
SECUCHECK: Engineering configurable taint
analysis for software developers

Goran Piskachev
Fraunhofer IEM

goran.piskachev@iem.fraunhofer.de

Ranjith Krishnamurthy
Fraunhofer IEM

ranjith.krishnamurthy@iem.fraunhofer.de

Eric Bodden
Paderborn University and Fraunhofer IEM

eric.bodden@uni-paderborn.de

Abstract�Due to its ability to detect many frequently oc-
curring security vulnerabilities, taint analysis is one of the
core static analyses used by many static application security
testing (SAST) tools. Previous studies have identi�ed issues that
software developers face with SAST tools. This paper reports
on our experience in building a con�gurable taint analysis
tool, named SECUCHECK, that runs in multiple integrated
development environments. SECUCHECK is built on top of
multiple existing components and comes with a Java-internal
domain-speci�c language fluentTQL for specifying taint-�ows,
designed for software developers. We evaluate the applicability
of SECUCHECK in detecting eleven taint-style vulnerabilities in
microbench programs and three real-world Java applications
with known vulnerabilities. Empirically, we identify factors that
impact the runtime of SECUCHECK.

Index Terms�static analysis, security, integrated development
environment, taint analysis, domain-speci�c languages

I. INTRODUCTION

With the increased digitalization and processing of sensitive

data, the early detection of security vulnerabilities during

development becomes highly relevant for many companies.

In that context, taint analysis has been successfully applied in

detecting SQL injections, memory leaks, cross-site scripting,

and other vulnerabilities [1]. It is one of the core techniques

used in many static application security testing (SAST) tools

(e.g., CheckMarx [2], LGTM [3]).

Recent usability studies on SAST tools [4]–[6] have iden-

tified software developers’ requirements and issues with the

existing tools. Based on these studies, we list the requirements

for the future SAST tools that this paper addresses:

R1 Work�ow integration: Software developers reported that

the tools should be well integrated within their daily

used development environments (IDEs) to develop new

applications. They should appear as part of the IDEs and

only provide the necessary findings reported from the

analysis using the standard IDE features, such as error

view, editor markers, and syntax highlighting.

R2 Con�gurable tools: One of the known weaknesses of

static analysis, including taint analysis, is the reporting

of false findings, which causes usability issues [6]. One

approach to improve this is by configuring the rules of the

analyses through domain-specific languages (DSLs). This

allows the specification of custom rules for company-

specific contexts. Even though many tools provide such

DSLs, their stakeholders are static analysis experts. Soft-

ware developers need developer-centric DSLs.

R3 Explainability: The messages of the findings shown to the

users should be understandable. The tools should provide

additional information about the findings when needed.

Referring to R2, the DSL should also be understandable

for software developers.

R4 Fast results: Taint analysis can run long on real-world

applications measured in minutes and even hours, which

is not practical in the IDEs. Hence, a taint analysis

running in the IDE should provide means to analyze only

parts of the code relevant to the user in the current context

in terms of only a few minutes or seconds.

In this paper, we discuss our experience in developing a

configurable taint analysis tool for Java, named SECUCHECK

that addresses the previously stated requirements. The security

rules for the analysis are written in �uentTQL, an existing Java

internal DSL. SECUCHECK can run on two data-flow solvers,

the first one based on Synchronized Pushdown Systems [7] and

the second one based on Interprocedural, Finite, Distributive,
Subset Problems [8]. We provide insights on our architectural

decisions and highlight several technical details to help other

practitioners in building similar tools. SECUCHECK is built

as a MAGPIEBRIDGE server [9] and can run in multiple IDEs

supporting all native features. Additionally, SECUCHECK uses

the MAGPIEBRIDGE support of the HTTP protocol to display

a graphical configuration page for selecting rules, entry points,

and other options, enabling users to configure the tool to run

on the relevant parts of the code and provide fast results.

Our evaluation shows the applicability of SECUCHECK

on microbenchmark programs covering different security vul-

nerabilities and real-world applications with known security

vulnerabilities. Moreover, based on our empirical data, we

identify factors that impact the analysis runtime in practice.

For example, for the set of applications we used, the entry

points selection has a much smaller impact on the runtime

than the security rules selection in each run of the analysis.

The list of contributions that this paper makes are:

• SECUCHECK: an open-source 1 taint analysis tool with

configurable rules running in multiple IDEs,

• translation of �uentTQL into English sentences that im-

proves the explainability aspect of SECUCHECK,

1https://github.com/secure-software-engineering/secucheck

24

2021 IEEE 21st International Working Conference on Source Code Analysis and Manipulation (SCAM)

DOI 10.1109/SCAM52516.2021.00012

20
21

 IE
EE

 2
1s

t I
nt

er
na

tio
na

l W
or

ki
ng

 C
on

fe
re

nc
e

on
 S

ou
rc

e
C

od
e

A
na

ly
si

s a
nd

 M
an

ip
ul

at
io

n
(S

C
A

M
) |

 9
78

-1
-6

65
4-

48
97

-0
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
SC

A
M

52
51

6.
20

21
.0

00
12

978-1-6654-4897-0/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on September 08,2022 at 13:15:09 UTC from IEEE Xplore. Restrictions apply.

• experimental results with insights on the analysis runtime.

A video of SECUCHECK is available under https://www.

youtube.com/watch?v=3ivgsibOmXo.

II. REUSING EXISTING COMPONENTS

To avoid re-inventing the wheel, SECUCHECK builds on top

of existing open-source components that are well-established

in the software engineering community (gray components

in Figure 1), of which in the following, we explain those

important for the taint analysis.

A. Static analysis framework: Soot
SOOT is the core component for static analysis. It transforms

the compiled Java bytecode to a simple 3-address intermediate

representation on which data-flow analyses run. SOOT has sim-

ple built-in analyses, e.g., dead code elimination and constant

propagation, on which more complex client analyses can be

built on. Soot provides two core data structures, i.e., a control-

flow graph for intra-procedural analyses and a call graph for

inter-procedural analyses.

B. Data-�ow analysis solvers: BOOMERANG and FLOW-

DROID

SECUCHECK integrates two data-flow analysis solvers,

BOOMERANG and FLOWDROID; both built on top of SOOT.

BOOMERANG is a demand-driven, points-to analysis using two

synchronized pushdown systems [7]. The client analyses can

create queries for a given location (a variable and a statement)

to compute a tree structure of paths reachable from that loca-

tion. SECUCHECK uses this tree structure and processes it to

detect taint-flows conforming to the �uentTQL specifications

(Sub-section III-C) selected by the user. BOOMERANG is the

default solver in SECUCHECK. Alternatively, the user may

configure to run the analysis using the FLOWDROID solver

based on the IFDS framework [10]. FLOWDROID is designed

as a taint-tracking engine for Android apps that for a given list

of sources and sinks reports the existing taint-flows between

any source/sink pair. Further details on how SECUCHECK uses

both solvers are provided in Sub-section III-B.

C. Multi-IDE support with MAGPIEBRIDGE

To support wide range of IDEs (R1), we built SECUCHECK

as a MAGPIEBRIDGE server [9] which uses the LSP protocol2

to communicate with any LSP-aware IDE. MAGPIEBRIDGE

runs the analysis triggered by the user through a configuration

HTML page and returns the results in JSON format to the

IDE. The LSP protocol supports many standard UI features,

such as syntax highlighting, error markers, messages for the

error view, and hover information.

2https://microsoft.github.io/language-server-protocol/

III. SECUCHECK

A. Architecture
Figure 1 shows the internal components of SECUCHECK

and their interaction with the external components. The

components in orange are directly accessible to the users

through provided interfaces. The SECUCHECK-core analysis

runs the main analysis process. It uses SOOT to generate the

Jimple format from the bytecode being analysed and calls

the BOOMERANG or the FLOWDROID APIs to run one of

the solvers. SECUCHECK-Magpie integrates the SECUCHECK-

core into MAGPIEBRIDGE. An alternative way to run SE-

CUCHECK is through the command line tool SECUCHECK-

cmd. The �uentTQL-DSL is a DSL for specifying taint-flows

queries for the analysis. �uentTQL-classloader uses the JCL-

core to load the taint-flow specifications into the JVM. The

maven-plugin-api provides APIs for running tools as Maven

plugin. This is used by �uentTQL-maven-plugin to run a

semantic check of the �uentTQL specifications. The �uent-
TQL2English transforms the �uentTQL specifications into

English sentences to provide the user more detailed description

of the queries (R3). The components SECUCHECK-Magpie

and SECUCHECK-cmd use �uentTQL2English to display it in

the error message (R1).

Figure 1: SECUCHECK architecture.

B. Taint analysis
a) Example: We use the example code in Figure 2c con-

taining an SQL injection vulnerability to demonstrate the taint

analysis in SECUCHECK. The code reads an untrusted data

from the scanner (line 29), establishes a connection to an SQL

database (lines 32-33), creates and executes a query statement

(line 35), and returns the result. The code is vulnerable to

SQL injection because an untrusted value from the scanner is

appended to the SQL query without proper validation before

executing it. SECUCHECK as a taint analysis will detect this

taint-flow if the return value of the method nextLine (line 29)

is modelled as a source and the parameter value of the method

executeQuery (line 35) is modelled as a sink.

b) Querying BOOMERANG: SECUCHECK uses

BOOMERANG’s demand-driven points-to analysis to calculate

the data-flow information. It analyses each �uentTQL

25

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on September 08,2022 at 13:15:09 UTC from IEEE Xplore. Restrictions apply.

(a) Configuration first page (b) Configuration second page

(c) Eclipse IDE view

Figure 2: SECUCHECK UI components

specification individually. SECUCHECK-core extracts all

sources from the �uentTQL specifications selected by the

user. A new BOOMERANG forward query is created for each

matched source in the analysed Jimple code and tainted

variable specified in the �uentTQL. To handle methods from

libraries for which the code is not available, SECUCHECK uses

the API from the BOOMERANG’s DemandDrivenManager
that takes a list of propagators, which are defined as a

method signature and taint propagation rule. For example,

the string concatenation in Java bytecode will be represented

with the method java.lang.StringBuilder.append() (like in

line 35 from Figure 2c), for which SECUCHECK is aware

that this method taints the return value when the argument

is tainted. SECUCHECK has a built-in list of such JDK

methods, called general propagators. The users can use

the �uentTQL DSL to specify new propagators and model

the behavior of other regularly used libraries. In practice,

this improves the runtime by not analysing the library

calls multiple times. Moreover, when the library code is

unavailable, it reduces the number of false negatives (findings

that would be missed if the taint propagation through a given

method is missing). SECUCHECK also supports the concept

of required propagator, which is a method call that has to

be on the taint-flow path between the source and a sink.

This is useful for some vulnerabilities where the order of

method calls in the program is relevant such as the incorrect

use of cryptographic libraries. Finally, when each query is

finished, BOOMERANG returns all taint-flow paths from the

source variable. Then, SECUCHECK-core checks whether any

path contains a sink statement conforming to the taint-flow

specified in the �uentTQL specification for which the found

taint-flow is reported as a potential vulnerability to the user.

c) Running FLOWDROID�s Info�ow: FLOWDROID con-

sists of a general taint analysis component called Info�ow and

a component that models the Android-specific behavior. SE-

CUCHECK directly calls Info�ow by providing a list of method

signatures for sources and sinks. The propagators are built-in

and are read from a text file. For each required propagator, SE-

CUCHECK divides the taint-flow into two, i.e. first, from source

to the required propagator, and second, from the required prop-

agator to the sink. For each of these taint flows, SECUCHECK

calls Info�ow. Once the results are returned, they are reported

26

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on September 08,2022 at 13:15:09 UTC from IEEE Xplore. Restrictions apply.

by SECUCHECK. Currently, SECUCHECK has three technical

limitations when using Info�ow. First, Info�ow only supports

method calls as sources and sinks. Hence, when the source is

also the analysis’ entry point such as the handler method of

HTTP requests in Java EE / Spring applications, the taint is

not created within the source definition, and taint-flows are not

detected. Second, Info�ow does support sanitizers. And third,

Info�ow taints always the return value of a source and the pa-

rameters of a sink. Other options are not configurable through

the available API. Final limitation of FLOWDROID is that it

does not provide the line numbers of the sources and sinks.

C. �uentTQL

�uentTQL is an existing DSL [11] that is integrated into

SECUCHECK as a means to support developers in specifying

new and project-specific taint-flows (R2). It is implemented

as a Java-internal DSL using the builder pattern for its

fluent syntax and the Java preprocessor for the annotations.

Listing 1 shows an example, specification for detecting the

SQL injection from Figure 2c. Any Java class that implements

the interface FluentTQLUserInterface will be considered as a

specification by SECUCHECK. Users can use the class Method
to declare appropriate relevant methods from the codebase,

such as sources, sinks, sanitizers, and propagators (lines 5-15).

The constructor of MethodSelector takes a method signature

as string to be matched by SECUCHECK-core. The tainted

variables are modelled through annotations. For example, the

annotation OutFlowReturnValue can be used to model that the

return value of the method flowing out becomes tainted. It

can be used for source, sanitizer, and propagator. Similarly,

the annotation InFlowParam(parameterID=0) models the first

parameter of the method flowing in as relevant for the analysis.

It can be used for sink, sanitizer, and propagator. The query

specifications are returned in the interface method getFluent-
TQLSpeci�cation (line 17) in which TaintFlowQuery objects

can be created and returned as a list. The query gets an ID as

string (line 20), and builds the expected taint-flow via method

chain: from for source, notThrough for sanitizer, to for sink,

report for error message, at for location of the error message,

and build for completing the query.

As internal DSL, �uentTQL provides the entire Java infras-

tructure to the user, making it is easy to learn users familiar

with Java. The specifications can be reused across multiple

projects. The methods can be grouped into method sets for

easier maintenance and better organization.

Finally, to ensure that the user provides valid specifications,

SECUCHECK has a Maven plugin using the Maven-plugin-

api to perform static semantic checks. These checks include

the uniqueness of the vulnerability ID, correct use of the

annotations, completeness of the method objects, etc.

D. UI Features
In the following, we discuss the three main user inter-

face features that SECUCHECK provides through its MAG-

PIEBRIDGE server to the users of multiple IDEs clients.

1 @FluentTQLSpecificationClass
2 pub l i c c l a s s S i m p l e S Q L I n j e c t i o n S p e c
3 implements F l u e n t T Q L U s e r I n t e r f a c e {
4 @OutFlowReturnValue
5 pub l i c Method s o u r c e = new
6 M e t h o d S e l e c t o r (” S t r i n g n e x t L i n e () ”) ;
7

8 @InFlowParam (p a r a m e t e r I D = {0})
9 @OutFlowReturnValue

10 pub l i c Method s a n i t i z e r = new
11 M e t h o d S e l e c t o r (” S t r i n g s a n i t i z e (S t r i n g) ”) ;
12

13 @InFlowParam (p a r a m e t e r I D = {0})
14 pub l i c Method s i n k = new
15 M e t h o d S e l e c t o r (” R e s u l t S e t e x e c u t e Q u e r y (S t r i n g) ”) ;
16

17 pub l i c L i s t <F l u e n t T Q L S p e c i f i c a t i o n >
18 g e t F l u e n t T Q L S p e c i f i c a t i o n () {
19 Ta in tF lowQuery myTF = new
20 T a i n t F l o w Q u e r y B u i l d e r (”SQLi v u l n e r a b i l i t y ”)
21 . from (source) . no tThrough (sanitizer) . t o (sink)
22 . r e p o r t (”SQL I n j e c t i o n − CWE89”)
23 . a t (LOCATION . SOURCEANDSINK) . b u i l d () ;
24

25 L i s t <F l u e n t T Q L S p e c i f i c a t i o n > s p e c s = new
26 A r r a y L i s t <>();
27 s p e c s . add (myTF) ;
28 re turn s p e c s ;
29 }
30 }

Listing 1: �uentTQL specification for simple SQL Injection

(the fully qualified names are omitted due to simplicity)

a) Con�guration page: For managing the analysis, SE-

CUCHECK has two configuration pages (R2), created with the

Bootstrap 3.3.5 framework3. This is supported through the

MAGPIEBRIDGE server using the HTTP protocol. When the

project in the IDE opens, SECUCHECK will create the first

configuration page as shown in Figure 2a. The project name is

shown on the top 1 . Two tabs 2 and 4 are available on this

page. 1 is for setting the path of external jar with �uentTQL

specification 3 . 4 is for customizing the view of the queries

on the next page. When the first page is submitted, the second

one will automatically appear (Figure 2b). This page shows

six buttons for submitting a configuration 5 , triggering the

analysis 6 , cancelling already started analysis 7 , clearing

the results from the previous analysis in the IDE 8 , selecting

all elements from the list 9 , and deselecting all elements

from the list 10 . The page has three lists of elements, one

in each tab. 11 shows a list of all taint-flow queries (R2)

that are available. 12 lists all classes from the codebase that

can be selected as entry points for the call graph construction

(R2). With 13 the user can select the solver, BOOMERANG

or FLOWDROID. These selections allow the user to run the

analysis for specific context and get fast results (R4).

3https://bootstrapdocs.com/v3.3.5/docs/getting-started/

27

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on September 08,2022 at 13:15:09 UTC from IEEE Xplore. Restrictions apply.

b) IDE standard UI features: Figure 2c shows a screen-

shot of the Eclipse as example IDE that indicates the standard

editor features (R1) that SECUCHECK uses to display the re-

sults of the analysis. The results are listed in the standard error

view 3 . Error markers are shown on the side of the editor

2 . A hover over the error item or the marker shows more

detailed description of the found taint-flow 14 . This message

is an English translation of the �uentTQL specification for the

found taint-flow. We explain this translation in the following.

c) Explainability of the �ndings: To improve the ex-

plainability of the result messages in SECUCHECK, we im-

plemented �uentTQL2Eng, a translator to English sentences.

�uentTQL2Eng parses a taint-flow query object and visits each

field. It maps each field to a predefined phrase recursively.

Within the sentence, it adds information about the found taint-

flow by the analysis, such as the source and sink locations.

The final sentence is provided to SECUCHECK-Magpie which

maps the message to the corresponding findings. An example

is shown in the yellow message box 14 in Figure 2c.

E. Command-line support
While in some scenarios, SECUCHECK can deliver results

in seconds for real-world applications, as our evaluation shows

in the following section, it may run for minutes or few

hours in other scenarios. In such cases, batch analysis in the

build pipeline is preferred. Therefore, SECUCHECK provides a

command-line tool. The configuration options provided via the

configuration pages can be specified in YAML format given

as an input along with the bytecode being analysed and the

�uentTQL specifications.

IV. EVALUATION

We answer the following research questions:

RQ1 Can SECUCHECK analyse real-world Java applications?

RQ2 What factors impact the runtime of SECUCHECK?

The results below are based on our experiments with SE-

CUCHECK running the BOOMERANG solver. We omitted the

FLOWDROID solver due to its limitations to handle the types

of applications we selected.

a) RQ1: To evaluate the applicability of SECUCHECK,

we run the analysis on four different projects:

• Catalog Microbenchmark4 - a set of small Java programs

with 11 types of vulnerabilities and 27 taint-flows.

• Spring ToDo App5 - a small demo project for managing

tasks with 9 types of vulnerabilities and 14 taint-flows.

• PetClinic6 - an insecure version of the official Spring Pet-

Clinic application with known vulnerabilities of which we

documented four taint-flows of type hibernate injection.

• OWASP WebGoat7 - an insecure Spring application for

learning security vulnerabilities, of which we documented

16 taint-flows of type SQL injection.

4https://fluenttql.github.io/catalog/
5https://github.com/secure-software-engineering/secucheck
6https://github.com/contrast-community/spring-petclinic
7https://owasp.org/www-project-webgoat/

Table I: Overview of the evaluated projects. Flows is number

of expected taint-flows (vulnerability instances), Queries is

number of �uentTQL queries, CWE is number of common

weakness enumerations (vulnerability types), Runtime is av-

erage over ten runs.

Project #Classes #Flows #Queries #CWE #Runtime(s)
Catalog 36 27 19 11 52.79
ToDo App 26 14 14 8 34.45
PetClinic 42 4 4 1 10.94
WebGoat 35 16 16 1 30.29

We specified �uentTQL queries for the selected projects.

SECUCHECK found all expected taint-flows. Table I provides

an overview of the four projects. We used Intel(R) Core(TM)

i7-8565U CPU @ 1.80GHz, 16 GB RAM with Win-10 OS.
b) RQ2: To identify relevant factors for the analysis

runtime, we focused on three aspects: (1) impact of the number

of entry points selected for the call graph, (2) impact of the

number of taint-flow queries, and (3) impact of the query

complexity. For all three aspects, we took measurements of

the analysis runtime over 10 runs of SECUCHECK with the

BOOMERANG solver on the four selected projects.

Figure 3 shows the total analysis run for each project,

when the number of entry points increases and all available

taint-flow queries (specifications) are used. The graphs of

all projects follow the same trend of slow linear growth.

Contrary, when the number of selected taint-flow queries

increases the growth is much significant. This case is shown

in Figure 4 when only single entry point is selected in each

run Figure 5 when all entry points are selected in each run.

In both figures, we see the same trend, which compared

to Figure 3 has much higher growth. Note: �uentTQL can

express all queries of the same CWE with only few queries,

e.g., the 4 taint-flows in PetClinic can be detected by single

query as all taint-flows are of type SQL injection. For the

purpose of having higher number of queries in RQ2, we

expressed each taint-flow in a separate query.

With respect to query complexity, we selected five types of

�uentTQL queries and ran them on the Catalog project:

1 query with single source and sink (simple case where

SECUCHECK calls only one BOOMERANG query)

2 query with single source, sanitizer, and sink (simple

case where SECUCHECK calls only one BOOMERANG

query and passes the sanitizer to be processed by the

DemandDrivenManager)

3 query with single source, 10 required propagators, and a

single sink

4 query with set of 28 sources, single sanitizer, and 12 sinks

(or-semantics, where for each combination of source and

sink new BOOMERANG query is created)

5 query with three parallel taint-flows (use of and-operator

to run multiple queries and report single results when

each query returns a finding).

The average runtime in seconds over 10 runs for each

complexity type are, 7.16 for type 1, 7.07 for type 2, 7.11

for type 3, 10.08 for type 4, and 16.65 for type 5. The query

28

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on September 08,2022 at 13:15:09 UTC from IEEE Xplore. Restrictions apply.

types 1, 2, and 3 show similar runtime, meaning that the use

of sanitizers or required propagators does not have significant

impact. Whereas, based on types 4 and 5 the use of method

sets and the and-operator increase the runtime of the queries.

Figure 3: Analysis runtime by increasing the number of entry

points

Figure 4: Analysis runtime by increasing the number of taint-

flow specifications (single entry point)

V. CONCLUSION AND FUTURE WORK

In this paper, we presented SECUCHECK, a taint analysis

tool for software developers to run in multiple IDEs for

early detection of security vulnerabilities. SECUCHECK comes

with �uentTQL, an internal-Java DSL with fluent syntax for

specifying taint-flow queries to enable the users to customize

the queries to the codebase or add queries for new security

vulnerabilities. We discussed the architecture of SECUCHECK

and the underlying components with their interfaces. To get

fast results, SECUCHECK provides an HTML page in which

the user can limit the scope of the analysis by selecting only

relevant �uentTQL queries and entry points of the analysis.

In the evaluation, we show the applicability of SECUCHECK

on real-world Java applications with known vulnerabilities.

Finally, based on empirical data, we found out that the number

of selected taint-flow queries has much higher impact on the

Figure 5: Analysis runtime by increasing the number of taint-

flow specifications (all entry points)

runtime than the number of call graph entry points. Moreover,

the complex queries significantly increases the runtime.

SECUCHECK is available as an open-source tool. We plan

on extending and improving the tooling with new features that

improve the usability and explainability, such as recommen-

dations for fixes, followed by a thorough evaluation on R1-
3 via user study. From the analysis perspective, we plan on

providing improved algorithms for call graph construction.

REFERENCES

[1] C. W. E. Mitre, “2011 cwe/sans top 25 most dangerous software errors,”
http://cwe.mitre.org/top25/, 2020, online; accessed January 2020.

[2] Checkmarx. (2021) Checkmarx. https://www.checkmarx.com/. Online;
January 2021.

[3] S. Github. (2021) Lgtm. http://lgtm.com/. Online; January 2021.
[4] L. Nguyen Quang Do, J. R. Wright, and K. Ali, “Why do software

developers use static analysis tools? a user-centered study of developer
needs and motivations,” in Proceedings of the Sixteenth Symposium on
Usable Privacy and Security, 2020.

[5] J. Smith, L. Nguyen Quang Do, and E. Murphy-Hill, “Why can’t johnny
fix vulnerabilities: A usability evaluation of static analysis tools for
security,” in Proceedings of the Sixteenth Symposium on Usable Privacy
and Security, ser. SOUPS 2020, 2020.

[6] M. Christakis and C. Bird, “What developers want and need
from program analysis: An empirical study,” in Proceedings of the
31st IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE 2016. New York, NY, USA: ACM, 2016, p.
332–343. [Online]. Available: https://doi.org/10.1145/2970276.2970347

[7] J. Späth, K. Ali, and E. Bodden, “Context-, flow-, and field-sensitive
data-flow analysis using synchronized pushdown systems,” Proceedings
of the ACM SIGPLAN Symposium on Principles of Programming Lan-
guages, vol. 3, no. POPL, pp. 48:1–48:29, Jan. 2019.

[8] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” Acm Sigplan Notices, vol. 49, no. 6, pp. 259–269, 2014.

[9] L. Luo, J. Dolby, and E. Bodden, “MagpieBridge: A General Approach
to Integrating Static Analyses into IDEs and Editors (Tool Insights
Paper),” in 33rd European Conference on Object-Oriented Programming
(ECOOP 2019), ser. LIPIcs, vol. 134, 2019, pp. 21:1–21:25.

[10] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural dataflow
analysis via graph reachability,” in POPL, 1995, pp. 49–61.

[11] G. Piskachev, J. Spaeth, I. Budde, and E. Bodden, “Fluently specifying
taint-flow queries with fluenttql,” 2021, submitted to the Journal Empir-
ical Software Engineering.

29

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on September 08,2022 at 13:15:09 UTC from IEEE Xplore. Restrictions apply.

		2022-08-25T00:55:49-0400
	Preflight Ticket Signature

