classified the answers together,
and a third author verified the classification, following the open card sort methodology [45]. We
report on the agreement measurements in Section 3.2.

Q11 of the survey was misinterpreted by a few participants: their answers do not match the
explanation given in Q12. For example, a participant wrote in Q12 that “debugging SA [static
analysis] is still a bit harder [than application code]”, and gave Q11 a score of 7 (scale from 1 to 10),
denoting the contrary. In such clear cases, we reversed the score (in this example, the new score
is 4). We reversed only 12 scores out of 103 responses.

The features identified in this survey are applicable to the domain of static analysis. Some of
them can also generalize to other branches of software engineering that deal with two codebases
that interact with each other, e.g., testing or meta-programming. However, those branches
have their own specificities and their own challenges when it comes to debugging. For example,
specific debugging features would be needed for code generation in meta-programming. It would
be interesting to study the extent to which the features we identified in our survey can be applied
to other fields of software engineering.

3.6 Summary

With a survey of analysis developers, we have determined the different types of analyses currently
developed by experts in the domain, and the reasons why they start debugging sessions. We
saw that analysis correctness is their main priority, and that the root causes of analysis errors
are due to the involvement of two codebases and the lack of visibility of the results that are
generated when one interprets the other.

Our survey collects extensive data that we have not used to its full extent in this chapter,
not only about debugging features for static analysis, but also about debugging features for
general application code, motivations for writing static analysis, types of analysis written by
participants, detailed analysis examples, reasons why participants debug static analysis, and
why participants use particular debugging environments. Our data is made available online for
others to use [86].

We now conclude by summarizing seven design requirements RE-A1–RE-A9 (REquire-
ments for Analysis developers), which we derived from our survey to build a coding and debug-
ging environment for static analysis code.

• RE-A1: Analysis developers are particularly interested in the correctness of their analyses
(i.e., precision and soundness). As a result, debugging tools should contain functionalities
that allow them to track down code locations that cause loss in precision and soundness,
e.g., points where a data-flow fact is created while it should not be, and vice versa.

• RE-A2: The root causes of errors in analysis code are due to algorithmic errors, semantics
mismatches, and unhandled cases in the underlying analysis infrastructure. To help anal-
ysis developers debug such errors—especially the latter two, coding environments should
provide more support and visibility in how the analysis code interprets the analyzed code,
e.g., insights in the intermediate representation. Particular features that provide such
support are described in RE-A3–RE-A9.

• RE-A3: visualizations of the analysis’ constructs. Graph visualizations are particularly
requested by both IDE users and text editor users.

29



3.6 Summary

• RE-A4: Access to the intermediate results generated by the analysis for all points of
the analyzed code is asked by both groups, through omniscient debugging, where the
intermediate results can be tracked back-in-time.

• RE-A5: Access to the intermediate representation of the analyzed code.

• RE-A6: Breakpoints and stepping controlled from both codebases are also deemed very
important by IDE users, so that they can stop the program execution at any point of the
analysis code for any point of the analyzed code.

• RE-A7: Quick updates are requested to recompute the analysis results on-the-fly when a
modification in the analysis code or the analyzed code occurs. They prevent users from
having to rerun the analysis and losing track of the state that they are monitoring.

• RE-A8: In addition, IDE users also ask for better hot code replacement.

• RE-A9: Users of text editors request automated test generation functionalities to verify
the results of a change in the analysis.

Through a user-centered approach, we have determined the design requirements to build
coding environments for static analysis development. In the next chapter, we use those re-
quirements to build VisuFlow, a coding environment for Soot-based data-flow analysis in the
Eclipse IDE [92].
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Debugging Data-Flow Analysis
4

In Chapter 3, we motivated the need for debugging environments to support analysis developers
write and debug static analysis code. Such features are not provided in traditional coding and
debugging environments and have not been researched yet. In this chapter, we address the two
main problems that current tools face when supporting static analysis: abstracting from both
the analysis code and the code that it analyses at the same time, and tracking the analysis’
internal state throughout both codebases. Based on RE-A1–RE-A9, we have designed and
implemented VisuFlow, a debugging environment for static data-flow analysis [91,92].

In Section 3.3, we saw that the most analyzed programming language is Java, and that the
most used analysis framework is Soot [140], which supports analysis of Java programs. As a
result, we implemented VisuFlow on top of Soot, and focus on the use case of Java programs,
and analyses written in Java. To support advanced visualizations, we integrated VisuFlow into
the most popular Integrated Development Environment (IDE): Eclipse [32]. We also observed
that the most developed types of analyses target security vulnerabilities, and are data-flow and
program-level analyses. As a result, we apply VisuFlow to the problem of data leaks, with a
whole-program taint analysis.

In this chapter, we present VisuFlow’s Graphical User Interface (GUI), detail its imple-
mentation, and explain how it can be reused for other analysis frameworks. In our evaluation
of VisuFlow’s usability, we have verified the validity of the requirements from Section 3.6,
by conducting a comparative user study with the Eclipse debugging environment. We show
that VisuFlow’s features, in particular its graph visualizations and custom breakpoints help
analysis developers to identify 25% and fix 50% more errors in the analysis code.

VisuFlow’s design has been published in the IEEE Transactions on Software Engineering
journal (TSE) [91]. Its implementation was presented at the tool track of the International
Conference on Software Engineering (ICSE) [92].

4.1 VisuFlow, a Debugging Environment for Data-Flow Analy-
sis

In this section, we present VisuFlow, a debugging environment for Soot-based data-flow anal-
ysis implemented as an Eclipse plugin. We first introduce the GUI of VisuFlow, and detail
how its features match the requirements that we identified in Chapter 3. We then explore the
implementation of the tool and how to adapt it to analysis frameworks other than Soot. The
source code of VisuFlow is available online, along with a video demonstration of its GUI [86].
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A B C

D E

F

Figure 4.1: The GUI of VisuFlow. Features A – F are described in Section 4.1.1.

4.1.1 User Interface

We detail VisuFlow’s GUI (Figure 4.1) and how it addresses RE-A1–RE-A9.

Analysis Code and Analyzed Code

VisuFlow shows the analysis code in a Java Editor A and the analyzed code in the Jimple
View B side by side, to help work with both codebases at the same time. The analyzed program
is displayed in both Java and the Jimple intermediate representation manipulated by the analysis
(RE-A5). Echoing the survey findings from Chapter 3, this layout adds visibility in the debug
process (RE-A3), and helps avoid errors due to Jimple-related semantic mismatches (RE-A2).

Graph Visualizations

To help the user better visualize the structure of the analyzed code, VisuFlow presents a Graph
View C that displays the call graph and the CFGs of the different methods of the analyzed
code. By showing the intermediate results on the edges of the CFGs, it provides a more visual
approach to debugging, allowing the user to determine with a quick glance where a particular
piece of data-flow information is generated, killed, or transferred, instead of manually inspecting
the intermediate results statement by statement.

After our first study, we have chosen to lay out the graphs using a Sugiyama-style graph-
layering algorithm [130], to add zooming and panning features, tooltip information, and with a
search bar that allows the user to locate a particular statement. The graphs can be customized
through node drag-and-drop and coloring. To draw the graphs, we use the GraphStream frame-
work [43], because it scales up to a large number of nodes and edges.

The graph visualizations display information about the structure of the application code
(RE-A3), and the edge labels provide access to the intermediate results (RE-A4). This infor-
mation helps analysis developers ensure the correctness of the analysis (RE-A1).

Breakpoints and Stepping

Traditional debugging environments allow analysis developers to set breakpoints only in the
analysis code. When a user needs to debug an analysis at a specific statement of the analyzed
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Figure 4.2: Eclipse conditional breakpoint dialog.

Figure 4.3: VisuFlow breakpoint dialog.

code, they have to use conditional breakpoints to suspend the analysis for that specific statement,
as illustrated in Figure 4.2. This workaround is quite limiting, since it requires the user to know
in advance which statements need inspection, and to manually edit the breakpoint condition.

VisuFlow allows analysis developers to set breakpoints in both the analysis code (in the
Java view) and the analyzed code (in the Jimple View F ). Analysis developers can thus
stop the execution for specific statements of the analyzed code. VisuFlow provides stepping
commands for the analyzed code (i.e., step-over and resume), which are independent from the
stepping commands of the analysis code. As a result, analysis developers can step through both
codebases as they wish (RE-A6). A breakpoint dialog (Figure 4.3) allows developers to set
multiple breakpoints at once, on specific statements, or on groups of statements.

Other Visualizations

A set of different views displays various information that can be used to help reason about
the analysis code. The Results View D provides a compact summary of the Graph View,
with search and filter options: it details the intermediate information for each statement of the
application-code, and also allows users to mark specific statements with custom tags.
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The Unit Inspection View E shows a list of the statements of the analyzed program so that
a user can inspect details of how a statement is constructed (i.e., type of the statement and
types of its components). This feature is useful to novice Soot users who might have little to no
knowledge of Jimple, but need to handle Jimple statements.

Both views have been enhanced with search and filtering options. As part of VisuFlow’s
visualizations (RE-A3), they aim at providing a clearer picture of how the analysis works
internally (RE-A5), to help developers guarantee analysis correctness in the case of the Results
View (RE-A1), or avoid semantic mismatches for the Unit Inspection View (RE-A2).

Integration with Eclipse

As an Eclipse plugin, VisuFlow aims at following Eclipse’s usability paradigms, and provide a
consistent user experience.

During the development of VisuFlow, we have discovered that having many views report-
ing different information on the same statement could disrupt the user’s understanding of the
analysis. When the information shown on different views was not synchronized, the users had
to manually scroll through all of the views to keep the focus on a given statement. VisuFlow’s
views contain automated synchronization options, navigation menus, and highlighting features
to allow users to switch between views more smoothly. Selecting a statement in one view also
highlights it in the other views, and stepping through either of the codebases steps through all
views of VisuFlow to keep the focus on the current statement.

The VisuFlow perspective introduces a new type of Eclipse project that links the analysis
project and the analyzed project. This system provides VisuFlow’s builder and debugger
components with the projects whose information should be displayed in the VisuFlow views.

The top toolbar provides easy access to VisuFlow’s functionalities, such as rebuilding the
project (which repopulates the data model if needed), running the analysis (which populates the
in-sets and out-sets), and the breakpoint and stepping functionalities for both codebases.

To stay consistent with Eclipse’s breakpoint system, VisuFlow’s double breakpoint and
stepping systems extend Eclipse’s (thus allowing synchronization with the variable inspection
view and the stack frame view), the editors extend Eclipse’s Java Editor, and the navigation
functionalities are available on right-click as well as in the Eclipse native menu.

4.1.2 Implementation

Figure 4.4 illustrates the component diagram of our implementation. The three main compo-
nents are the Soot framework, the Eclipse platform, and VisuFlow. The VisuFlow component
is an Eclipse plugin that acts as a buffer between the IDE and the analysis framework to provide
debugging support to the analysis developer when they debug an analysis for a particular piece
of analyzed code.

Data Model

To provide visibility into the analysis, VisuFlow maintains a data model of the analysis’ rep-
resentation of the analyzed code. In data-flow analysis, the analyzed code is abstracted into
call graphs (over the methods of the analyzed code) and Control-Flow Graphs (CFG) (over
the statements of the analyzed code). The data model in VisuFlow models this information
with V FClass, V FMethod, and V FUnit objects (a Unit is a statement in the analyzed code).
V FEdge and V FNode objects are used to represent the CFGs and call graphs. Each V FUnit
also contains its in-set and out-set. In data-flow analysis, those sets contain the data-flow infor-
mation computed for each statement of the analyzed code (i.e., they contain the intermediate
results of the analysis).

34



Chapter 4. Debugging Data-Flow Analysis

   VisuFlow    Eclipse

   Soot

Scene

Analysis

Builder

Debugger

Data Model

UI

Eclipse Debug

Eclipse Core

OSGI EventAdmin

Eclipse UI

Graph

Eclipse JDT

Figure 4.4: Component diagram of VisuFlow.

Every time the analyzed project is built in Eclipse, it updates the data model, except for
the in-sets and out-sets: Eclipse Core’s IncrementalProjectBuilder calls VisuFlow’s Builder,
passing the analyzed project to Soot’s pre-analysis phases. Soot creates different Units, Methods,
Classes, CFGs and a call graph that are available from Soot’s own data model: the Soot Scene.
VisuFlow taps into the Scene and populates its data model by wrapping around the Soot
constructs with its own.

The in-sets and out-sets are populated at runtime, when the analysis developer runs the
analysis on the analyzed code. Eclipse’s debug component is run, which calls VisuFlow’s debug
component through ILaunchConfigurationDelegate2. VisuFlow then runs the analysis using
Soot, and retrieves the in-sets and out-sets by instrumenting the flow function of the analysis.
As the analysis runs, VisuFlow employs a Java agent to establish inter-process communication
between the running Soot analysis and the VisuFlow plugin. The latter runs a TCP server
that populates the data model. The corresponding client instruments the flow function of the
analysis so that, at the beginning of the flow function, it sends the values present in the in-set,
and at the end of the flow function, it sends the out-set that has been generated.

The data model contains the internal state of the analysis, which is typically hidden from the
analysis developer. This state is used by the UI components of VisuFlow and by the Eclipse’s
OSGi EventAdmin interface as an answer to a user event (e.g., to show more information in a
tooltip), to display information in the different views of the VisuFlow plugin. The following
debugging features can be obtained from the data model: graph visualizations (CFGs and call
graphs), access to intermediate results (in-sets and out-sets), and access to the intermediate
representation (V FUnit in Jimple format).

Breakpoints and Stepping

On top of the Eclipse breakpoint system in the analysis code (in the Java View), VisuFlow
provides an independent set of breakpoints for the analyzed code (in the Jimple View). The
second set of breakpoints extends Eclipse’s breakpoints and is attached to the analyzed code.
VisuFlow transforms breakpoints in the analyzed code into conditional breakpoints in the flow
function of the analysis code: if the user had previously set breakpoints in the flow function,
VisuFlow adds a condition to stop the execution only for the specific statements of the analyzed
code marked with the breakpoints in the analyzed code. If no breakpoints exist in the analysis
code, VisuFlow creates one at the start of the flow function. This system is transparent to
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the user: it creates the abstraction of a second set of breakpoints by translating them into
conditional breakpoints. Likewise, VisuFlow also simulates separate stepping functionalities
to help users step through both codebases by adding breakpoints at the successor statements of
the currently examined statement, and removing them later.

We use the Eclipse JDT to set breakpoint and stepping events. When triggered, those events
transmit an IJavaModel of the project under execution to the VisuFlow debugger and builder.
When the analysis generates new in-sets and out-sets at execution time, VisuFlow populates
the data model and—if breakpoints are set—updates its views to highlight the corresponding
statements and update the in-sets and out-sets.

Unimplemented Features

VisuFlow implements the debugging features that participants marked as most important in
an IDE (Figure 3.4). Other features such as omniscient debugging (RE-A4), automated test
generation (RE-A7), hot code replacement (RE-A8), and quick updates (RE-A9) constitute
significant bodies of work which have been researched for general application code [64,113,116],
and whose integration we keep for a future iteration of the user-centered design process.

Generalization of the Approach

The design of VisuFlow’s architecture separates VisuFlow from the underlying analysis
framework. It is thus possible to plug in another data-flow analysis framework such as
WALA [135], the IFDS/IDE solver Heros [15], or IDEal [128], if it can expose its data model
and flow functions to the VisuFlow builder and debugger components.

Beyond reusing VisuFlow, it is also possible to apply its tool features to non data-flow of
analyses. We describe a high-level recipe for this application.

1. Define a data model: the data model represents the internal state of the analysis that is
typically not exposed to the analysis developer. The data model must contain an inter-
mediate representation of the analyzed code and the intermediate results of the analysis.

2. Generate the data model: the debugging tool must be able to query the analysis frame-
work to populate the data model. Retrieving the intermediate results may need to be
done at runtime. For VisuFlow, this retrieval involves hooking into the Soot Scene and
instrumenting the flow function.

3. Define breakpoints in the analyzed code: following the idea of constructing conditional
breakpoints on the analysis code to simulate breakpoints in the analyzed code, the debug-
ging tool must be able to stop the analysis at certain points of the analyzed code. Those
points must be defined beforehand. In the case of VisuFlow, they are the statements of
the analyzed code.

4. Design a usable GUI to visualize the data model and to support the breakpoint system.

4.2 Evaluation
To evaluate how efficiently VisuFlow supports analysis developers, we conducted a user study
with 20 participants in the form of a comparative study between VisuFlow and the default
Eclipse debugging environment—which we refer to as Eclipse. The main goals of the study
are to evaluate the usefulness of the different features of VisuFlow, the environment’s overall
usability, and verify some of the outcomes of the survey presented in Chapter 3. To this end,
we evaluate the following three research questions.
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• RQ6: Which features of VisuFlow and Eclipse are most useful to the participants?

• RQ7: Can VisuFlow help developers identify and fix more analysis bugs than Eclipse?

• RQ8: Does VisuFlow’s GUI help understand and debug analyses better than Eclipse’s?

4.2.1 User Study: Usability of VisuFlow Compared to Eclipse

We describe the experimental setup of our comparative user study between Eclipse and Visu-
Flow, the study participants, and the data extraction methodology.

Experimental Setup

To compare how analysis developers interact with VisuFlow compared to Eclipse, we per-
formed a within-subjects study in which we asked each participant to perform two tasks: to
debug a static analysis with VisuFlow and to debug another one with Eclipse. In the latter
case, participants had access to the Eclipse debugging functionalities such as the breakpoints, the
variable view, and the stack frame view. We also provided them with the Jimple intermediate
representation of the analyzed code.

The two test analyses are hand-crafted taint analyses that contain three errors each. Running
either analysis on hand-crafted analyzed programs does not compute the correct results. For
each task, the participants had 20 minutes to identify and fix as many errors as possible in the
analysis code. To counter the learning effects, we used a simple latin-square design in which half
of the participants performed their first task with VisuFlow, and the other half with Eclipse.
Both groups switched tools for the second task. Before each task, we primed participants through
simple training tasks with a demonstration analysis to familiarize themselves with the tools. The
full tasks were then performed with different analysis code and analyzed code.

During the two tasks, we counted the number of errors that participants identified and fixed.
We consider an error as identified if a participant is able to locate it in the code, and to correctly
explain why it yields the wrong data-flow facts. We consider an error as fixed if a participant
manages to edit the analysis and rerun it, and if that new analysis generates the correct data-flow
facts. We also logged how long the mouse focus was for each view of the coding environment to
measure the time spent using each view.

After the tasks, participants filled a comparative questionnaire of the two debugging envi-
ronments, followed by a short interview of their impressions of the tools.

We first ran a pilot study on six participants. Based on their feedback, we extended the time
limit for the tasks from 10 to 20 minutes, and adjusted the difficulty of the tasks so that they
were not trivial, but still doable in the time limit.

Questionnaire

The post-task questionnaire contains 41 questions, referred to as Q1–Q41, and is detailed in
Appendix B.

1. Participant information: Q1–Q5 gather information about the participants. Q1
asks for how long they have been developing analysis code in a multiple-choice question,
Q2 asks for their main coding environment—in free text, and Q3–Q5 ask participants to
rate their familiarity with Eclipse, data-flow analysis, and Soot, on a Likert scale from 0
(novice) to 10 (expert).

2. System Usability Scale: Q6–Q15 ask the ten questions of the System Usability Scale
(SUS) [18] for the coding environment that the participants used for their first task
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(Eclipse of VisuFlow). Each question is rated on a Likert scale from 1 to 5. Q16–
Q25 are the same SUS questions for the second coding environment.

3. Perceived Performance: Q26–Q31 ask users with which coding environment they felt
they did a better job at understanding errors (Q26), fixing errors (Q27), understanding
the analysis code (Q30), understanding the analyzed code (Q31), with which environment
they fixed more errors (Q28), and with which environment they fixed errors faster (Q29).
Participants could choose either of the two coding environments, or a “Neutral” answer.

4. Net Promoter Score: Using the Net Promoter Score (NPS) [109] in Q32–Q33, par-
ticipants rated on a Likert scale from 0 to 10 how much they would recommend one of
the coding environments over the other. In Q34–Q35, they rated how much they would
recommend VisuFlow or Eclipse over their own coding environment.

5. Open questions: Q36–Q41 gather general comments about the coding environments,
and capture any usability issues participants encountered. Those full-text questions serve
as guidelines for the short interviews. In Q36, we ask participants to describe the features
of their usual coding environment. Q37–Q38 ask them about which features of Eclipse
and VisuFlow they would like to use in their own coding environment. Q39–Q40 ask
which tasks the participants would use the two coding environments for, and Q41 asks
participants what they would change in VisuFlow or Eclipse.

The full-text answers were categorized by two researchers in an open card sort [45]. Because
each answer could be categorized in multiple categories, we calculated a Cohen’s Kappa for each
category of each question. The average Kappa score over all questions and categories is κ =
0.98 (median = 1, min = 0.66, max = 1, standard deviation σ = 0.07), which is above the
0.81 threshold, indicating an almost perfect agreement [61]. The questionnaire, the anonymized
answers, the test applications, and the results of the user study are available online [86].

Participants

We conducted our user study with 20 participants of diverse backgrounds: researchers in
academia (65%), researchers in industry (5%), and students (30%). Eleven participants have
less than a year’s experience of developing static analysis, six have from one year to five years of
experience in the domain, and three have more than five years of experience developing static
analyses. In the following, we refer to the participants as P1–P20. Eighteen participants are
IDE users, which was our target group for this tool. The other two participants mainly use vim
to write analyses and were included in the study to evaluate how text editor users would adapt
to VisuFlow.

On a scale from 0 (novice) to 10 (expert), the familiarity of participants with data-flow
analysis is well distributed, with an average score 5.7 (min: 1, max: 9) (Q4). Eclipse has an
average of 5.9 (min: 2, max: 8) (Q3), and Soot, an average of 3.3 (min: 0, max: 7) (Q5).
We thus gathered a variety of both novice and expert users of data-flow analysis and Eclipse.
Expert Soot users are rarer, as they are more difficult to find.

Eighteen of the 20 participants had not participated in the survey from which VisuFlow
had been derived (Chapter 3). We have not observed any significant difference between their
results and other participants’ results. This gives us confidence in the impartial evaluation of
those participants.
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Table 4.1: Average time spent using features of VisuFlow and Eclipse.

VisuFlow Eclipse
Feature #users Time (s) #users Time (s)
Java Editor 14 486 14 653
Graph View 14 201 n/a n/a
Jimple View 11 58 12 60
Breakpoints / Stepping 11 174 11 313
Variable Inspection 3 78 8 67
Results View 8 50 n/a n/a
Console 5 24 7 40
Drop Frame 5 12 3 5
Breakpoints View 3 13 2 110
Unit View 3 7 n/a n/a

4.2.2 Study Results

In this section, we present the results of the user study. We discuss the most useful debugging
features of Eclipse and VisuFlow, show how many analysis bugs the two debugging environ-
ments allow participants to identify and fix, and compare how they help users understand and
debug analyses.

Most Useful Debugging Features (RQ6)

Table 4.1 shows the number of participants who used the features of VisuFlow and Eclipse,
and the median focus time that they spent on each feature. Due to technical difficulties, we
could only process the logs of 14 participants. As expected, the Java Editor is the most com-
monly used feature. The Jimple View is also often used, showing that access to the intermediate
representation is helpful when debugging analysis code. Other frequently used features include
breakpoints, stepping, and variable inspection. The VisuFlow-exclusive features that were used
the most are the Graph View and the Results View (100% and 57.1% of participants, respec-
tively), demonstrating the use of visualizations, and the need to expose the intermediate results
of the analysis.

Using VisuFlow, participants spent 25.6% less time using the Java Editor, and 44.4%
less time stepping through the code. Instead, they spent this time using the Graph View, the
Results View, and the Variable Inspection View. This observation shows that graph visualiza-
tions and access to the intermediate results of the analysis are desirable features for debugging.
Participants used the Breakpoints View 88.2% less often in VisuFlow compared to Eclipse,
which we attribute to VisuFlow’s dual breakpoints system. Since VisuFlow allows users to
step through both codebases simultaneously, it spares them the effort of writing conditional
breakpoints in the Breakpoints View.

The Unit View was only used by three participants, all of whom were unfamiliar with Jimple.
We believe that the Unit View may be more popular for tasks requiring more knowledge about
Jimple statements (e.g., writing an analysis rather than debugging it). However, we cannot
verify this hypothesis with this study.

Using a X 2 test of independence, we did not find a significant correlation (p > 0.05) between
the participants’ background and the tool features that they used most, suggesting that those
results are generalizable to all user groups represented by our participants.
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Table 4.2: Number of errors identified and fixed with Eclipse (E) and VisuFlow (V) by each
participant.

Task 1 (E) Task 2 (V) Task 1 (V) Task 2 (E)
Iden. Fixed Iden. Fixed Iden. Fixed Iden. Fixed

P1 0 0 1 1 P11 2 2 1 1
P2 0 0 1 1 P12 1 0 2 1
P3 1 1 1 1 P13 2 2 1 1
P4 1 0 1 1 P14 2 1 0 0
P5 0 0 0 0 P15 1 1 0 0
P6 3 3 3 3 P16 1 1 2 1
P7 2 1 2 2 P17 2 1 1 1
P8 2 1 0 0 P18 2 1 1 1
P9 2 1 0 0 P19 3 2 2 1
P10 1 1 2 2 P20 1 0 0 0
Sum 12 8 11 11 Sum 17 11 10 7

Identifying and Fixing Analysis Errors (RQ7)

Table 4.2 reports the number of errors identified and fixed by each participant. For Task 1,
participants identified and fixed 1.4× more errors with VisuFlow than with Eclipse. In
particular, they identified 17 errors and fixed 11 with VisuFlow compared to 12 and 8 with
Eclipse for that task. For Task 2, participants identified 1.1× and fixed 1.6× more errors when
using VisuFlow. Overall, 11 and 10 participants identified and fixed, respectively, more errors
with VisuFlow than with Eclipse. Using Eclipse, only 4 and 3 participants identified and
fixed more errors, respectively. The remaining participants found and fixed the same number of
errors with both tools. VisuFlow thus allowed participants to identify 25% more errors, and
fix 50% more errors than with Eclipse.

We do not compare the number of errors found by the same participant with different tools,
because the two tasks were run on different, and thus incomparable, analyses.

Twelve of the 20 participants are Eclipse users, making the learning curve for VisuFlow
steeper than for Eclipse. Despite this factor, 7 of those 12 participants found and fixed more
errors with VisuFlow than with their original debugging environment.

We found no significant correlations between the number of errors identified and fixed, and
participant background (coding environment, seniority in analysis development, and knowledge
of Soot, Eclipse, and data-flow analysis).

Analysis Understanding and Debugging (RQ8)

Overall, the participants positively received VisuFlow. In the NPS questions of the post-
task questionnaire, the 20 participants rated their likelihood of recommending a debugging
environment over another one to a friend for a task similar to the ones that they performed
in the study. VisuFlow has an NPS score of 63 compared to Eclipse (denoting an excellent
score), and 21 (good) compared to the participants’ own debugging environments. Participants
gave Eclipse a mean score of -100 compared to VisuFlow, and -75 compared to their own
debugging environments.

When asked which debugging environment made it easier for them to find/fix the errors
and understand the static-analysis code, all participants answered that identifying errors was
easier with VisuFlow (“It is pretty obvious that that’s what static analysis needs.”). Sixteen found it
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easier to fix errors with VisuFlow; the other four participants answered that both debugging
environments made it equally easy. Seventeen participants wrote that VisuFlow helped them
understand the analysis code better (“What I was looking for in the first coding environment [Eclipse ]
was given to me by the second one [Visuflow]”), while one participant preferred Eclipse, and two
remained neutral. To our surprise, the 12 participants who were already familiar with Eclipse
still preferred VisuFlow, showing that VisuFlow is better suited than traditional debugging
tools for debugging analysis code.

Participants were asked what they would use both debugging environments for. Sixteen wrote
they would use VisuFlow to write and debug analysis code (“[I would use VisuFlow for] visualizing
an analysis and finding unexpected values included or excluded from expected results”). Eleven participants
found Eclipse more useful for “standard software development” or “general Java programming”.

When asked which features of VisuFlow and Eclipse they would like to have in their
own debugging environments, three participants requested Eclipse’s integrated debugger, which
echoes our survey findings (Table 3.4). We received more requests for features that VisuFlow
provides. In particular, ten participants asked for the Graph View (“visualizing for provenance was
useful”). Seven required visualizing intermediate results (“[Visuflow] is useful, because I get the
abstract view of the situation, what’s happening inside. Before [with the other coding environment], you have
to [go through all] the variables.”). Five participants mentioned dual breakpoints (“[Visuflow] is more
comfortable; you can set Jimple breakpoints. It is clearly better.”). Three asked for the synchronization
between multiple views (“I think [Visuflow] is helpful because of the linkage between the Java code, the
Jimple code and the graphic visualization: all that I had to keep in my mind [earlier]”). The Jimple View
and the Unit Inspection View were only mentioned once. Two novice Soot users wrote that they
wanted “All of them”. The features that participants found most useful confirm the prioritization
made by the survey participants (Figure 3.4), and match the most used features during the user
study tasks.

Novice analysis developers noted a gentler learning curve when using VisuFlow: “I think
this approach of debugging in the CFG is easier to learn for starting with taint analysis”, “For someone who
doesn’t do this style of debugging analysis code at all, it kind of surprised me how quickly I was able to track
down bugs for a bunch of code that I don’t understand.”

Using the System Usability Scale, VisuFlow obtains a mean score of 65.9, which is below the
average SUS score of 68. This is explained by the fact that VisuFlow is obtained from the first
iteration in the user-centered process, and still runs into usability issues such as improvements
for breakpoints (“I would like to set breakpoints from the (uncompiled) source code under analysis rather
than Jimple”), or quick updates “The refresh of the results is buggy”). We marked them for future
improvements. In comparison, Eclipse scores a 43.4—which is below the 10th percentile,
denoting its unsuitability for the task of debugging analysis code.

4.3 Limitations and Threats to Validity

We conducted the user study in a controlled environment (20 participants, 20 minutes per
task, two tasks) rather than in a development setting. In practice, users would have more
time to investigate more complex analyses. Given the time limits, we simplified the analyses
while keeping them as realistic as possible: we based them on ~300 LOC-long taint analyses
written by experienced students in our graduate course, and introduced typical errors made by
those students. We verified with our pilot participants that the tasks could be achieved within
the time limits. To avoid further external threats to validity, we recruited participants from
different backgrounds: academia, industry, students, and professionals. VisuFlow is built on
top of Eclipse and Soot, which are well-established both in industry and academia. It would,
however, be interesting to conduct a future study in real-life conditions.
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The user study was conducted as a within-subjects study, which created a learning effect
between the prototypes, in which participants performed better on the second task, since they
were used to the task and the tool. We countered this effect by applying a latin-square design,
in which half of the participants used VisuFlow first, and the other half, Eclipse first, and
reported on the aggregated results. In addition, we primed the participants before each task, to
reduce the learning curve for both tools.

The times reported in Table 4.1 represent the use times of the different views of VisuFlow
and Eclipse. We measured them based on the mouse focus events caught by the underlying
Eclipse framework. The times might not be exact, because participant attention may be divided
between multiple views while the mouse can focus on only one of them. We argue that in our
user study, participants mainly used the mouse to navigate between views. In the absence of an
eye-tracking device, our measurements approximate real user data sufficiently well. Averaged
over all users, we can use the relative difference between the times spent in each view as a reliable
metric to draw the same conclusions.

In its current implementation, VisuFlow does not gracefully scale up for two reasons. First,
the size of the analyzed codebase can create large graphs that clutter the interface. GraphStream
is able to render millions of nodes, however, as we discovered in our user study, the human eye
cannot process more than a few dozens on the same screen. Solutions such as collapse-expand
functionalities can be developed as part of future work.

Secondly, long update times are an issue when running complex analyses. Real-life analyses
can take a long time to terminate: from minutes to hours, to days, depending on the complexity
of the analysis and the size of the analyzed code. As a result, rerunning the analysis for each
change in the analysis code or the application code would take a long time. Approaches such
as incremental analysis [116] or Just-in-Time analysis [88] can be used to address this issue on
the analyzed code. In external research, we have explored different ways to apply them to the
analysis code. An early implementation achieves a 60% time improvement compared to a full
recomputation of the analysis, on a dedicated micro-benchmark.

VisuFlow is not a complete tool. While we address the main features identified in Sec-
tion 3.6, other features have been overlooked, such as test generation or quick updates, which
can be explored and integrated in VisuFlow. Omniscient debugging has been integrated in
VisuFlow as part of external research, allowing users to step forward and backward to any
point of both programs, thus providing users with insight about the intermediate results of the
analysis at any point of the execution without needing to rerun it.

4.4 Summary

In Chapter 3 and Chapter 4, we have illustrated the user-centered design methodology for a
user group that has not been researched before: static analysis developers. Through a survey of
analysis developers, we have derived tool requirements for a coding environment for static anal-
ysis. We have applied those requirements, keeping the using contexts and developer motivation
in mind, and designed VisuFlow, a debugging environment for Soot-based data-flow analysis
integrated in the Eclipse IDE. VisuFlow can be adapted for other analysis frameworks, and
its general design methodology can be reused for other applications of static analysis.

In a comparative user study between VisuFlow and Eclipse, we empirically show that
VisuFlow enables analysis writers to debug static analysis more efficiently. VisuFlow was well
received by analysis writers, its analysis-specific features (e.g., graphs, breakpoints, and access
to the intermediate results and to the intermediate representation) allowed them to identify
25% and fix 50% more analysis errors than with Eclipse. Participants find VisuFlow more
useful than both Eclipse and their own coding environment to debug analysis code. In the
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questionnaire and interviews, they confirm that the features identified as most important in
our survey allow novice and expert analysis writers to more easily understand and fix bugs in
analysis code. In particular, novice users find VisuFlow useful to learn about data-flow analysis.
The study results show that VisuFlow succeeds in providing a good coding environment for
developing analysis code while Eclipse is more suited to write general application code. The
study thus confirms the outcomes of the survey in Chapter 3, and validates the usefulness of the
debugging features implemented in VisuFlow.

We developed VisuFlow as part of the design and evaluation steps of the user-centered
design process for analysis developers. While it successfully proves that this approach can yield
good designs, we discovered user-experience issues during the user study, such as scalability, or
long update times. Such issues, along with the debugging features that we did not integrate
in VisuFlow should be addressed in the next iteration of the design process. VisuFlow is
open-sourced [86], and we encourage contributions by other researchers and practitioners. This
work can be used to design better tool support for debugging static analysis and help analysis
writers secure application code.

With this work, we demonstrate the use of the user-centered approach for designing tools
for static analysis, and advocate for involving end-users in the design process of tools for static
analysis. In the past two chapters, we have focused on analysis developers. In the next chapters,
we turn towards a more studied user group: software developers.
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5
Past studies in the domain of usability of static analysis tools in practice focus on analysis
correctness and usability issues reported by the tool users. In this thesis, we apply principles of
user-centered design to offer a new perspective on the usage of static analysis tools in practice.
In this chapter, we focus on the usage context of the tools, and the developer motivations
and strategies when interacting with them. Some of our findings confirm past research (e.g.,
soundness issues in analysis tools), others contrast with it (e.g., developers are not as interested
in style warnings as they are in performance warnings), and others highlight novel research areas
for static analysis (e.g., tool support for collaborative interfaces).

To understand the usage context of analysis tools in practice, we conducted a survey in
industry [93], in collaboration with Software AG [127]. Software AG is an international software
vendor based in Germany and present in more than 70 countries. It is active in areas such
as database management systems, big data analytics, business analytics, networking, software
development, data transfer, and cloud solutions. As a large software vendor, Software AG has
a strong interest in the functionality and security of their software products. Among other
security measures, they use a large array of static analysis tools, which are the focus of our
survey. Our survey focuses on the usage of 17 analysis tools at Software AG, with 87 of its
software developers. We report on the developers’ goals, motivations, and strategies when they
use analysis tools, how those three aspects influence the way they interact with the tools, and
which tool features could thus support them best. In addition, we confirm some of the findings of
our survey through a study of the analysis results of Checkmarx [20], a major analysis tool used
by Software AG, on two large projects of the company. We also use an independent smaller-scale
cognitive walkthrough to further research the last section of our survey on desirable features for
analysis tools [89]. Those studies allow us to derive recommendations for building and using
analysis tools in industry.

The survey and the study of the Checkmarx analysis results are currently under submis-
sion [93]. The cognitive walkthrough was presented at the New Ideas and Emerging Results
track of the ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering [89].

5.1 Related Work

We present related work on the use of static analysis tools in industry, and past studies reporting
on their user-experience issues.
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5.1.1 Usability of Static Analysis Tools in Practice

Static analysis has been used in industry since the 1970’s. At first aimed at compiler optimiza-
tion, its uses are now extended to bug and security vulnerability spotters, or coding automation
such as code completion or refactoring [81]. The first large static analysis tools dedicated to bug
and vulnerability detection appeared in the early 2000’, such as Coverity [26] or Fortify [37].
Since then, the adoption of static analysis tools in industry has steadily increased, to detect
bugs as early as possible in the software development process, thus cutting fixing costs by mul-
tiple factors [111]. In more recent years, applications of static analysis tools have expanded,
supporting more languages and use cases, and detecting a growing set of bugs and vulnerabil-
ities. From lightweight checkers run in the Integrated Development Environment (IDE) such
as FindBugs [121] to more complex analyses such as Checkmarx [20] which are typically run
during nightly builds, open-source and commercial tools are used and recommended by security
authorities like OWASP [99] or CERN [19].

Despite its success, static analysis has been known for specific user-experience issues since
its first applications in industry. Vorobyov et al. [142] compare model checking and static
program analysis by focusing on the precision of both approaches, and discuss the causes of their
limitations in the approach’s functionalities (e.g., handling internal libraries). Bessey et al. [14]
report on the experience of software developers with Coverity since its release in industry in
2002, showing that bad warning explainability, unclear tool configurations, and a high number
of false positives have been issues with static analysis tools early on. Christakis et al. [22]
survey developers and study live site incidents at Microsoft to extract pain points (e.g., false
positives and bad warning messages) and potential improvements to the analyses (e.g., sources
of unsoundness and reporting locations).

Those studies primarily focus on the tools and their usability issues, deriving features for
better developer support with respect to the analysis (e.g., improving precision). In contrast, our
focus is not the tools themselves but we approach the problem from the developers’ perspective,
and report on their motivation for using the tools, their strategies for using the tools, and, as a
result, derive a different set of supporting features (e.g., collaboration features).

5.1.2 Developer Motivation and Behavior

The two studies closest to our own also report on developer motivations and how they influence
the requirements for static analysis tools. Layman et al. [62] study the strategies of 18 student
developers using the analysis tool AWARE. They extract requirements that differ from other
studies such as the need for integrating the user’s perception of severity in the severity rating of a
warning. Johnson et al. [47] interview 20 developers on their experience of various analysis tools,
focusing on the usability issues encountered in those tools and why they occur, from the point
of view of the developer. This approach enabled the authors to present different requirements
such as the need for better explanations in warning descriptions.

We build on both studies and conduct ours on a company-wide scale. In addition, instead
of reporting on usability issues, we focus on the usage context, including company policies and
developer schedules, and how that context affects the way that developers work with analysis
tools, deriving requirements for building and using analysis tools in practice.

Ayewah et al. [11] report on developer usage of FindBugs, in particular the importance of
warning severity in selecting which warnings to fix first, and how developers handle false posi-
tives. In a follow-up study, Ayewah et al. [10] observe student developers while using FindBugs
to extract the factors that impact warning understandability. The findings of both studies are
consistent with our survey, but we further investigate the developer motivations and the reasons
for which they make those choices. Additionally, our study covers more aspects of how develop-
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ers work with analysis tools such as how they decide which warnings are true / false positives,
and what they do with warnings they do not understand.

Lewis et al. [65] compare different analyses and observe which one enables Google developers
to be more efficient. Factors such as a bias towards new warnings or actionable messages were
shown to be factors of interest to the developers. Similar to Ayewah et al. [10], the authors
conduct their study in a controlled environment, thus not accounting for realistic usage contexts
such as developer time constraints and motivations in real-life, which we highlight in our study.

5.2 Study: Developer Behavior and Motivation
To understand how developers interact with static analysis tools, we conduct a three-part study.
First, we sent a survey across the main development teams at Software AG, asking developers
about their experience with static analysis tools. In a second part, we were given access to the
reports of analysis runs with Checkmarx [20], one of the major analysis tools used by Software
AG. Checkmarx is a static analysis tool that supports 20 programming languages, and that
can be used as a standalone tool with a web interface or in different Integrated Development
Environments as a plugin. It is part of the continuous integration system at Software AG, and
is used by a large variety of projects to detect software bugs and security vulnerabilities. Its
interfaces provide management overviews of the projects’ health, and detailed information about
individual warnings, which developers use to communicate about the warnings and to fix them.
The analysis reports we use in this thesis include information on how developers handled the
warnings over several months, for two of Software AG’s major projects, which we anonymize as
Road Runner and Coyote at the company’s request. We use this data to complement the survey
answers. The third part of our study consists in a cognitive walkthrough, focusing on the user
interface (UI) of an analysis tool, in which we evaluate the usefulness of tool features identified
in the survey.

Our study targets the following research questions:

• RQ9: How are analysis tools integrated in Software AG’s development environment?

• RQ10: In which usage contexts do developers use analysis tools, and with which goals?

• RQ11: Which strategies do developers apply when working with analysis tools?

• RQ12: Which features should be present in analysis tools?

In this section, we present the composition of the survey, the analysis reports, the cognitive
walkthrough, and our methodologies for designing the entire study and extracting the data.

5.2.1 Survey of Industry Developers

To answer RQ9–RQ12, we designed a survey composed of 40 questions (referred to as Q1–
Q40) grouped into the following six categories and detailed in Appendix C. Unless specified
otherwise, all questions are multiple choice questions with an “Others” free-text field.

1. Participant information: We asked participants about their background: how long they
have worked as a developer (Q1) and which programming languages they work with (Q2).

2. General use of static analysis tools: We asked developers general questions on how
analysis tools are used at Software AG. This category includes questions on which analysis
tools they use at the moment (Q4), when those tools are run in the project (Q5), who
configures them (Q6), what kind of issues are detected (Q7), what kind of issues they
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Figure 5.1: Number of responses per question. Q40 received 0 responses.

would like the tools to report (Q8), if they fix the analysis warnings themselves (Q9), and
who reviews the fixes (Q29).

3. Reporting warnings: This category contains questions about the format in which the tools
report warnings (Q10), which format the developers would prefer (Q11–Q12), how long
developers take to fix a warning (Q13), and how long they typically wait before their fix is
verified (Q14). In a free-text question, we asked developers to comment on the reporting
systems of analysis tools (Q15).

4. Working context: We asked developers which analysis tool they use the most (Q16), and
focus on that tool for the rest of the category. We asked them how often (Q18), when
(Q19), and where (Q20) they use it, how long they use it for (Q21–Q22), and why they
use (and stop using) it (Q23–Q24). We also queried developers about which parts of the
tool’s interface they use the most, when they open (Q26), work with (Q28), and close
(Q27) the tool, and if they are using the default layout of the interface (Q25).

5. Features of analysis tools: Q30 and Q31 (the latter, as a free-text question) asked
developers to evaluate how important different tool features are to them.

6. Fixing analysis warnings: This category reports on the ratio of warnings developers
investigate (Q32), understand (Q35), and for which they seek help from colleagues (Q38).
It details the strategies used by developers to choose which warnings to investigate (Q33–
Q34), the reasons why certain warnings are difficult to understand (Q36–Q37), and why
developers ask for help (Q39). Finally, (Q40) asks about final comments on analysis tools
as a free-text question.

We ran a pilot survey with five developers, after which we compacted the survey so that it
could be completed in approximately 20 minutes. We namely removed questions similar to Q30
and Q31 that asked developers to which extent their current tools support the features.

We reached out to 120 developers at Software AG (two thirds of the development force)
and received 87 responses, yielding an exceptionally high response rate of 72.5%. From those
participants, 53 developers completed the survey in full, yielding a drop rate of 39.1%. Figure 5.1
details the response rates. As expected, the lowest response rates are found for the free-text
questions (Q15, Q31, and Q40). Throughout this chapter, when we report on percentages of
participants, we take the number of responses to the corresponding question as the baseline,
instead of the overall number of 87 participants. The percentages may also add up to more
than 100%, because some questions allow the selection of multiple responses. We only report on
responses reported by more than one participant. We have made the complete list of questions
and anonymized responses available online [86].
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In the survey, 46.8% of the participants have 2–5 years of experience as software developers,
25.3% have 5–10 years, 13.9% have 1–2 years, 10.1% have more than 10 years, and 3.8% have less
than a year of experience (Q1). While the large majority work with Java and Android (91.1%),
Javascript (38%), C/C++ (10%), PHP (7.6%), Python (7.6%), and 12 other languages, each
used by fewer than 2.5%, are also used (Q2). Due to Software AG’s policies on the usage of static
analysis tools, all participants have experience with them. Our survey thus gathers information
from a diverse group of developers.

All survey questions but three are multiple-choice questions, for which we straightforwardly
report the results. We either recategorized responses provided in the “Others” fields in existing
categories when possible (e.g., “15” was recategorized in “> 10 years” for Q1), ignored them
when they clearly did not answer the question (e.g., “Not applicable” for Q24), or kept in the
“Others” category. The three free-text questions received the least answers (three for Q15, two
for Q31 and none for Q40). We detail and discuss the outcomes of the survey in the remainder
of this chapter.

5.2.2 Analysis Reports

To complement the survey with respect to developer strategies for triaging and prioritizing
analysis warnings (RQ11), we analyzed the reports of Checkmarx, one of the main static analysis
tools used at Software AG. Checkmarx is deployed for a large number of projects at Software
AG, as part of their global effort to use analysis tools for improving the quality of their code,
and is used by 51.2% of the survey participants.

Checkmarx is a dedicated tool, meaning that it is independent of the tools used by develop-
ers (e.g., code editors or project management systems). Checkmarx has an elaborate web-based
Graphical User Interface (GUI) that provides developers with detailed information such as warn-
ing categories (e.g., SQL injection), an estimate of their severity, general warning statistics, etc.
Checkmarx also allows developers to comment on the warnings, for example, marking them as
false positives or fixed.

Here, we study the analysis reports of two projects, which we name Coyote and Road Runner.
Coyote contains 8 sub-projects, varying from 56,000 to 1,550,000 LOC. Road Runner has 4 sub-
projects, ranging from 270,000 to 6,650,000 LOC. We report on analysis scans from spring
2017 to December 2018, except for 6 sub-projects of Coyote, three of which have been using
Checkmarx since winter 2018, and three others, since winter 2017. We present the outcomes of
our analysis of the reports in Section 5.4.

5.2.3 Cognitive Walkthrough

In an evaluation of how to present different tool features in a way that motivates and engages
users (RQ12), we conducted a small-scale cognitive walkthrough with eight participants on a
paper prototype. The prototype is built using a simple wireframe prototype with Balsamiq [13].
To raise user engagement, we gamified the prototype, as was done in previous studies in the more
general field of software engineering [6, 39, 42, 134]. We gamified the different functionalities of
the prototype to different degrees, ranging from ones completely dedicated to user engagement
(e.g., badges) to functional ones with no gamification (e.g., quick fixes). We used a paper version
of the prototype to conduct the experiment, and determined which levels of engagement are most
attractive to users [89].

We ran a 30-minutes cognitive walkthrough of the prototype with eight researchers who have
knowledge of how static analysis tools function. Five of them had worked with static analysis
tools as developers in the past. Participants performed 23 tasks grouped into five themes:
navigate the selection screen, (un-)assign bugs, navigate the debug screen, fix a bug, mark a
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Figure 5.2: Types of analysis tools used at Software AG (Q4).

bug as a false positive. For each task, we noted the answers to the four cognitive walkthrough
questions [144]:

• Will the user try to achieve the right action?

• Will the user notice that the correct action is available?

• Will the user associate the correct action with the effect they are trying to achieve?

• If the correct action is performed, will the user see that progress is being made toward the
solution of the task?

The answers to those questions served two purposes. The first one was to ensure that the
prototype was usable, and the second, that the participants gained a good understanding of the
prototype before getting to the follow-up interview. All participants managed to perform the
correct actions, with rare exceptions.

In a 15-minutes follow-up interview, we asked participants whether they found each of the
tool functionalities (1) useful to complete their tasks and (2) engaging (i.e., they enjoyed using
it). Finally, we asked them to list the top functionalities of the tool. The study protocol, the
questionnaire, the prototype, and the results are made available online [86].

Two of the eight participants were meant to be pilot participants. Since they did not run
into issues during the first phase of the cognitive walkthrough, we did not modify the prototype
or protocol, and included their walkthroughs in our main results. We discuss the results of the
cognitive walkthrough in Section 5.5.2.

5.3 Usage Context of Static Analysis Tools
In this section, we answer RQ9 and RQ10, aiming to understand how analysis tools are used at
Software AG, how developers interact with the tools, and their primary goals when using them.

5.3.1 Industrial Deployment of Analysis Tools

In the past few years, Software AG has strived to ensure the quality and security of its software
through the use of analysis tools. Individual developers and projects can use their own analysis
tools independently, but global efforts across the company have recently resulted in the deploy-
ment of common analysis tools and platforms over most major projects. We now discuss which
tools are used at Software AG, how the company integrates them in its development process,
and which types of issues they find.

Software AG developers report using a total of 17 different analysis tools that we group by
interface types in Figure 5.2 (Q4). IDE notifications refer to analyses run by the developers’
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Figure 5.3: Reporting locations of current analysis tools (gray) and ideal reporting locations
(black) (Q10–Q11).

Integrated Development Environment (IDE) (e.g., uninitialized variables). IDE tools designate
analysis tools integrated in the IDE (e.g., FindBugs). Dedicated tools provide interfaces that are
separate from the developer’s coding environment (e.g., Fortify, Checkmarx, or CodeSonar for
example). CLI tools provide a Command-Line Interface (CLI). We can see that Software AG
uses a wide variety of analysis tools. Among the survey participants, 67.6% use dedicated tools,
which conforms with Software AG’s policy of using such tools in their projects. Participants
also receive analysis information from IDE notifications (55.9%) and IDE tools (44.1%). Overall,
36.8% of the participants use only one analysis tool, and 48.5% of the participants use only one
type of analysis tools.

With Q5, we observe that the use of analysis tools is spread over the software development
lifecycle: 55.9% of the participants run their analysis tools at coding time, 52.9% during nightly
builds, 29.4% at commit time, and 17.6% at major project milestones. We attribute this behavior
to the use of different types of analysis tools—IDE notifications run at coding time, while longer
running tools are not usually able to do so. We see that Software AG puts efforts in raising
awareness about the use of analysis tools and exposes its developers to large system of tools
comparable with other large companies studied in past research, thus making Software AG a
good case study for evaluating developer behavior and motivation towards static analysis tools.

Once the analysis tools have run, they display warnings in various places, as shown in grey
in Figure 5.3 (Q10). Reports in the code editor, build output, and dedicated tools are expected
from the tool types that are most used at Software AG. When asked which reporting media
they would prefer to use (Q11, black bars in Figure 5.3), participants confirmed wanting to
use their current reporting platforms. However, alternative means were requested to a much
higher extent: PDF reports were requested 3.75× more than currently used, email reports were
requested 1.89× more, and the code review platform was requested 1.36× more. We attribute
this higher demand to the ability of those media to aggregate results from multiple analysis tools
in one place, which makes it easier to have an overview of the analysis results. Although we
cannot confirm this claim with our current dataset, it is partially supported by the responses to
Q12 where 5.5× more developers indicated that they would prefer having the results of multiple
analysis tools into one reporting place rather than in different ones (74.5% against 15.7%).

The survey responses show that 82.4% of the participants typically fix analysis warnings
themselves (Q9). Once the warnings are fixed, they are reviewed by colleagues (79.5%), man-
agers (15.9%), or dedicated teams (9.1%). Out of all fixes, 9.1% go unverified (Q29)

According to 47.1% of the participants, analysis tools used at Software AG are configured
by a dedicated team. However, 36.8% wrote that they configured some of their analysis tools
themselves, and 16.2% that some of their tools run on default settings (Q6). We see that a high
number of developers set up their own tools themselves, which we attribute to the use of tools
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Figure 5.4: Warning types that are reported by the analysis tools (gray) and that developers
want (black) (Q7–Q8).

Table 5.1: Conditional probabilities of a warning being of a certain type (Q7).

Security Perf. Memory Coding
style Concurrency Functional

bugs
Dedicated tools 0.31 0.06 0.08 0.34 0.04 0.16
IDE notifications 0.26 0.06 0.04 0.4 0.06 0.19
IDE tools 0.27 0.05 0.06 0.31 0.09 0.21
Linters 0.27 0.09 0 0.36 0 0.27
CLI tools 0.50 0 0 0.25 0 0.25

not proposed by the global company effort. This behavior, along with the responses to Q17
where 78.3% of the developers said that they use analysis tools because it “helps me code better”
against only 30.4% because of “company policy”, suggests that Software AG generally encourages
the use of analysis tools and spreads awareness among its developers about the importance of
fixing bugs and security vulnerabilities.

In their responses to Q7, participants indicated the vulnerability types that are reported by
analysis tools in their projects (grey bars in Figure 5.4). The warnings that are most reported
are coding style-related (according to 82.1% of the participants), followed by security vulnera-
bilities (59.7%), and functional bugs (38.8%). Table 5.1 displays the conditional probabilities of
warnings being of a certain type given the tool type. We see that for each tool type, the warning
types most likely to be reported are security vulnerabilities, coding style issues, and functional
bugs. This matches the distribution of warnings that code developers listed as most often re-
ported. Dedicated tools and CLI tools are the most likely tools to report security vulnerabilities,
and linters, IDE notifications and tools are more likely to report coding style issues.

When asking developers which types of warnings they would like analysis tools to report (Q8,
black bars in Figure 5.4), we observe that the warning types are more distributed. While security
vulnerabilities and functional bugs are still high (89.6% and 59.7%, respectively), the number
of participants asking for other types of warnings (performance, memory, and concurrency) is
higher than the number of participants getting access to such warnings by factors of 4.4× to
5.3×. On the other hand, participants wish to see less of the most frequently reported class of
warnings: coding style.
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Table 5.2: Conditional probabilities of the length of a working session given the tool type (Q22).

< 10 min 10–30 min > 30 min hours
Dedicated tools 0.16 0.52 0.13 0.1
IDE notifications 0.31 0.35 0.12 0.12
IDE tools 0.40 0.44 0.04 0.04
Linters 0.75 0 0 0.25
CLI tools 0 1 0 0

Table 5.3: Conditional probabilities of fixing a warning in a certain time given the tool type
(Q13).

minutes < 1 hour < 1 day < 1 week < 1 month
Dedicated tools 0.15 0.15 0.38 0.21 0.06
IDE notifications 0.19 0.26 0.35 0.10 0.30
IDE tools 0.23 0.19 0.42 0.12 0
Linters 0.50 0.25 0 0 0
CLI tools 1 0 0 0 0

5.3.2 Analysis Tools in a Developer’s Daily Work

Here, we detail when and how Software AG developers use analysis tools, and expand on the
reasons that make them use those tools. We focus on the tool types that developers use the
most: IDE tools and notifications, and dedicated tools.

Although the usage of analysis tools is distributed evenly during the day (morning 11.4%,
afternoon 13.6%, and evening 11.4%), the largest group of developers (22.7%) use analysis
tools in their spare time, i.e., when they have a few minutes between meetings, or spare hours
during the work day (Q19). Analysis tools are used frequently in the work week: 75.6% of the
participants say they use them multiple times in a week, 24.5% of whom use them more than
once a day (Q18). This usage pattern indicates that working with analysis tools is not a large
task that requires a developer to block a part of their schedule, but instead a set of short tasks
that can be interrupted and resumed later. This observation is further supported by responses
to Q13 and Q22 where we see that the median time for one working session with an analysis
tool lasts for 10–30 minutes while the median time for fixing one warning is between an hour and
a day. We can thus infer that in many cases, developers spread their treatment of an analysis
warning over multiple working sessions.

The length of a working session with IDE notifications, IDE tools, and dedicated tools
mainly vary between a few minutes to 30 minutes (Table 5.2). While the session length for IDE
notifications and tools is evenly distributed between < 10 min and 10–30 min, dedicated tools
clearly lean towards the longer end of the spectrum. The typical fix times for one warning are
shown in Table 5.3. We find the same trend over the time span of minutes to under a week:
with IDE notifications and tools, a warning is fixed in around a shorter time (between an hour
and a day) than with dedicated tools (around a day). This trend is explained by the fact that
analyses running in the IDE must be able to yield results in a matter of seconds, which restricts
them to fast and simple-to-compute checks. Their warnings are thus relatively easier to fix. We
see that for the individual tool types, working sessions are typically shorter than the time to fix
a warning, the only exception being CLI tools.
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Table 5.4: Developer goals when opening analysis tools (Q23).

Goal % of Devs
O1 Fix all warnings 36.4%
O2 Fix warnings in a given time 31.8%
O3 Consult warning list 31.8%
O4 Fix a set number of warnings 9.1%
O5 Fix warnings up to a certain standard 4.6%

Table 5.5: Reasons for closing analysis tools (Q24).

Reason % of Devs
C1 Finished fixing everything 45.5%
C2 Professional obligation 25%
C3 Wait for the analysis tool to update 18.2%
C4 Office distraction 13.6%
C5 Never close the tool 13.6%
C6 Cannot fix an issue 9.1%

Having determined the usage context of analysis tools, we now explore the reasons why
developers start and stop using analysis tools in their daily work.

When asked for the reasons why they use analysis tools in general (Q17), 30.43% of the
participants reveal that it is because of company policies, and 21.74%, that it is because they
help them code faster. In addition, 78.26% of the developers report that the tools help them code
better, showing that developers value the use of analysis tools outside of company obligations.

In Table 5.4, we see that, independent from the tool type, most of the reasons for which
developers open an analysis tool revolve around fixing warnings, with the variation of how
many warnings they aim to fix (Q23). Conditional probabilities show that a relationship exists
between tool types and fixing goals. When using dedicated tools, participants mostly aim at
fixing as many warnings as possible in a given time (Pr = 0.31), which is a sensible strategy
when dealing with complex warnings. With all other tools, participants mainly aim to fix all
warnings when they open the tool. Consulting the list of warnings is a frequent reason why
developers open the tools for all tool types (0.24 ≤ Pr ≤ 0.28). Table 5.5 details why developers
close an analysis tool (Q24), independent from the tool type. The main reason is that they
finished fixing all warnings, which we attribute to the use of lighter analysis tools that yield
easier-to-fix warnings. The second cause is time limit. The third one is that they wait for a tool
update (complex analyses can take minutes to hours to process an update). A minor reason
for which developers close the tool is that they cannot fix a warning, an issue that is likely
encountered when dealing with complex warnings that are not properly explained by the tool.

Table 5.6 shows that, regardless of the reason why the tool was opened, a popular reason
for closing it is that all warnings were fixed (C1). However, when developers open the tool
with a certain limit in mind (time or number of warnings), fixing all warnings is not the main
closing reason. Developers are also likely to close the tool due to professional obligations (e.g., a
meeting) or waiting for a tool update. We also see that when developers open the tool with the
intention to fix all warnings, they only manage to reach their goal 45% of the time. Otherwise,
they are either stuck on a warning or waiting for a tool update. This suggests that when
developers do not have time constraints, they have a fair chance to eventually run into warnings
that they cannot fix in one working session.
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Table 5.6: Conditional probabilities of reasons for closing an analysis tool given the reason for
opening it. The legends for Ox and Cx are found in Table 5.4 and Table 5.5 (Q23–Q24).

C1 C2 C3 C4 C6
O1 0.45 0.05 0.15 0.05 0.15
O2 0.22 0.33 0.17 0.17 0
O3 0.35 0.25 0.15 0.10 0.05
O4 0.20 0.20 0.20 0.20 0

Discussion (RQ9–RQ10)

Software AG developers are involved with a variety of analysis tools at all stages of the software
development process, the most frequently used being dedicated tools, IDE tools, and IDE noti-
fications. Warnings are reported in various places across the working tools, which is consistent
with the case study of Microsoft [22], but developers indicate that they would prefer a common
interface for all analysis warnings. Centralizing warnings in the same user interface would reduce
developer effort in switching between different interfaces.

Different types of tools are more likely to find different types of warnings. The most reported
warnings are about security vulnerabilities, coding style, and functional bugs. In addition,
developers would like to obtain information about performance, memory, and concurrency bugs
in their code. A major difference from the Microsoft study is the requirements for coding style.
While second most asked in their list, it is significantly less required by Software AG developers,
which we attribute to two factors: their tools report too many such warnings, and with time,
developers need more help with complex properties of the code than shallower ones.

Software AG developers use analysis tools at short points in time, mostly in their spare time.
For them, fixing warnings is a continuous task spread over short working sessions, which length
depends on the tool type. Warnings reported by IDE notifications and tools allow developers
to spend less time fixing warnings, and to have shorter working sessions with the tools. More
complex warnings produced by dedicated tools have longer fix times, and cause developers to
work with the tools for a longer period of time.

In turn, this makes time limitations the main reason for stopping to use an analysis tool.
Time limitations generate different working goals: while developers most often open a tool
with the intention to fix warnings, they choose to fix different sets of warnings depending on
their available time. This constraint introduces different interaction experiences with the tools,
namely how to support developers in choosing which warnings to fix in the given time, which
we explore in the following section. As a result, when designing an analysis tool—and modeling
the workflow of a user within the tool, it is recommended to take into account how long the user
intends to use the tool for in a single session.

More minor causes for developers ending a working session are explainability issues for com-
plex warnings, and the long time taken to update analysis results, which have been reported in
past studies [14,22,47].

5.4 Developer Motivations and Strategies

We now answer RQ11 by exploring developer behavior when fixing warnings, in particular how
they prioritize which ones to investigate first, what they do with warnings that they do not
understand, and how they collaborate with their colleagues to fix them.

55



5.4 Developer Motivations and Strategies

Table 5.7: Developer strategies to prioritize which warnings to address first (Q34).

Strategy % of Devs
Prioritize warnings affecting the developer’s code 46.3%
Prioritize warnings with the most impact 43.9%
Prioritize warnings the developer can fix 31.7%
Follow the order of the warning list 31.7%

5.4.1 Prioritizing Warnings

Before they start to fix warnings, developers must first select which warnings to fix. To help
them choose, analysis tools typically provide them with additional information such as warning
type (e.g., SQL injection), code location, or severity. Table 5.7 shows the four main strategies
adopted by the survey participants when choosing which warnings to investigate (Q34). One
of the most popular is to prioritize the warnings by impact, which aligns with Software AG’s
policy of addressing all of the most severe warnings before a major release. A developer will
also preferentially work on warnings that impact their own code or that they know how to fix,
because they have the necessary knowledge to do so. The last strategy is to go from the top
down in the warning list, which is a sensible methodology for simple lists of warnings that are
all fixable within one working session. Such strategy is also useful for longer, more complex lists
that the tool already sorts by importance, which is often the case in dedicated tools.

To gain a deeper understanding of which warnings are fixed first, we studied the analysis
reports of Checkmarx on two projects: Coyote and Road Runner1. Figure 5.6 shows the number
of warnings found for nine of their sub-projects, grouped by confidence as labeled by the devel-
opers when they handled the warnings, over the time span of a few months for Coyote to nearly
two years for Road Runner. Figure 5.5 shows the same data, grouped by severity, as provided
by Checkmarx.

Except for Coyote G, only a fraction of the warnings are labeled by developers as true
or false positives. We see that the variations of the number of labeled warnings follows the
variations of the general number of warnings, suggesting that developers actively handle new
warnings but usually only look at a fraction of the total number of warnings, or do not often
label warnings. We also observe that developers tend to keep the number of warnings with a high
severity at a minimum: the plots consistently remain close to 0, confirming our survey results
(Q34: developers tend to fix warnings with the most impact). This observation is supported
by Table 5.8: the probability of a high severity warning to be in the to verify list is very low
compared to other types of warnings, and the high severity warnings that remain are most often
false positives. Confirmed true positives are handled similarly: they are kept to a minimum and
eventually removed, (e.g., Road Runner C).

Most projects also have a small number of low severity warnings, which we attribute to the
relative ease of fixing such warnings, matching the developer strategy of fixing what they know
they can fix. For example, unchecked return value, and null pointer dereference, likely to be
classified with a low severity with a probability of 1, are simple to fix.

In the longer-running Road Runner projects, we also observe that the number of warnings
regularly increases and plummets, which (knowing Software AG’s release schedule) we suppose
with fair confidence corresponds to compliance tests before major product releases or milestones.
Outside of those times, the number of warnings decreases slowly due to continuous work done
by developers on their spare time, as we have discussed in a previous section.

1The project names are anonymized at Software AG’s request.
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Figure 5.5: Number of warnings for four sub-projects of Road Runner (RR), and five sub-projects
of Coyote (C) classified by confidence as labeled by Software AG developers. At the request
of Software AG, we do not disclose the axis labels. All axes are in linear scale, the y-axes all
start at 0. For the same sub-project, the maximum value on the y-axis is the same as for the
corresponding sub-project in Figure 5.6.
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Figure 5.6: Number of warnings for four sub-projects of Road Runner (RR), and five sub-projects
of Coyote (C) classified by severity. At the request of Software AG, we do not disclose the axis
labels. All axes are in linear scale, the y-axes all start at 0. For the same sub-project, the
maximum value on the y-axis is the same as for the corresponding sub-project in Figure 5.5.
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Table 5.8: Conditional probabilities that a warning is marked with a certain confidence, given
its severity.

False Positive True Positive To Verify
High 0.92 0.03 0.04
Medium 0.15 0.03 0.83
Low 0.05 0.01 0.93
Info 0 0 1

Table 5.9: Developer strategies to detect false positives (Q33).

Strategy % of Devs
Categories of issues are known false positives 43.9%
Code constructs are not handled by the analysis 39.0%
Warning witness is not executable 31.7%
Code locations are never executed 22.0%
Conditions along the warning are never true 12.2%

5.4.2 Detecting False Positives

To help developers decide whether a warning is a false positive or a real issue, analysis tools
often provide them with additional metrics. For example, the main screen of Checkmarx allows
developers to filter analysis warnings by warning type (e.g., cross-site scripting), code location,
severity, and other information the developer can edit (e.g., confidence).

Table 5.9 shows five main strategies that participants use to evaluate if a warning is a false
positive (Q33). The main strategy is looking at the warning type. This strategy can be a quick
way of triaging through warnings, because certain warning types are more often labeled as false
positives than others. For example, memory leak or use of uninitialized variable are very likely to
be marked as false positives (Pr = 0.8 and Pr = 0.71 respectively). However, this strategy can
be misleading: without investigating each warning in detail, true positives may be overlooked.

The second-most popular strategy is related to misinterpretations of some code constructs by
the analysis (for example, the behavior of specific libraries or objects). Such constructs seem to
be known by developers, and are used to differentiate true from false positives. Another 43.9% of
the participants said that they recognize false positives because the warning witness is incorrect,
meaning that the analysis’ interpretation of the code’s runtime behavior is faulty. This situation
requires from the developer to investigate the warning in detail, which is a very accurate, but
time-consuming strategy. On average, participants investigate 65.1% of the warnings in detail
(min = 20%, max = 100%, σ = 26.1) (Q32). The last strategy is to mark as false positives
warnings that go through areas of the code that are never executed. While this strategy helps
remove false positives, it is insecure to keep vulnerable non-executed code in the codebase, as it
could be exploited in the future.

5.4.3 Understanding Warnings

To understand if a warning is a true positive, if they should prioritize it, and how they could
fix it, developers have to gain an understanding of the warning. We have previously discussed
that developers often use heuristics over easily accessible data to make a decision, because they
cannot spend time investigating all warnings. Therefore, the ability of the analysis tool to
explain the warning and showcase relevant data is key to supporting its users.
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Table 5.10: Reasons why warnings are difficult to understand (Q36).

Reason % of Devs
Unfamiliar with the issue 48.8%
Explanation given by the analysis tool is unclear 48.8%
Span over too much of the codebase 31.7%
The codebase is unclear 4.9%

Table 5.11: Developer actions for warnings that they do not understand (Q37).

Action % of Devs Behavior type
Leave for later 56.1% Neutral
Ask for help 51.2% Good
Ignore 14.6% Bad
Research and fix 7.3% Good
Suppress 7.3% Bad
Escalate 2.4% Good

On average, participants understand 36.1% of the warnings they investigate (min = 0%, max
= 80%, σ = 32.6) (Q35). To explain this low number, we asked participants for the reasons
why warnings can be difficult to understand, which we detail in Table 5.10 (Q36). Three major
reasons stand out. First on the list is that the warning is new to the developer, so they need to
learn a lot: what the warning means, how it applies to their code, and how to safely fix it in the
context of their code. Another reason is that the tool’s explanation is unclear. While some tools
simply give a generic description of the warning type, others, such as Checkmarx, provide more
detailed information, yet it is still difficult to completely explain to developers how the analysis
reasons about the warning, especially when the warning is complex and spans over a wide part
of the codebase, which leads us to the third reason: the size of the warning. While some analysis
warnings can affect small parts of the code (e.g., use of potentially dangerous function), other
complex warnings can involve larger parts (e.g., an SQL injection going from an input form all
the way to the database).

Table 5.11 details the treatment of warnings that developers do not understand (Q37).
Overall, we see three main types of behavior appear: neutral, positive, and negative. A majority
of the developers (56.1%) adopt the neutral behavior of leaving the warnings for later. More
negative solutions are to ignore or suppress the problematic warning. Respectively 14.6% and
7.3% of the developers admit to using them, which should be discouraged. Other participants
opt for positive actions and spend more time asking for help, escalating, or researching the
warning. On average, participants ask for their colleagues’ help for 27.8% of the warnings in an
analysis report (min = 0%, max = 70%, σ = 42.2) (Q38).

When developers ask for help (Q39), they are interested in the three particular aspects that
we discussed in Q36: the issue, the codebase, and the analysis tool (in particular, what the
tool means when explaining the warning), as seen in Table 5.12. The first three aspects confirm
our observations from Q36. In particular, with the second one, we see that of the warnings
developers ask about, 46.3% are due to codebase issues, while only 4.9% of the participants
find warnings confusing due to lack of understanding of the relevant codebase. We infer that
developers rarely ask about confusing warnings, and that a large fraction of the ones they ask
about are due to codebase clarity issues. This finding confirms the need for better warning
explanations, especially with respect to information about the issue and the analysis tool, which
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Table 5.12: Reasons why developers ask for help (Q39).

Reason % of Devs
Others have experience with the codebase 46.3%
Others have experience with the type of issue 39%
Others have experience with the analysis tool 31.7%
The developer does not ask for help 14.6%

is less at hand to the developers than codebase information they can ask colleagues about.
Lastly, 14.6% of the participants do not ask for help. We suppose that this behavior could be
caused by time constraints, discouragement of working on a warning for too long, or the social
consequences of admitting that they do not understand the warning.

Discussion (RQ11)

When choosing which warnings to fix first, developers aim for those they know they can fix, or
for the ones with the most impact. The order suggested by the tools is secondary to that, which
we attribute to the time constraints discussed in the previous section. As a result, developers
base their judgement on their knowledge of the codebase, their experience of the warning types,
and warning severity. While current recommender systems—which highlight to the developer
warnings they should fix in priority—mainly center around severity, they should also take into
account the length of a working session and developer experience.

To distinguish false positives from true positives, developers often use heuristics derived
from their common experience, which can be sound or flawed. Allowing development teams to
integrate sound heuristics in the analysis would help bridge the gap between how the analysis
understands the codebase and how the developer does. Flawed heuristics stem from warnings
that are ill-explained by the analysis tool, as confirmed by previous studies [14, 47, 65], which
can result in negative warning treatments such as inappropriate silencings or dismissals.

Facilitating explainability is not only restricted to finding better explanations than the ones
already provided by the tool. When asking for help from other colleagues, developers seek
knowledge about the analysis tool, the warning type, or the codebase. Again, we see that taking
developer experience into account could be a benefit to analysis tools, by suggesting to a stuck
developer the name of a colleague who might have the knowledge they seek, or by building a
knowledge database to look up warning into. Instead of using side-channels for asking for help
or looking up warnings, analysis tools could take into account the usage context of a company
with a community of developers to encourage collaborative positive behavior.

5.5 Desirable Features of Static Analysis Tools
In light of the developers’ motivations identified in the previous sections, we discuss which
features are of most interest in the user interface of an analysis tool, and how to present them
to the developer, answering RQ12.

5.5.1 Tool Layout and Features

From CLI interfaces to standalone applications to IDE tools, the different static analysis tool
types used at Software AG offer a wide choice in interfaces. To understand the developers’
preferences with respect to the UIs of analysis tools, we asked them which kinds of layouts they
use most often (Q25). Of all developers, 70.5% use the default layout of the tool, 18.2%, their
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own custom layout, 4.6%, the company layout, another 4.6% change the tool layout according
to their needs of the moment, and 2.3% do not use a particular Graphical User Interface (GUI)
and stick to CLI tools only. We see that even though Software AG provides developers with a
company-specific interface, they prefer the tools’ default layouts.

In Q26–Q28, we asked participants which UI features they most often look at when opening,
using, and closing an analysis tool. Developer attention is most attracted to the dashboard (a
high-level summary of the project’s health) when opening the tool (47.7%) and to the warning
list when closing it (59.1%). The warning list is central at all times, in particular, when using the
tool (68.2%), showing the importance of the information conveyed in this list: the issues, where
they are located, and how much still needs to be achieved to meet the company’s standards.

We identified a set of 19 UI features from commercial (e.g., Checkmarx [20], CodeSonar
[41], etc.), academic (e.g., FlowDroid [9], Cheetah [88], etc.), and open-source (e.g., FindBugs
[121], IntelliJ’s Code Inspection [46], etc.) analysis tools, and from past work on their usability
[10, 22, 47, 89], and asked participants to rank their importance between six categories: should
not exist, neutral, low importance, important, very important, and indispensable (Q30). In the
remainder of this thesis, we will refer to those features as F1–F19, all listed in Figure 5.7. F1–
F2 focus on the responsiveness of the tool, F3–F6 address different aspects of explainability,
F7–F9 deal with fixing warnings, F10–F12 aim at visualizing the project’s health, F13–F15
help keep track of individual warnings, F16–F18 concern analysis configuration and feedback,
and F19 focuses on collaboration.

Figure 5.7 shows that the most popular features are F3 (explain a bug), F4 (bug severity),
F7 (explain how the bug can be fixed), and F9 (quick fixes). The first three have a total of 28,
26, and 24 developers respectively marking them as very important or higher, with an overall
average of approximately 19 developers. F9 has 10 developers marking it as indispensable,
against an average of approximately 6. The popularity of F3 and F4 echoes our findings from
Section 5.4: since developers are more interested in severity and understanding the warning,
those two features are most important to them. F7, which explains how the warning can be
fixed on a high level, is highly appreciated. However, F8—which does the same but gives more
specific recommendations with regards to the codebase—receives less support. Although we
cannot be certain, it is possible that manually verifying a fix generated by the analysis would
add to what developers currently have to understand, and the risk of introducing more potential
bugs in the codebase is too high. Those reasons would also explain the low ratings of F9,
which has the highest score for should not exist with 4 developers compared to an average of
approximately 1. F9 is thus among both the most popular features (supposedly for its gain of
time) and the least popular ones.

Features such as collaboration (F19), customization of the analysis rules (F18), and visual-
ization features (F10–F11)—which we have identified in Section 5.4 as ones that can potentially
enhance the user-experience of the developers—have received the lowest ratings by a margin of
four developers or fewer when compared to the average, despite F10 and F11 being often used
by the developers (Q26–Q28). With our current data, it is difficult to say whether those lower
ratings are caused by the developers disliking such features in their current analysis tools, them
disliking the general idea behind those features, or, if having not experienced those features yet,
they are wary of them. On the other hand, all features in the survey were deemed important
or more by at least 75% of the participants, showing that when designing an analysis tool, even
the least popular features would be worth including.

5.5.2 Motivation Through Gamification

To further explore how to introduce desirable features into a more concrete interface while
keeping up developer engagement, we have run a cognitive walkthrough using the gamified paper
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F1 F2 F3 F4 F5 F6 F7 F8 F9 F10F11F12F13F14F15F16F17F18F19
0%

25%

50%

75%

100%

Should not exist Neutral
Low importance Important
Very important Indispensable

F1 Responsiveness of the analysis F11 Dashboard of the warnings
F2 Responsiveness of the UI F12 Search and sort through warnings
F3 Explain how a bug works F13 Prioritization of bugs to fix
F4 Explain how bug affects the code F14 Keep a list of the developers’ bugs
F5 Explain how the bug is executed F15 Tracking progress of what was achieved
F6 Explain how warnings are related F16 Configurability of the analysis
F7 Explain how to fix the bug on a high levelF17 Provide feedback to the tool
F8 Explain how to fix the bug in the code F18 Customization of the analysis rules
F9 Quick fixes F19 Collaboration options (with colleagues)
F10 Visualizing warnings in the code

Figure 5.7: Ranking the importance of tool features (Q30).
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(a) Selection screen. A – J and P are detailed in Table 5.13.
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P

(b) Close-up of the debug screen. K – Q are detailed in Table 5.13. M – O are included in the grey
box ( K ).

Figure 5.8: Paper prototype used for the cognitive walkthrough.
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Table 5.13: Percentage of participants who found the functionalities in Figure 5.8 useful/engag-
ing to achieve their tasks, and who have named them among their preferred ones.

Functionality % Useful % Engaging % Preferred

A Developer profile. 50 75 25
B Point system. 12.5 37.5 25
C Badges. 37.5 62.5 12.5
D Overview of yesterday’s achievements. 62.5 75 37.5
E Map/overview of the warnings. 75 37.5 0
F Filtering functionalities for the map. 100 50 50
G Warnings assigned to the user. 100 33.3 25
H Suggestions of bugs to fix. 100 16.7 0
I Assignment system. 100 25 0
J Warning history. 62.5 37.5 0
K Warning information in the code. 100 62.5 87.5
L Gutter icons. 85.7 0 12.5
M Mark false positives (“This is wrong”). 100 62.5 12.5
N Mark as fixed (“I fixed it”). 100 80 12.5
O Cancel M or N with one click. 100 0 0
P Fix suggestions. 100 50 50
Q Notification popup. 87.5 87.5 37.5

prototype shown in Figure 5.8 [89]. The figure shows the two main screens of the prototype,
corresponding to the two main phases of using a static analysis tool: selecting which warnings
to work on, and fixing those warnings. In the first phase, developers need an overview of all
warnings, of the warnings they want to fix, and clear information that helps them select warnings
to fix (e.g., incentives or impact of the fix). In the second phase, developers focus on one warning
in particular, so they need detailed information about that one warning.

The gamified tool functionalities A – Q are described in Table 5.13. While designing the
functionalities, we have focused on two aspects: customizing the information based on the de-
veloper’s current work (e.g., their currently assigned bugs) and experience ( H and P ), and
providing them with customized feedback and actionable controls. For example, K presents
information embedded in the code where it is relevant: explanations on why the tool reports a
bug, its relationship to other bugs, and access to possible actions: “This is wrong”, “I fixed it”,
etc. Q appears when the developer fixes a bug, shows them their status (new points, achieve-
ments...), and gives them access to possible actions, e.g., “Get more bugs to fix”. Functionalities
A – Q are designed to respect features F1–F19, with the exception of F16 and F18, because
they are part of different types of screens that are less used by software developers.

Table 5.13 presents the results of the post-cognitive walkthrough interviews, in which we
asked the participants for their impressions on each of the tool functionalities. In particular, if
they were (1) useful to complete their tasks, (2) engaging (i.e., they enjoyed using it), and (3)
one of the top functionalities of the tool in their opinion. We see that functionalities D – P
were perceived as useful by an overwhelming majority of the participants (between 62.5% and
100%). The information embedded in the code K was mentioned by 87.5% of the participants
as part of their top useful functionalities, confirming the need for F7–F8, and F14–F15. The
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filtering functionalities F come next (50%, F1–F2, and F11–F13), followed by fix suggestions
P (50%, F7–F8).

We see that functionalities A – C —which correspond to typical gaming functionalities
(badges, profile, points)—have a lower usefulness score, and are generally perceived as more
engaging than useful. Many participants overlooked them, as they “are unrelated to what I am
doing”. In contrast, functionality Q (notifications) is also a typical gaming functionality, but
received a much higher usefulness and engagement score (87.5%), and was also chosen as one of
the top functionalities by 37.2%. This functionality matches F1–F2, F7–F8, and F11–F15.

The cognitive walkthrough results suggest that for static analysis, gamified functionalities
generate a higher engagement. However, developers favor functional usefulness before pure
gamification. Functionalities that achieve both are best received (e.g., Q ), which confirms ob-
servations made by past research in the more general field of gamifying software engineering [94].

Discussion (RQ12)

When first opening an analysis tool, Software AG developers often look at a dashboard to get a
general overview of the warnings in the codebase. When closing the tool and while using it, they
most often look at the warnings list, which seems to be their primary working tool. We have
identified 19 concrete features for static analysis tools, all of which received positive ratings,
and should be considered when designing an analysis tool. One should keep in mind that the
integration of certain novel, or less popular features should be designed with care, finding the
right balance between usefulness and motivation, to best assist developers.

5.6 Limitations and Threats to Validity

Our study is limited to Software AG and therefore does not necessarily generalize to every
software company. However, the participants showed a large diversity in experience and pro-
gramming languages, and have years of experience working with many static analysis tools at
Software AG (RQ1–RQ2). Thus, the results of our survey reasonably generalize to similar
companies who use analysis tools internally.

The formulation of the survey questions could also be subject to misunderstandings. To
minimize such errors, we ran a pilot survey with five developers from Software AG. During the
data extraction process, we did not find any responses that we could interpret as a response to
a misunderstood question.

Another threat to validity is the subjective interpretation of the free-text (Q15, Q31, and
Q40) and “Others” survey responses when we reclassified them in different categories. However,
for this survey, we did not use the free-text questions, and we verified the classification of the
“Others” responses with two raters, with 100% agreement. We have made the survey questions
and anonymized responses available online [86].

While Road Runner and Coyote do not fully represent all of Software AG’s projects, they
are major projects of the company, and are contributed to regularly. We included all of their
sub-projects in our study, which offers diversity in terms of project type, target platforms, and
exposure time to Checkmarx.

The cognitive walkthrough has been run on a small set of eight participants. While they
do not represent developers in industry, five of them have worked with static analysis tools as
software developers in the past, and all of them are knowledgeable enough in the field of static
analysis to know of its main issues, as would be expected from a software developer taking the
walkthrough. Running a larger-scale study would yield more accurate results, which we leave
for future work.
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5.7 Summary

Through a developer survey and an analysis of two projects at Software AG, and a small-scale
cognitive walkthrough, we have drawn a picture of how static analysis tools are used in industry.
We conclude by summarizing a few tool requirements and recommendations for the design and
usage of static analysis tools in practice, which we refer to as RE-S (REquirements for Software
developers).

• RE-S1: Time constraints are the primary concern of developers when using an analysis
tool. The length of a working session with the tool should be taken into account when
designing the workflow of an analysis tool.

• RE-S2: Linked to time constraints, the lack of responsiveness of some analysis tools is a
user-experience issue encountered by developers at Software AG. The analysis responsive-
ness and the tool interface should be crafted to minimize waiting times.

• RE-S3: As they work with analysis tools, developers build project-specific or company-
specific heuristics to deal with warnings faster. Some are useful, and developers should be
allowed to contribute them to the analysis.

• RE-S4: Other heuristics can be harmful, and can be avoided by improving the explainabil-
ity of analysis warnings. Explaining a warning revolves around three knowledge bases for
developers: past exposure to certain warning types, knowing the codebase, and knowing
the analysis tool.

• RE-S5: The developer knowledge mentioned above should be integrated in recommender
systems to provide users with personalized warning suggestions, given their abilities and
their working time.

• RE-S6: Developer knowledge should also be made available to all users, through collabo-
ration options in the analysis tool, to provide more official alternatives of communication
than the currently used side-channels.

• RE-S7: More generally, analysis tools should be designed to encourage good behavior in
situations when users are blocked. Tool and interface features such as the ones suggested
in Section 5.5 should be designed with this in mind.

• RE-S8: Tool features can be ill-received if badly designed, especially if they are new or
give risky advice. Therefore, they should be carefully designed to prefer usefulness over
motivation.

• RE-S9: In practice, while it is generally recommended to use multiple static analysis tools
in conjunction and recoup their warnings together, we also recommend adding different
types of tools (e.g., dynamic analyzers, profilers) to cover aspects that are less reported on
by static analysis tools (e.g., performance, memory).

• RE-S10: When using different tools, we recommend the use of a single reporting platform
to handle all warnings. On top of a general overview of the project’s health, such a
platform can also provide a unified reporting format, which would reduce developer work
in consulting multiple interfaces and learning how the different tools work.

• RE-S11: The success of analysis tools directly depends on the company’s backing. Policies
enforcing the use of analysis tools and spreading awareness, should be maintained and
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developed, with for example, initiatives and trainings to sensitize developers towards good
behavior when using analysis tools.

With this study, we advocate for a more user-centered approach of designing static analysis
tools, in which usage context and user motivation can offer a different design perspective and
yield different requirements. In the next chapters, we focus on a few of the tool requirements
identified here.
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6
More companies integrate static analysis checks in their development process. However, most
static analysis tools—such as Microsoft’s PREfix/PREfast [72], Fortify [37], and Coverity [26]—
are designed to be used in batch mode (i.e., offline, during nightly builds or at major software
releases), because analyzing real-life projects can easily take hours. This use of analysis tools
requires developers to pour over long lists of warnings (often in the order of thousands of warnings
for real-life projects) and decide which messages correspond to real errors that require a fix, hours
or days after they have committed their code [14,65]. Running analysis tools in batch mode thus
limits the potential utility of static analysis: the coding and fixing tasks are separated, creating
a context switch for the software developer. Several human-subject studies have highlighted
challenges related to workflow integration with static analysis tools, finding that developers
dislike when static analysis disrupt their workflow [22,47,65], and that developers whose security
tools help them do their work quickly are more likely to adopt those tools [146,148].

We present the concept of Just-in-Time (JIT) static analysis, in which developers can en-
code priority rules to accelerate the analysis of particular paths. Warnings of interest are thus
returned first, and other warnings are delayed while the developer handles the first ones (RE-
S2). The ability to encode developer knowledge about the analyzed code addresses RE-S3.
Our particular instantiation of a JIT analysis, Cheetah, takes advantage of the responsiveness
provided by the JIT system to incorporate a taint analysis into the active development environ-
ment, allowing developers to see the impact of their changes as they code, without blocking them
from performing other coding tasks (RE-S1). In addition, Cheetah makes use of the priority
system to report more manageable, “digestible” sets of warnings first, instead of providing the
user with a long list of warnings at once (RE-S4).

In this chapter, we describe general guidelines for designing JIT analyses. We also present
a general recipe for transforming static data-flow analyses into JIT analyses through a concept
of layered analysis execution. We illustrate this transformation with Cheetah, a JIT taint
analysis for Android applications implemented as an Eclipse plugin. Our empirical evaluation
of Cheetah on 14 real-world applications shows that our approach returns warnings in under
a second—quickly enough to avoid disrupting the normal workflow of developers. This result
is confirmed by our user study over 18 developers, in which they fixed data leaks twice as fast
when using Cheetah compared to an equivalent batch-style analysis.

The concept of Just-in-Time analysis has been presented at the ACM SIGSOFT International
Symposium on Software Testing and Analysis conference (ISSTA) [88]. Cheetah was presented
at the tool track of the International Conference on Software Engineering (ICSE) [87].
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6.1 Related Work

In this section, we present past work in improving the interactions between static analysis tools
and developers, focusing on the responsiveness of analysis tools, the prioritization of analysis
warnings, and the integration of developer-specific knowledge in the analysis rules.

6.1.1 Responsiveness of Static Analysis

Significant work has been done to make static analyses more responsive. For example, Sol-
stice [83] runs an offline analysis on a replica of the developer’s workspace, and reports results
in a non-disruptive manner. In contrast, Cheetah is an interactive analysis that operates on
the original codebase, reporting its results in a timely fashion.

Incremental analyses such as Reviser [7], ECHO [151] or Lu et al.’s approach [69] reanalyze
only the recent code changes, updating the analysis results quickly enough to be used in an IDE.
The key component of incremental analyses is the computation of which data-flows need to be
invalidated and recomputed [116]. In Reviser’s case, this is done by traversing the ESG. ECHO
uses static happens-before graphs to derive this information. Lu et al. [69] achieve the same
result through Context Free Language (CFL) reachability. In contrast, Cheetah relies on a
prioritization system to compute a certain set of results quickly, reanalyzing the whole program
at every run. In addition, Cheetah gives developers control on the prioritization.

Parfait [23] runs different analyses in layers of increasing order of complexity and decreasing
order of efficiency. Unlike Parfait, Cheetah layers a single analysis, making it more responsive
in general. Moreover, later analyses in Parfait may invalidate the results that the initial analyses
have already reported. On the other hand, later layers in Cheetah do not refute the results
that have been reported by earlier analysis layers.

6.1.2 Warning Prioritization

Choosing which warnings to fix first is a major task for software developers. Analysis tools
propose several ways to prioritize which warnings developers should address first. Most often,
tools provide software developers with filtering and ordering options, for example by warning
type or code location. They also rely on heuristics, like FindBugs [121] which classifies warnings
as low, medium, or high priority.

Surveying the research, Muske and Serebrenik [82] organize prioritization approaches into
three main categories: statistical, historical, and user-feedback. As an example of a user-feedback
based approach, Heckman and Williams [44] use machine learning to prioritize actionable warn-
ings over unactionable ones. Kim and Ernst [56] use code history to prioritize defects. Other
approaches do not easily fit into these categories. For example, Shen et al. [122] deprioritize
predicted false positives, then use developer feedback for future prioritization. As another ex-
ample, Liang et al. [66] use resource leak defect patterns to prioritize potential resource leaks.
In contrast, the JIT approach allows end-users to choose which warnings are returned first,
allowing them to customize the prioritization order. Cheetah in particular prioritizes using
a developer’s working context, and uses that context to guide the analysis itself. As this pri-
oritization system is part of the analysis, it is not run as a post-processing module like other
approaches, and can thus be used in combination with them.

6.1.3 Integration of Developer-Specific Knowledge in the Analysis Tool

Commercial tools sometimes allow developers to customize the analysis rules. For example,
Fortify [37] and Checkmarx [20] provide their own languages and allow end-users to write their
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own analyses. Other methods interface the user and analysis, for example with Microsoft SAL
annotations [73] that denote the intent behind certain pieces of code. Those annotations are
interpreted by the analysis, providing it with user-specific information. Another example is
ASIDE [149], in which IDE annotations are used to interact with the user, to ask for missing
knowledge. A similar questioning system is used by Dillig et al. [29], where the authors use
abductive inference to determine the minimal set of questions to ask the user. Eugene, by
Mangal et al. [70] proposes a user-guided approach in which developers can “like” or “dislike”
warnings, allowing the analysis to learn about warnings of interest. The JIT analysis concept is
closer to the first system, in which the developer can directly customize the analysis. It however
simplifies their input from writing a full analysis to simpler prioritization rules, as presented in
Section 6.2.2.

6.2 The Just-in-Time Analysis Concept

In this section, we introduce the concept of Just-in-Time (JIT) analysis that allows software
developers to specify prioritization information into the analysis. We illustrate it through three
analysis examples, and show how to apply it to existing data-flow analysis solvers.

6.2.1 Overview

Despite years of work on eliminating false positives in static analysis tools, end-user experience
tends to be overwhelming, even for the unsound (or optimistic) commercial tools; this is some-
times called the “wall of bugs” effect [14, 22, 47, 65]. Observing how developers interact with
static analysis tools, we highlight that: (1) warnings that are not relevant to the software devel-
opers are unlikely to be addressed, (2) the analysis does not necessarily have the knowledge of
what “relevance” means to a particular developer, and (3) interrupting the development process
with the fixing process is an undesirable trait for static analysis tools.

Building on those observations, we define the following requirements for a sensible analysis:

• Prioritization: The analysis must report the results most relevant to the user first. We
expand on the definition of relevance later in this section.

• Responsiveness: To provide the users with immediate feedback on their changes, the
analysis should report the earliest results quickly. In particular, analyses that run in the
background of the IDE can also report the results earlier or later in time, allowing devel-
opers to focus on a subset of warnings while the analysis computes further results. This
approach of interleaving analysis and developer activities reduces the perceived analysis
latency, improving the overall usability of an integrated analysis tool.

• Monotonicity: To avoid confusing developers with disappearing warnings, a reported
issue cannot be refuted until the developer has fixed it: the analysis only adds warnings
over time. Therefore, refining an imprecise pre-analysis is not possible.

In Section 6.2.2, we present the concept of JIT analysis which addresses those requirements.

Relevance Examples

The relevance of a warning can only be defined by the developer since it depends on how the
analysis is intended to be used. We now outline three concrete examples for expressing various
relevance metrics using Listing 6.1, Listing 6.2, and Listing 6.3.

Listing 6.1 presents a Java snippet containing three data leaks. A taint analysis would report
them from the source line 16 to the sinks line 21 α , line 25 β , and line 31 γ .
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13 public class A {
14
15 void main(B b)
16 String s = telephonyManager . getDeviceId ();
17 String t = s;
18 String u = s;
19 sendDeviceId (s);
20 b. sendDeviceId (t);
21 smsManager . sendTextMessage ("+49 1234", null , u, null , null); α
22 }
23
24 void sendDeviceId ( String x) {
25 smsManager . sendTextMessage ("+49 1234", null , x, null , null); β

26 }
27 }
28
29 public class B {
30 void sendDeviceId ( String y) {
31 smsManager . sendTextMessage ("+49 1234", null , y, null , null); γ

32 }
33 }

Listing 6.1: Running example illustrating a JIT taint analysis.

To ensure correct API usage, analyses verify that programs follow a certain usage proto-
col [60]. API misuses are often detected with typestate analyses. In Listing 6.2, a typestate
analysis would verify that a cryptographic cipher is always initialized with init() before a call
to encrypt(). Result δ is harder to detect than ε , because the call to init() on line 35 may
resolve to either of the two implementations of the method: line 44 and line 52, with the latter
not initializing the cipher.

A nullness analysis searches for null dereferences to avoid runtime errors. In Listing 6.3,
a nullness analysis reports three warnings: ζ because f points to null, η because f and g

must-alias after the assignment statement on line 61, and θ due to the may-alias on line 63.
The latter alias is a may-alias because depending on the condition line 63, the alias may or may
not happen, which the analysis cannot evaluate.

Encoding Relevance in the Prioritization System

Depending on the use case, developers may encode different factors into the priority system
to obtain different warning orderings for the same analysis. For example, when writing code,
developer attention is focused on the particular parts of the code that are being edited. Hence,
it is sensible to prioritize warnings by locality, i.e., report in priority warnings that are closest
to the developer’s edit point. For example, if the developer is editing the main() method in
Listing 6.1, α should be reported first, because it is located in the same method as the edit
point. β should be reported later, because it is in the same class, but not in the same method,
and γ should be reported last, because it is located in a different class.

Prioritizing by locality allows the analysis to provide quick updates for the warnings that
are in the direct line of sight of the developer, leaving the more distant ones for later, while the
developer fixes the first ones. This prioritization system also adds a secondary dimension to the
warning ordering: as early warnings are contained in smaller parts of the codebase, they are
more likely to be more understandable than warnings with larger traces and spanning different
classes that the developer may not be familiar with, making the fixing process easier.
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34 void encrypt ( MyCipher myCipher , DESedeCipher desCipher , byte [] plainText ) {
35 myCipher .init ();
36 myCipher . encrypt ( plainText ); δ
37
38 desCipher .init ();
39 desCipher . encrypt ( plainText ); ε
40 }
41
42 public class AESCipher extends MyCipher {
43 Cipher cipher ;
44 void init () {
45 cipher = Cipher . getInstance ("AES/GCM/ PKCS5Padding ");
46 cipher .init( Cipher .ENCRYPT -MODE , SecretKeyGen . getSecretKey ());
47 }
48 }
49
50 public class DESedeCipher extends MyCipher {
51 Cipher cipher ;
52 void init () {
53 cipher = Cipher . getInstance (" DESede /CBC/ PKCS5Padding ");
54 }
55 }

Listing 6.2: Example illustrating JIT API misuse detection.

Another prioritization strategy based on confidence can prioritize monomorphic calls over
polymorphic calls, because the latter are more likely to yield false positives. This way, ε is
reported before δ , displaying first the warning that has the highest chance of being correct.
Prioritizing warnings by confidence reduces the perceived number of false positives at the be-
ginning, and gives the developer a better experience with the analysis. Another rule that can
be encoded to order warnings by confidence is through “must” or “may” information: must
information can be prioritized over may information, to ensure that warnings with the highest
confidence are reported first. For example, ζ and η are reported before θ and the warnings
derived from its data-flow facts.

A last example is prioritizing by computational resources. Depending on the available re-
sources at a given time, an analysis could delay the computation of costly operations such as
polymorphic calls, because they create more data flows than monomorphic calls, thus reporting
ε before δ , for example. The analysis could also delay the computation of alias information:
while ζ takes minimal computation to find, η and θ require additional alias information.
In real-world programs, such flows may become exponentially more complex, and take minutes
of computation to be reported, holding back the delivery of other simpler results that could be
fixed in the meantime. With an ordering strategy by confidence, ζ can be reported quickly,
while alias information is computed in the background to find η and then θ .

An advantage derived from warning prioritization is that fixing early warnings potentially
also fixes others as well. For example, setting a sanitizer before line 19 would fix β and γ at
the same time as α . Similarly, fixing ζ , may also fix η and θ at the same time, reducing
the total number of warnings that are presented to the developer. Fixing ε does not fix δ , but
the similarity of the two warnings provides the developer with the know-how of how to fix the
more complex warning δ .
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56 void main () {
57 F g = new F();
58 F h = new F();
59 F f = null;
60
61 g = f;
62
63 if (...) h = f;
64
65 x = f.a; ζ

66 y = g.a; η

67 z = h.a; θ
68 }

Listing 6.3: Example illustrating JIT nullness analysis.

6.2.2 JIT Analysis through Layering

We now present the concept of Just-in-Time analysis that addresses the requirements shown in
Section 6.2.1. We use the example of Listing 6.1 with a taint analysis prioritized by locality to
illustrate the JIT concept.

Locality-Based Layering System

Implementing a JIT locality-based system means dividing the program in locality-based layers.
The goal is to immediately report the results closest to the user’s working set. Lower analysis
layers run first, yielding the first results in a few seconds. The following layers enrich the analysis
by computing increasingly complex results.

We propose a layered analysis that computes warnings by gradually increasing the analysis
scope, i.e., by incrementally taking more code into consideration, starting at the current edit
point. Table 6.1 shows the set of layers for this strategy. The general idea is to propagate
data-flow facts along the program, to stop at method calls, and to resolve them only at the
corresponding layer. For example, at L2, the analysis would not propagate into a method that
is out of the class of the current edit point, keeping it for when L3 is reached.

The prioritization property comes by design, since the prioritization strategy is based on lo-
cality. Responsiveness is ensured as lower layers require minimal class loading and computational
resources. For example, only one class is loaded to compute results up to L3. Monotonicity is
guaranteed by the internal implementation of each layer: if a layer cannot confirm a result, it
delegates its computation to later layers.

Table 6.2 shows the warnings that the analyses described in Section 6.2.1 would report using
the layering system of Table 6.1 for the examples in Listing 6.1, Listing 6.2, and Listing 6.3.
The JIT taint analysis reports the direct leak α at L1, and β at L2, after having resolved
the call on line 19. Supposing that classes A and B are in the same file, γ is reported after the
resolution of the call on line 20, at L4. The JIT API misuse detection reports δ and ε after
the two calls to init() on line 35 and line 38, respectively. Assuming that the calls are not in
the same package as the encrypt method, δ is reported in L7 and ε in L6. Since the layering
system does not include alias-specific information, the three null dereferences ζ , η , and θ
are reported at L1.

To turn an existing analysis into a JIT analysis, a software developer must thus define the
following three factors:
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Table 6.1: Layers of a JIT analysis for Android applications. L3 and L8 model the lifecycle of
the event-based Android framework.

Layer The layer propagates the dataflows...
L1 Method ... in the same method as the edit point.
L2 Class ... along calls to methods in the same class as the edit point.
L3 Class Lifecycle ... along lifecycle methods in the same class as the edit point.
L4 File ... along calls to methods in the same file as the edit point.
L5 Package ... along calls to methods in the same package as the edit point.
L6 Project Monomorphic ... along the monomorphic calls in the project.
L7 Project Polymorphic ... along the polymorphic calls in the project.
L8 Android Lifecycle ... along lifecycle methods in the project, to handle interactions

between the application components.

Table 6.2: JIT analysis results for Listing 6.1, Listing 6.2, and Listing 6.3, for the respective
starting points: main, encrypt, and main.

L1 L2 L3 L4 L5 L6 L7 L8

Taint α β γ

API ε δ

Nullness ζ η θ

• Triggers: Statements at which the JIT analysis pauses the propagation of certain data-flow
facts to prioritize others. In Listing 6.1, the triggers are the two calls to sendDeviceId on
line 19 and line 20. At those triggers, the JIT analysis propagates u before propagating s
and t to prioritize α , because it is in the same method as the starting point main().

• Priority layers: At triggers, the choice of propagating certain data-flow facts depends on
the priority layers. Data-flow facts created at a trigger create a task in the underlying
analysis. In Listing 6.1, two tasks are created: one with the initial set {s} with priority L2,
because the call to sendDeviceId on line 19 resolves to a call in the same class, and one
with the set {t} with priority L4, because the call to sendDeviceId on line 20 resolves to
a call in the same file. The analysis executes the first task because its layer has a lower
priority, propagating s until the next trigger or the end of the program (reporting β on
its way), and then executes the second task to report γ .

• Initial task: A first task from which all other tasks are created is used to initialize the
analysis. In traditional analyses, this would correspond to the analysis’ entry points such
as the main() method.

Layering an Existing Analysis

We now present Algorithm 2 as a general recipe to transform a distributive data-flow analysis into
a JIT analysis. While the algorithm requires a few changes to the analysis solver (highlighted
in gray in the algorithm), the definition of the data-flow problem remains entirely unmodified.

The procedure analyze(), excluding line 14 to line 17, represents a standard fixed-point
iteration for a traditional data-flow analysis that applies the flow function fs to the statements
of a program (line 21) until the OUT sets remain unchanged. The transformation to a JIT
analysis divides this large fixed-point iteration into smaller ones (tasks). At trigger points, the
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Algorithm 2 Formalization of a JIT analysis. The modifications made to the fixed-point
algorithm are shown in gray.

1: procedure main
2: PriorityQueue := {initialTask()} // initialize the priority queue
3: computedTasks = ∅
4: while PriorityQueue 6= ∅ do
5: pop task off priority queue PriorityQueue
6: if task /∈ computedTasks then
7: analyze(task)
8: computedTasks ∪ = {task}
9: procedure analyze(〈 l,st, in〉)

10: worklist := {st}
11: IN [st] = in
12: while worklist 6= ∅ do
13: pop statement off worklist
14: if isTrigger(statement) and st 6= statement then
15: for l′ ∈ {1..|layers|} do
16: in′ := {i | i ∈ IN [s], layer(statement, i, l) = l′}
17: add new task 〈l′, statement, in′〉 to PriorityQueue
18: else
19: OLD := OUT [statement]
20: IN [statement] := u{OUT [pred] | pred ∈ predecessors(statement)}
21: OUT [statement] := fstatement(IN [statement])
22: if OLD 6= OUT [statement] then
23: worklist ∪ = successors(statement)
The priority queue pops tasks with the lowest priority layers first. initialTask(), isTrigger(),
and layer() are specified by the developer.
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JIT analysis forces an intermediate fixed-point by not modifying the OUT set (line 14), stopping
the current analysis task prematurely. Non-trigger statements are handled in the same way that
the traditional analysis does (line 18 to line 23).

To eventually compute the same results as the traditional analysis, the JIT analysis creates
new tasks at triggers, and adds them to the priority queue to be executed later (line 15 to
line 17). When a task is executed, the JIT analysis pops the next highest-priority task from
the queue. It then creates a new instance of the traditional analysis, and initializes it with the
appropriate IN set, to continue the propagation where the previous task stopped. The role
of the priority queue is to prioritize task propagation to report certain warnings first. This is
determined by layer(s,i,l), that returns the priority layer l’ of the new task that will continue
propagating the fact i at statement s, knowing that it was paused at layer l.

While there are multiple ways of instantiating the JIT concept, Algorithm 2 requires minimal
changes to adapt existing analyses: (1) a priority queue is added to the solver, (2) no changes
are introduced in the original flow function fs(), leaving the definition of the data-flow problem
entirely unmodified, and (3) different priority systems can be instantiated independently from
the solver and the flow functions through initialTask(), isTrigger(), and layer().

In summary, in order to create a JIT analysis according to Algorithm 2, the analysis devel-
oper must ensure the following requirements:

• The base analysis must terminate.

• The analysis problem must be distributive.

• The priority layers must provide a complete and disjoint partitioning of the IN set.

Layering by locality as described in Table 6.1 fulfills these requirements by using method
calls as triggers, and partitioning IN sets according to their callees. Other layering strategies
can be used to fit other problems, e.g., by confidence or computational resources.

Termination Algorithm 2 extends an existing traditional analysis. If the traditional analysis
terminates, the inner loop (line 12) is guaranteed to terminate for all analysis instances, because
the algorithm does not modify the IN and OUT sets. The outer loop (line 4) also terminates,
because the number of tasks is bounded. Since tasks depend on their associated set of facts, if
the data-flow lattice of the traditional analysis is bounded, the number of facts—and therefore of
tasks—is also bounded. At line 6, we check that no task is computed twice, ensuring termination
and improving efficiency.

Soundness To be as sound as the base traditional analysis, the JIT analysis checks that every
data-flow fact created by the flow functions of the traditional analysis is assigned to at least
one layer. Algorithm 2 partitions the IN set of a statement into smaller sets (line 16). For
this operation to be safe, the data-flow facts should be separable so that data-flow facts can
be independently distributed between the layers. This is automatically ensured if the analysis
is distributive. We further improve efficiency by assigning each data-flow fact of an IN set to
exactly one layer.

6.3 Cheetah, a JIT Taint Analysis for Android Applications

We present Cheetah, a JIT taint analysis for Android applications implemented as an Eclipse
plugin. Cheetah instantiates the JIT concept with a prioritization system based on proximity
to the current edit point of the developer in the code. We first detail the implementation of the
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tool and how it instantiates the JIT framework. Then, we describe Cheetah’s GUI, showing
its features and their relationship to the requirements identified in Chapter 5. The source code
of Cheetah and a video demonstration are available online [86].

6.3.1 Implementation

Following the layered approach from Section 6.2.1, Cheetah instantiates the JIT concept by
extending a batch-style taint analysis, which we refer to as Batch. Batch is implemented on
top of the IFDS framework and its flow functions are defined in Section 2.3. In this section, we
detail the implementation of Cheetah.

Layered Taint Analysis

Using the layers in Table 6.1 and Algorithm 2 to transform a traditional IFDS taint analysis
into Cheetah, we define:

initialTask() = {L1, startPoint, {0}}
isTrigger(s) = s.containsMethodCall()
layer(s,i,l) = distance(s.callee, startPoint)

Cheetah marks all call sites as triggers, meaning that the data-flow propagations at call
sites are paused and continued in subsequent tasks. The layer that is assigned to a fact at a call
site is determined by the distance (in terms of the priority layers) between the callee and the
start point of the analysis, which is the method containing the current edit point. For example,
if Cheetah encounters a call to a method that is in the same file but not the same class as the
starting point, the new task is assigned L4. As a result, one task creates as many tasks as the
number of call sites it contains. New tasks are added to the priority queue, and are executed
in order of distance from the starting point. To adapt Algorithm 2 to the IFDS framework, we
apply the following changes:

• Every time a task is executed (line 7), Cheetah creates a new IFDS instance starting at
the task’s start statement (st), and initializes it with the facts contained in its in-set. To
reuse previously computed results, the state of the IFDS solver is carried over from one
instance to the next.

• The priority queue is initialized with the task {L1, stmt, {0}}, where stmt is the first
statement of the currently edited method, and 0 is the initial fact for a standard IFDS
propagation.

• To pause the analysis at call sites and create a new task, we extend Batch’s call flow
function:

〈stmt〉′(α) =
{
〈stmt〉(α) if stmt = task.startStmt
∅ otherwise

Returning ∅ ensures that the propagation of the data-flow facts is stopped at all call
sites, except for when the call is the start statement of the current task. In this case,
Cheetah collects the variables that need to be propagated further (i.e., the parameters
of the call, the static variables, and the receiver of the call) in an inSet. A new task
{layer(stmt), stmt, inSet} is then added to the priority queue to be executed later. This
change corresponds to line 14–line 17 in Algorithm 2.
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Figure 6.1: Exploded Super Graph (ESG) of the example Listing 2.1 for a forward taint analysis.
The statements are represented by their line numbers (highlighted in gray).

• The normal, return, and call-to-return flow functions remain the same as Batch’s.

Applying Cheetah to the example in Listing 6.1 results in the following steps (also shown
in Figure 6.1):

1. The user triggers the analysis at the main() method. Task T0 = {L1, line 16, {0}} is
enqueued.

2. T0 is executed, resulting in the solid edges labeled T0.

(a) α is found and reported.
(b) Task T1 = {L2, line 19, {0, s}} is created.
(c) Task T2 = {L4, line 20, {0, t}} is created.

3. Task T1 is executed, resulting in the dashed edges labeled T1, and β is reported.

4. Task T2 is executed, resulting in the dotted edges labeled T2, and γ is reported.

Call Graph-Related Challenges

Traditionally, an IFDS-based analysis requires access to all classes in a given program. It also
requires a call graph as input, which is typically constructed before the analysis starts. Imple-
menting Cheetah using this traditional approach would result in an unnecessary initial cost for
class loading and call-graph construction, which would negatively affect Cheetah’s responsive-
ness. To address this issue, Cheetah only loads the classes that are necessary to execute the
current task. To construct the call graph, Cheetah uses Soot’s OnTheF lyJimpleBasedICFG,
an on-demand algorithm that uses the class hierarchy to resolve calls, similar to the Class Hierar-
chy Analysis approach (CHA) [12]. This approach for class loading and call graph construction
enables Cheetah to quickly deliver the results that are computed in the early layers. Since
Cheetah’s call graph is based on CHA, we also use a CHA call graph for Batch.
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To emulate the Android lifecycle and callbacks, Arzt et al. [9] introduce a dummy main
method that explicitly calls all registered callbacks in all possible orders. However, this approach
is not useful in the context of a JIT analysis such as Cheetah, because resolving callbacks
in a class requires loading it. Therefore, creating the dummy main method for the whole
application means loading all classes at the beginning, contradicting the class-loading and call-
graph construction strategy that Cheetah uses. Cheetah thus models the Android lifecycle
on a per-class basis by distributing the dummy main() over the layering system, at L3 and L8.

Full Code Coverage

Unlike traditional analyses, Cheetah aims at supporting software developers who may be work-
ing on unreleased features that are not yet reachable in the codebase. While traditional analyses
typically ignore unreachable code, Cheetah analyzes the full codebase, including unreachable
code, to report warnings about those unreleased features to the developer. This full code cover-
age is a useful feature for development scenarios where developers work on incomplete programs
or programs that may mot even have a main method, which a traditional IFDS-based taint
analysis does not provide.

This feature is implemented by artificially creating tasks to cover the whole codebase. Each
task instance implements the methods requiredTasks and nextTask, that respectively create
tasks within the same scope as the current layer with a lower priority value, and the same task as
the current task with a higher layer value, thus ensuring that the entire codebase is analyzed. An
extra check ensures that no task is executed twice. This process is transparent to the developer.

Reporting Results

To report results, Cheetah provides a witness for each reported warning in its Detail view. To
track tainted paths, we augment our data-flow facts with more information, similar to Lerch et
al.’s method in FlowTwist [63]. Each data-flow fact holds its predecessor, its source statement,
and a list of neighbors. A loop-aware depth-first search then provides one or more witnesses
that show the path causing the warning reported by Cheetah. We also use those witnesses to
compute locality metrics for our empirical evaluation.

6.3.2 User Interface

We detail Cheetah’s GUI (Figure 6.2) and how it addresses RE-S1–RE-S4.

Integration with Eclipse

To enable a smooth integration with Eclipse, Cheetah is used like the Eclipse incremental
builder: when the user saves the file, the project is rebuilt and compilation errors appear on
the left gutter and in the Problem view at the bottom. Similarly, Cheetah hooks into the
Eclipse incremental builder and is rerun when the project is saved, starting from the method
that currently holds the focus. Every run of Cheetah kills any previous analysis instances,
invalidating previous results until the current instance of Cheetah confirms or refutes them.

In the GUI, Cheetah warnings are shown in the left gutter ( D ) and in the Overview view
at the bottom ( A ). The gutter icons show sources and sinks, and tooltips appear on hover to
provide additional information about the data leak. To provide quick feedback to the developer,
the icons can have two states: confirmed (in blue) and pending (in gray). The latter is used for
warnings reported on the later layers of the previous analysis run, to notify the user that the
current run of analysis is still in the process of computing them. The icons also have tooltips to
provide additional information about each statement in the trace of the selected warning.
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A

B
CD

Figure 6.2: The GUI of Cheetah. Features A – D are detailed in Section 6.3.2.

This integration limits the disruption of the developer workflow, addressing RE-S1 and
RE-S2 with a responsive analysis (F1), a responsive GUI (F2), and visualizing the warnings
in the codebase (F10).

Decluttered Views

To declutter the Overview view, Cheetah uses two views to show warnings. The Overview view
( A ) provides a list of all reported warnings, and the Detail view ( B ) displays a trace of the
selected warning, offloading the amount of information contained in the Overview view. This
trace represents an evidence that there exists a path from the source to the sink, ensuring the
validity of the warning.

Interleaving developer activities and fixing warnings requires careful reporting. Otherwise,
warnings can literally become moving targets in result lists as new ones are constantly found and
others are fixed, which confuses the developer. To address this issue, we introduce color-coding
in the Overview view. Warnings in Cheetah have three states: confirmed (confirmed by the
latest analysis run), pending (found by the previous analysis run, but not yet confirmed by the
current run), and fixed. Cheetah displays pending warnings in gray in the left gutter and in
the Overview view. Fixed warnings are grayed out for one run of the analysis, and removed from
the view at the next run. This feature provides a light history of fixed leaks, allowing users to
quickly check if a fix was effective.

The Cheetah perspective aims at helping developers understand the warning list (RE-S4)
by providing them with a responsive GUI (F2), a detailed trace of the data leak in the code (F4),
and a graying system that allows users to track what has been achieved (F15). In addition,
it displays the warnings in the Overview view in a precise order defined by the prioritization
algorithm (F13).
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Other features

To clarify the presentation of its results, Cheetah also highlights the trace of the selected
warning in the code ( C ) and provides navigation functionalities to jump between the different
views and the code editor.

6.4 Evaluation
We evaluate Cheetah through an empirical evaluation with 14 Android applications, and a user
study with 18 developers. In both cases, we compare Cheetah to the batch-style taint analysis
it was derived from: Batch. Cheetah and Batch have the same flow functions, except for
the prioritization modifications that enable Cheetah to be Just-in-Time.

Batch’s GUI is designed to be identical to Cheetah’s, with the exception of the quick
updates system. Instead of triggering the analysis on a save action, the developer must click
on a button to trigger the analysis. While the analysis runs, the GUI is blocked and displays
a waiting popup that prevents the developer from modifying the codebase. When the analysis
finishes, the warnings are displayed in theOverview view in the order in which they were detected.

We aim to evaluate the prioritization system of our JIT analysis. Thus, we verify if Chee-
tah’s layers are a sensible choice, if the analysis is able to report initial warnings quickly, if it
reports warnings of interest (e.g., warning with shorter traces) early, and if it is sound. As a
result, we ask the following research questions for our empirical evaluation:

• RQ13: How responsive is Cheetah compared to Batch?

• RQ14: Which layers of Cheetah are most used?

• RQ15: Are the initial findings of Cheetah easier to interpret than later ones?

• RQ16: What are the precision and recall of Cheetah compared to Batch?

In a second part, we evaluate the usability of Cheetah as an IDE tool, and verify if the
features presented in Chapter 5 and evaluated in the empirical evaluation help developers in
practice. In our user study, we aim to answer the following research questions:

• RQ17: Can Cheetah help developers fix data leaks faster than Batch?

• RQ18: Which features of Cheetah are most useful to the participants?

• RQ19: Does Cheetah’s GUI help debug data leaks better than Batch’s?

6.4.1 Empirical Evaluation: Responsiveness, Understandability, Precision

In an empirical evaluation, we compare Cheetah and Batch’s responsiveness, precision, and
recall. We discuss the layering strategy used for Cheetah, and the ease of understanding its
first warnings.

We ran the experiments on a benchmark suite composed of 14 Android applications selected
from the most recent 100 applications in the F-Droid repository [35] (at the time of the study,
in 2016), such that each application has a GitHub repository with more than one commit and
is available for mining in Boa [31]. The 14 applications are available online [86].

The analyses run with Batch have one starting point: the dummy main() method that
acts as the entry point to the Android application. For Cheetah, we consider two types of
starting points: the methods modified in the commit history of the applications’ repositories,
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Figure 6.3: Time to report warnings (in log scale) for Cheetah and Batch, starting at SPB
(left) and SPS (right).

which we refer to as SPB (Starting Points Boa), and the sources of known data leaks in the
applications, which we name SPS (Starting Points Sources). SPB model the cases when the
user is in active code development and does not use Cheetah, and SPS, the cases where the
developer investigates a particular bug. The SPS were collected after running Cheetah once
on the applications, and the SPB were collected using Boa. Each application has at least 26
unique SPB (min: 26, max: 316, median: 127).

We ran two sets of experiments: one with SPS and one with SPB. In each of the experiments,
for each of the 14 applications, we ran the full Batch analyses 20 times, and Cheetah with
20 randomly selected methods among either SPS or SPB. We ran our experiments on a 64-bit
Windows 7 machine with one dual-core Intel Core i7 2.6 GHz CPU running Java 1.8.0_102, and
limited the Java heap space to 1 GB.

6.4.2 Evaluation Results

In this section, we detail the results of our empirical evaluation, answering RQ13–RQ16.

Responsiveness (RQ13)

We have measured the time that Cheetah takes to report the first, second, third, and last
result when it starts at SPB and at SPS. We compare those times to the time that Batch takes
to report its final results. Figure 6.3 shows, in log scale, the response times for those quantities.

Across our benchmark, Cheetah reports the first result in a median time of less than
1 second when it starts at SPB and a median of less than 0.5 seconds when it starts at SPS.
These results are below Nielsen’s 1 second recommended threshold for interactive user interfaces,
suggesting that Cheetah usually allows the “user’s flow of thought to stay uninterrupted” [95].

Batch’s run times are consistent between the two experiments, with median times of 1.85
seconds and 2.13 seconds, which are significantly smaller than the median time of 9.03 seconds
Cheetah takes to complete the analysis with SPB and 7.79 seconds with SPS. We attribute
this to the full code coverage feature of Cheetah, which creates more data-flow facts along
paths that are unrealizable from the dummy main(). Any analysis imprecision in those parts
propagates to the other computations, making the analysis perform more work than strictly
necessary. Nevertheless, such a feature is desirable for real-life code development scenarios.

We also note that Cheetah returns warnings generally faster with SPS than with SPB,
showing that in scenarios where the user is focused on particular analysis warnings, Cheetah
is able to report those relevant warnings faster.
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Figure 6.4: Percentage of warnings reported at each layer in Cheetah with SPB (left) and SPS
(right).

Layering System (RQ14)

To evaluate the layering system chosen for Cheetah (Table 6.1), we count the number of
warnings reported at each layer. Figure 6.4 presents those numbers for SPB and SPS. We see
that across our benchmark, when Cheetah starts at SPB, a median of 38.97% of the warnings
is reported in L5 and a median of 44.12% in L6. Starting at SPS, Cheetah reports a median
of 32.56% warnings in L5 and a median of 15.77% in L6. Thus, with SPS, Cheetah reports
more warnings in earlier layers: a median of 4.58% in L1 and a median of 5.13% in L3. Unlike
SPB, SPS simulates scenarios where users are interested in the analysis results. In those cases,
33.3% of the warnings are reported at L1-L4 on average, against 11.6% for SPB.

We observe that if Cheetah is guided towards precise data leaks, more warnings are reported
at earlier layers, because the scope of the analysis now focuses around known tainted paths.
Tracking those taints at lower layers also reduces the time spent to report the corresponding
leaks, since a smaller program scope means loading fewer classes and propagating data-flow facts
through a smaller portion of the program. The proximity of the starting point to the source
could thus explain why, in Figure 6.3, early warnings are returned faster with SPS than with
SPB. Therefore, starting at SPS is optimal when the user requires analysis updates while fixing
a particular warning.

After Cheetah reports a data leak, a separate module retrieves the paths between the leak’s
source and sink to provide the user with more information. The process of retrieving those paths
times out in less than 1% of all the cases (average: 0.81%, median: 0%). It is important to note
that, for those timeouts, Cheetah itself does not time out, but the path-finding module does.

For our benchmark, no results are reported in L7, because none of the applications pass
sensitive information through polymorphic calls. Similarly, no warnings are reported in L8,
because Cheetah does not support inter-component flows.

Warning Understandability (RQ15)

The quick response time of Cheetah is most useful when the first warnings that it reports are
easier to interpret by the developers. Otherwise, they spend more time trying to trace their way
through the program to understand more complex warnings.

We approximate the ease of interpretation of a warning with the length of its trace: the
number of statements between the source and the sink. Figure 6.5 shows the trace lengths for
the warnings that appear in each layer of Cheetah. When Cheetah starts at SPB, the median
length of the traces for the initial layers L1–L4 is 0, 1, 4, and 4 statements, respectively. For
later layers, Cheetah reports more complex warnings with longer trace lengths: medians of
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Figure 6.5: Trace length of the warnings reported at each layer in Cheetah with SPB (left)
and SPS (right).

FlowDroid
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Cheetah

4 27 49 72

Figure 6.6: Number of data leaks found by FlowDroid, Batch, and Cheetah as a Venn diagram.

26 and 25 statements for L5 and L6, respectively. Starting at SPS, Cheetah reports more
warnings in earlier layers. In such a case, the median length of the traces that Cheetah reports
for the initial layers L1–L4 have a median length of 4, 2, 12, and 1 statements, respectively.

We see that with both SPB and SPS, Cheetah tends to report warnings with shorter traces
in early layers (L1–L4), making them easier to interpret than warnings with equivalent longer
traces. This confirms the assumption made in Section 6.2.1, that a second effect of prioritizing
by location is that early warnings span a smaller scope of the codebase, and should have smaller
traces. As a result, we see that the warnings that are reported fast by Cheetah are also the
easiest to understand.

Most of the warnings are reported on L5 and L6, which both require class loading on a
large scope: a package or the entire project. More granularity could be added to those layers to
minimize the loading time, e.g., handling aliases at a later stage.

Precision and Recall (RQ16)

Figure 6.6 presents a Venn diagram that shows the number of warnings reported by Cheetah,
Batch, and FlowDroid [9] across all 14 Android applications. FlowDroid is a reputable taint
analysis optimized for Android, which we use to illustrate the applicability of Batch to real-
world applications. We see that Batch reports all warnings found by FlowDroid, except four.
Those warnings require the analysis’ flow functions to handle threads and model application
layout, which are currently not supported in Batch. Batch also reports more warnings than
FlowDroid, which is due to its lower precision. For example, Batch uses a CHA call graph, while
FlowDroid uses a more precise call graph. FlowDroid also performs type checking to eliminate
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spurious taints. Overall, while Batch is less precise than FlowDroid, it still approximates its
precision and soundness. Since Cheetah shares the same flow functions as Batch, we can also
extend this reasoning to Cheetah, showing that by construction, both analyses have the same
precision and recall when compared to FlowDroid. We can conclude that that both Cheetah
and Batch are representative of taint analyses that can be used on real-life applications.

We observe that Cheetah reports 2.1× more warnings compared to Batch (min: 1×, max:
10×, geometric mean: 2.06×). Cheetah reports those additional warnings because it analyzes
the whole program, including unreachable code. In real life, developers may be working on code
that is still unreachable from the program’s entry points. Cheetah analyzes those parts of the
codebase, generating data-flow facts that are propagated further, into new parts of the code, or
back into already analyzed ones, which then require a new partial analysis. This system helps
provide the user with a more relevant result set than traditional analyses such as Batch, but
also increases the number of reported warnings: the cascading effect of a single imprecision in
the analysis generates more data-flows with Cheetah than with Batch, which explains why
Cheetah takes significantly longer than Batch to report its last warnings (Figure 6.3).

6.4.3 User Study: Usability of Cheetah

In a comparative user study between Cheetah and Batch, we evaluate how a JIT analysis
integrates into the development workflow compared to a batch-style analysis.

Experimental Setup

To make the conditions of the study as close to day-to-day development activities as possible,
the participants were asked to perform a development task: removing code duplicates in an
Android application. At the same time, we asked them to keep the number of data leaks to a
minimum. To help detect potential data leaks, Cheetah and Batch were provided as Eclipse
plugins. To fix the leaks, we provided the participants with data sanitization libraries. Each
task was limited to 10 minutes.

In a within-subjects study, each participant performed one task with each tool (Batch and
Cheetah). Before each task, the participants were primed with a small Android application
to get used to the tool. The order of the tools was randomized, so that half of the participants
started with Cheetah, and the other half with Batch, in a simple latin-square design. After-
wards, the participants filled a comparative questionnaire and were interviewed in person. The
test applications, questionnaire, responses, and the interview protocol are available online [86].

The priming was performed on a small, artificial Android application that contains 6 sim-
ple data leaks. The two main tasks were performed on a real-life application from F-Droid:
Bites [34], a basic cookbook app. Because each task had to be completed in a limited amount of
time (10 minutes), we have modified Bites to add data leaks around code duplications, resulting
in a total of 106 more complex data leaks. This ensured that participants encountered data
leaks while conducting their duplication removal task. In the pilot study, some participants had
spent most of their time handling code duplicates not related to any data leaks.

We first conducted a pilot study with 11 participants of mixed skill and experience levels
in both Android development and static analysis tools (including professional developers and
Android security analysts). The outcomes of the pilot study were mixed, because most partic-
ipants were distracted the initial GUI of Cheetah. One specific issue was that the Overview
view kept changing as new results were computed, making it impossible to track a particular
warning. We introduced the graying system presented in Section 6.3.2 to address this problem
and fixed other issues reported by the initial batch of participants.
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Questionnaire and Interviews

The post-task questionnaire is comprised of 48 questions, which we refer to as Q1–Q48. The
questions are detailed in Appendix D.

1. Participant information: Q1–Q4 gather information about the participants. Q1–Q3
ask for their professional experience with Java development, Android development, and
with using static analysis tools, in years. Q4 asks them which analysis tools they have
used in the past.

2. System Usability Scale: Q5–Q13 are questions from the System Usability Scale
(SUS) [18] for the first tool used by the participants (Batch or Cheetah). Each question
is rated on a Likert scale from 1 to 5. Q14–Q22 are the same SUS questions for the
second tool participants used.

3. Workflow integration: Q23–Q33 asks the participants how they perceived the inte-
gration of both tools in their development workflow. Q23 asks them for which tool blocked
the UI, and Q24 if this system made it easier to correct data leaks, on a Likert scale from
1 (Strongly disagree) to 5 (Strongly agree). Q26 and Q27 ask which tool was triggered
with a button and on build, respectively, and Q28 asks which system they preferred. Q30
asks participants with which tool they had to wait longer to obtain updates and gave three
choices: the first tool, the second one, or neither. With the same choices, Q31 asks par-
ticipants with which tool they noticed changes in the ordering of the warnings throughout
the tasks, and Q32 asks them if they were comfortable with this system on a Likert scale
from 1 (Strongly disagree) to 5 (Strongly agree).

4. Perceived usefulness: In Q34, Q35 and Q38, participants noted which tool was more
useful for understanding warnings, correcting warnings, and understanding the application
code. Participants also marked with which tool they thought warnings were faster to
understand (Q36) and to correct (Q37). Finally, they noted which tool they would rather
use to correct data leaks (Q39). For those questions, participants could choose between
the first tool, the second tool, or neither.

5. Net Promoter Score: Using the Net Promoter Score (NPS) [109] in Q40–Q41, par-
ticipants rated on a Likert scale from 0 to 10 how likely they would recommend a tool
environment above the other.

6. Open questions: Q42–Q48 are used to gather general comments about the tools, and
capture the usability issues participants encountered. Those full-text questions serve as
guidelines for the short interviews. In Q46–Q47, we ask participants which tasks they
would rather use each of the tools for. In Q42–Q45, we ask for the positive and negative
features of both tools, and in Q48, what they would change in Cheetah or Batch.

During the individual interviews, we collected qualitative information on the participants’
experience of the tools, focusing on the perceived differences, in particular waiting times, in-
tegration of the tools in the IDE, and warning ordering. The interviews lasted 14 minutes on
average (min: 10 minutes, max: 23 minutes).

Participants

Our study includes 18 participants of varying backgrounds (9 academics and 9 professional
developers), with different skill levels in terms of Android development and knowledge of taint
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Figure 6.7: Violin plot representing the distribution of the times to fix leaks across all partici-
pants, by task and tool used during the task. Each horizontal line represents data leaks fixed in
the corresponding time. The length of a line represents the number of leaks fixed in that time.
Dashed lines are medians.

analysis. In the following, we identify them as P1–P18. We discard P17’s data, because
they encountered a user interface bug and was unable to properly perform the tasks. The 18
participants of the main study are disjoint from the 11 participants of the pilot study.

While only 17.6% of the participants had professional development experience with Android,
47.1% had more than 10 years of such experience with Java. In addition, 29.4% had between one
and five years of development experience with Java, 17.6% had between five and ten years, and
5.9%, under one year. The majority of the participants had little to no professional experience
with using static analysis tools (88.2%), the remainder having between three and four years of
experience with such tools. This low experience of analysis tools reduces the bias participants
would have towards a particular workflow they may be familiar with, as noted by P18 who had
four years of professional experience using static analysis tools: “Due to [my] past experience as a
code auditor, I prefer to separate [the] tasks [of developing and fixing warnings].”

6.4.4 Study Results

We now present the results of the comparative user study, answering RQ17–RQ19.

Fixing Data Leaks (RQ17)

Figure 6.7 shows, in log scale, the distribution of the time taken to fix a data leak for the two
tasks. The reported numbers take into account the time taken to fix a leak, discarding the
time needed by the participant to understand the code, the tool, or to discuss the solution
before implementing it. Across both tasks, participants using Cheetah took half as long as
participants using Batch to fix a data leak (0.53× and 0.45×, respectively). For Task 1, the
median time to fix a data leak using Batch was 63 seconds, compared to 33.5 seconds per leak
for Cheetah users. The times reported for Task 2 are lower (54.5 seconds per leak for Batch
and 24.5 seconds per leak for Cheetah, which we attribute to the participants getting used to
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the application and the tasks. We also note that across both tasks, participants were significantly
faster when using Cheetah compared to Batch (p < .01, Wilcoxon Rank-Sum test), regardless
of whether they used Batch first and Cheetah second (2.6× faster), or Cheetah first and
Batch second (1.6× faster).

In Figure 6.7, we see that the plots for Cheetah contain more horizontal lines than the
plots for Batch. This shows that in the 10 minutes allocated to each task, the participants
using Cheetah fixed more leaks than the participants using Batch. Overall, Cheetah users
fixed more data leaks than Batch users, with a median of two data leaks with Batch and four
data leaks with Cheetah in Task 1. For Task 2, the medians are 3 data leaks for Batch users
and 4 data leaks for Cheetah users. The Wilcoxon Rank-Sum test failed to detect significant
differences in the number of leaks fixed (p = .31).

We can thus conclude that using Cheetah enables software developers to fix leaks twice as
fast compared to using Batch.

Most Useful Features of Cheetah (RQ18)

In the questionnaire and interviews, we asked the participants which features of the tools were
most and least useful to them. Three particular features stood out: quick updates, ordering,
and the graying system in the Overview view.

Quick Updates: In total, 12 participants found Cheetah’s quick updates useful, noting this
feature as the main advantage of the tool. In particular, professional developers noted that
this system is “much more comfortable, and what I would expect in the Eclipse environment” (P7). P2
noted that Cheetah “integrates well into the Eclipse build-on-save paradigm”. Cheetah is reported
to have a “more fluent workflow” (P9), as opposed to Batch, which proved more interruptive to
the participants: “having to wait interrupts the coding and thinking process” (P6). P4 explained from
their personal experience with UI-blocking compilation tools that they “do a context switch in your
head. [...] When you are back to the actual work, you might have forgotten what you wanted to do”. In
summary, participants felt that for code development, Cheetah was less interruptive, because
it allowed them to deviate less from their coding tasks.

Ordering: While only two participants noticed that Cheetah applied an ordering strategy,
seven participants complained about the random ordering offered by Batch, saying that they
would like to be able to “sort the leaks by source, sink, line number” (P6). No such complaints
were made for Cheetah, regardless of the order in which the participants used the tools, which
further validates the choice of layers in Cheetah. P8, a professional Android developer, noticed
the ordering in Cheetah, and commented, when using Batch: “When I’m in one class, I get familiar
with it, and when I click on a warning, it takes me to a completely different class, and I have to get used to it
again”. P18 did not notice Cheetah’s ordering, but handled the leaks in the order in which they
were presented. They fixed all encountered leaks when using Cheetah, but skipped most of the
first warnings when using Batch after deeming their traces “too long”. We see that reporting
warnings following Cheetah’s layers positively affects participant performance and integrates
more discretely into their workflow.

However, Cheetah’s ordering only helps developers if they follow it. P13 wanted to have a
full overview of all warnings at each code change, and thus waited until Cheetah had completed
before resuming development, which took longer than Batch’s run time. P15 started fixing
data leaks starting from the bottom of the list. Such warnings were reported by the later layers,
and thus took a long time to update, which led to longer waiting times than with Batch.
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Graying system: The graying system was deemed useful by some participants: “I had the
impression I did something” (P16), “History is useful” (P9), but it proved confusing to others, as
they still had trouble finding out if a fix was successful. Some participants noted that the
coloring was “disturbing because results changed” (P6). The shifting colors prompted them to wait
until the Overview view stabilized, showing that despite the graying system, that view still proves
complex to understand. P1 noted that the feedback given by the tool on a change “should be
more prominent”. To see if a leak was fixed, some participants relied on the gutter icons instead:
“The sink [icon] has now disappeared, that’s a good thing” (P5). Seven participants requested clickable
icons. Having such a feature would help users focus on the code more than the Overview view,
integrating the tool better into the IDE.

Other features: Participants reported other bugs and usability features that we leave for the
next design iteration. In particular, two expert participants expressed performance concerns
about Cheetah running too often on big projects: “if the analysis affects the performance, I would
like to have a button to control it” (P13), “if it has a big impact on the CPU, it might be annoying and I
might not be as productive” (P4). This concern led some participants to think that “the analysis was
slowing the IDE down” (P13), as it took more time to compute all warnings than Batch. We note
that Cheetah runs in the background, and was given enough memory to not interfere with the
UI thread. This issue could be mitigated by for example introducing incremental analysis into
Cheetah to further improve its performance.

Debugging Data Leaks with Cheetah and Batch (RQ19)

Overall, the participants responded positively to Cheetah. Its NPS score is of 6, denoting
a positive score. In comparison, Batch received a score of -94. According to the aggregated
SUS scores, 12 participants rated Cheetah higher than Batch, and 4 rated Batch higher.
Using a Wilcoxon Signed-Rank test [145], we observed significant (p < 0.05) differences between
these aggregated scores and participant’s responses on four of the individual SUS questions: “In
general, I think that I would use tool X frequently”, “I found tool X unnecessarily complex”, “I found the
various functions of tool X well integrated”, and “I found tool X very cumbersome to use”. With those
questions, we see that compared to Batch, participants less likely found Cheetah unnecessarily
complex or cumbersome (-0.6 mean response each). Moreover, the participants responded that
they were more likely to use Cheetah frequently (+0.7 mean response), and more likely found
its functions well-integrated (+0.5 mean response).

When asked in which cases they would use one tool rather than the other, twelve partic-
ipants reported Cheetah is best suited for code development. P9, in particular, noted that
it would make the development task slightly harder, but it would “force me to write better code
from scratch”. Eleven participants noted that Batch should be used infrequently or in situations
where debugging and coding are separated: “after a milestone” (P9), “creating reports for software”
(P7). No participants reported they would use Batch for code development. This observation
confirms that the responsiveness created by the JIT system allows Cheetah to be used in an
IDE less disruptively than a more traditional batch-style analysis.

6.5 Limitations and Threats to Validity

The user study with Bites was conducted on a closed setting, with tasks limited to ten minutes.
Because of the limited time, we added data leaks in locations where the tasks were to be
performed, ensuring that participants would run into them while removing code duplications.
We ensured that the added data leaks are as close as possible to existing data leaks in the code,
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by reusing the same source and sink API methods, and emulating the same trace length and
scope. While this setup allowed us to eliminate external factors when comparing Cheetah and
Batch, it would be interesting to complement this study with one in a practical setting.

As a within-subjects study, the user study created a learning effect between the tools: par-
ticipants tended to perform better with the second tool. We applied a latin-square design to
reduce this effect, with which half of the participants using Cheetah first, and the other half,
Batch first, and reported on the aggregated results. We also primed the participants before
each task.

Our particular implementation of the JIT analysis concept determines priority based on the
distance to the current edit point. As a result, Cheetah reports significantly more warnings
than its non JIT counterpart, because a traditional whole-program analysis usually starts from a
main method and propagates through the code that is reachable from there. Because Cheetah
can start from anywhere in the code, it also covers the unreachable parts of the code. We
argue that this approach is better suited for the scenario of code development, where developers
often work on new features in incomplete programs that may not even have a main method.
Cheetah provides full code coverage by artificially creating tasks that are not naturally induced
by the codebase. Since Batch and Cheetah have the same flow functions, they have the same
soundness and precision by construction. By covering more of the codebase, Cheetah provides
the code developer with a more relevant result set than traditional analyses such as Batch.

Cheetah is an instantiation of the JIT prioritization system that targets responsiveness.
While it is able to return warnings quick enough to not disrupt the developer workflow, it still
reanalyzes the entire application code instead of just the changeset, like an incremental analysis
would do. It would be interesting to merge the two methods together, and obtain an incremental
analysis that end-users are able to guide.

6.6 Summary

In this chapter, we address a few of the requirements identified in Chapter 5, focusing on the
responsiveness of the analysis tools (RE-S2). Through the Just-in-Time analysis concept, we
allow software developers to guide the analysis, using their knowledge of the analyzed codebase
(RE-S3). We also provide a general recipe to create a JIT analysis by modifying a base
distributive data-flow analysis with minimal changes to the analysis code or the analysis solver.
We illustrate the JIT concept through Cheetah, a JIT taint analysis for finding data leaks in
Android applications. Cheetah is designed with the developer’s needs in mind, integrating a
long-running analysis in the IDE with minimal disruption of the developer workflow (RE-S1),
and returning more comprehensive warnings first, improving the explainability of the analysis
warnings (RE-S4). A JIT analysis’s layering system can support different layering schemes.
As discussed in Section 6.2, an analysis could prioritize by location, performance, confidence,
understandability, or combinations of those properties. Cheetah prioritizes warnings by code
location, but other schemes can be implemented. The source code of Cheetah is available
online [86], and open to contributions.

In an empirical evaluation on 14 real-world Android applications, we show that Cheetah
is able to return its first warnings in under a second, that it returns the most understandable
warnings first, and that the layering system chosen for Cheetah could be improved, especially
towards the later layers. Through a comparative user study with 18 developers, we also show
that Cheetah’s non-blocking system allows developers to fix warnings twice as quickly than with
an equivalent batch-style analysis. Its quick updates and ordering strategy make it particularly
well-suited for integrating bug fixing within the natural flow of code development.
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6.6 Summary

Through this study, we confirm the validity of RE-S1–RE-S4 from Chapter 5 and advocate
for a better integration of static analysis in the development environment of analysis developers,
to assist them when fixing analysis warnings. Traditional static analyses written with precision
and scalability in mind often overlook user-experience issues such as responsiveness, causing
analysis tools to be used in specific ways, e.g., as part of nightly builds. Through a user-
centered design process, we address this issue and explore a different usage scenario that is more
comfortable to software developers: direct integration in an IDE.
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Rule Graphs for Analysis Configu-
ration

7
In past years, researchers and practitioners have improved the capabilities of static analyses,
enabling them to find increasingly complex bugs [9,60], support more languages [118], and report
more accurate warnings [128,129] in less time [116]. As analyses grow more complex, using them
becomes more difficult. In practice, analyses are known to report many false positives. Some
are due to over-approximations (e.g., for collections or arrays), others to missing knowledge
about the particular codebase (e.g., specific libraries or coding constructs). As a result, analysis
tools are typically configured by end-users (dedicated teams or software developers themselves,
depending on available resources) before they are deployed in a company. Such teams typically
configure the analysis options, how analysis results are displayed (e.g., how to group warnings
together, or decide which ones are more important than others), and edit the analysis rules to
customize them to the codebase.

To help developers configure out-of-the-box analyses, allowing the customization of analysis
rules is a core requirement. As seen in Chapter 5 (RE-S3), developers have external knowledge
that the analysis does not possess, and the contribution of such heuristics could help direct the
analysis in yielding more accurate warnings. To enable developers to understand and add to
the analysis rules, a core notion is warning explainability (RE-S4). An analysis interprets the
source code and builds its own understanding of how it works. Sometimes, this understanding
may not match the developer’s, which results in uncertainties, a wrong treatment of critical
warnings, wrong tool configurations, or even tool abandonment [47,65].

Static analyses are typically used as black boxes, their warnings being post-processed using
information that is external to the analysis rules to provide developers with more complete
warnings. In an effort to bridge the understandability gap, we instead propose to make use
of internal information: how the analysis interprets the analyzed code. Focusing on data-flow
analysis, we introduce the novel concept of rule graphs that encode internal analysis information,
and explain how to use them to give developers more insight into the analysis’ reasoning. In our
evaluation, we show that the use of rule graphs can improve the developers’ understanding of
analysis warnings, assist them in classifying warnings, and help identify weak or missing analysis
patterns and rules that can be corrected in the analysis’ rulesets.

In this chapter, we describe rule graphs, present a general method for transforming static
data-flow analyses in order to support them, and show how to use them for four tasks: un-
derstanding and classifying warnings, and identifying weak or missing analysis patterns. We
illustrate those four uses through a taint analysis and an IntelliJ plugin: Mudarri. Our user
study with 22 software developers shows that the use of rule graphs significantly improves warn-
ing understandability. Through an empirical evaluation on Android applications, we illustrate
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7.1 Motivating Example

69 protected void doGet( HttpServletRequest request , HttpServletResponse
response ) throws ServletException , IOException {

70 String [] s = new String [5];
71 String userId = request . getParameter (" userId ");
72 s[0] = userId ;
73 s[1] = "safe";
74
75 Statement st = conn. createStatement ();
76 String q1 = " SELECT * FROM User WHERE userId ='" + s[1] + " ';";
77 ResultSet res = st. executeQuery (q1);
78
79 String url = "https ://" + s[1] + ".com";
80 response . sendRedirect (url);
81
82 String q2 = " UPDATE User SET ct = ct + 1 WHERE userId ='" + userId + " ';";
83 ResultSet res = st. executeQuery (q2);
84 }

Listing 7.1: Potential SQL injections (line 77, line 83) and open redirect (line 80) from line 71. The
first SQL injection and the open redirect are false positives.

that applying machine learning to rule graphs can be used to classify data leaks in Android, and
can help developers discover weak and missing analysis rules.

The work presented in this chapter is currently under submission [90].

7.1 Motivating Example

In this section, we show how exposing an analysis’ internal rules can assist the developer in four
different tasks: T1–T4. To illustrate them, we use Listing 7.1 containing an SQL injection [79]
from the source at line 71 to the sink at line 83. The potential SQL injection at line 77 and the
open redirect [74] (line 80) do not occur, because q1 and url only contain the safe string “safe”
from s[1].

T1: Understand a Warning

To configure an analysis, developers must first evaluate if the warnings it yields are correct, and
of interest to their particular situation. To do so, they have to gain a full understanding of the
warnings, and in particular, of why the analysis thinks they are to be reported. Current tools
generally provide external information that can range from vulnerability descriptions to more
complex data such as warning severity, detailed traces, exploit examples, or even fix suggestions.
An often overlooked aspect is that the analysis algorithm can be faulty or approximative and can
misinterpret certain parts of the code. For example, for the sake of scalability, static analyses
often over-approximate arrays: instead of tracking the individual elements, the entire array is
considered insecure if one of its elements is. For Listing 7.1, such an analysis would consider
all elements in s as dangerous after line 72, and mistakenly report the SQL injection line 77
and the open redirect. Even for a developer who knows how the vulnerabilities occur, figuring
out why the analysis reports those two false positives is not straightforward, because the array
over-approximation is internal to the analysis and thus, completely hidden from the developer.
Analysis shortcomings may come from mishandling varied coding concepts: collections, aliasing,
multithreading, etc. We argue that making the analysis’ internal rules more explicit to the
developer might address this issue and improve the understandability of analysis results.
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T2: Classify Warnings

The end-users of the analysis tool (the developers that fix the warnings once the tool is deployed)
need to select the warnings they focus on first [47,65]. To help them with this decision, analyses
often classify warnings using factors that are external to the analysis such as severity, confidence,
code location, bug type, etc. Such classifications can have their limitations. For example, a
legitimately hardcoded password may slip through the mass of hardcoded strings falsely reported
as hardcoded passwords because they are all classified under the same bug type. As a result,
many commercial tools allow classification rules to be customized. To assist developers in
setting up those rules, we argue that warning similarity can be computed based on internal
analysis information instead of external factors: similarity is thus determined by how the analysis
understands the warnings, and how similarly they can be fixed or refuted. In the example in
Listing 7.1, the two warnings closest to each other are not the two SQL injections, but the SQL
injection line 77 and the open redirect line 80: they both undergo the same array assignment
line 72, and are both false positives for that reason. They could thus be classified together, in
an “Array assignment” category.

T3: Identify Weak Analysis Patterns and T4: Identify Missing Analysis Patterns

Because of its necessity to over-approximate, static analysis often reports false positives [47,65].
To help developers differentiate between true and false positives, many analysis tools calculate a
confidence metric (how confident the analysis is that a warning is a true positive) generally based
on external features, such as the bug type (e.g., SQL injection) [70,114]. Since false positives are
mainly due to the analysis’ weaknesses, we argue that using internal analysis information would
help identify those weaknesses and their resulting warnings. Discovering which combinations of
analysis rules are at fault or missing allows developers to modify or add those rules to avoid
such warnings in the future, as a typical source of false positives. A weak pattern (T3) that
matches the array over-approximation in Listing 7.1 could be the write-access to the array at
line 72, thus marking the warnings line 77 and line 80 as rather likely false positives. Similarly,
missing analysis patterns (T4) can also yield false positives or false negatives. For example if
arrays are not handled by the analysis, they would be ignored and potential warnings resulting
from the tainted element s[0] would not be reported.

7.2 Related Work

In this section, we present past research about improving warning explainability and classifica-
tion, and the integration of developer-specific knowledge in the analysis rules to find weak or
missing analysis rules.

7.2.1 Warning Explainability and Classification

Past studies have highlighted warning explainability as one of the major issues of static analysis
tools. Fourteen of the twenty developers interviewed by Johnson et al. [47] reveal that poorly
presented output is one of the main reasons for tool underuse. With a study on Microsoft
developers, Christakis et al. [22] show that the second most popular pain point of static analyzers
is the bad warning messages, the lack of fix suggestions coming fifth on the list of 15 pain points.
In a study at Google, Lewis et al. [65] cite “obvious reasoning” as a desirable feature of an
analysis tool, where they advocate for the analysis tool to provide clear proof of why a warning
is reported. In a study of Fortify SCA [37], Ayewah et al. [10] find that badly explained traces
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harm the understanding of the bug and the confidence of the developer in the tool. Those studies
motivate the need for better developer support in understanding analysis warnings.

Similarly, for warning understanding, current approaches base themselves on external in-
formation. Phang et al. [105] only focus on the code when visualizing warning traces. Nanda
et al. [85] visualize warnings based on warning and code information, like modern commercial
tools such as Checkmarx [20] or CodeSonar [41]. With our approach, we argue that internal
analysis-specific information would also give more insight into the warning.

Approaches for classifying warnings—in particular, between true and false positives—mainly
use external information. Sherriff et al. [124] compute alert signatures based on common seman-
tic errors in the source code and use them to identify false positives. Shen et al. [123] calculate
the likelihood of bug categories in FindBugs to be false positives. Heckman et al. [44] use the
history of the warning to detect false positives. Kremenek et al. focus on warning correlation
and code locality [58] or code semantics [59], while Ruthruff et al. [115] use warning types, code
location, and code history. While some approaches may integrate semantic information on the
analyzed code that aim for known analysis weaknesses (e.g., arrays), no approach we know of
proposes the direct use of the analysis rules for T1–T4.

7.2.2 Usage of Internal Analysis Rules

The idea of integrating analysis-specific knowledge to assist developers has been mentioned
by Jung et al. [48]. They use a statistical analyzer to help triage false positives from true
positives, based on “symptoms”. In their conclusion, they advance the idea that using the
analysis’ weaknesses as symptoms would yield better results than external symptoms such as
coding features for example. Past work on nano-patterns has proven data-flow and control-flow
features useful to characterize Java methods [125] and detect software vulnerabilities [21, 28,
131], but those features are not used for warning classification, understanding, and analysis
adjustment. In our approach, we use internal information to classify true and false positives
in static analysis, aid developer understand and fix warnings, and help them identify analysis
weaknesses.

7.3 Rule Graphs

To address T1–T4, we propose the concept of rule graphs that exposes the analysis’ internal
information to the end-user.

7.3.1 Definition

Let us consider the running example of Listing 7.1 and a taint analysis that over-approximates ar-
ray elements to the entire array. The analysis would report the two SQL injections and the open
redirect by tracking the variables containing the tainted data from the source getParameter() to
the sinks executeQuery() and sendRedirect(). Figure 7.1 shows the three rule graphs represent-
ing each of the analysis warnings. For example, following the edges of the middle graph (open
redirect), we see that the data is first assigned to userId at line 71, then to s at line 72 (because
of the over-approximation of s[0] to s), and finally to url at line 79 (over-approximation of s[1]
to s) before being reported at line 80. In addition to the code-related information found in the
edge labels, the nodes encode the internal analysis rules. For the open redirect, the root node is
the source, creating the taint to userId. The taint is then assigned to s because it is an array,
and then transferred to the local variable url by a part of the analysis which handles locals and
is different from the one which handles array assignments. Sinks are handled separately, which

96



Chapter 7. Rule Graphs for Analysis Configuration

SOURCE ARRAY LOCAL SINK <END>

SOURCE ARRAY LOCAL SINK <END>

SOURCE LOCAL SINK <END>

(userId, line 71) (s, line 72) (q1, line 76) (q1, line 77)

(userId, line 71) (s, line 72) (url, line 79) (url, line 80)

(userId, line 71) (q2, line 82) (q2, line 83)

Figure 7.1: Simplified rule graphs for the three vulnerabilities in Listing 7.1: SQL injection
line 77 (top), open redirect (middle), SQL injection line 83 (bottom).

is represented by the SINK node. The warning stops at an artificial node <END>, introduced
so that its edge from the sink stores the last step of the trace.

The nodes of the rule graphs mark the different rules of the analysis that handle the different
constructs of the analyzed code, as highlighted in gray in the flow function of our taint analysis,
in Algorithm 3. For a given statement s and a set of variables tainted before the statement
in, it generates, transfers, and kills taints, yielding an updated set of tainted variables after the
statement: out. Five analysis rules are encoded in this flow function: the generation of taints
when a source is detected (denoted with the SOURCE marker, line 6), the taint transfers for
arrays (ARRAY, line 11) and local variables (LOCAL, line 13), the taint transfer and reporting
at sinks (SINK, line 15), and the transfer of existing taints (ID, line 3). The graph nodes thus
correspond to rule markers and give insight into how the analysis interprets the code. Note that
we have removed the ID nodes from Figure 7.1 to simplify the example.

We define a rule graph G = (V, E) as a set of nodes V (the set of markers in the analysis)
and edges E , which can carry location labels.
Size of the rule graphs: Depending on which rules need to be tracked, different markers can
be chosen. As a result, rule graphs can approximate a traditional warning trace, or be vastly
different. The flow function shown in Algorithm 3 is a minimal example working for Listing 7.1.
Real-world analyses have more rules, and more complex rules, to handle aliasing, multithreading,
sanitizers, etc. As a result, rule graphs can become quite large, but remain at worst in the size
range of traditional warning traces (O(tm) with t the size of the traditional trace, and m the
number of markers).

Edge labels are only needed for T1 and T4, where code-specific information is needed.
Otherwise, code location is not needed for grouping warnings based on internal information
(T2) and determining weak analysis patterns (T3), since this information is completely analysis-
specific. We show this in our evaluation in Section 7.6.4. As a result, the edge labels (in gray
in Figure 7.1) can be dropped, making the rule graphs much smaller and simpler to handle. In
the example Figure 7.1, the top two graphs would then become identical.

7.3.2 Generating Rule Graphs

We formalize how rule graphs can be obtained from a data-flow analysis expressed in the mono-
tone framework [50]. This is done in two phases: when the analysis runs, it stores rule marker
information, and after it terminates, it uses it to extract the graph.
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Algorithm 3 Flow function for a taint analysis for Listing 7.1, with an over-approximation of
arrays at line 11. The marker information is shown in gray.

1: procedure fstatement(〈in〉)
2: out := ∅
3: for d in in do
4: d′ := newDataFlowFact(d, statement)
5: out = out ∪ (d′ , ({d}, ID))
6: if isAssignStatement(statement) ∧ rightIsSource(statement) then
7: d′ := newDataFlowFact(leftSide(statement), statement)
8: out = out ∪ (d′ , ({〈ZERO〉},SOURCE))
9: if isAssignStatement(statement) ∧ (rightSide(statement) ∩ in 6= ∅) then

10: d′ := newDataFlowFact(leftSide(statement), statement)
11: if leftIsArray(statement) then
12: out = out ∪ (d′ , ({d},ARRAY))
13: else
14: out = out ∪ (d′ , ({d},LOCAL))
15: if isSink(statement) ∧ sinkParameter(statement) ∈ in then
16: d′ := newDataFlowFact(sinkParameter(statement), statement)
17: out = out ∪ (d′ , ({d}, SINK))
18: report(d′)
19: return out

Collecting Rule Marker Information

Algorithm 4 presents the traditional fixed-point iteration algorithm of data-flow analyses that
applies the flow function fs to the statements of the program until the out-sets stabilize, and the
modifications made to support rule graphs. The main change is the introduction of rule marker
and predecessor information, highlighted in gray. As shown in Figure 7.2, the modified flow
function does not only report data-flow facts (tainted variables in terms of taint analysis) in its
out-set: it encapsulates each data-flow fact with marker information (mi) containing the data-
flow fact’s predecessors and a rule marker explaining the reason why the data-flow information
was transferred from the predecessors to the current fact. For example, in Algorithm 3, the rule
at line 11 states that if the right side of an assignment statement is tainted (if the variable is in
the in set), the array on the left side of the assignment should be tainted. As a result, at line 12,
d′, the data-flow fact representing the left side of the assignment is marked with its predecessor
d and the rule marker ARRAY. This notation means that the taint from d is transferred to d′

at statement s because of an assignment to an array. The merge operator u (line 6) should also
be adapted to handle marker information.

Soundness and termination: The modifications added to the analysis do not affect its ter-
mination and soundness since the marker information piggybacks on the data-flow facts without
influencing them. Thus, Algorithm 4 is as sound as the original analysis and terminates in as
many iterations.

Extracting Rule Graphs

Once the marker information is computed, we run Algorithm 5 for each warning, to retrieve its
rule graph. The algorithm implements a modified depth-first search (DFS). It recursively recon-
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Algorithm 4 Fixed-point algorithm for a data-flow analysis. The modifications to support rule
graphs are shown in gray.

1: procedure analyze
2: wl := entrypoints()
3: while wl 6= ∅ do
4: pop statement off wl
5: OLD := { d ∈ OUT[statement] }
6: IN[statement] := u′{ (d ,mi) ∈ OUT[r ] | r ∈ predecessors(statement) }
7: OUT[statement] := f ′

statement (IN[statement])
8: NEW := { d ∈ OUT[statement] }
9: if OLD 6= NEW then

10: wl ∪ = successors(statement)
f ′

statement is a modified flow function, defined in Figure 7.2.
u′ is the merge function, adapted to handle marker information.

f ′
statement(in) = f ′

statement({(d1,mi1), ..., (dn,min)})
= {(e1, ni1), ..., (em, nim)}

with di ∈ D,
ei ∈ D such that fstatement(d1, ..., dn) = {e1, ..., em},
fstatement the original flow function,
mii = (Di, rule_markeri) such that Di ⊆ D,
nii = (Di, rule_markeri) such that Di ⊆ {d1, ..., dn}.

Figure 7.2: The modified flow function.

structs the graph from the <END> node to the different sources, using predecessor information
for the edges, and rule markers for the nodes. The stopping condition (line 2) holds if a source
is reached when invalid paths are visited (where returns do not match calls), or when the DFS
runs into a loop (causing unnecessarily complex patterns). In the latter cases, we then clean up
the graph, removing data from the invalid path.

Soundness and termination: With a DFS, the algorithm steps back into all possible traces
tracked by the marker information, including invalid ones. However, as long as the analysis’
merge operator keeps the correct predecessors in the marker information, the DFS finds all
correct traces, along with potential false positives. Since the number of generated data-flow
facts is finite and the stopping condition keeps track of loops, the algorithm must terminate.
Retrieving all paths between two nodes with a DFS has a complexity of O(se) with s the number
of nodes and e the number of edges, so we apply optimizations to reduce the number of explored
paths, which we detail in Section 7.5.

7.4 Applications of Rule Graphs

In this section, we discuss how to use rule graphs for the four tasks presented in Section 7.1.
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Algorithm 5 Graph reconstruction.
1: procedure walkBack(〈df, next_rule_marker, a〉)
2: if stoppingCondition() then
3: pruneInfeasiblePaths(a) return
4: s := getStatement(df)
5: (D′, rule_marker) := mi ∈ OUT[s] | d = df
6: for pred in D′ do
7: a.addEdge(rule_marker, next_rule_marker, df)
8: walkBack(pred, rule_marker, a)

7.4.1 Warning Understandability

The internal rule information contained in the rule graphs can be used to enhance the explain-
ability of analysis warnings (T1). Displaying rule information to the developer can help them
better understand how the analysis handles the analyzed code from one line of code to the next.
With a rule graph, the analysis tool can thus provide a detailed analysis trace from the source to
the sink that explains the analysis’ reasoning step by step. Each edge e represents a step of the
trace from the point of view of the analysis, and gives access to the following step information:

• The data-flow fact of interest: in e’s label.

• Why it is of interest to the analysis: e’s origin node.

• The location of the step in the code: in e’s label.

• The next step: the edges departing from e’s destination node.

• The previous step: the edges arriving at e’s origin node.

Looking up the first three points has a complexity of O(1). The lookup of the last two points
has a worst-case complexity of O(n), with n the number of edges in the graph.

For the example in Listing 7.1, the enhanced information about the open redirect can be
read from the middle graph and reported to the developer as follows:

• line 71: SOURCE statement: userId is tainted.

• line 72: Assignment to an ARRAY: s is tainted from userId.

• line 79: Assignment to a LOCAL: url is tainted from s.

• line 80: SINK statement: url is reported.

Unlike traditional traces, this gives developers insight into the inner-workings of the analysis
and allows them to pinpoint points of uncertainty: here for example, the over-approximation
of the array assignment. Note that this analysis trace approximates a traditional trace, but
more targeted sets of markers can be used, reporting only on the SOURCE, SINK, and ARRAY
markers if LOCAL is of no interest.

7.4.2 Warning Classification

Rule graphs can also be used to classify warnings (T2). For example, when grouping warnings
by confidence, analysis weaknesses such as array assignments can denote a lower confidence.
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Another example consists in using rule graph similarity to group warnings by potential fix (thus
grouping the open redirect and the SQL injection line 77 together in Listing 7.1).

Classifying warnings based on how the analysis computes them is equivalent to classifying
warnings based on the different combinations of either the graph nodes or its unlabeled edges
(a combination of two nodes). Given a training set of classified warnings, it is thus possible
to predict in which class another warning is likely to belong, based on which nodes (or edges)
the graph contains. We achieve this prediction by applying supervised machine learning to the
training set, using either the nodes or the unlabeled edges of a rule graph as features. Let
us consider the example Figure 7.1, with the learning features being graph nodes, the classes
being true positive and false positive, the training set being composed of the open redirect
(false positive) and the SQL injection line 83 (true positive), and the test set being composed
of the SQL injection line 77. From the training set, the features SOURCE, LOCAL, SINK, and
<END> are found in both true and false positives. The feature ARRAY is only found in the
false positive. As a result, the classifier uses the ARRAY feature to differentiate between true
and false positives. Since the SQL injection line 77 contains that feature, it is classified as a false
positive. Using edges instead of nodes, three features can be used to determine the same choice:
SOURCE→ ARRAY, ARRAY→ LOCAL, and SOURCE→ LOCAL. We note the importance
of the quality of the training set in machine learning: using a different one could result in a
different or wrong classification. We discuss this further in Section 7.6.4.

7.4.3 Identification of Weak Analysis Patterns

For T1, we expose the analysis’ internals to the developer, allowing them to pinpoint its short-
comings. We can take that a step further and semi-automate the detection of patterns in the
analysis rules that can lead to wrong results (e.g., over-approximation of arrays in Listing 7.1).

Given a training set of labeled true and false positives, we can use their rule graphs to find
the most likely causes for the false positives and thus detect weak analysis patterns (T3). Those
patterns are combinations of analysis rules that lead to false positives. In terms of rule graphs,
those are subsets of the edges (or the nodes). Weak patterns are retrieved from a machine-
learning classifier, such as presented in Section 7.4.2, initialized with a training set labeled with
the classes false positive and true positive. Once the classifier learns which combinations of
features are more likely to lead to false positives, we use its decision rules to determine weak
patterns. This method requires the classifier to be a rule-based classifier, such as a decision tree.

Following the example of Figure 7.1 in Section 7.4.2, a rule-based classifier would learn that
the presence of the node ARRAY leads to false positives, thus bringing attention to the weak
ARRAY rule from Algorithm 7.2. In the case of unlabeled edges, the classifier can choose any
of the three edges, either pointing us to the ARRAY rule or to its absence. We discuss the use
of nodes compared to edges in Section 7.6.4.

7.4.4 Identification of Missing Analysis Patterns

As mentioned in T4, another cause for wrong analysis results is missing analysis rules (e.g.,
assignments to field variables are ignored by the flow function in Listing 7.1). Missing patterns
not handled by the analysis are difficult to identify automatically, as a missing analysis rule
could depend on anything. In that case, it is more efficient to show a potentially problematic
warning to the developer in a fashion similar to T1, so they can manually determine where the
analysis does not behave as expected. We can use rule graphs to pick good candidates to show
the developer. For example, if two rule graphs are similar (showing that the analysis handles
the corresponding warnings similarly), but one is a false positive and one is a true positive, the
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analysis could be missing rules to properly handle the false positive, and the difference between
the two warnings may indicate what that missing rule could be.

To calculate the similarity between two warnings, we define the following similarity coefficient
based on the number of edges their rule graphs have in common. The greater the coefficient,
the more similar the warnings.

similarity(G1,G2) = 1
2 ·
(#(eG1 ∩ eG2)

#eG1 + #eG2
+ #(elG1 ∩ elG2)

#elG1 + #elG2

)
with Gi the warning graph, eG the set of unique edges in G ignoring the edge labels, and elG
the set of unique edges in G taking the edge labels into account. The first part of the equation
encodes the analysis’ treatment of the warning regardless of the particular lines of code (edge
labels). The second part is used when two warnings are semantically similar: the coefficient
differentiates them by code location, using the edge labels. The 1/2 normalizes the coefficient
to a maximum value of 1. Applied to Figure 7.1, we see that the warnings that are most similar
are the SQL injection line 77 and the open redirect, with a similarity coefficient of 0.75 (all
eight edges in common, four labeled edges in common), compared to 0.14 for the other two
relationships (two of seven edges in common, no labeled edges in common).

7.5 Implementation Details

We now detail the implementation of the rule graphs and of the modules that use them for T1–
T4: the classification module of T2, the pattern detection modules of T3 and T4, and for T1,
Mudarri, an IntelliJ plugin that displays warning traces augmented with marker information.
The source code is available online [86].

7.5.1 Rule Graphs

We have implemented the rule graphs on top of a taint analysis for Java and Android applications
in the Soot-based [139, 140] IFDS [110] solver Heros [15]. Its flow functions are detailed in
Section 2.3. To compute the rule marker information (Section 7.3.2), we use a modified version
of the path-reconstruction approach from FlowTwist [63]: we encapsulate the data-flow facts
with additional information containing the original source statement of the current data-flow
fact, the data-flow fact’s predecessors and their corresponding rule markers, and the data-flow
fact’s neighbors, used for trace reconstruction. We also adapt the analysis solver to propagate
data-flow facts along neighbors.

Over the 650 LOC of our analysis’ flow functions, we use a total of 39 rule markers. Thirteen
are related to calls to library APIs, eight are used for taint transfers at call and return sites, six
detail the different types of taint transfer at assignment statements, three refer to sources and
sinks, eight cover different manipulations of aliases, and one is a marker used for the trace lookup
algorithm. To provide more or less granularity in the warning explanations, we do not always
generate exactly one level of markers per call to the flow function, as shown in Section 7.3.2.
When rules are not of interest, we do not generate new data-flow facts. When we need more
detailed explanations, we generate a chain of data-flow facts in the same flow function. For
example, if a variable is tainted at a source and that variable is already aliased to another
variable, a chain of two data-flow facts is produced at once: SOURCE and ALIAS. The longest
chain in our analysis is of length 4.

For scalability, we limit the graph extraction (Section 7.3.2) to one trace per warning. We
also reduce the number of visited paths by checking for loops and invalid paths (i.e., paths with
non-matching call stacks), and by using FlowTwist’s neighbor system.
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A

B

C

D

Figure 7.3: The GUI of Mudarri. Features A – D are detailed in Section 7.5.

7.5.2 Graphical User Interface

The taint analysis can run as a standalone command-line tool, but we have also integrated it
in an IntelliJ plugin [46] we name Mudarri, to illustrate T1. Figure 7.3 shows Mudarri’s
Graphical User Interface (GUI). The code contains an SQL injection highlighted in the editor
( A ) and in the right gutter ( B ). The bottom view ( C ) details the warnings found in the
application. For each step of the warning, it provides the line of code, the tainted variable(s),
and an explanation on the rule marker. For example, the first line in the view shows that
the variable query is tainted because of the source method getParameter, and the second line
explains that the taint is transferred from query to param because the tainted query is assigned
to param. Selecting a warning in the bottom view highlights the corresponding lines of code
in the editor and marks the tainted variables in a bold red font. Those details also appear in
a tooltip ( D ) when hovering over a highlighted line of code. Double-clicking on a step in the
bottom view opens the corresponding file in the editor.

Mudarri addressesRE-S4 by improving the explainability of the analysis warnings through
explanations of the bug and how it is detected in the code (F3–F5), and visualizing the bug in
the interface (F10).

7.5.3 Offline Functionalities

Given a training set of labeled warnings, the warning classification module predicts which class
an unlabeled warning belongs to (T2). From a set of warnings marked as true or false positives,
the pattern detection module retrieves weak analysis rules from the rules of a rule-based classifier,
as shown in Section 7.4.3 (T3). This module can also compute the similarity coefficient between
warning pairs and yield a list of similar warnings to explore, allowing the user to identify missing
analysis rules as in Section 7.4.4 (T4).

The machine learning modules used for T2–T3 are implemented using the WEKA machine
learning framework [147]. Both graph nodes and edges can be used as learning features, and
their presence or absence in a particular rule graph provides binary inputs to help classify the
graph. We discuss the particular classifiers and the choice of nodes or edges in Section 7.6.2.
Since the warning classification module and the pattern detection module depend on machine
learning, they run into the scalability issues known to that domain [137]. As a result, a full
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learning/classification cycle cannot be used at runtime in the developer’s Integrated Development
Environment (IDE). Instead, we run them offline, as part of post-processing modules after the
analysis terminates.

By allowing developers to adjust the analysis rules with the offline modules, we encourage the
integration of developer knowledge in the analysis rules (RE-S3) through F16 (configurability
of the analysis) and F18 (customization of the analysis rules).

7.6 Evaluation

In this section, we evaluate the use of rule graphs for T1–T4. We test warning understandability
(T1) through a user study with 22 participants, in which we compare Mudarri to NoMarkers,
a modified version of Mudarri that does not contain analysis information. The two tools are
visually identical, except for the details of the trace in the bottom view: NoMarkers also
contains the tainted variables and the lines of code, but the rule marker information is replaced
by the Java statement at that line of code, showing a traditional trace.

For the other three tasks (T2–T4), we conduct an empirical evaluation over the warnings
yielded by a taint analysis on 1098 real-life Android applications from F-Droid [35]. Like for the
user study, we use the taint analysis defined in Section 2.3. For T2, we assume the use of the
classification true / false positives, meaning that we evaluate how well rule graphs can be used
to distinguish true positives from false positives.

Thus, we ask the following research questions:

• RQ20: Can rule graphs help software developers understand warnings?

• RQ21: Can rule graphs help software developers classify warnings?

• RQ22: Can rule graphs help software developers find weak analysis rule patterns?

• RQ23: Can rule graphs help software developers find missing analysis rule patterns?

7.6.1 User Study: Warning Understandability

Through a user study, we evaluate how internal analysis information assists the developer in
understanding warnings (RQ20). We ran a comparative, within-subjects user study between
Mudarri and NoMarkers with 22 participants, referred to as P1–P22 (13 students, 9 re-
searchers). Of all participants, 13.6% have between one and two years of experience as pro-
fessional software developers, 9.1% of the have more than five years of experience, 22.7% have
between three and five years of experience, 13.6% have between two and three years of experi-
ence, and 40.9%, a year or under.

The participants were given a 15-minutes task: to go through a list of data leaks reported by
the taint analysis, decide if they are true positives or false positives, and explain their reasoning.
In those tasks, false positives are due to weak or missing analysis rules, so we verified if they
have understood a warning if they could name the source and the sink of the data leak, and
correctly detail the taint transfers for each step between the source and the sink.

The participants performed the task twice: once with Mudarri, and once with NoMark-
ers. A latin-square design was used to counter the learning effects: half of the participants used
Mudarri first, the other half used NoMarkers first. For the two tasks, we used two real-world
Android applications from F-Droid: Balance [33] and Sparkleshare [36] containing respectively
8 and 16 data leaks over their respective 1,000 and 1,700 LOC. All participants performed the
first task with Balance and the second with Sparkleshare.
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Figure 7.4: Percentage of participants correctly understanding the 8 warnings of Balance (top)
and the 16 warnings of Sparkleshare (bottom) with Mudarri ( ) and NoMarkers ( ).

During the tasks, we asked the participants to think aloud, allowing us to determine which
warnings they understood correctly. We also obtained information about the features of Mu-
darri and NoMarkers that were perceived as most or least useful. After each task, the
participants also graded the usefulness of the tool they used on a Likert scale from 0 to 10.

The study results and test applications are available online [86].

7.6.2 Study Results

Figure 7.4 presents the percentage of participants who could correctly explain each warning.
For the first task, we see that with Mudarri, participants understood Balance’s warnings bet-
ter than with NoMarkers: on average, 86.67% of the participants understood the warnings
correctly using Mudarri, but only 14.81% using NoMarkers. This is mostly due to Mu-
darri’s clarification of the source and sink methods (P12 “[With NoMarkers ] I don’t know if it
is a true sink”) and the taint transfers in cases of complex code constructs. For example, the first
warning in Balance had an Intent constructor as a source, which was not explicitly stated in No-
Markers. Since the constructor does not look like a typical source method, most participants
overlooked it and misidentified the source for another method. Mudarri explicitly names the
source method, allowing participants to easily identify it. In another example, a wrong analysis
rule mistakenly transferred a taint in a listener object. Most Mudarri users immediately iden-
tified the problem, because Mudarri reported a taint transfer due to an assignment on a line
with no assignment. NoMarkers users spent more time speculating on how the taint entered
the listener.

For the second task, the warnings of Sparkleshare were of two kinds: warnings 1 to 7 were
similar to a few warnings already seen in Balance, and warnings 8 to 16 were new types of
warnings. We see that NoMarkers users perform much better on warnings they are familiar
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with (74.60%) than not (26.67%), while Mudarri users perform equally well over both groups
(respectively 82.81% and 82.61%). With new warnings, we again see the general trend of Mu-
darri helping participants understand warnings better than NoMarkers. For warnings 1 to
7, the similar performance of both participant groups illustrates a learning effect: NoMarkers
users had used Mudarri for their first task, and the knowledge gained then allowed them to
perform almost as well as Mudarri users for warnings that they had already seen before (P8
“If I didn’t [already] know what it was, I could not find out what it is about”). With new types of warn-
ings, their performance decreased, showing that they were not given the necessary knowledge to
understand and assess them. Over both tasks, a two-tailed Wilcoxon Rank-Sum test shows that
the participants understand significantly more warnings with Mudarri (p = 0.00008 < 0.05).

On a scale from 0 to 10, the participants gave Mudarri an average grade of 7.48, and
NoMarkers, 6.01. We attribute the grades’ closeness to the tools’ visual similarity. Mudarri
and NoMarkers were designed to be visually identical. In particular, participants noted the
highlighting and navigation capabilities of both tools as very useful. Since participants were not
told when they interpreted the warnings incorrectly, their impression of the two tools depended
entirely on the GUI. Based on the grades, 16 of the 22 participants preferred Mudarri, which
we attribute to the analysis details provided by the tool (P6 “I can recognize the problem quickly”,
P15 “It helps me know why the tool thinks that”). Despite their better performance when using
Mudarri, three participants preferred NoMarkers. We attribute this discrepancy to the
large amount of text in Mudarri, which can be time-consuming and tedious to read, especially
when the participant already knows how the warning works (P13 “There is too much information
[...] it breaks my workflow.”).

Answering RQ20, we can conclude that analysis-based information helps developers under-
stand warnings significantly better than code-based traces for warnings that they have not seen
before. It also helps build up a reusable knowledge of the tool and warning types.

7.6.3 Empirical Evaluation: Warning Classification and Pattern Detection

In an empirical evaluation, we evaluate the classification and the pattern extraction modules,
using the classes true / false positive to answer RQ21–RQ23.

As a training set, we use DroidBench [9], an open-source benchmark for taint analysis in
Android applications. Our taint analysis finds 202 warnings in DroidBench, 14 of which are
false positives detailed in Table 7.1. We refer to them as FP1–FP14. FP1–FP5 are caused
by weak analysis rules, FP6–FP14 are due to missing analysis rules. Our test set consists of
1098 real-world applications from F-Droid [35]. Our ground truth consists in 200 warnings we
manually classified out of the 11,148 found by our taint analysis, 54 of which were classified as
false positives. For the sake of representativeness, the 200 warnings were selected to ensure a
complete coverage of all existing rule graph nodes and unlabeled edges.

The test applications are available online [86]. We ran our experiments on a 64-bit 10.13
Mac OS X laptop with an Intel Core i5 2,9 GHz CPU running Java 1.8, with a Java heap space
of 8 GB.

7.6.4 Evaluation Results

Warning Classification (RQ21)

To test the usefulness of rule graphs in classifying true and false positives, we use eight different
classifiers from WEKA. Four are rule-based (J48, DecisionTable, RandomForest, and JRip),
as required by T3 to extract rule patterns. For the sake of comparison, we add probabilistic
classifiers (NaiveBayes and BayesNet) and function-based classifiers (SMO and Logistic, using
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Table 7.1: List of false positives reported by the taint analysis in DroidBench, and their root
causes. FP1–FP5 are caused by weak analysis rules, FP6–FP14, by missing analysis rules.

ID Test case Cause
FP1 ArrayAccess2 Array over-approximation
FP2 ArrayAccess5 Array over-approximation
FP3 IntentSink2 Android lifecycle not modeled correctly
FP4 IntentSink2 Android lifecycle not modeled correctly
FP5 Merge1 Incomplete handling of aliases
FP6 Button2 Type of callback not handled
FP7 Exceptions3 Type of exception not handled
FP8 Exceptions7 Type of exception not handled
FP9 HashMapAccess1 Collection over-approximation
FP10 SimpleUnreachable1 No check for unreachable code
FP11 UnreachableBoth No check for unreachable code
FP12 UnreachableSource1 No check for unreachable code
FP13 UnreachableSink1 No check for unreachable code
FP14 Unregister1 Callback behavior not handled

WEKA’s default hyper-parameters). Table 7.2 presents the precision and recall of each classifier
for a ten-fold cross validation on the DroidBench training set. The table reports the median
precision and recall over ten runs for two types of machine learning features: rule graph nodes
and unlabeled edges. Similarly, Table 7.3 shows the precision and recall when running the full
classification on the test set of 200 F-Droid warnings.

On the cross validation, the precision and recall do not vary significantly between the different
classifiers. When using nodes, we reach a median precision of 0.876 and recall of 0.912. With
edges, the median precision and recall are comparable: respectively 0.876 and 0.887. However,
for the full classification, we observe a drop in precision when using edges: the median precision
and recall are of respectively 0.712 and 0.733 for nodes, and respectively 0.648 and 0.696 for
edges. This drop in precision is attributed to the low number of false positives in DroidBench
causing overfitting in the classification: the additional information carried by the edges makes

Table 7.2: Precision and recall when using graph nodes or unlabeled edges as features, for the
10-cross fold validation on DroidBench.

Nodes Edges
Precision Recall Precision Recall

J48 0.865 0.916 0.865 0.906
JRip 0.866 0.926 0.866 0.926
DecisionTable 0.866 0.921 0.865 0.916
RandomForest 0.902 0.926 0.866 0.926
SMO 0.866 0.931 0.887 0.921
Logistic 0.888 0.906 0.894 0.876
NaiveBayes 0.881 0.881 0.879 0.871
BayesNet 0.882 0.886 0.885 0.861

107



7.6 Evaluation

Table 7.3: Precision and recall when using graph nodes or unlabeled edges as features, on the
F-Droid applications.

Nodes Edges
Precision Recall Precision Recall

J48 0.774 0.790 0.678 0.685
JRip 0.737 0.760 0.712 0.740
DecisionTable 0.526 0.725 0.526 0.725
RandomForest 0.758 0.765 0.525 0.720
SMO 0.710 0.730 0.714 0.745
Logistic 0.743 0.765 0.615 0.645
NaiveBayes 0.735 0.680 0.693 0.675
BayesNet 0.715 0.655 0.720 0.630

the classification rules too specific to the particular use case of DroidBench, and causes the
precision to drop on test sets which false positives do not exactly match DroidBench’s.

The precision drop may be avoided by introducing a training set with more varied false
positives, or by using nodes as learning features. The latter option makes a more sensible
choice. Not only does it compensate for the overfitting, but it also reduces the complexity of
the classification: in a program with v variables and l lines of code, there may be up to s× v× l
transitions, with s the number of states. The DroidBench warnings contain a total of 27 states
and 146 unique unlabeled transitions.

Using nodes, we note that in the case of the cross validation, the precision and recall are
similar over all classifiers (0.014 ≤ σ ≤ 0.019). But for the full classification, the precision
and recall vary depending on the classifier (0.078 ≤ σ ≤ 0.083). The rule-based classifiers
have a generally better precision and recall—with the exception of DecisionTable, making rule-
based classifiers more suited to handle them. The particularly low precision of DecisionTable is
explained by the low number of false positives in DroidBench, which generates a single imprecise
rule: classify everything as a true positive. Although rule-based classifiers are more suited for
handling rule graphs, it is necessary to have a good training set.

To discuss the limitations of the classification, let us consider notable misclassified warnings
in DroidBench and F-Droid. Array and collection accesses are misclassified by all classifiers:
because the analysis over-approximates arrays and collections and treats all such warnings the
same, the classifier is unable to distinguish between a true and a false positive and puts them
all in the same class. Similarly, mishandled exceptions (warnings that cannot happen because
the correct exception is not triggered, but that the analysis reports because it does not distin-
guish between different types of exceptions) are also often misclassified. Those misclassifications
show that despite yielding good precision and recall, analysis-specific information is not enough
to accurately classify warnings. Additional features are needed to supplement the analysis’
weaknesses, for example the specific exception type, which would help distinguish between the
different classes.

We see that rule graphs can be used to classify warnings with good precision (~0.712) and
recall (~0.733), and that using nodes rather than edges as learning features is more precise
and scalable. The precision and recall of our approach can be improved with a training set
containing varied true and false positives, or by using code-specific features on top of internal
analysis information in the classification.
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J48:

TAINT_ALIAS true

RETURN_PARAMS true: true positive (2)

RETURN_PARAMS false: false positive (3)

TAINT_ALIAS false

API_TO_STRING true: true positive (14)

API_TO_STRING false

ARRAY_WRITE true: true positive (3)

ARRAY_WRITE false
API_BASE_LOCAL true

FIELD_ASSIGN true: true positive (8)

FIELD_ASSIGN false

RETURN_THIS true: false positive (2)

RETURN_THIS false: true positive (8)

API_BASE_LOCAL false: true positive (162)

JRip:

ID ∧ TAINT_ALIAS ∧ ¬RETURN_PARAMS =⇒ false positive (2)
ID ∧ ¬LOCAL ∧RETURN_THIS =⇒ false positive (2)
=⇒ true positive (198)

Figure 7.5: Decision tree of J48 and rules of JRip on DroidBench, and the number of warnings
matching each rule.

Identification of Weak Analysis Patterns (RQ22)

To evaluate the pattern detection module for the detection of weak analysis rules, let us consider
the classification rules generated by the four rule-based classifiers used in Section 7.6.4 (J48,
DecisionTable, RandomForest, and JRip), using nodes as features.

Figure 7.5 presents the decision tree created by J48. We note two main false positive patterns:
first, when an alias is tainted, the corresponding warning is likely to be a false positive if the
taint does not return to a caller through its parameter. This corresponds to FP5. Second, the
conjunction of API_BASE_LOCAL (API calls tainting the base object if one of the parameters
is tainted), and RETURN_THIS (tainting the base object of a caller if the this variable is
tainted in the callee) is also a false positive pattern. This corresponds to FP3 and FP4 and
happens because of the incomplete modeling of the Android lifecycle, which causes an entire
Activity to be tainted if one of its static attributes are. For true positive patterns, we also see
that warnings using the rule ARRAY_WRITE (corresponding to FP1 and FP2) are considered
true positives. This is due to DroidBench’s five array test cases, three of which are true positives.
Using true positive patterns in conjunction with false positive warnings matching those patterns
allows us to locate the analysis’ weaknesses. From the classifiers’ rules and classification results,
we can see which analysis patterns match the DroidBench false positives that are due to weak
analysis rules: use of arrays, and mishandling aliases and Android Intents, which can then be
used to fix the weak analysis rules.
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Figure 7.6: Distribution of the similarity coefficient between each pair of warnings.

85 try {
86 setImeiAsSourceAndCreateInvalidCastException ();
87 } catch ( ArrayIndexOutOfBoundsException ex) {
88 sms. sendTextMessage (num , null , imei , null , null);
89 }

Listing 7.2: Simplified source code of the DroidBench Exceptions7 test case. The Exceptions3 test
case is similar, but has a RuntimeException at line 87.

Although JRip contains fewer rules than J48 (Figure 7.5), its rules still confirm the main
rules from Figure 7.5: the combination of TAINT_ALIAS and ¬RETURN_PARAMETERS
and the RETURN_THIS denoting false positives, while the rest is classified as true positives.
We attribute the better performance of J48 to the more efficient pruning of JRip, which is
implemented as part of RIPPER [24], an improvement of the REP method used by J48. Com-
bined with the low number of false positives in the training set, JRip’s more efficient pruning
policy yields simpler rules. This effect is also observed with DecisionTable’s unique rule, which
classifies all warnings as true positives: since DecisionTable is a majority classifier, the false
positives are considered as noise, and the resulting rule selects the majority class: true positives.
RandomForest goes in the opposite direction— generating 100 trees of a larger size (from 29
leaf nodes to 69) most of which also contain the three rules discussed above, which we attribute
to RandomForest’s known overfitting behavior in the case of noisy datasets [119].

With this experiment, we see that classifier rules obtained from rule graphs can help deter-
mine weak analysis rules. In the case of DroidBench’s weak analysis patterns, J48 provides the
best tradeoff between pattern size and precision. Integrating a weak rule detection module in an
analysis tool would help software developers determine which analysis rules should be adjusted
when configuring or using the tool.

Identification of Missing Analysis Patterns (RQ23)

To assist developers in the detection of missing analysis rules, we generate pairs of similar true /
false positives from the DroidBench training set, using the similarity coefficient. As mentioned
in Section 7.4.4, the difference between very similar pairs can be indicative of missing rules. So,
we point the developer towards the pairs with the highest similarity coefficient. We obtain a
total of 2,590 pairs, with similarity coefficients ranging from 0 to 0.691 (avg = 0.085, σ = 0.115).
Figure 7.6 shows the similarity coefficient for each of the pairs in the list. Only two pairs of
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warnings have a coefficient higher than 0.5, 956 are at 0.1 or more, and 1,222 have a similarity
coefficient of 0.

The top two pairs (with coefficients of 0.691 and 0.669) report on FP6. In this test case, the
true positives share a large part of their traces with the false positive. The difference between the
traces mainly consists in calls to the dummyMain method, which we use to model the Android
lifecycle [9]. This observation reveals the missing analysis support for the particular type of
callback found in the false positive. Two pairs concerning exception handling (FP7 and FP8)
with coefficients of 0.5 and 0.421, also provide ideal comparisons: the source code, illustrated
in Listing 7.2, is almost identical but for the exception types. This similarity leads to almost
identical rule graphs (with unlabeled edges), and allows the user to easily identify the missing
rule: the analysis does not distinguish between different types of exceptions.

However, other pairs provide less explicit explanations. FP10 and FP12 are involved in 64
pairs, all with a similarity coefficient of 0.5. All of those warnings have a simple SOURCE →
SINK graph. As a result, it is not easy to infer which rule is problematic since the true positives
are so different from the false positives. Other pairs share this issue, namely those concerning
FP9–FP14. Better pairs would require the true positive to be semantically close to the false
positive (like in the exception examples), but DroidBench does not contain such test cases. A
possible solution to this problem would be to add code-specific information in the similarity
coefficient, to differentiate between two identical traces such as the SOURCE → SINK edges of
FP10 and FP12.

We see that rule graphs can be used to compute warning similarities and to point the
developer towards missing analysis rules, helping them add missing rules in the analysis’ ruleset.
Code-specific features can also be used in the similarity computation to increase the precision
of the approach.

7.7 Limitations and Threats to Validity

We ran the user study in a controlled environment in which participants only had 20 minutes
to work on small-scale applications. While running the experiments in a controlled environ-
ment allowed us to remove external threats to validity, it would be interesting to also evaluate
Mudarri in a real-life environment.

The user study was a within-subjects study, so we observed a learning effect in which partic-
ipants performed better on the second task. We addressed this issue with a latin-square design,
in which half of the participants used Mudarri first, and the other half, NoMarkers first,
and reported on the aggregated results of both halves.

It is subjective to decide whether a warning is a true or a false positive, because it depends
on the rater’s definition of a valid bug. To limit the subjectivity of the rater’s judgement for
the classification of DroidBench and F-Droid warnings, we defined a true positive as a pair of
source-sink methods with a valid data flow between them. Subjective factors such as whether
the leaked information contains sensitive data, or whether the warning has a high impact or not
were thus kept out of the decision. Similarly, in the user study, we judged that a participant
understood a warning only if they could explain the valid data flow between its source and sink,
regardless of whether they marked it as a true or false positive.

As seen in Section 7.6.3, the use of analysis rules in classification and pattern extraction is
not enough to completely distinguish all warning classes. External code and warning-specific
features could improve the classification.

The quality of the patterns found for T3 and T4—and therefore also the quality of the
prediction algorithm in T2—heavily depend on the quality of the training set. Like all machine
learning approaches, a bad training set introduces uncertainties and yields inaccurate results. In
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our evaluation, we used DroidBench, a benchmark of minimal examples for taint analysis with
both true and false positives as our training set. While not complete, this benchmark covers the
most common use cases for Android. To apply our approach to other kinds of applications or
different languages, it is important to define a good training set first.

A drawback of the methods for T2 and T3 is their scalability, which we mitigate by running
them offline. It would be possible to incrementally apply those methods, to use them interactively
in the IDE.

7.8 Summary
Developer support in analysis tools often focus on the task of fixing bugs. However, the tasks
related to configuring the analysis are often overlooked. With the user in mind, we explore
this use case, addressing requirements RE-S3 and RE-S4, by proposing novel tool features for
analysis configuration, thus illustrating the value of the user-centered process.

In this chapter, we present the concept of rule graphs, with the goal of using the internal
rules of the analysis to assist developers in four specific tasks: understanding and classifying
warnings, and identifying weak and missing analysis patterns. With our implementation of rule
graphs and of the modules illustrating the tasks such as Mudarri, we demonstrate how to apply
the concept of rule graphs for taint analysis.

Through a user study with 22 developers and an empirical evaluation on 1098 real-world
Android applications, we show that with more understandable reporting and assistance in clas-
sifying warnings and evaluating the analysis’ rules, we can provide a better user experience of
static analysis configuration to software developers. With this research, we advocate for a more
transparent use of analysis rules in static analysis tools and encourage researchers to explore
other applications of rule graphs.
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Conclusion and Future Work
8

We now summarize the contributions made in this thesis and present avenues for future work
opened with our research.

Looking at the design of tools for static analysis from the end-user’s point of view, we
conducted a survey in Chapter 3 to understand the motivations and needs of static analysis
developers with regards to their coding environment. Through that survey, we determined that
soundness and precision are the main goal of analysis developers, and identified the main causes
for errors in static analysis code. We extracted nine design recommendations for building a
coding environment for static analysis, such as clear visualizations, omniscient debugging, or
breakpoints that can be used in both the analysis code and the analyzed code.

In Chapter 5, we apply the same user-centered methodology to a second user group: soft-
ware developers. While many usability studies have been conducted on static analysis tools to
find user-experience issues, we focus on developer motivations and strategies when using those
tools. Through a survey, a study of analysis reports, and a small cognitive walkthrough, we
discovered new aspects to designing static analysis tools, and identified eleven recommendations
for designing and using such tools in practice. Our study, shows that developers make decisions
focusing on time constraints, creating heuristics to help them decide which warnings to fix, and
how. Those time constraints make responsiveness and the treatment of such heuristics (e.g.,
encourage and integrate the good ones, and discourage the bad ones) the main points of concern
for the design of static analysis tools.

The main motivation for using tools for static analysis differs between the two user groups.
Analysis developers, whose main goal is to ensure the correctness of their analysis, give a high
importance to understanding what happens under the hood of the analysis. Features such as
exposing internal analysis information and providing full control when navigating this informa-
tion (with two sets of breakpoints for example) are of prime interest to analysis developers. On
the other hand, the primary goal of a software developer is to fix warnings in a limited time.
Considering the additional dimension of time, software developers favor features that help them
optimize their work, such as tool responsiveness, the possibility to contribute to the analysis
in order to reduce false positives, or quick fixes, for example. While some of those features
are specific to their target user group (e.g., collaboration options for software developers), oth-
ers can be useful to both analysis developers and software developers, such as better warning
explainability, or analysis responsiveness. However, the way such features should be designed
differs according to the use case. For example, when explaining warnings, analysis developers
require extensive disclosure of the analysis’ internal information, but such details might not be
as useful for software developers, who prefer to only see minimal relevant information.
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In Chapter 4, we focus on the case of the analysis developer, and explore how to provide them
with extensive control on the analysis’ internal information. We address six of the recommenda-
tions we identified for analysis developers, and present VisuFlow, a debugging environment for
data-flow static analysis. Through a user study, we observed that VisuFlow’s features allow
analysis developers to debug static analysis faster than with the Eclipse debugging environment.
This work shows that adopting a user-centered approach yields useful tools. However, Visu-
Flow is far from complete. While it is a good first iteration of the user-centered design process,
it still contains user-experience issues and lacks features like full support for inter-procedural
analyses. Further iterations are needed to refine the tool, and the adaption of certain fea-
tures require further research, such as automated testing for static analysis, quick updates of
the analysis results as the code is edited, or even synthesizing flow-functions directly from the
graph visualizations to give the analysis developer quicker and simpler control over the analysis’
internal rules.

Turning our attention to the software developer, we research a different aspect of controlling
the analysis by integrating developer knowledge in the analysis. In Chapter 6 we study how
to use this aspect to enhance responsiveness and address four of the recommendations found
in Chapter 5. To ensure the responsiveness of static analysis tools, we introduce the concept
of Just-in-Time static analysis, allowing developers to express priorities with respect what the
analysis should explore first. While this concept can be used for different purposes such as
resource management, we illustrate it through Cheetah, a taint analysis prioritized by code
location, allowing developers to see results in their IDE as they code. In an empirical evaluation
and a user study, we show that Cheetah is able to return its first results in less than a second,
and allows developers to fix data leaks twice as fast as with a traditional taint analysis.

In Chapter 7, we study the integration of developer knowledge in static analysis at the
configuration stage. To support developers in understanding and classifying warnings, and in
detecting weak or missing analysis rules, we introduce rule graphs that model the relationships
between the analysis rules at runtime and that can be used to reason about how the analysis
interprets the analyzed code. By doing so, we expose internal analysis information to the software
developers—in a simpler and more limited way than with VisuFlow, and allow them to tap into
this new source of information to bridge the understandability gap between the analysis and the
developers’ understanding of the analysis. Through a user study and an empirical evaluation, we
show that rule graphs can effectively support developers in their configuration tasks, addressing
two recommendations of Chapter 5.

The tools developed in Chapter 6 and Chapter 7 both enhance the usability of analysis tools
for the code developer. They show that when designing tools with the users’ goals in mind, user
needs can lead to new tool concepts such as a configuration helper (Chapter 7), or the integration
of developer priorities in the analysis (Chapter 6). The tools written in those two chapters can
be improved and merged together, especially to integrate more use cases for configuring or
prioritizing analyses. More of the recommendations from Chapter 5 can be explored, keeping in
mind that developer motivation is a key factor in end-user experience. In particular, research
in recommender systems, persuasive technologies, and collaborative problem-solving may result
in more usable analysis systems customized for particular developers in particular situations.

In conclusion, this thesis illustrates the need for careful user research in the design of static
analysis tools. Different user groups, motivations, and use cases require different sets of tool
features, shaping the final design of analysis tools in very different directions. As a result,
we advocate for a more user-centered approach of tool design for tools for static analysis, and
illustrate the following thesis statement:

We can build more usable tools for data-flow analysis by
putting the user at the center of the design process.
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Appendices

A Survey: Debugging Tools for Static Analysis

In this appendix, we detail the survey questions from Section 3.2. The anonymized answers
are available online [86]. The survey refers to the analyzed code as application code, which was
explained to the participants beforehand.

Q1 Are you...

– Multiple choice question with an “Other...” free-text field.
– Choices:

∗ A Bachelor/Master student?
∗ A researcher in academia (incl. Ph.D. student)?
∗ A researcher in industry?
∗ Other...

Q2 Your research / study topic.

– Free-text field.
– Mandatory.

Q3 How long have you been writing static code analysis?

– Single-answer question.
– Choices:

∗ I have never written static analysis
∗ < 1 years
∗ 1-2 years
∗ 2-5 years
∗ 5-10 years
∗ > 10 years

– Mandatory.

Q4 Which languages have you written static analysis for?

– Multiple choice question with an “Other...” field.
– Choices:
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∗ Java
∗ JavaScript
∗ C/C++
∗ .NET
∗ Objective C/Objective C++
∗ Perl
∗ PL/SQL
∗ Python
∗ Other...

– Mandatory.

Q5 Which applications have you written static analyses for?

– Multiple choice question with an “Other...” field.
– Choices:

∗ Security and privacy
∗ Functional correctness
∗ Program understanding
∗ Automated performance optimization
∗ Other...

– Mandatory.

Q6 Which branches of static analysis have you written for?

– Multiple choice question with an “Other...” field.
– Choices:

∗ Symbolic execution
∗ Model checking
∗ Data-flow analysis
∗ Abstract interpretation
∗ Other...

– Mandatory.

Q7 On which program level do you usually write static analysis for?

– Multiple choice question with an “Other...” field.
– Choices:

∗ Line-based
∗ Function-based
∗ Module-based
∗ Program-based
∗ System-based
∗ Other...

Q8 Have you written static analysis for industrial tools? Which ones?

– Multiple choice question with an “Other...” field.
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– Choices:
∗ I haven’t written analyses for industrial tools.
∗ Fortify
∗ AppScan
∗ CheckMarx
∗ Klocwork
∗ Coverity
∗ FindBugs
∗ VeraCode
∗ Other...

Q9 Do you use frameworks to write your analyses?

– Multiple choice question with an “Other...” field.
– Choices:

∗ Soot
∗ OPAL
∗ WALA
∗ Doop
∗ Chord
∗ Crystal
∗ PMD
∗ FindBugs
∗ Other...

Q10 Can you list a few examples of analyses you have written?

– Free-text field.

Q11 Do you find it easier to debug application code or static analysis code?

– Likert scale from 1 (application code is harder to debug) to 10 (analysis code is harder
to debug).

– Mandatory.

Q12 Why?

– Free-text field.
– Mandatory.

Q13 When developing a static analysis, how long do you usually spend writing vs debugging
your code?

– Likert scale from 0 (100% of my time coding, 0% of my time debugging) to 10 (0%
of my time coding, 100% of my time debugging).

– Mandatory.

Q14 In which cases have you debugged static-analysis code?

– Free-text field.
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Q15 Give a few examples of bugs you typically encounter when debugging static-analysis code.

– Free-text field.

Q16 Which features of your coding environment do you use most when getting rid of those
bugs?

– Free-text field.
– Mandatory.

Q17 List the top 3 features of your coding environment that you particularly like when debug-
ging static analysis.

– Free-text field.
– Mandatory.

Q18 List the top 3 features of your coding environment that you particularly dislike when
debugging static analysis.

– Free-text field.
– Mandatory.

Q19 Which features would you like to have (to support debugging static analysis) that your
coding environment does not provide?

– Free-text field.

Q20 When writing application code, how long do you usually spend writing vs debugging your
code?

– Likert scale from 0 (100% of my time coding, 0% of my time debugging) to 10 (0%
of my time coding, 100% of my time debugging).

– Mandatory.

Q21 Give a few examples of bugs you typically encounter when debugging application code.

– Free-text field.

Q22 Which features of your coding environment do you use most when getting rid of those
bugs?

– Free-text field.
– Mandatory.

Q23 List the top 3 features of your coding environment that you particularly like when debug-
ging application code.

– Free-text field.
– Mandatory.

Q24 List the top 3 features of your coding environment that you particularly dislike when
debugging application code.

– Free-text field.
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– Mandatory.

Q25 Which features would you like to have (to support debugging application code) that your
coding environment does not provide?

– Free-text field.

Q26 Rate how important the following features are to you when debugging static analysis.

– Multiple-choice grid.
– Categories:

∗ Good visuals of graphs (Control-flow graphs, call-graphs, etc.)
∗ Good visuals (not graphs)
∗ Showing the intermediate representation on which the analysis is based
∗ Providing default test cases
∗ Quick updates
∗ Breakpoints
∗ Stepping functionalities through both the analysis code and the test cases

– Choices for each categories:
∗ Not important
∗ Neutral
∗ Important
∗ Very important
∗ Not applicable

Q27 Are there features that you would like to add and how important are them to you?

– Free-text field.

Q28 Which development environment do you use most often when writing static analysis?

– Single-answer question.
– Choices:

∗ A simple text editor (vim, emacs...)
∗ An IDE (Eclipse, NetBeans, ...)
∗ Other solutions

– Mandatory.

Q29 Which editor(s) do you use?

– Free-text field.
– Mandatory

Q30 Why?

– Multiple choice question with an “Other...” field.
– Choices:

∗ It is fast
∗ It is lightweight
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∗ It is highly customizable
∗ The UI is simple
∗ it is just what I need
∗ Other tools have too many functionalities, it is confusing
∗ It is installed by default on most platforms
∗ It provides coding support (error checking, code navigation and generation, etc.)
∗ It provides build and run support (automated and incremental building, depen-
dency importing, run configurations, etc.)

∗ It is specifically designed for my use case
∗ Other...

Q31 Would you be willing to participate in a user study on a prototype supporting the debug-
ging of static analysis?

– Single-answer question.
– Choices:

∗ Yes
∗ No
∗ Maybe

– Mandatory.

Q32 If yes or maybe, please provide a contact email. This email will only be used to contact
you for a subsequent user study. It will be removed from the rest of the survey to keep
the data anonymous.

– Free-text field.

B Questionnaire: VisuFlow User Study
In this appendix, we detail the questionnaire from Section 4.2.1. The anonymized answers are
available online [86].

In the questionnaire, we refer to as CE1 (Coding Environment 1) the first coding environment
used by the participants (Eclipse or VisuFlow). CE2 refers to the other coding environment.
The questionnaire refers to the analyzed code as application code, which was explained to the
participants beforehand. Q6 to Q15 are questions from the System Usability Likert scale
from [18] for CE1. Q16 to Q25 are the same questions for CE2. Q32 to Q35 are Net Promoter
Scores [109].

Q1 How long have you been writing static code analysis?

– Single-answer question.
– Choices:

∗ 1 years
∗ 1 – 2 years
∗ 2-5 years
∗ 5 – 10 years
∗ > 10 years
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– Mandatory.

Q2 Which coding environment do you primarily use (name of the IDE or text editor)?

– Free-text field.
– Mandatory.

Q3 How familiar are you with Eclipse?

– Likert scale from 0 (Never heard of) to 10 (Expert).
– Mandatory.

Q4 How familiar are you with data-flow analysis?

– Likert scale from 0 (Never heard of) to 10 (Expert).
– Mandatory.

Q5 How familiar are you with Soot?

– Likert scale from 0 (Never heard of) to 10 (Expert).
– Mandatory.

Q6 If I had to do the task frequently, I think that I would use CE1 frequently.

– Likert scale from 1 (Strongly disagree) to 5 (Strongly agree).
– Mandatory.

Q7 I found CE1 unnecessarily complex.

– Likert scale from 1 (Strongly disagree) to 5 (Strongly agree).
– Mandatory.

Q8 I found CE1 easy to use.

– Likert scale from 1 (Strongly disagree) to 5 (Strongly agree).
– Mandatory.

Q9 I would need the support of a technical person to use CE1.

– Likert scale from 1 (Strongly disagree) to 5 (Strongly agree).
– Mandatory.

Q10 I found the various functions of CE1 well integrated.

– Likert scale from 1 (Strongly disagree) to 5 (Strongly agree).
– Mandatory.

Q11 I thought there was too much inconsistency in CE1.

– Likert scale from 1 (Strongly disagree) to 5 (Strongly agree).
– Mandatory.

Q12 I would imagine that most people would learn to use CE1 very quickly.

– Likert scale from 1 (Strongly disagree) to 5 (Strongly agree).
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– Mandatory.

Q13 I found CE1 very cumbersome to use.

– Likert scale from 1 (Strongly disagree) to 5 (Strongly agree).
– Mandatory.

Q14 I felt confident using CE1.

– Likert scale from 1 (Strongly disagree) to 5 (Strongly agree).
– Mandatory.

Q15 I needed to learn a lot of things before I could get going with CE1.

– Likert scale from 1 (Strongly disagree) to 5 (Strongly agree).
– Mandatory.

Q16 – Q25 Same questions as Q6 – Q15, for CE2.

Q26 In general, errors were easier to understand with:

– Single-answer question.
– Choices:

∗ CE1
∗ CE2
∗ Neutral

– Mandatory.

Q27 In general, errors were easier to fix with:

– Single-answer question.
– Choices:

∗ CE1
∗ CE2
∗ Neutral

– Mandatory.

Q28 I fixed more errors with:

– Single-answer question.
– Choices:

∗ CE1
∗ CE2
∗ Neutral

– Mandatory.

Q29 I fixed errors faster with:

– Single-answer question.
– Choices:
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∗ CE1
∗ CE2
∗ Neutral

– Mandatory.

Q30 In general, I had a better grasp on the analysis code with:

– Single-answer question.
– Choices:

∗ CE1
∗ CE2
∗ Neutral

– Mandatory.

Q31 In general, I had a better grasp on the application code with:

– Single-answer question.
– Choices:

∗ CE1
∗ CE2
∗ Neutral

– Mandatory.

Q32 How much would you recommend CE1 over CE2 to a friend for the type of task you
performed?

– Likert scale from 0 (Not at all) to 10 (Go for it!).
– Mandatory.

Q33 How much would you recommend CE2 over CE1 to a friend for the type of task you
performed?

– Likert scale from 0 (Not at all) to 10 (Go for it!).
– Mandatory.

Q34 How much would you recommend CE1 over your own coding environment to a friend for
the type of task you performed?

– Likert scale from 0 (Not at all) to 10 (Go for it!).
– Mandatory.

Q35 How much would you recommend CE2 over your own coding environment to a friend for
the type of task you performed?

– Likert scale from 0 (Not at all) to 10 (Go for it!).
– Mandatory.

Q36 Describe your coding environment when writing static analysis. What do you typically
use (software, favorite features)?

– Free-text field.
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– Mandatory.

Q37 Which features of CE1 would you like to have in your current coding environment?

– Free-text field.
– Mandatory.

Q38 Which features of CE2 would you like to have in your current coding environment?

– Free-text field.
– Mandatory.

Q39 In your opinion, which task(s) would CE1 be best suited for?

– Free-text field.
– Mandatory.

Q40 In your opinion, which task(s) would CE2 be best suited for?

– Free-text field.
– Mandatory.

Q41 Would you change anything about CE1 and CE2? Other comments?

– Free-text field.

C Survey: Developer Behavior and Motivation
We detail the survey questions from Section 5.2. The anonymized answers are available on-
line [86].

Q1 How long have you worked as a software developer?

– Single-answer question with an “Other...” free-text field.
– Choices:

∗ < 1 year
∗ 1 – 2 years
∗ 2-5 years
∗ 5 – 10 years
∗ > 10 years
∗ Other...

– Mandatory.

Q2 At the moment, which programming languages do you develop with?

– Multiple choice question with an “Other...” free-text field.
– Choices:

∗ Java / Android
∗ C / C++
∗ C# / .NET
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∗ Perl
∗ JavaScript / TypeScript / NodeJS
∗ PHP
∗ Python
∗ Ruby
∗ Objective C
∗ Other...

– Mandatory.

Q3 Would you be willing to participate in a later interview? If so, please provide your email
below.

– Free-text field.

Q4 Which code analysis tools do you use in your current projects?

– Multiple choice question with an “Other...” free-text field.
– Choices:

∗ IDE notifications (e.g., dead code in Eclipse)
∗ FindBugs
∗ Fortify
∗ Checkmarx
∗ CodeSonar
∗ Coverity
∗ VeraCode
∗ AppScan
∗ Klocwork
∗ SonarQube
∗ Linters
∗ Other...

– Mandatory.

Q5 At which points of your projects are code analysis tools typically run?

– Multiple choice question with an “Other...” free-text field.
– Choices:

∗ During coding (in the editor)
∗ During nightly builds
∗ At commit time
∗ At major milestones in the projects
∗ Other...

– Mandatory.

Q6 Who usually configures the analysis tools?

– Multiple choice question with an “Other...” free-text field.
– Choices:
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∗ Yourself
∗ A dedicated team
∗ No one. I use the default settings of the tools.
∗ My manager
∗ Other...

– Mandatory.

Q7 What kind of issues are typically detected by code analysis tools on your projects?

– Multiple choice question with an “Other...” free-text field.
– Choices:

∗ Security vulnerabilities
∗ Functional bugs
∗ Coding style
∗ Memory consumption
∗ Concurrency
∗ Performance
∗ Other...

– Mandatory.

Q8 In your opinion, what kind of issues should code analysis tools detect in your projects?

– Multiple choice question with an “Other...” free-text field.
– Choices:

∗ Security vulnerabilities
∗ Functional bugs
∗ Coding style
∗ Memory consumption
∗ Concurrency
∗ Performance
∗ Other...

– Mandatory.

Q9 Do you usually review the analysis results yourself?

– Single-answer question.
– Choices:

∗ Yes
∗ No

– Mandatory.

Q10 Where are the analysis results typically reported in your projects?

– Multiple choice question with an “Other...” free-text field.
– Choices:

∗ In my code editor
∗ In the build output

138



Chapter . Appendices

∗ In the code review
∗ In a dedicated tool
∗ In a PDF report
∗ By email
∗ Other...

– Mandatory.

Q11 Where would you prefer analysis results to be reported?

– Multiple choice question with an “Other...” free-text field.
– Choices:

∗ In my code editor
∗ In the build output
∗ In the code review
∗ In a dedicated tool
∗ In a PDF report
∗ By email
∗ Other...

– Mandatory.

Q12 If you are using multiple analysis tools, would you prefer all analysis results to be reported
in a single interface or in multiple ones?

– Single-answer question.
– Choices:

∗ One single tool
∗ Multiple tools
∗ I am only using one analysis tool

– Mandatory.

Q13 How long does it usually take you to completely fix an analysis warning?

– Single-answer question with an “Other...” free-text field.
– Choices:

∗ A few minutes
∗ < 1 hour
∗ < 1 day
∗ < 1 week
∗ < 1 month
∗ < 6 months
∗ > 6 months
∗ Other...

– Mandatory.

Q14 After you have modified your code in response to an analysis warning, how long would
you be willing to wait for the analysis to verify your change?
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– Single-answer question with an “Other...” free-text field.
– Choices:

∗ < 1 second
∗ < 1 minute
∗ A few minutes
∗ < 1 hour
∗ A few hours
∗ < 1 day
∗ A few days
∗ > 1 week
∗ Other...

– Mandatory.

Q15 Any additional comments you would like to share about reporting tools?

– Free-text field.

Q16 Which analysis tool do you use most?

– Free-text field.
– Mandatory.

Q17 Why do you use this tool?

– Multiple choice question with an “Other...” free-text field.
– Choices:

∗ Company policy
∗ It helps me code faster
∗ It helps me code better
∗ Other...

– Mandatory.

Q18 How often do you use the tool?

– Single-answer question with an “Other...” free-text field.
– Choices:

∗ Once a month or less
∗ 1 – 3 times a week
∗ Once a day
∗ 2 – 5 times a day
∗ > 5 times a day
∗ Other...

– Mandatory.

Q19 When do you usually use the tool?

– Multiple choice question with an “Other...” free-text field.
– Choices:
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∗ In the morning
∗ In the afternoon
∗ In the evening
∗ At night
∗ When I have a few minutes here and there
∗ During the work week
∗ During week-ends
∗ Other...

– Mandatory.

Q20 Where are you when you usually use the tool?

– Multiple choice question with an “Other...” free-text field.
– Choices:

∗ At work, at my desk
∗ At work, with other colleagues
∗ At work, during meetings
∗ At home
∗ In the transports
∗ Other...

– Mandatory.

Q21 How long per week do you spend interacting with this tool?

– Single-answer question with an “Other...” free-text field.
– Choices:

∗ < 1 hour
∗ < 1 – 5 hours
∗ < 5 – 10 hours
∗ < 10 – 30 hours
∗ > 30 hours
∗ Other...

– Mandatory.

Q22 Typically, how long do you use the tool in one working session?

– Single-answer question with an “Other...” free-text field.
– Choices:

∗ < 10 minutes
∗ 10 - 30 minutes
∗ > 30 minutes
∗ Hours
∗ Other...

– Mandatory.

Q23 What is your goal when you open the tool?
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– Multiple choice question with an “Other...” free-text field.
– Choices:

∗ To fix all of the warnings it reports
∗ To fix all the warnings I can in the time I have
∗ To fix a set number of warnings
∗ To consult the list of warnings
∗ Other...

– Mandatory.

Q24 Why do you stop using the tool?

– Multiple choice question with an “Other...” free-text field.
– Choices:

∗ I cannot fix an issue
∗ I have to go to a professional obligation (meeting, etc.)
∗ I am distracted by office events (calls, coffees, etc.)
∗ I am waiting for the tool to update
∗ I finished fixing all issues
∗ Other...

– Mandatory.

Q25 Do you use the default layout of the analysis tool? (i.e., do you change the position of any
component in the user interface?)

– Single-answer question with an “Other...” free-text field.
– Choices:

∗ I use the default layout of the tool
∗ I am using a layout customized by the company
∗ I have customized the interface for my own use
∗ I change the interface regularly as I use the tool
∗ Other...

– Mandatory.

Q26 When you open the tool, what is the first thing in the interface that you look for?

– Single-answer question with an “Other...” free-text field.
– Choices:

∗ The list of warnings
∗ A dashboard
∗ Some code
∗ Other...

– Mandatory.

Q27 When you close the tool, what is the last thing in the interface that you look at?

– Single-answer question with an “Other...” free-text field.
– Choices:
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∗ The list of warnings
∗ A dashboard
∗ Some code
∗ Other...

– Mandatory.

Q28 What are the components in the interface that you use the most?

– Multiple choice question with an “Other...” free-text field.
– Choices:

∗ The list of warnings
∗ A dashboard
∗ Some code
∗ Other...

– Mandatory.

Q29 Once you finish fixing the issues, does anyone review your fixes?

– Multiple choice question with an “Other...” free-text field.
– Choices:

∗ A colleague
∗ My manager
∗ A separate team
∗ No one reviews my fixes
∗ Other...

– Mandatory.

Q30 In the perfect analysis tool, how important are the following features to you?

– Multiple-choice grid.
– Categories:

∗ Responsiveness of the analysis (the time taken by the analysis to process my fix)
∗ Responsiveness of the UI (does the User Interface lag?)
∗ Bug information: how a bug works and what it is about
∗ Severity information: how severely the bug can affect your code
∗ Execution information: how the bug can be executed in your code
∗ Interaction information: how the bug is related to other bugs in the code base
∗ Fix information 1: how the bug can be fixed, on a high level
∗ Fix information 2: how the bug can be fixed in your code
∗ Quick fixes: fixes generated by the tools itself
∗ Visualizations: the tools provide you with a detailed visualization of the warnings
in the code

∗ Visualizations: the tools provide you with a general dashboard of the issues
∗ Sorting: the tools allow you to sort through warnings and search for them
∗ Prioritization: the tools allow you to select which bugs to fix first
∗ List: the tools allow you to keep a list of ’your’ bugs
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∗ Tracking progress: the tools give you a clear view of what you have achieved so
far

∗ Analysis configurations: configurations of the analysis before it runs
∗ Feedback in the reporting tool: ability to tell if a warning is correct or not in the
reporting tool

∗ Customization of the analysis rules: writing my own rules for the analysis
∗ Collaboration options: the tools allow you to collaborate with other colleagues
to fix issues

– Choices for each categories:
∗ This should not be in an analysis tool
∗ Neutral
∗ Low importance
∗ Important
∗ Very important
∗ Indispensable

– Mandatory.

Q31 Which other features have we missed, and how important are they to you?

– Free-text field.

Q32 In a typical analysis report, what is the usual proportion of warnings that you personally
investigate?

– Likert scale from 0 (0%) to 10 (100%).
– Mandatory.

Q33 How do you usually differentiate between a false positive and a real issue?

– Multiple choice question with an “Other...” free-text field.
– Choices:

∗ False positives occur in particular places in the code I know are never executed
∗ Certain categories of issues are more likely to be false positives
∗ The path shown by the analysis tool is not executable
∗ The conditions along the path are never true
∗ Some constructs of the source code are not well handled by the analysis (e.g.,
static constructs, loops, etc.)

∗ Other...
– Mandatory.

Q34 How do you select which warnings to investigate first?

– Multiple choice question with an “Other...” free-text field.
– Choices:

∗ I follow the list of warnings from the top down
∗ I look at warnings affecting my code first
∗ I prioritize warnings which I know I can fix
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∗ I prioritize warnings with the most impact
∗ Other...

– Mandatory.

Q35 Among the warnings that you investigate, what is the usual proportion of warnings that
you cannot understand / explain?

– Likert scale from 0 (0%) to 10 (100%).
– Mandatory.

Q36 What makes such warnings difficult to understand / explain?

– Multiple choice question with an “Other...” free-text field.
– Choices:

∗ They span over too much of the code base
∗ They are issues that I rarely encounter
∗ I do not understand the explanation given by the analysis tool
∗ I do not understand the code base
∗ Other...

– Mandatory.

Q37 What do you typically do with warnings that you cannot understand / explain?

– Multiple choice question with an “Other...” free-text field.
– Choices:

∗ I ignore them
∗ I suppress them
∗ I mark them and leave them for later
∗ I ask colleagues for help
∗ I escalate them
∗ Other...

– Mandatory.

Q38 In a typical analysis report, what is the usual proportion of warnings that you ask others
to help you fix?

– Likert scale from 0 (0%) to 10 (100%).
– Mandatory.

Q39 What is your main motivation to ask others to help you fix warnings?

– Multiple choice question with an “Other...” free-text field.
– Choices:

∗ They have more experience with the code base
∗ They have experience in this type of issues
∗ They have more experience with the analysis tool
∗ I don’t ask others to help me fix warnings
∗ Other...
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– Mandatory.

Q40 Any additional comments you would like to share about how you review analysis warnings?

– Free-text field.

D Questionnaire: Cheetah User Study
In this appendix, we detail the questionnaire from Section 6.4.3. The anonymized answers are
available online [86].

The questionnaire refers to as tool 1 the first analysis tool used by the participants (Cheetah
or Batch). Tool 2 refers to the other analysis tool. Q5 to Q13 are questions from the System
Usability Likert scale from [18] for tool 1. Q14 to Q22 are the same questions for tool 2.
Q40–Q41 are Net Promoter Scores [109].

Q1 How much experience do you have with Java development? (in years)

– Free-text field.
– Mandatory.

Q2 How much experience do you have with Android development? (in years)

– Free-text field.
– Mandatory.

Q3 How much experience do you have using static analysis tools? (in years)

– Free-text field.
– Mandatory.

Q4 If you have already used static analysis tools, which ones?

– Free-text field.
– Mandatory.

Q5 If I had to do the task frequently, I think that I would use tool 1 frequently.

– Likert scale from 1 (Strongly disagree) to 5 (Strongly agree).
– Mandatory.

Q6 I found tool 1 unnecessarily complex.

– Likert scale from 1 (Strongly disagree) to 5 (Strongly agree).
– Mandatory.

Q7 I found tool 1 easy to use.

– Likert scale from 1 (Strongly disagree) to 5 (Strongly agree).
– Mandatory.

Q8 I would need the support of a technical person to use tool 1.

– Likert scale from 1 (Strongly disagree) to 5 (Strongly agree).
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– Mandatory.

Q9 I found the various functions of tool 1 well integrated.

– Likert scale from 1 (Strongly disagree) to 5 (Strongly agree).
– Mandatory.

Q10 I thought there was too much inconsistency in tool 1.

– Likert scale from 1 (Strongly disagree) to 5 (Strongly agree).
– Mandatory.

Q11 I would imagine that most people would learn to use tool 1 very quickly.

– Likert scale from 1 (Strongly disagree) to 5 (Strongly agree).
– Mandatory.

Q12 I found tool 1 very cumbersome to use.

– Likert scale from 1 (Strongly disagree) to 5 (Strongly agree).
– Mandatory.

Q13 I felt confident using tool 1.

– Likert scale from 1 (Strongly disagree) to 5 (Strongly agree).
– Mandatory.

Q14 – Q22 Same questions as Q5 – Q13, for tool 2.

Q23 For which tool was the UI blocked when the analysis was running?

– Single-answer question.
– Choices:

∗ Tool 1
∗ Tool 2

– Mandatory.

Q24 This made it easier to correct data leaks.

– Likert scale from 1 (Strongly disagree) to 5 (Strongly agree).
– Mandatory.

Q25 Why?

– Free-text field.
– Mandatory.

Q26 For which tool was the analysis was triggered with a button?

– Single-answer question.
– Choices:

∗ Tool 1
∗ Tool 2
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– Mandatory.

Q27 For which tool was the analysis was triggered on build?

– Single-answer question.
– Choices:

∗ Tool 1
∗ Tool 2

– Mandatory.

Q28 I preferred the tool to be triggered...

– Single-answer question.
– Choices:

∗ With a button
∗ On build

– Mandatory.

Q29 Why?

– Free-text field.
– Mandatory.

Q30 After I corrected a warning, I had to wait longer to get an update with:

– Single-answer question.
– Choices:

∗ Tool 1
∗ Tool 2

– Mandatory.

Q31 With which tool did the warnings change as I was editing the code?

– Single-answer question.
– Choices:

∗ Tool 1
∗ Tool 2
∗ Neither of the tools

– Mandatory.

Q32 I felt comfortable with this system:

– Likert scale from 1 (Strongly disagree) to 5 (Strongly agree).
– Mandatory.

Q33 Why?

– Free-text field.
– Mandatory.
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Q34 With which tool were the warnings easier to understand?

– Single-answer question.
– Choices:

∗ Tool 1
∗ Tool 2
∗ Neutral

– Mandatory.

Q35 With which tool were the warnings easier to correct?

– Single-answer question.
– Choices:

∗ Tool 1
∗ Tool 2
∗ Neutral

– Mandatory.

Q36 With which tool were the warnings faster to understand?

– Single-answer question.
– Choices:

∗ Tool 1
∗ Tool 2
∗ Neutral

– Mandatory.

Q37 With which tool were the warnings faster to correct?

– Single-answer question.
– Choices:

∗ Tool 1
∗ Tool 2
∗ Neutral

– Mandatory.

Q38 With which tool did you have a better grasp on the application code?

– Single-answer question.
– Choices:

∗ Tool 1
∗ Tool 2
∗ Neutral

– Mandatory.

Q39 Which tool would you rather use to correct data leaks?

– Single-answer question.
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– Choices:
∗ Tool 1
∗ Tool 2
∗ Neutral

– Mandatory.

Q40 How likely is it you would recommend tool 1 over tool 2 to a friend?

– Likert scale from 0 (Not at all) to 10 (Go for it!).
– Mandatory.

Q41 How likely is it you would recommend tool 2 over tool 1 to a friend?

– Likert scale from 0 (Not at all) to 10 (Go for it!).
– Mandatory.

Q42 What are tool 1’s positive points?

– Free-text field.
– Mandatory.

Q43 What are tool 1’s negative points?

– Free-text field.
– Mandatory.

Q44 What are tool 2’s positive points?

– Free-text field.
– Mandatory.

Q45 What are tool 2’s negative points?

– Free-text field.
– Mandatory.

Q46 Which tasks would tool 1 be best suited for?

– Free-text field.
– Mandatory.

Q47 Which tasks would tool 2 be best suited for?

– Free-text field.
– Mandatory.

Q48 Would you change anything about the tools? Other comments?

– Free-text field.
– Mandatory.
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