
https://doi.org/10.1007/s10664-022-10165-y

Fluently specifying taint-flow queries with fluentTQL

Goran Piskachev1 · Johannes Späth2 · Ingo Budde1 · Eric Bodden1,3

© The Author(s) 2022

Abstract
Previous work has shown that taint analyses are only useful if correctly customized to the
context in which they are used. Existing domain-specific languages (DSLs) allow such cus-
tomization through the definition of deny-listing data-flow rules that describe potentially
vulnerable or malicious taint-flows. These languages, however, are designed primarily for
security experts who are expected to be knowledgeable in taint analysis. Software develop-
ers, however, consider these languages to be complex. This paper thus presents fluentTQL,
a query specification language particularly for taint-flows. fluentTQL is internal Java DSL
and uses a fluent-interface design. fluentTQL queries can express various taint-style vul-
nerability types, e.g. injections, cross-site scripting or path traversal. This paper describes
fluentTQL’s abstract and concrete syntax and defines its runtime semantics. The seman-
tics are independent of any underlying analysis and allows evaluation of fluentTQL queries
by a variety of taint analyses. Instantiations of fluentTQL, on top of two taint analysis
solvers, Boomerang and FlowDroid, show and validate fluentTQL expressiveness. Based
on existing examples from the literature, we have used fluentTQL to implement queries for
11 popular security vulnerability types in Java. Using our SQL injection specification, the
Boomerang-based taint analysis found all 17 known taint-flows in the OWASP WebGoat
application, whereas with FlowDroid 13 taint-flows were found. Similarly, in a vulnerable
version of the Java Spring PetClinic application, the Boomerang-based taint analysis found
all seven expected taint-flows. In seven real-world Android apps with 25 expected mali-
cious taint-flows, 18 taint-flows were detected. In a user study with 26 software developers,
fluentTQL reached a high usability score. In comparison to CODEQL, the state-of-the-art
DSL by Semmle/GitHub, participants found fluentTQL more usable and with it they were
able to specify taint analysis queries in shorter time.

Keywords Taint analysis · Program analysis · Domain-specific language · User study ·
Usability

Communicated by: Bara Buhnova

� Goran Piskachev
goran.piskachev@iem.fraunhofer.de

1 Fraunhofer IEM, Paderborn, Germany
2 CodeShield GmbH, Paderborn, Germany
3 Department of Computer Science, Paderborn University, Paderborn, Germany

Empirical Software Engineering (2022) 27: 104

Accepted: 5 April 2022 /Published online: 30 May 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10165-y&domain=pdf
http://orcid.org/0000-0003-4424-5838
http://orcid.org/0000-0003-4462-9372
http://orcid.org/0000-0003-0124-6291
http://orcid.org/0000-0003-3470-3647
mailto: goran.piskachev@iem.fraunhofer.de

1 Introduction

Over the past decade, static and dynamic taint analyses have gained significant traction
both in industry and academia (Späth et al. 2019; Bodden 2018; Grech et al. 2018; Arzt
et al. 2014). This is due to the fact that—in principle—most types of security vulnerabil-
ities on the code level, e.g. 17 of the 25 vulnerabilities types of SANS-25 (Mitre 2020a),
can be detected via taint analysis (Piskachev et al. 2019). Similarly, the OWASP top 10
list (OWASP 2020b) comprises 6 taint-style vulnerability types.

Taint analysis tracks sensitive data from sources, which are typically method calls to
application programming interfaces (APIs), to program statements performing security-
relevant actions, known as sinks. To soundly and precisely detect security vulnerabilities in a
given software development project, any taint analysis, whether static or dynamic, requires a
configuration. Particularly, the sources and sinks must be configured regarding the libraries
and frameworks the project uses (Arzt et al. 2013). Additionally, due to a lack of scalability,
static analyses frequently are unable to analyze all the software’s code and must instead be
configured to cut corners.

Some existing static analysis tools from academia (Krüger et al. 2019; Martin et al. 2005;
Johnson et al. 2015) as well as from industry (Checkmarx 2020; Microfocus 2020; Gram-
matech 2020; Github 2020) provide a DSL to configure their analyses. However, all of
the existing DSLs are designed to be used by static analysis experts and not by software
developers—despite the fact that developers are usually the ones who best know how the
project under analysis is structured. This was also confirmed in a recent research project
with several industry partners (SecuCheck 2021), in which the authors conducted inter-
views with software developers that have used various commercial and non-commercial
static analysis tools. Eight of the nine interviewees find the configuration options of the
taint analysis tools to be too complex. In another recent study among developers, the authors
discovered that for 47.1% of the participants, there is a dedicated team to configure the
used static analysis tools, 36.8% configure their analysis tools themselves, and 16.2% run
on default settings (Nguyen Quang Do et al. 2020). Moreover, the existing DSLs require
expertise in static code analysis which many developers do not have. We are not aware of
any excising study that evaluates the usability of the DSLs used for configuring the tools.

While much effort has been spent on automatically proposing relevant sources, sanitizers,
and sinks (Piskachev et al. 2019; Arzt et al. 2013; Sas et al. 2018) or inference of taint-flows
(source-sanitizer-sink paths) (Livshits et al. 2009; Chibotaru et al. 2019; Song et al. 2019),
in practice taint analyses still require substantial manual specification effort.

To address this shortcoming, this paper presents a new domain-specific language called
fluentTQL. fluentTQL is designed for software developers—not static or dynamic analysis
experts—and allows the specification of taint-flow queries. Compared to existing DSLs, the
abstraction level of fluentTQL is specific to taint analysis and contains only concepts that
allow software developers to easily create or modify taint-flow queries. In result, fluentTQL
queries can be evaluated by virtually any existing taint analysis. This sets the language apart
from previous more generic code-query language such as CODEQL, the state-of-the-art DSL
used within the commercial tool LGTM by Semmle/GitHub. At the same time, fluentTQL
is sufficiently expressive, though, to support the specification of multiple taint-flows which
allow the detection of complex security vulnerabilities.

Since Java is still amongst the most widely used languages, we designed fluentTQL as an
internal Java DSL with a fluent-API design.1 This paper presents the syntax and semantics

1Fluent Interfaces: https://www.martinfowler.com/bliki/FluentInterface.html

104 Page 2 of 33 Empir Software Eng (2022) 27: 104

https://www.martinfowler.com/bliki/FluentInterface.html

of fluentTQL, which is independent of any concrete (static or dynamic) taint analysis. Our
example implementation instantiates fluentTQL with two static taint analyses, one based
on Boomerang (Späth et al. 2019) and one based on FlowDroid (Arzt et al. 2014). We
explain how these implementations statically approximate the fluentTQL semantics. The
implementation is built on top of MagpieBridge (Luo et al. 2019) and the Language Server
Protocol (Microsoft 2020). In result, it can be used in a multitude of editors and integrated
development environments (IDEs), including Vim, Eclipse, VSCode, IntelliJ, SublimeText,
Emacs, Thea and Gitpod.

We evaluate the usability of fluentTQL through a user study with 26 participants (profes-
sional software developers, students, and researchers). We compare fluentTQL to the more
generic CODEQL. The results show that software developers perceive fluentTQL as easier to
use. fluentTQL has an excellent System Usability Score (SUS) (Brooke 2013) of 80,77 (out
of 100), whereas (for taint analysis) CODEQL has a score of only 38,56.2 The Net Promoter
Score (NPS) (Reichheld 2003) shows that—for the task of specifying taint-flow queries—
participants would recommend to others fluentTQL over CODEQL. Moreover, we evaluate
the applicability of fluentTQL by providing specifications of 11 popular vulnerabilities
with catalog of small programs. Additionally, we select two vulnerable Java applications
(OWASP WebGoat application3 and PetClinic4) and seven real-world Android applications
from TaintBench (Luo et al. 2021) known with malicious behavior. For all applications, we
specified corresponding fluentTQL queries and were able to detect most of the expected
taint-flows.

To summarize, this paper makes the following contributions:

– fluentTQL, a new DSL for specifying taint-flow queries, designed to be well usable for
software developers.

– A formal definition of the syntax and semantics of fluentTQL, the latter independent of
any concrete taint-analysis tool.

– An implementation and an empirical evaluation of the usability of fluentTQL in
comparison to a state-of-the-art DSL for static code analysis.

Our artifact includes the fluentTQL tooling, the catalog of queries for popular taint-style
security vulnerabilities and the dataset of our user study. It is available anonymously online
at https://fluenttql.github.io/

We next explain relevant concepts on taint analysis and elicit the requirements for a
developer-centric DSL. In Section 3 we present fluentTQL with its syntax and semantics,
and explain how our static instantiations statically approximate this semantics. In Section 4
we discuss the user study. We discuss related work in Section 5 and, finally, we conclude in
Section 6.

2 Requirements for a Taint Analysis DSL

We next explain the concept of taint analysis with an example and define requirements for
a developer-centric DSL for taint analysis.

2Interpreting SUS: 0–50 is bad, 51–67 is poor, 68 is an average usability, 69–80,3 is good,> 80,4 is excellent,
and 100 is imaginary perfect.
3https://github.com/WebGoat/WebGoat
4https://github.com/contrast-community/spring-petclinic

Page 3 of 33 104Empir Software Eng (2022) 27: 104

https://fluenttql.github.io/
https://github.com/WebGoat/WebGoat
https://github.com/contrast-community/spring-petclinic

Listing 1 shows an excerpt of Java code of an HTTP handler. The method doGet is called
upon a GET-request from a web browser when a user changes the password by providing
the username, the old password, and the new password. The method calls a helper method
changePassword shown in Listing 2 which verifies the user and changes the database. The
code in doGet contains a potential cross-site scripting vulnerability (XSS) (Mitre 2020d).
The username value from the request in the variable uName is added to the created HTML
page for the response object to inform the user if the password was changed successfully
(line 5). There is no sanitization check if the value contains any malicious behavior before
it is added to the generated HTML page.

The code in the helper method changePassword contains a potential NoSQL injection
vulnerability (NoSQLi) (Mitre 2020e). A single atomic action performs the user authenti-
cation and a change of a password in line 20 in which two database documents (filter and
set), one with $where clause and one with $set clause are executed. To report the taint-
flow precisely, both values should be marked as tainted. We explain both XSS and NoSQLi
vulnerabilities throughout this section.

2.1 Selection of Sensitive Methods

To detect such vulnerabilities using a taint analysis, one must configure the analysis with
any security-relevant methods (SM), such as sources, sinks and sanitizers.

Consider the example of the XSS vulnerability in Listing 1. Here, untrusted data flows
from the parameter uName of the method doGet to the sink in line 5 where method append()
is called with a string value of a request. Figure 1(a) shows the data-flow graph extracted
from the code. To fix this vulnerability, a software developer should apply a sanitizer
such as encodeHTML() to clear potential malicious inputs from the variable uName before
appending the contents to the HTML string. This leads to our first requirement:

2.2 Selection of In- and Out-Values

Apart from the selection of the call sites, the actual values flowing in or out of the methods
(return values, parameters, and receiver) must be selected. For the source of the XSS vul-
nerability in Listing 1, the developer must select the argument value of the first parameter of

Listing 1 Java code with potential XSS vulnerability (from line 1 to line 5)

104 Page 4 of 33 Empir Software Eng (2022) 27: 104

Listing 2 Java code with potential XSS vulnerability (from line 1 to line 5)

the method doGet. At the call to the sink of the vulnerability, the developer needs to provide
the possibility to select a parameter of a called method.

2.3 Composition of Taint-Flows

The presented XSS vulnerability is detected by what we call a “single-step taint analysis”.
It is relatively easy to detect, even manually. But many real-world taint-analysis prob-
lems comprise a sequence of multiple events. For example, consider the NoSQL injection
vulnerability in Listing 2 and its data-flow graph in Fig. 1(b).

The NoSQLi vulnerability occurs in line 20 when the method updateOne is called under
the condition that the Mongo database has a record with the username and the old password
that matches the values coming from the request object (uName in line 1 and oldPass in
line 3). The value of filter contains the document that checks the existing password for the
given username by calling the method put in line 15 with a $where-clause. The value of set
contains the document that sets the new password by calling the method put in line 18 with

Fig. 1 Data-flow graphs for (a) XSS and (b) NoSQLi vulnerabilities from Listing 1 and Listing 2

Page 5 of 33 104Empir Software Eng (2022) 27: 104

a $set-clause. When the method put is called in line 15 and line 17, the uName and oldPass
taint the filter whereas the newPass taints the set. For the taint-flow to be complete, both
calls to the method put must occur before the set and filter flow to the sink updateOne()
in line 20. Thus, we desired a feature to compose complex queries consisting of multiple
single-step taint analyses.

2.4 Detailed Error Message

When findings are reported, the analysis tool usually provides a description to the user to
help understanding the vulnerability. The study of Christakis et al. (Christakis and Bird
2016) showed that software developers have difficulties in understanding those descriptions.
For different vulnerabilities and types of data-flow the DSL shall present the results of the
taint analysis with fine-grained error messages that help developers to quickly identify and
fix the vulnerability. The user that specifies the taint-flow should be able to define a custom
error message that can be reported at different locations.

2.5 Integration into Developer’s Workflow

Empirical studies show that software developers need static analysis tools integrated in their
workflow (Christakis and Bird 2016; Johnson et al. 2013). Most software developers use
integrated development environments (IDEs) and prefer static analyses to be directly inte-
grated in the IDE. The results of the analysis should be shown within the IDE, preferably
visible near the editor for the code. Therefore, a DSL designed for software developers
should be integrated in this workflow with appropriate tooling and usability.

2.6 Independence of Concrete Taint Analysis

Software developers desire reusing taint-flow specifications for both static and dynamic
taint analyses. Moreover, some analysis tools are only part of the continuous integra-
tion whereas others can be integrated in different workflows, e.g. the IDE. To enable
reusability of the specifications among different tools, the DSL semantics must therefore
be independent of any concrete static or dynamic analysis. Thus, any limitations due to the
approximations of the underlying solver are transferred to the results reported by fluentTQL.

The NoSQLi vulnerability from the example in this section, can not be detected by
default with the existing tools due to its specific structure. Such complex taint-flows require
the user to specify a custom query. fluentTQL introduced in the next section aims at

104 Page 6 of 33 Empir Software Eng (2022) 27: 104

providing usable and easy approach for mainly software developers specifying custom
queries. The existing DSLs are design for experts who have understanding in data-flow anal-
ysis, which most developers do not have. Moreover, based on our evaluation of the existing
DSLs in Section 5, indicates that none of them completely fulfills all requirements.

3 fluentTQL

We next define the domain-specific language fluentTQL through its abstract and concrete
syntax (Stahl et al. 2006). We also define the runtime semantics of fluentTQL as indepen-
dent of a concrete taint analysis. Dynamic taint analyses could faithfully implement the
semantics, whereas static taint analyses would seek to soundly approximate it. Finally, we
discuss relevant implementation details.

3.1 Concrete Syntax

As a concrete syntax for fluentTQL, we decided to use a Java fluent-interface syntax. Since
Java is one of the most popular programming languages, this allows software developers
to learn the DSL with little effort. Moreover, in interviews with nine software develop-
ers (SecuCheck 2021), the authors asked what concrete syntax they would prefer if given
the choice of (1) a fluent interface, (2) a graphical syntax, or (3) a textual syntax for taint-
flow queries, six participants chose the fluent interface, and only two chose the graphical
and one the textual syntax.

In the following, we explain the concrete syntax by specifying the fluentTQL queries for
the detection of the XSS and NoSQLi code in Listing 1 and Listing 2. The specification
is presented in Listing 3, where lines 23–31 contain the SM declaration and lines 32–38
contain the taint-flow queries.

In the code there are two potential sources. One source is the return value of the get-
Parameter() method which in Listing 3 is specified in line 23. The first argument to the
constructor of Method() takes a method signature as a String argument. Next, using the
fluent interface of fluentTQL, we append out() indicating that the method generates a
sensitive data-flow. Eventually, by appending return(), we select the return value as the
out-value that is generated. The other source is the first parameter of the doGet() method
(line 24) indicated by out() and param(0).

The fluent interface of fluentTQL allows calling out() or in() on a Method object.
After out() there has to be at least one more call to return(), thisObject() and/or
one or more calls to param(int) with the integer referring to the parameter index of the
out-value. After in() there must be a call to thisObject() and/or one or more calls to
param(int).

Both sources in line 23 and line 24 are potential sources for SQLi and XSS, i.e., they are
not specific to the vulnerability type. Thus, they are grouped into aMethodSet object (line 25).
Afterwards, the method encodeHTML is specified as sanitizer which is relevant to the XSS
vulnerability only. The method put() is a propagator (i.e. only propagates the taint) but a
required one, because it has to be called between the source and the sink for this specific
vulnerability. It can be called with two different parameter types. Hence, it is specified twice
(lines 27 and 28). They are grouped in the method set reqPropagatorsPut. Finally, the sinks
are specified (lines 30 and 31). They are specific to each vulnerability type.

The taint-flow query for XSS is specified in line 32 where the class TaintFlow-
Query is instantiated after which from(...), to(...), and report(...) are called.

Page 7 of 33 104Empir Software Eng (2022) 27: 104

Listing 3 fluentTQL specification for XSS and NoSQLi in Listings 1 and 2

For the XSS taint-flow query, the sanitizer is also specified by calling the method
notThrough(...). Each of these methods expects an object of type Method or
MethodSet.

At the end there is a call to at(Location.SOURCE) which is optional and expresses
where in the code the report message should be shown. Location is an enumeration with
values SOURCE, SINK, and SOURCEANDSINK. The taint-flow query can be read as
follows: If there is a taint-flow from the source source1 not propagating through the
sanitizer and reaching any of the sinkXss, then report a finding with “‘Reflective
XSS vulnerability”’ at the source location.

For the NoSQLi vulnerability there are two taint-flow queries in Listing 3, in lines 33–38.
The object noSQLi1 will report a finding with a message “‘No-SQL-injection vulnerabil-
ity”’ for the source getParameter, defined with source1, propagating through any required
propagator from the set reqPropagatorsPut reaching the sinkNoSql. If applied to the code
example from Listing 1 and Listing 2, there will be two traces found which will be reported
as separate findings. The taint-flow from the first parameter of doGet carrying the user-
name will be missed. To detect this taint-flow as well, one can use the method set sources

104 Page 8 of 33 Empir Software Eng (2022) 27: 104

instead of the single method source1. On the other hand, a taint analysis specified as defined
though noSQLi2 will report a single finding only: For this specification, the three single
taint-flows are joined by a call to and(), which means all separate taint-flows need to
occur individually.

3.2 Abstract Syntax

We discuss the abstract syntax through the meta-model shown in Fig. 2. The DSL has a
root node (class RootNode) containing all objects. An object of this class represents sin-
gle instance of the DSL that can contain multiple top level elements. The abstract class
TopLevelElement is a superclass of the main concepts in fluentTQL, i.e., the class Method
and the class TaintFlowQuery.

3.2.1 Methods

The class Method represents a reference to a method from the analyzed code. It contains
information about the method signature and the data-flow propagation when that method
is called in a given context (conforming to R1 and R2). This is expressed through the ref-
erences to InputDeclaration and OutputDeclaration. A Method object has to have one or

QueriesSetQueriesSet TopLevel-
Element

TopLevel-
Element

TaintFlow
Query

TaintFlow
Query

TaintFlowTaintFlow

RootNodeRootNode ImportImport

Flow-
Par�cipant

Flow-
Par�cipant

MethodSetMethodSet

MethodMethod

Output-
Declara�on

Output-
Declara�on

Input-
Declara�on

Input-
Declara�onOutputOutput

ThisObjectThisObject

ReturnReturn

ParameterParameter InputInput

[0..1] ref

[0..1] ref

[0..1] ref

[0..1] ref

[0..1] set[0..*] flows

[0..*] imports[0..*] elems

[1..1] to

[1..1] from

[0..*] through

[0..*] notThrough [0..1] inputs

[0..1] outputs

[1..*] inputs

[1..*] outputs

size(inputs) +
size(output) > 0
size(inputs) +
size(output) > 0

#ThisObject <= 1#ThisObject <= 1

#ThisObject <= 1 &
#Return <=1
#ThisObject <= 1 &
#Return <=1

[1..*] flows

Fig. 2 fluentTQL meta-model (UML class diagram, gray-filled classes are abstract). The constraints of the
cardinalities of the classes are shown as messages, since the semantics of UML class diagram can not express
all of them.

Page 9 of 33 104Empir Software Eng (2022) 27: 104

both InputDeclaration or OutputDeclaration references. An InputDeclaration contains an
in-value (abstract class Input), whereas OutputDeclaration contains an out-value (abstract
class Output). In-values can be a parameter of a method call (class Parameter) or a receiver
of the method (class ThisObject). Out-values can be a parameter, a receiver, or a return value
(class Return). In-values flow into the method call and out-values flow out of the method
call.

The class Method in combination with the classes InputDeclaration and OutputDecla-
ration can model sources, sinks, and sanitizers (R1). Source is a combination of Method
and OutputDeclaration specifying which values become tainted through a method call.
Sink is an instance of Method and InputDeclaration specifying which values must be
tainted for the sink to be considered “reached”. Sanitizer is a combination of a Method
and InputDeclaration, specifying which tainted value flowing in the method call will get
untainted.

3.2.2 Required Propagators

Required propagators are method calls that have to be on the path between a source and a
sink in order for a given vulnerability to be present. For instance the method put() in the run-
ning example from Section 2 has to be on the taint-flow trace from the source to the sink. It
only propagates the taint from the in-value to the out-value. In fluentTQL, a required prop-
agator is modeled as a combination of Method, InputDeclaration, and OutputDeclaration.
This model allows propagating out-values once an in-value reaches a method. The analy-
ses that are aware of these methods know how to propagate the data-flow without analyzing
them, for example for improving scalability or handling calls for which the source code is
not available.

3.2.3 Taint-Flow Queries

The class TaintFlowQuery represents a taint-flow query. It contains all the information one
needs to trigger a taint analysis. It contains one or more TaintFlow objects and a user defined
message (R4). The class TaintFlow has four references to the class FlowParticipant. The
from reference defines the set of sources, the through reference defines the required prop-
agators, the notThrough reference defines the sanitizers, and the to reference defines the
sinks. For any valid TaintFlow there should be at least one source and one sink. A Flow-
Participant is either a Method or a MethodSet, i.e., a collection of methods. Similarly, the
QueriesSet is a collection of taint-flow queries.

3.2.4 Imports and Reuse

The root node can contain imports from other models defined in other locations. This is
modeled via the class Import. This allows references of methods and taint-flow queries from
different files. The classes Import, MethodSet, and QueriesSet are provided for mainte-
nance, reusability, and structure of fluentTQL specifications, enabling software developers
to define categories of methods and taint-flow queries and share them (R5). As Java inter-
nal DSL, the users of fluentTQL get all advantages of Java compared to any external DSL
or XML/JSON-based DSL, often used in the existing tools. From Java, users can reuse
existing abstractions such as packaging, modules, and object-oriented design to improve the
maintenance, the readability, and the accessibility of the rules.

104 Page 10 of 33 Empir Software Eng (2022) 27: 104

3.3 Semantics

A taint-flow query, an instance of the class TaintFlowQuery, is a fluentTQL specification
that describes which traces of the program should be returned as findings to the user when
a given taint analysis is triggered with that taint-flow query. In the following we define the
relevant terms and how fluentTQL refers to them.

We denote M to be the set of all method signatures where a signature includes the fully
qualified method name, parameter types, and a return type. A sensitive value is a type defi-
nition with information about the direction of propagation (in- or out-), and location (return,
receiver, or parameter index). Hence, in- and out-values are sensitive values with in- and
out-propagation, respectively.

Definition 1 A sensitive method is a tuple (m,SV), where m ∈ M and SV is a set of sensitive
values. SV contains subset SVin for in-values and subset SVout for out-values.

Definition 2 A taint analysis specification TAS consists of the tuple (Sources, Sanitizers,
RequiredPropagators, Sinks), where

1. Sources is a set of sensitive methods (m, SVout) for which SV contains at least one
out-value, (SVout �= ∅),

2. Sanitizers and Sinks are sets of sensitive methods (m, SVin) for which SV contains at
least one in-value, (SVin �= ∅), and

3. RequiredPropagators is a set of sensitive methods (m, SVin, SVout) containing at least
one in-value and one out-value (SVin �= ∅, SVout �= ∅).

Given a taint analysis specification TAS, some black-box taint analysis T and a program
P , we assume the execution of T returns a set of traces for the data-flow, i.e., T (P,TAS) =
{t1 . . . , tn} where each ti is a data-flow trace. A trace is a sequence of program statements,
i.e., ti = s1i s2i . . . sn

i . For each individual trace ti it holds that

– the first statement is a source statement, s1i ∈ Sources,
– the last statement is a sink, sn

i ∈ Sinks

– none of the statement sj
i is a sanitizer, sj

i /∈ Sanitizers, and
– if RequiredPropagators is non empty, there exists exactly one element from Required-

Propagators that appears at statement sj
i , where j ∈ {1, . . . , n}.

Note that in the case the analysis T is a dynamic taint analysis, the set of traces is a singleton
set while static analyses, which simulate all possible executions, may generate multiple
traces.

Example: A TAS can detect rudimentary data-flows modeled with the class TaintFlow
from Fig. 2 such as the XSS vulnerability in Listing 1. The TaintFlowQuery xss in line 32
specifies a TaintFlow with

sources - {(getParameter(String),returnOUT), (doGet(String, ...), 0OUT)}
sanitizers - {(encodeHTML(String),0IN)}

r. propagators - {}
sinks - {(append(CharSequence),0IN)}

fluentTQL allows one to specify these sets with respective syntax elements from(...),
notThrough(...), and to(...). Running a taint analysis with the fluentTQL

Page 11 of 33 104Empir Software Eng (2022) 27: 104

specification for xss on the code in Listing 1 returns the single trace consisting of the two
statements5 t1 = 1 5.

Additionally, the syntax element through(...) allows to specify the set of Required-
Propagators.

For instance, the taint-flow query noSQLi1 in line 33 specifies a non-empty set
RequiredPropagators.

sources - {(getParameter(String),returnOUT)}
sanitizers - {}

r. propagators - {(put(String, String),1IN, returnOUT), (put(String, BasicDBObject),
1IN, returnOUT)}

sinks - {(updateOne(BasicDBObject, BasicDBObject),0IN, 1IN), returnOUT}
The result of the taint-flow query noSQLi1 is

TracenoSQLi1 = 2 4 10 15 20, 3 4 10 17 19 20

and consists of two traces. Each of these traces is reported as a separate finding to the user.
A “simple” finding is a single trace with a single message. For instance, the findings of
noSQLi1 are FindingsnoSQLi1 = { F1noSQLi1, F

2
noSQLi1}, where

F 1
noSQLi1 = ({2 4 10 15 20}, “No-SQL-Injection vulnerability.”)

F 2
noSQLi1 = ({3 4 10 17 19 20}, “No-SQL-Injection vulnerability.”)

Yet, for more complex queries one can use the and() operator, which combines findings
over individual traces to a single finding over multiple traces.

Combining taint-flow queries: The and() operator allows one to merge multiple TAS as
a single query. This is through an object of type TaintFlowQuery (from Fig. 2) that contains
multiple objects of type TaintFlow. Formally, the operator computes the cross product of the
traces of the individual TAS. For example, the taint-flow query noSQLi2 in line 34 defines
three TAS specifications:

sources - {(getParameter(String),returnOUT)}
sanitizers - {}

r. propagators - {(put(String, String),1IN), returnOUT}
sinks - {(updateOne(BasicDBObject, BasicDBObject),0IN, 1IN)}

sources - {(put(String, String),returnOUT)}
sanitizers - {}

r. propagators - {}
sinks - {(updateOne(BasicDBObject, BasicDBObject),0IN, 1IN)}

sources - {(getParameter(String),returnOUT)}
sanitizers - {}

r. propagators - {(put(String, BasicDBObject),1IN, returnOUT))}
sinks - {(updateOne(BasicDBObject, BasicDBObject),0IN, 1IN)}]

The first one returns the trace “2 4 10 15 20”, the second one returns the trace
“1 4 10 15 20”, and the last one returns the trace “3 4 10 17 19 20”. Yet, the result of the
query noSQLi2 will be a single finding, FindingsnoSQLi2 = {F 1

noSQLi2}, where

5We use line numbers from Listing 1 and Listing 2 to represent traces.

104 Page 12 of 33 Empir Software Eng (2022) 27: 104

F 1
noSQLi2 = ({2 4 10 15 20, 1 4 10 15 20, 3 4 10 17 19 20}, “No-SQL-Injection

vulnerability with multiple taint-flows.”).

Calculating Traces By its definition, fluentTQL has a precise runtime semantics. However,
when applied in static context, the traces need to be approximated by the underlying data-
flow engine. Thus, reported traces of different tool implementations can differ.

To explain the precise runtime semantics for traces construction, we define a taint analy-
sis core language, in similar fashion to previous works (Schwartz et al. 2010; Livshits 2012).
Though simple, the core language covers relevant statements that can be mapped one-to-
one with Java statements. The statements are listed in Table 1. A program of the language
contains a sequence of statements with line number. For simplicity, we decided to exclude
method calls from the language. These can be compiled to the language by storing the mem-
ory address of the return statement and transferring the control flow. This rule is not applied
to the four statements in Table 1 which are special method calls.

We denote variables with x and y, a field of an object with f , and an i-th index of
an array with a[i]. We model all memory locations through a shadow heap: The shadow-
heap values for a memory location v is true if the value is tainted and false otherwise. The
execution context � has the parameters listed in Table 2. �.�[x] stores the current taint
value of variable x. We write � � x ⇓ v to extract that value into v. Similarly, notations
like src(x) � (m, SV) extract the method m with its sensitive values SV , when a method
call src is matched. Additionally, � stores all traces t ∈ T that will be created during the
execution. t is a sequence of statements (which we here denote by line numbers).

Figure 3 shows fluentTQL’s semantics through inference rules. We use a syntax akin to
the one used by Schwartz et al. (Schwartz et al. 2010). The semantics essentially define a
regular dynamic taint analysis which, as side-effect collects un-sanitized traces from sources
to sinks. For instance, given the statement x = y, the ASSIGN rule’s computation comprises
four parts. First, � � y ⇓ v evaluates and extracts the taint value v for variable y. Due to
the assignment, the rule updates the taint value of x with v. The rule then also extracts each
trace in t ∈ θ and adds to it the current statement, identified by its line number. The rules
for load/store and array accesses are equivalent. The rule SOURCE creates a new trace and
taints the out-value, the rule SINK gracefully terminates a trace by untainting the sensitive
value. The rule SANITIZER also discontinues the tracing. The rule PROPAGATOR taints
the out-value if the in-value is tainted. SKIP advances to the next statement whereas SEQ

Table 1 Statements of the core language for constructing fluentTQL traces

Statement Description

src(x) Call to a sensitive method (m,SVout) ∈Sources with sensitive parameter x

snk(x) Call to a sensitive method (m,SVin) ∈Sinks with leaked parameter x

san(x) Call to a sensitive method (m,SVin) ∈Sanitizers sanitizing parameter x

rpr(x) Call to a sensitive method (m,SVin, SVout) ∈RequiredPropagators
x = y Assignment

x = y.f Field load

x.f = y Field store

x = a[i] Read from array at index i

a[i] = x Write to array at index i

skip Skip and continue

Page 13 of 33 104Empir Software Eng (2022) 27: 104

Table 2 Statements of the core language for constructing fluentTQL traces

Parameter Description

� Match a variable, a field, an array element or a sensitive value to its taint value

λ Match a given statement to its line number

θ Returns the set of all traces created

enables the progression of the semantics covering the recursive case. The semantics must
additionally enforce one aspect that we found hard to capture with inference rules: for such
fluentTQL specifications that define required propagators, the taint analysis must ensure to
report only such traces that actually contain all required propagators. Finally, the notion of
user-defined message is skipped in the formal semantics due to simplicity, but we explain it
in the following through our example.

Fig. 3 Inference rules of the operational semantics of the traces construction in fluentTQL

104 Page 14 of 33 Empir Software Eng (2022) 27: 104

Report Message As seen in the previous examples, the queries specified in fluentTQL
contain a user-defined message which is added to each finding (R4). In the concrete syntax,
the mandatory syntax element report(...) takes the string message as an argument.
Optionally, the user may specify the location for the reporting message by using the syntax
element at(...). As an argument, the enumeration Location can be used, which contains
three elements SOURCE, SINK and SOURCEANDSINK. SOURCE and SINK define that
the reporting message should be shown at the source and the sink location respectively. For
SOURCEANDSINK the message should be shown at both source and sink location in the
code. If the finding has multiple traces then the reporting message is shown for each trace
individually. For example, for noSQLi2 the error message will be shown at each source and
sink location, i.e., lines 1, 2, 3, and 20, because SOURCEANDSINK is used in the query
specification (Listing 3, line 38). This information can be used by tools for visualization
purposes. E.g. an IDE plug-in may display error markers in the editor at the source location,
the sink location, or both.

Usability Versus Expressiveness fluentTQL is a DSL for users without deep expertise in
static analysis as most software developers. Its purpose is to enable users specify a custom
taint analysis for their codebase and detect many popular security vulnerabilities. Hence, the
usability and simplicity of the language is the primary aim. A trade-off to this design deci-
sion is the lower expressiveness when compared to some existing DSLs such as CODEQL.
fluentTQL does not provide the users a fine-grained manipulation of the abstract syntax tree
(AST). Such expressive DSLs are used by program analysis experts. This fine-grained AST
manipulation, can be useful for writing more compact code. Nonetheless, as our evaluation
in Section 4 shows, most popular security vulnerabilities can be expressed in fluentTQL.
This is due to the fact that the relevant data being tracked by the analysis is impacted only
by specific method calls within the program, which is the case for most security vulnera-
bilities. Compared to CODEQL, in fluentTQL, other language constructs than method calls
currently can’t be modeled. However, as discussed in Section 4.4, extending fluentTQL with
new language constructs is possible without significant semantic changes. On the side of
expressiveness, fluentTQL has a support of R3 which is only partially supported by other
DSL as can be seen later in Section 5. Complex multi-step taint-flow queries are in particular
relevant for stored versions of SQLi and XSS vulnerabilities. Finally, fluentTQL only sup-
port taint analysis, whereas other DSLs like CODEQL support additional types of analyses,
such as value analysis.

3.4 Implementation

We implemented fluentTQL as an internal Java DSL which can be easily used in any Java
project by implementing the interface FluentTQLSpecification. Hence, any Java editor can
be used to write and edit fluentTQL queries.

Additionally, we implemented a server using the MagpieBridge framework (Luo et al.
2019) that can trigger, execute the analysis, and return the results to the IDE. fluentTQL is
implemented as a standard Java library using the builder pattern to allow method chaining
as user interface. All queries need to be implemented within a class that implements the
interface FluentTQLSpecification. Using the Java classloader the classes are located and the
queries correctly loaded and provided as input to the analysis.

As we rely on MagpieBridge, we support IDEs that support the Language Server Pro-
tocol (Microsoft 2020) such as Vim, Eclipse, VSCode, IntelliJ, and many more. The
MagpieBridge server uses the Language Server Protocol to notify the IDE for available

Page 15 of 33 104Empir Software Eng (2022) 27: 104

results. Figure 4 shows a component diagram of our implementation. The core analysis uses
Soot as an underlying static analysis framework responsible for providing the main data
structures, such as control-flow graph and call graph. Solvers such as Boomerang and Flow-
Droid provide interface for starting a taint analysis. The core analysis utilizes this to execute
the semantics of the fluentTQL queries as described previously in fluentTQL’s semantics.
The core analysis matches the solver’s APIs with the fluentTQL queries that are executed.
For complex queries it breaks them into simple taint-flows which are independently solved
by the underlying solver and their results merged afterwards. The queries are loaded through
the fluentTQL-classloader into the MagpieBridge-Server.

Our implementation uses the standard IDE features: errors view, editor markups, and
notifications to display the results from the analysis directly in the IDE. Additionally, it
provides a configuration page where the user can filter the queries and the entry points used
for the call graph used by the analysis.

To instantiate fluentTQL with concrete analyses, we first implemented a taint analy-
sis built on top of the Boomerang solver (Späth et al. 2019), an efficient and precise
context-, flow-, and field-sensitive data-flow engine with demand-driven pointer analysis.
Boomerang provides an API to query all traces from given seeds. The API of the seed is
expressible to cover the fluentTQL semantics of the sensitive methods. However, the basic
API of Boomerang does not support sanitizers, nor required propagators. To support the
sanitizers we transformed the bodies of the sanitizers to empty, which is a terminal case of
the Boomerang data propagation solver. To support required propagators, we break the TAS
specification to multiple TAS specifications containing only sources and sinks. A TAS with
required propagator is broken to two TAS where the first one has the original source and the
required propagator as sink, whereas the second one has the required propagator as source
and the original sink as sink. Boomerang returns the traces of the individual TAS, and our
implementation merges them. There is no explicit well-formed check in our implementation.
However, we implemented the taint analysis with Boomerang on ourselves and we, there-
fore, trust its correctness with respect to the semantics of the constructed traces. However,
future implementation with other solvers, should also include a well-formed check.

Moreover, we instantiated fluentTQL with the existing taint analysis of FlowDroid (Arzt
et al. 2014). This, however, was not possible without limitations. Specifically, the default
component for defining sources and sinks in FlowDroid is limited and supports only return
as out-value of sources and parameter index as in-value of sinks. This can be extended by

Fig. 4 Component diagram of the fluentTQL imeplementation as MagpieBridge server (gray components
are external, white components are internal)

104 Page 16 of 33 Empir Software Eng (2022) 27: 104

adding new implementation of the SourceSinkManager, which we left as future work. San-
itizers by default are not supported, but we applied the same solution as in our Boomerang
implementation, whereas required propagators are not supported and requires either exten-
sion of the taint analysis or post-processing of the findings which we also consider as future
work.

Finally, both instances of fluentTQL have some limitations in the way the traces are
constructed and reported. Since fluentTQL has precise runtime semantics, it is expected that
static analysis engines like Boomerang and FlowDroid will approximate. In particular, both
engines will unsoundly underapproximate the constructed traces. For example, both apply
different strategies for merging conditional paths of the program. Thus, these limitations are
part of our implementation, too.

4 Evaluation

We evaluated the usability of fluentTQL by conducting a comparative user study between
fluentTQL and CODEQL. We chose CODEQL because it is part of LGTM, a state-of-the-art
security tool, which has, in our perspective, very good tool support and the query spec-
ifications are open-source. There is also an Eclipse plugin, a web console for queries,
and integration with GitHub, a popular versioning system among developers. Addition-
ally, we evaluated the applicability of fluentTQL by specifying queries for different set
of applications: a catalog of eleven Java programs, each demonstrating different secu-
rity vulnerability, the deliberately insecure application OWASP WebGoat aiming to teach
developers about relevant security vulnerabilities, an insecure version of the Spring Demo
application PetClinic, and randomly selected five real-world Android apps with known
malicious taint-flows part of TaintBench (Luo et al. 2021). All selected applications have
known expected taint-flows that can be used to evaluate how does the analysis perform in
finding real vulnerabilities. We answer the following research questions:

– RQ1 How usable is fluentTQL for software developers?
– RQ2 How does fluentTQL compare to CODEQL for specifying taint-flow queries for

taint-style security vulnerabilities?
– RQ3Are fluentTQL syntax elements sufficient to express queries for popular taint-style

security vulnerabilities?
– RQ4 Can fluentTQL express and detect known security vulnerabilities in Java/Android

applications?

To answer the research questions, we use corresponding metrics. For RQ1, we use the
System Usability Scale and Net Promoter Score. The same metrics are also used in RQ2
to compare both DSLs. Additionally, we measure the time needed for the participants to
complete the given tasks. We count only the solutions which are complete queries. The
partial solutions are not counted due to the nature of the task. In similar realistic scenario,
incomplete queries will not return results from the tools. For RQ3, we evaluate how each
fluentTQL construct contributes in specifying the most popular Java security vulnerabilities.
Moreover, we identify security vulnerabilities for which fluentTQL can not express the
required constructs. Finally, for RQ4, we count how many of the expected taint-flows in the
selected applications are found when fluentTQL runs with adequate queries.

The following subsection explains our methodology for the user study used to answer
RQ1 and RQ2. The next subsections discuss the results of each research question individu-
ally. Finally, we discuss threats to validity.

Page 17 of 33 104Empir Software Eng (2022) 27: 104

4.1 Methodology

Setup The user study was conducted over a set of teleconferences where each participant
shared the screen. Each study took on average 80 minutes. The session was recorded for
post-processing purposes. We invited 35 software developers to take part in the study, from
which 26 accepted the invitation, referred to as P01-P26. We invited professional developers
via our contacts from the industry as well as researchers and master level students. Addi-
tionally, we asked three students to participate in a test session, which helped us to estimate
the time and adjust the difficulty of the tasks.

Due to the limited number of participants, we chose a within-subjects design. Hence,
each participant worked in Eclipse with available tool support for both DSLs. The flu-
entTQL implementation used the more versatile instantiation based on Boomerang. To avoid
any bias, we referred to the DSLs by DSL-1 and DSL-2. Initially, the participants received
a project with all files needed for the practical part. The moderator gave an introduction to
taint analysis and showed a Java code example with an SQL injection vulnerability (Mitre
2020h) to make sure that the participant understands the required concepts such as source,
sanitizer, required propagator, and sink. Then, the exercises for DSL-1 and DSL-2 followed.

Each exercise consisted of a tutorial and a task. The tutorial for each DSL was based on
the SQL injection vulnerability. Then, the participants had ten minutes to write a specifi-
cation in the same DSL for a new vulnerability explained by the moderator. We chose the
vulnerability types open redirect (Mitre 2020l) for fluentTQL and cross-site scripting (Mitre
2020d) for CODEQL. For either type, we selected an example with the same pattern in form
of source-sanitizer-sink. This ensures that writing a specification for each vulnerability is
equally hard, i.e., the effort is the same regardless of the vulnerability.

For each vulnerability type, we provided a Java code example as a reference. The par-
ticipant was allowed to use any of the files provided that included the Java classes and the
files with example specifications of fluentTQL and CODEQL. For each task, we addition-
ally provided a file with a skeleton code in which the participant wrote the solution. During
the tasks, the participants were allowed to ask questions for clarification.

After the tasks, we let the participants fill a web form. The moderator guided the
participant in the discussion and collected the data for the questionnaire.

Questionnaire In total the questionnaire asked 28 questions, of which two are of open type
and optional (Q26 and Q27). The complete list of questions is part of our artifact. Each of
the questions asks for feedback for each DSL by the participant. From the 26 mandatory
questions of closed type, 4 are informational, 20 are related to the System-Usability-Scale
(SUS) (Brooke 2013), and two are related to the Net Promoter Score (NPS) (Reichheld
2003). The SUS value is a usability metric that can be calculated with ten simple questions
in a predefined format. The SUS-related questions (Q4–Q23) are the same ten questions per
DSL with answering options on agreement scale from one to five. SUS expresses usability
of a single DSL. Hence, for comparison we use the same questions for each DSL. The NPS
metric expresses how likely the participant would recommend something to a colleague. To
calculate a value, NPS identifies so-called promoters and detractors among the participants.
The NPS-related questions (Q24–Q25), ask for the likelihood of DSL1 being recommended
over DSL2 for the task of specifying taint-flow queries and vice versa. The informational
questions ask about participant coding experience (Q1), security expertise (Q2), willingness
to learn a new DSLs (Q3), and preferred way of learning new languages (Q28).

104 Page 18 of 33 Empir Software Eng (2022) 27: 104

Participants The study population with 26 participants is larger than the size of related
studies that have been performed earlier, e.g. 10 in (Smith et al. 2019), 12 in (Smith et al.
2020), and 22 in (Nguyen Quang Do and Bodden 2020). We chose participants with a
diverse background. Ten of them are professional developers, six are computer science stu-
dents on the master level, and ten are researchers in computer science. The participants have
different experiences in programming. Twelve of the participants have 10+, nine have 6–10,
four have 3–5, and one has 1–2 years of programming experience. They rated their expe-
rience with security vulnerabilities. Three consider themselves as beginners, 16 have basic
knowledge, five regularly inform themselves about the topic, and two consider themselves
as experts.

Statistical Tests Along with the reported data and metrics, we perform relevant statistical
tests. As a within-subject design our collected data is paired, i.e, for each participant we
have one set of collected data. Exception are the SUS and NPS metrics which are aggregated
among all participants. The limitation of this design is the possibility of carryover effects,
such as learning effects. The main treatment variable is the technique, stating which DSL
was used to solve each task (nominal data). In addition, we have an independent crossover
treatment variable, the choice of DSL for the first task (binomial data). The background
variable are: years of coding experience (ordinal data), position (nominal data), and security
experience (nominal data). Finally, we have two effort variables, one for the outcome of
each task (binomial data) and the time (ratio data). As most of the data is nominal and
ordinal, we used only non-parametric statistical tests. Bellow we report individually each
selected test and the results. We used the significance level α = 0.05 for all the tests.

4.2 RQ1 Usability of fluentTQL

fluentTQL was positively received by the participants of our user study. It received an excel-
lent System Usability Score of 80,77 on a scale from 0 to 100 where 68 is considered to be
an average usability and 100 is imaginary perfect.

Using the null hypothesis “fluentTQL is usable (SUS is bigger then the hypothetical
value of 68)”, we select the Wilcoxon test (the data is ratio but without normal distribution).
The test accepts the hypothesis with statistical significance and large effect size (>0.5).
For the given task, 20 out of 26 participants have finished with a correct solution in 10
minutes (on average 472 s, with σ = 99, 05). Table 3 shows the exact time in seconds for
each participant. In the open questions (Q26–Q27), many of the participants gave additional
feedback what they like and what they would improve in fluentTQL.Most of the participants
said that they can learn the language very easily, one of them said “‘with simple tutorial, I
can learn it (fluentTQL) even without an expert. (...) it was very intuitive”’ and other said
“‘I didn’t have to learn a lot”’. Few participants mentioned that they like that the queries
are compact and have the right level of abstraction.

We noted a few points that many participants disliked. Most dislike that the method
signatures are specified as a string value. One participant said “‘method calls are prone
to typos or cumbersome to create”’. For this, we already added a check in the editor to
inform the users if their string is an invalid method signature. We support Java and Soot
signatures. We even plan to add suggestions for existing methods from the workspace to
the code completion feature of the editor. Some participants gave suggestions for improving
the names of some keywords. For example the class ThisObject, which in fluentTQL is
called with thisObject(), was earlier called This and confused many participants with the
this keyword in Java.

Page 19 of 33 104Empir Software Eng (2022) 27: 104

Table 3 List of participants: coding experience and position, time in solving each task and DSL used in the
first task (X means the participant did not solve the task in 10 minutes)

Coding Position Security fluentTQL CODEQL 1st DSL

(years) experience (seconds) (seconds)

P01 3–5 Developer Basic 554 X fluentTQL

P02 >10 Developer Basic 499 X fluentTQL

P03 6–10 Student Expert 482 588 fluentTQL

P04 >10 Researcher Basic 560 590 CODEQL

P05 >10 Researcher Basic X 591 fluentTQL

P06 >10 Researcher Advanced 544 562 fluentTQL

P07 3–5 Researcher Basic X 595 fluentTQL

P08 >10 Student Advanced 449 495 CODEQL

P09 6–10 Student Basic X 587 CODEQL

P10 >10 Researcher Basic 545 567 CODEQL

P11 1–2 Researcher Beginner 558 585 CODEQL

P12 6–10 Researcher Basic X X fluentTQL

P13 3–5 Researcher Beginner 473 541 CODEQL

P14 6–10 Researcher Basic 305 434 CODEQL

P15 6–10 Researcher Basic 571 X fluentTQL

P16 6–10 Student Beginner 412 558 CODEQL

P17 >10 Developer Basic X X fluentTQL

P18 >10 Developer Basic 328 600 CODEQL

P19 6–10 Developer Basic 594 X fluentTQL

P20 6–10 Developer Expert 375 492 CODEQL

P21 6–10 Student Basic 455 467 CODEQL

P22 >10 Developer Advanced X X CODEQL

P23 >10 Developer Advanced 507 600 fluentTQL

P24 >10 Developer Advanced 206 425 CODEQL

P25 3–5 Student Basic 531 X fluentTQL

P26 >10 Developer Basic 492 X fluentTQL

4.3 RQ2 Comparison of fluentTQL and CODEQL

In terms of usability, with a SUS value of 38,56 CODEQL is perceived with bad usability.
Using the null hypothesis “CODEQL is not usable (SUS is smaller than the hypothetical
value of 68)”, we select the Wilcoxon test. The test accepts the hypothesis with statistical
significance and large effect size (>0.5). On the questions how likely will the participant
recommend one DSL over the other for the task they were given (Q24-Q25), fluentTQL over
CODEQL has a Net Promoter Score value of 30,77, whereas CODEQL over fluentTQL has a
value of −86,96, where on the scale from −100 to 100, positive values are considered good.
It follows that for specifying taint-flow queries, participants would more likely recommend
fluentTQL over CODEQL.

104 Page 20 of 33 Empir Software Eng (2022) 27: 104

To compare both languages, let us consider the CODEQL example for XSS in Listing 4.
This is a solution for the task given to the participants. The query (lines 47–49) consists of
three sections, from, where, and select. In the from section, the user defines objects from pre-
defined or self-defined classes. In the where section, constraints are defined that may also
contain calls to predicates. In the select section, the results of the query are defined. For taint
analysis, CODEQL provides a module. The class XSSConfig extends from the configuration
class for taint analysis where the sources, sanitizers, and sinks are defined. Additionally,
the classes RemoteFlowSource and XssSink are provided and can be used to detect sources
and sinks for XSS. The stub code with relevant imports given to each participant contained
information that these classes exist and can be used. A user who needs other SM that the
provided classes cannot detect, will need to write a new implementation. Note that the pro-
vided classes RemoteFlowSource and XssSink will match more sources and sinks than the
fluentTQL query solution. To have an equivalent query as the one in fluentTQL, the partic-
ipants would have to write additional code for the isSource (Line 42) and isSink (Line 43)
methods instead of using the provided classes.

Few participants mentioned the amount of code they would need to write in CODEQL is
large. One participant said, “‘...way too much code to get to the actual thing that needs to
be written.”’.

Furthermore, we observed how each participant performed in solving the tasks. The task
with CODEQL was solved by 17 participants, compared to 20 with fluentTQL. Fourteen par-
ticipants solved both tasks. However, on this data, the Fisher’s test (selected due to binomial
small sample) did not indicate a statistical significance. We measured the time each partic-
ipant needed for each task, which is given in Table 3. On average participants solved the
task with CODEQL in 546 s (σ = 57, 89), which is by 13,4% slower than with fluentTQL.
Using the Wilcoxon test we found a statistical significance for the null hypothesis with a
small effect.

We performed few additional Wilcoxon tests for the impact of the background variables,
i.e.Coding, Position, and Security experience. None of these tests showed a statistical signif-
icance of the null hypothesis which tested whether the variable impacts the time of solving
the tasks. Finally, we look into the outcome of each task. The null hypothesis is “The order
of the tasks impact the output”. We used the two-way ANOVA (Girden 1992) test, which

Listing 4 CODEQL specification for XSS

Page 21 of 33 104Empir Software Eng (2022) 27: 104

did not show a statistical significance. Hence, we reject the null hypothesis and accept the
alternative one stating that the order of the tasks does not impact the outcome.

4.4 RQ3 Expressiveness

To evaluate whether fluentTQL syntax elements are sufficient to express popular Java
taint-style vulnerabilities, we created a catalog with Java code examples accompanied
by fluentTQL specifications. The catalog contains eleven types of security vulnerabilities
(Table 4). Each Java code example has a variant with and without sanitization. The cat-
alog demonstrates different language syntax elements of fluentTQL and how they can be
used for specifying vulnerabilities. The Java examples and the SM are manually collected
from several sources including the Mitre (2020b) and OWASP (2020b) databases, OWASP
benchmark project (OWASP 2020a), and other publicly available SM lists (Arzt et al. 2013;
Brooke 2013; Piskachev et al. 2019; Thomé et al. 2017).

Many of the taint-style vulnerabilities from the Mitre and OWASP databases can be
modeled with single taint flow queries. Yet, we found some examples such as the noSQLi2
query in Listing 3 where the and() operator is needed.

Taint flows that require multiple intermediate source-sinks steps were necessary for the
specification of many taint flows, i.e., the feature of multi-step taint analysis is ubiquitous.

Table 4 List of vulnerability types implemented in the fluentTQL catalog (so - sources, sa - sanitizers, rp -
required propagators, si - sinks)

Vulnerability type flows so sa rp si SM

SQL injection (Mitre 2020h) 3 13 3 6 10 32

XPath (Mitre 2020c) 1 12 1 0 12 25

Command injection (Mitre 2020f) 1 12 1 1 1 15

XML injection (Mitre 2020m) 1 12 1 0 4 17

LDAP injection (Mitre 2020g) 1 12 1 0 8 21

Cross-site scripting (Mitre 2020d) 2 13 1 1 3 18

Open redirect (Mitre 2020l) 2 13 1 0 2 16

NoSQL injection (Mitre 2020e) 2 5 2 3 2 12

Trust boundary violation (Mitre 2020k) 1 12 1 0 1 15

Path traversal (Mitre 2020j) 2 12 1 1 2 16

Log injection (Mitre 2020i) 2 12 1 1 4 18

Total (unique): 18 46 14 13 49 122

104 Page 22 of 33 Empir Software Eng (2022) 27: 104

For example, the OWASP Benchmark test 000016 contains Path Traversal vulnerability
(Mitre 2020j). A File object is constructed using a String parameter as location to the file.
If the String is user-controllable, i.e., tainted, and the File object is passed to a FileInput-
Stream constructor, a path traversal vulnerability occurs. The file constructor in this case is
a required propagator that ensures the order of SM calls.

When it comes to the SM specifications, we observed that most of the sources have a
Return object as an out-value. For sinks, most of the in-values are Parameter objects.

Additionally, we inspected the vulnerability types (known as Common Weakness Enu-
merations - CWEs) in the SANS-25 list (Mitre 2020a). 17 of 25 vulnerability types can be
expressed as taint-style. 13 of those can be modeled in fluentTQL.

The remaining four CWEs are: CWE-119, CWE-787, CWE-476, and CWE-798. Both,
CWE-119 and CWE-787 are related to buffer overflows, which do not apply to Java. The
CWE-476 cannot be expressed because the potential sources are new-expressions, which
cannot currently be modeled. Also, constant values cannot currently be modeled as potential
sources which is needed for CWE-798 where these values should be detected as hard-
coded credentials. Extending fluentTQL to support new-expressions and constant values is
possible in the abstract syntax by modeling them with a new class that extends the class
FlowParticipant. The semantics needs to be extended to define how these values will be
detected and define appropriate concrete syntax.

Even though our implementation of fluentTQL if bound to Java only, fluentTQL can express
taint-style vulnerabilities in other languages too. To specify a query for other languages, the
only requirement is that the sources, sanitizers, and sinks are defined as method calls. Simi-
lar to Java, fluentTQL can be adapted to work for C/C++, C#, other JVM-hosted languages
and cover a wide range of taint-style vulnerabilities. In languages such as JavaScript, the
coverage of vulnerabilities is smaller since the sources and sinks are often not method calls.

4.5 RQ4 Analyzing Java/Android Applications

To answer RQ4 we ran fluentTQL queries on two Java applications, OWASP WebGoat and
PetClinic, and seven Android applications from TaintBench (Luo et al. 2021).

The OWASP WebGoat is a deliberately insecure application aiming to teach devel-
opers about relevant security vulnerabilities. As a Java Spring application,7 it is popular
in the community and has been used for evaluating static analyses (Antoniadis et al.
2020). We used this application to evaluate the applicability of fluentTQL on real-world
scenario, including specifying taint-flow queries and running our Boomerang-based and
FlowDroid-based taint analysis.

We chose to work with the SQL injection as example since it has the most taint-flows
in WebGoat. We documented all 17 SQL injection taint-flows in OWASP WebGoat and use

6https://github.com/OWASP/Benchmark/blob/master/src/main/java/org/owasp/benchmark/testcode/
BenchmarkTest00001.java
7https://spring.io/

Page 23 of 33 104Empir Software Eng (2022) 27: 104

https://github.com/OWASP/Benchmark/blob/master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00001.java
https://github.com/OWASP/Benchmark/blob/master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00001.java
https://spring.io/

Table 5 Overview of the evaluated Java projects. Flows/B/F is number of expected taint-flows (vulnera-
bility instances) and those found by Boomerang and FlowDroid, CWE is number of common weakness
enumerations (vulnerability types), Runtime is average over ten runs

Project #Classes #Flows/B/F #CWE #Runtime(s) B/F

Catalog 36 27/27/25 11 52.8/43.7

PetClinic 42 4/4/4 1 10.9/14.4

WebGoat 35 17/17/13 1 30.3/36.7

them as ground truth. This was manually done by following the directions of the lessons
present in WebGoat and inspecting the source code.

Next, we specified the sensitive methods which includes 17 sources, 1 sanitizer, 2 required
propagators, and 2 sinks.We only needed to create two taint-flow queries to be able to cover all
types of taint-flows. The Boomerang-based implementation was able to detect all 17 taint-
flows. The official FlowDroid implementation (we used version 2.8) was not able to find any
taint-flow in WebGoat. We investigated and found out that FlowDroid defines only the
return values of the sources as taints. For all taint-flows in WebGoat, the taints are the
parameters of the sources. Hence, we adapted FlowDroid to support this and after doing
so, the FlowDroid implementation detected 13 taint-flows. Those that were missed are the
types that contain a required propagator which is currently not supported by FlowDroid.

For the second Java application, PetClinic, we followed the same steps as for OWASP
WebGoat. We identified and documented five taint-flows of type hibernate injection and
two taint-flows of type cross-site request forgery. In this application, all taint-flows were
detected by our implementation with Boomerang and our updated version of FlowDroid.
Table 5 shows summary of the Java applications.

TaintBench is a collection of real-world Android apps that contain malicious behavior
in form of taint-flows. These apps have well documented information about the expected
taint-flows and should help analyses writers evaluate their tools in a rigorous and fair way.
Table 6 summarizes the findings of running our fluentTQL implementation with Boomerang
as well as with FlowDroid. Out of 25 expected taint-flows among all apps the Boomerang-
based implementation found 18 whereas FlowDroid-based implementation found 13. We
manually inspected those that were not found and identified two causes which are due to
the existing solvers and not the inability of fluentTQL to express them. The first cause is the
inability to analyze taint-flows through different threads in the code. Due to implicit data-
flow behavior of the threads, the existing call graph algorithms have limitation in modeling
this correctly. This second cause is that the existing data-flow analyses do not analyze the
expressions within path constraints. In the case of our experiments, we found that the call
of the source method is within the condition of an IF statement, which is not analyzed by
Boomerang nor by FlowDroid.

The runtime values reported in Tables 5 and 6 are the average values over ten runs on a
system with Intel(R) Core(TM) i7-8565U CPU@ 1.80GHz, 16 GB RAM with Win-10 OS.

Detecting Taint-Flows Through Files The code in Listing 5 shows the loadClass method
from the app dsencrypt8 which contains the malicious taint-flow. It reads an encrypted zip
file from asset folder (source in Line 54), decrypts it and extracts class.dex which contains

8https://github.com/TaintBench/dsencrypt samp/blob/master/src/main/java/com/kbstar/kb/android/star/
ProxyApp.java

104 Page 24 of 33 Empir Software Eng (2022) 27: 104

https://github.com/TaintBench/dsencrypt_samp/blob/master/src/main/java/com/kbstar/kb/android/star/ProxyApp.java
https://github.com/TaintBench/dsencrypt_samp/blob/master/src/main/java/com/kbstar/kb/android/star/ProxyApp.java

Table 6 Overview of the
evaluated Android apps from
TaintBench. Flows/B/F is
number of expected taint-flows
(vulnerability instances) and
those found by Boomerang and
FlowDroid, Runtime is average
over ten runs

App #Classes #Flows/B/F #Runtime(s) B/F

blackfish 338 13/11/11 18.6/29.8

beita com beita contact 379 3/1/1 11.2/25.5

phospy 236 2/2/0 8.6/11.5

repane 5 1/1/0 3/4.8

dsencrypt 4 1/1/1 10.2/4.9

fakeappstore 402 3/2/0 23/16.5

fakemart 868 2/0/0 27.3/34.9

malicious code (intermediate statements in the trace are lines 57, 58, and 59). The malicious
code is called via reflection (sink in Line 67). As reported in the work by Luo et al. (2021),
these kind of taint-flows going through files, databases, etc., can not be detected by the
existing Android taint analysis tools. With fluentTQL, we are now able to model and detect
these taint-flows using the and() operator.

Listing 5 Malisious taint-flow through a file in the dsencrypt app from TaintBench

Page 25 of 33 104Empir Software Eng (2022) 27: 104

4.6 Threats to Validity

We next discuss the most relevant threats to the validity of our study design and evaluation
based on the threat types by Cook and Campbell (1979).

External Validity The participation in the study was voluntary. We asked our contacts in
industry to invite their software developers. The invitation mentioned that the study would
try to compare two domain-specific languages for static analysis. Having this information,
it is more likely that the participants have some interest in the design of programming lan-
guages and/or static analysis. Hence, there is a threat of having a subject not representative
for the entire population of software developers.

Internal Validity Apart from professional software developers, we invited researchers and
master-level students from the university. Previous work has shown that graduate students
are valid proxies for software developers in such studies (Naiakshina et al. 2017, 2018,
2019, 2020). Also, our results confirm that there is no significant correlation between the
position of the participant and the performance in the task, thus also confirming that—for
the purpose of such studies—researchers and master-level students have coding knowledge
comparable to professional developers.

Moreover, the format of within-subjects study design has its own limitations. As both
tasks were the same, but for a different DSL and context (vulnerability example), when
solving the second task, participants may have be influenced by the first task, known as
carryover effects. To deal with this we applied randomization of the order of the tasks.

Construct Validity Another threat to validity is the fairness of the tasks. Both DSLs are not
equally expressible. This means one may need more or less time to learn a new DSL. To
address this, we took into consideration the following points. First, we used vulnerabilities
that have the same taint-flow pattern. The Java code shown as an example for each task
had the same complexity. Second, for each task, we provided a stub code for the solution.
In the case of CODEQL, which is more expressible DSL than fluentTQL, and has support
not only for taint analysis but other analyses too, we asked the participants to focus only on
the taint analysis module. Finally, we had three test sessions to adjust the tasks and define
what exact information the participants will need to be able to solve each task in under ten
minutes. Similarly, a possible threat to validity comes from the design of our study to use
the open redirect vulnerability with fluentTQL and XSS for CODEQL for all participants
without switching among half of the participants. To mitigate the threat, we have selected
the code examples used in the tasks to have the same structure, i.e. the taint was in both
cases created by a call to an HTTP request object and only the sink method differs for each
vulnerability. Additionally, while explaining each task, we also explained the vulnerability.
While the participants were performing the task, we encouraged them to verbally share their
thoughts. After processing the recorded material, we find none of the participants to struggle
with understanding the vulnerability itself.

5 RelatedWork

With few exceptions, such as DroidSafe (Gordon et al. 2015), which has hard-coded SM,
the SM of the existing static analyses can be customized by the user, to some extend. In

104 Page 26 of 33 Empir Software Eng (2022) 27: 104

this section, we discuss the related approaches summarized in Table 7 that shows design
principals of each approach and level of fulfillment to the requirements from Section 2.

5.1 Graph-Based Approaches

We group DSLs in this category that allow users to explicitly manipulate graph structures
to specify code patterns.

CxQL, the DSL of the tool Checkmarx (2020), is general-purpose-like and object-
oriented language. It supports a wide range of SM (R1). The flow propagation is done
implicitly via the graph patterns (R2). As a commercial tool it provides well integrated
workflow for the users (R4 and R5). Since CxQL is capable of expressing a broad range of
graph properties, it is hard to integrate it to a generic taint analysis (R6) as it is bound to the
tool’s core analysis.

CODEQL has good integration in the developers’ workflow (R5) with plugins for popular
IDEs as well as web-based interface. It is a declarative language with support for predicates and
object-oriented design. The DSL can express a wide range of properties similar to CxQL.

PIDGIN (Johnson et al. 2015) follows the object-oriented design. It is not designed for
taint analysis, therefore it is hard to integrate it in a generic way (R6). PIDGIN does not
provide tool integrations for software developers.

IncA (Szabó et al. 2016) is a DSL for specification of the rules for incremental execution
of static analyses. Compared to the other DSL in this category it is the least expressive and
targets very specific domain. The SM and flow propagation can be expressed through the
graph patterns (R1, R2). User-defined messages are not supported (R4).

5.2 Typestate Approaches

This category consists of two DSLs, i.e. CrySL and PQL, which are designed for typestate
analysis, that detects the incorrect API usage.

Table 7 List of related approaches, their design characteristic, and their support of the requirements in Section 2

—fullfilled, —partially fullfilled, —not fullfilled

Page 27 of 33 104Empir Software Eng (2022) 27: 104

CrySL (Krüger et al. 2019) enables cryptography experts to specify the correct usage of
the crypto API making it not suitable for generic taint analysis (R6). The DSL is declarative
with mechanism based on predicates and constraints. It has a full support for SM and flow
propagation (R1, R2). The tool support is maintained.

PQL (Martin et al. 2005) is declarative DSL with specifications comparable to CrySL.
Compared to fluentTQL, the PQL’s syntax significantly differs from regular Java syntax
making it difficult to use for non-experts. PQL does not ship with available tooling support
for the users (R6).

5.3 Other Approaches

The approach used in CheckersFramework (Dietl et al. 2011) is based on the annotations
@tainted and @untainted which developers can use to annotate their code to mark custom
SM. The annotation specification requires additional manual work, which - in the case of
legacy code - is even infeasible (R5). The CheckersFramework allows to configure the
messages that are reported (R4).

Apposcopy (Feng et al. 2014) is a Android-specific taint analysis (R6) with a Datalog-
based DSL for data-flow and control-flow predicates. The sources, sinks, and propagators
are specified in form of annotations (R1, R2). We were not able to find tooling support (R5)
for the language.

Athena (Le and Soffa 2011) is a declarative DSL based on patterns and constraints with
explicit support for SM and flow propagations (R1, R2). Athena does not support user-
defined messages and is tightly coupled to a generator of analysis configurations.

AQL (Pauck et al. 2018) is an Android-specific (R6) querying language for taint flow
results from different taint analysis tools. It supports specifications of sources and sinks
(R1) and flow propagations (R2) and provides workflow with tool support for developers
to query taint results from multiple tools (R5).

WAFL is the DSL of the F4F approach (Sridharan et al. 2011) and is a general-purpose-
like language with object-oriented design that allows the specification of reflective behavior
in frameworks so that static analyses can propagate the flow. WAFL has partial support for
SM and flow propagation (R1, R2). Its main purpose is modeling of frameworks.

Finally, Saluki (Gotovchits et al. 2018) is a declarative DSL where method patterns can
be specified. SM and flow propagation are supported (R1, R2), but complex flows not (R3).

6 Conclusion

Static and dynamic taint analyses can detect many popular vulnerability types. Using them
during development time can reduce the costs. To use taint analysis tools efficiently, soft-
ware developers need to configure them to their contexts.

We proposed fluentTQL, a new domain-specific language for taint analysis designed
to be used by software developers. fluentTQL is able to express many taint-style vulner-
ability types. It supports single-step as well as multi-step taint-flow queries. Moreover,
taint-flow queries can be combined with and operator to express parallel taint-flows. flu-
entTQL uses Java fluent interface as a concrete syntax. Its semantics is independent of a
concrete implementation of taint analysis, making it easy for integration into existing tools.

In a comparative, within-subjects user study, fluentTQL showed to be more usable for
software developers than CODEQL, a state-of-the-art DSL of the commercial tool LGTM.

104 Page 28 of 33 Empir Software Eng (2022) 27: 104

Participants were faster in solving the task of specifying a taint-flow query for given
vulnerability type in fluentTQL than in CODEQL.

In future, we plan to make fluentTQL more expressive. With fluentTQL, only method
calls can be modeled as sources and sinks. We will add support for modeling specific vari-
ables, such as constant values for detecting hardcoded credentials and nullable variables for
detecting null pointer dereferences. Moreover, we will add support for regular expressions
to ease the specification of methods in case of method overloading in Java. Additionally, we
plan on investigating the usefulness of incorporating the concept of entry point as part of
fluentTQL. Finally, we are working on further evaluations of the applicability of fluentTQL
in other real-world large-scale Java applications and creating new queries for detecting more
security vulnerabilities.

Acknowledgements We gratefully acknowlede the funding by the project “AppSecure.nrw - Security-by-
Design of Java-based Applications” of the European Regional Development Fund (ERDF-0801379). We
thank Ranjith Krishnamurthy and Abdul Rehman Tareen for their contribution to the implementation of the
MagpieBridge server.

Author Contributions The first author is the main contributor to this research. The second and fourth author
contributed with conceptual ideas and feedback. The third author contributed to the implementation and with
ideas for the concrete syntax of fluentTQL.

Funding Open Access funding enabled and organized by Projekt DEAL.

Data Availability https://fluenttql.github.io/

Code Availability https://github.com/secure-software-engineering/secucheck

Declarations

Ethics Approval The user study design has been approved for ethical correctness by one of the companies
participated in the study as well as by the corresponding head of department at Fraunhofer IEM.

Consent to Participate and Publication For the user study described in section 4, all 26 participants signed
a written consent form in which they agreed to participate voluntarily in the study. They also agreed that
the collected data can be used for research publication. The written consent form was obtained from all
participants before the study.

Conflicts of Interest/Competing Interests Not applicable

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Page 29 of 33 104Empir Software Eng (2022) 27: 104

https://fluenttql.github.io/
https://github.com/secure-software-engineering/secucheck
http://creativecommons.org/licenses/by/4.0/

References

Antoniadis A, Filippakis N, Krishnan P, Ramesh R, Allen N, Smaragdakis Y (2020) Static analysis of java
enterprise applications: frameworks and caches, the elephants in the room. In: Proceedings of the 41st
ACM SIGPLAN conference on programming language design and implementation, PLDI 2020. ACM,
New York, pp 794–807. https://doi.org/10.1145/3385412.3386026

Arzt S, Rasthofer S, Bodden E (2013) Susi: a tool for the fully automated classification and categorization of
android sources and sinks. In: Network and distributed system security symposium 2013, NDSS’13

Arzt S, Rasthofer S, Fritz C, Bodden E, Bartel A, Klein J, Traon YL, Octeau D, McDaniel P (2014)
Flowdroid: precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps. In: Proceedings of the 35th ACM SIGPLAN conference on programming language design and
implementation, PLDI ’14. ACM, New York, pp 259–269

Bodden E (2018) The secret sauce in efficient and precise static analysis: the beauty of distributive, summary-
based static analyses (and how to master them). In: ACM SIGPLAN International workshop on the state
of the art in java program analysis (SOAP 2018), ISSTA ’18. ACM, New York, pp 85–93

Brooke J (2013) Sus: a retrospective. J Usability Stud 8(2):29–40
Checkmarx (2020) Checkmarx. https://www.checkmarx.com/, online; accessed January 2021
Chibotaru V, Bichsel B, Raychev V, Vechev M (2019) Scalable taint specification inference with big

code. In: Proceedings of the 40th ACM SIGPLAN conference on programming language design and
implementation, PLDI 2019. ACM, New York, pp 760–774

Christakis M, Bird C (2016) What developers want and need from program analysis: an empirical study. In:
Proceedings of the 31st IEEE/ACM international conference on automated software engineering, ASE
2016. ACM, New York, pp 332–343

Cook TD, Campbell DT (1979) Quasi-experimentation: design and analysis issues for field settings.
Houghton Mifflin, Boston

Dietl W, Dietzel S, Ernst MD, Muşlu K, Schiller TW (2011) Building and using pluggable type-checkers. In:
Proceedings of the 33rd international conference on software engineering, ICSE11. ACM, New York,
pp 681–690

Feng Y, Anand S, Dillig I, Aiken A (2014) Apposcopy: semantics-based detection of android malware
through static analysis. In: Proceedings of the 22nd ACM SIGSOFT international symposium on
foundations of software engineering, FSE 2014. ACM, New York, pp 576–587

Girden ER (1992) ANOVA: repeated measures. 84, Sage
Github S (2020) Lgtm. http://lgtm.com/, online; accessed January 2021
Gordon MI, Kim D, Perkins JH, Gilham L, Nguyen N, Rinard MC (2015) Information flow analysis of

android applications in droidsafe. In: 22nd Annual network and distributed system security symposium,
NDSS 2015, San Diego, California, USA, February 8–11, 2015. The Internet Society

Gotovchits I, van Tonder R, Brumley D (2018) Saluki: finding taint-style vulnerabilities with static property
checking. In: Proceedings of the NDSS Workshop on Binary Analysis Research

Grammatech (2020) Codesonar. https://www.grammatech.com/products/codesonar, online; accessed January
2021

Grech N, Fourtounis G, Francalanza A, Smaragdakis Y (2018) Shooting from the heap: ultra-scalable static
analysis with heap snapshots. In: Proceedings of the 27th ACM SIGSOFT international symposium on
software testing and analysis, ISSTA 2018. ACM, New York, pp 198–208

Johnson B, Song Y, Murphy-Hill E, Bowdidge R (2013) Why don’t software developers use static analysis
tools to find bugs? In: Proceedings of the international conference on software engineering, ICSE ’13.
IEEE Press, Piscataway, pp 672–681

Johnson A, Waye L, Moore S, Chong S (2015) Exploring and enforcing security guarantees via program
dependence graphs. SIGPLAN Not 50(6):291–302

Krüger S, Späth J, Ali K, Bodden E, Mezini M (2019) Crysl: an extensible approach to validating the correct
usage of cryptographic apis. IEEE Trans Softw Eng

Le W, Soffa ML (2011) Generating analyses for detecting faults in path segments. In: Proceedings of the
2011 international symposium on software testing and analysis, ISSTA11. ACM, New York, pp 320–330

Livshits B (2012) Dynamic taint tracking in managed runtimes. Tech. rep., Microsoft Research
Livshits B, Nori AV, Rajamani SK, Banerjee A (2009) Merlin: specification inference for explicit information

flow problems. SIGPLAN Not 44(6):75–86
Luo L, Dolby J, Bodden E (2019) Magpiebridge: a general approach to integrating static analyses into IDEs

and editors (tool insights paper). In: Donaldson AF (ed) 33rd European conference on object-oriented
programming (ECOOP 2019), Schloss Dagstuhl–Leibniz-Zentrum fuer informatik, Dagstuhl, Germany,
vol 134, pp 21:1–21:25. https://doi.org/10.4230/LIPIcs.ECOOP.2019.21

104 Page 30 of 33 Empir Software Eng (2022) 27: 104

https://doi.org/10.1145/3385412.3386026
https://www.checkmarx.com/
http://lgtm.com/
https://www.grammatech.com/products/codesonar
https://doi.org/10.4230/LIPIcs.ECOOP.2019.21

Luo L, Pauck F, Piskachev G, Benz M, Pashchenko I, Mory M, Bodden E, Hermann B, Massacci F (2021)
Taintbench: automatic real-world malware benchmarking of android taint analyses. Empir Softw Eng

Martin M, Livshits B, Lam MS (2005) Finding application errors and security flaws using pql: a program
query language. SIGPLAN Not 40(10):365–383

Microfocus (2020) Fortify. https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview,
online; accessed January 2021

Microsoft (2020) Language server protocol. https://microsoft.github.io/language-server-protocol/, online;
accessed January 2021

Mitre CWE (2020a) 2011 cwe/sans top 25 most dangerous software errors. http://cwe.mitre.org/top25/,
online; accessed January 2021

Mitre CWE (2020b) Cwe home page. http://cwe.mitre.org/, online; accessed January 2021
Mitre CWE (2020c) Improper neutralization of data within xpath expressions. https://cwe.mitre.org/data/

definitions/643.html, online; accessed January 2021
Mitre CWE (2020d) Improper neutralization of input during web page generation. https://cwe.mitre.org/data/

definitions/79.html, online; accessed January 2021
Mitre CWE (2020e) Improper neutralization of special elements in data query logic. https://cwe.mitre.org/

data/definitions/943.html, online; accessed January 2021
Mitre CWE (2020f) Improper neutralization of special elements used in a command. https://cwe.mitre.org/

data/definitions/77.html, online; accessed January 2021
Mitre CWE (2020g) Improper neutralization of special elements used in an ldap query. https://cwe.mitre.org/

data/definitions/90.html, online; accessed January 2021
Mitre CWE (2020h) Improper neutralization of special elements used in an sql command. https://cwe.mitre.

org/data/definitions/89.html, online; accessed January 2021
Mitre CWE (2020i) Improper output neutralization for logs. https://cwe.mitre.org/data/definitions/117.html,

online; accessed January 2021
Mitre CWE (2020j) Relative path traversal. https://cwe.mitre.org/data/definitions/23.html, online; accessed

January 2021
Mitre CWE (2020k) Trust boundary violation. https://cwe.mitre.org/data/definitions/501.html, online;

accessed January 2021
Mitre CWE (2020l) Url redirection to untrusted site (open redirect). https://cwe.mitre.org/data/definitions/

601.html, online; accessed January 2021
Mitre CWE (2020m) Xml injection. https://cwe.mitre.org/data/definitions/91.html, online; accessed January

2021
Naiakshina A, Danilova A, Tiefenau C, Herzog M, Dechand S, Smith M (2017) Why do develop-

ers get password storage wrong? A qualitative usability study. In: Proceedings of the 2017 ACM
SIGSAC conference on computer and communications security, CCS 17. ACM, New York, pp 311–328.
https://doi.org/10.1145/3133956.3134082

Naiakshina A, Danilova A, Tiefenau C, SmithM (2018) Deception task design in developer password studies:
exploring a student sample. In: Proceedings of the fourteenth USENIX conference on usable privacy and
security, USENIX Association, USA, SOUPS 18, pp 297–313

Naiakshina A, Danilova A, Gerlitz E, von Zezschwitz E, Smith M (2019) If you want, i can store the
encrypted password: a password-storage field study with freelance developers. In: Proceedings of the
conference on human factors in computing systems, CHI 19. ACM, New York, pp 1–12

Naiakshina A, Danilova A, Gerlitz E, Smith M (2020) On conducting security developer studies with cs
students: Examining a password-storage study with cs students, freelancers, and company developers.
In: Proceedings of the 2020 CHI conference on human factors in computing systems, CHI 20. ACM,
New York, pp 1–13

Nguyen Quang Do L, Bodden E (2020) Explaining static analysis with rule graphs. IEEE Trans Softw Eng
1–1. https://doi.org/10.1109/TSE.2020.3004525

Nguyen Quang Do L, Wright JR, Ali K (2020) Why do software developers use static analysis tools? A
user-centered study of developer needs and motivations. In: Proceedings of the sixteenth symposium on
usable privacy and security. https://doi.org/10.1109/TSE.2020.3004525

OWASP (2020a) Owasp benchmark. https://owasp.org/www-project-benchmark/, online; accessed January
2021

OWASP OWASP (2020b) Owasp top 10 most critical web application security risks. https://www.owasp.org/
index.php/Category:OWASP Top Ten Project, online; accessed January 2021

Pauck F, Bodden E, Wehrheim H (2018) Do android taint analysis tools keep their promises? In: Proceedings
of the 2018 26th ACM joint meeting on european software engineering conference and symposium on
the foundations of software engineering, ESEC/FSE 2018. ACM, New York, pp 331–341

Page 31 of 33 104Empir Software Eng (2022) 27: 104

https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview
https://microsoft.github.io/language-server-protocol/
http://cwe.mitre.org/top25/
http://cwe.mitre.org/
https://cwe.mitre.org/data/definitions/643.html
https://cwe.mitre.org/data/definitions/643.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/943.html
https://cwe.mitre.org/data/definitions/943.html
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/90.html
https://cwe.mitre.org/data/definitions/90.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/117.html
https://cwe.mitre.org/data/definitions/23.html
https://cwe.mitre.org/data/definitions/501.html
https://cwe.mitre.org/data/definitions/601.html
https://cwe.mitre.org/data/definitions/601.html
https://cwe.mitre.org/data/definitions/91.html
https://doi.org/10.1145/3133956.3134082
https://doi.org/10.1109/TSE.2020.3004525
https://doi.org/10.1109/TSE.2020.3004525
https://owasp.org/www-project-benchmark/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

Piskachev G, Do LNQ, Bodden E (2019) Codebase-adaptive detection of security-relevant methods. In: Pro-
ceedings of the 28th ACM SIGSOFT international symposium on software testing and analysis, ISSTA
2019. ACM, New York, pp 181–191

Reichheld FF (2003) The one number you need to grow. Harv Bus Rev 81(12):46–55
Sas D, Bessi M, Fontana FA (2018) Automatic detection of sources and sinks in arbitrary java libraries. In:

2018 IEEE 18th International working conference on source code analysis and manipulation (SCAM),
pp 103–112

Schwartz EJ, Avgerinos T, Brumley D (2010) All you ever wanted to know about dynamic taint analysis and
forward symbolic execution (but might have been afraid to ask). In: 2010 IEEE Symposium on security
and privacy, pp 317–331. https://doi.org/10.1109/SP.2010.26

SecuCheck RP (2021) Interviews with developers. https://secucheck.github.io/, online; accessed January
2021

Smith J, Johnson B, Murphy-Hill E, Chu B, Lipford HR (2019) How developers diagnose potential security
vulnerabilities with a static analysis tool. IEEE Trans Softw Eng 45(9):877–897

Smith J, Nguyen Quang Do L, Murphy-Hill E (2020) Why can’t Johnny fix vulnerabilities: a usability eval-
uation of static analysis tools for security. In: Proceedings of the sixteenth symposium on usable privacy
and security, SOUPS 2020

Song T, Li X, Feng Z, Xu G (2019) Inferring patterns for taint-style vulnerabilities with security patches.
IEEE Access 7:52339–52349

Späth J, Ali K, Bodden E (2019) Context-, flow-, and field-sensitive data-flow analysis using synchro-
nized pushdown systems. Proceedings of the ACM SIGPLAN symposium on principles of programming
languages 3(POPL):48:1–48:29

Sridharan M, Artzi S, Pistoia M, Guarnieri S, Tripp O, Berg R (2011) F4f: taint analysis of framework-based
web applications. SIGPLAN Not 46(10):1053–1068

Stahl T, Voelter M, Czarnecki K (2006) Model-driven software development: technology, engineering,
management. Wiley, Hoboken

Szabó T, Erdweg S, Voelter M (2016) Inca: a dsl for the definition of incremental program analyses. In:
Proceedings of the 31st IEEE/ACM international conference on automated software engineering, ASE
2016. ACM, New York, pp 320–331

Thomé J, Shar LK, Bianculli D, Briand LC (2017) Joanaudit: a tool for auditing common injection vulnerabil-
ities. In: Proceedings of the 2017 11th joint meeting on foundations of software engineering, ESEC/FSE
2017. ACM, New York, pp 1004–1008

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Goran Piskachev (M.Sc. 2015) is a team manager for development
tools for secure services and apps at Fraunhofer IEM in Paderborn. He
received his master degree in computer science and is currently a PhD
student at Paderborn University. Previously, he completed an engi-
neering degree at the Ss. Cyril and Methodius University in Skopje.
His research interests include static code analysis, security testing,
domain specific languages, and machine learning for code analysis.

104 Page 32 of 33 Empir Software Eng (2022) 27: 104

https://doi.org/10.1109/SP.2010.26
https://secucheck.github.io/

Johannes Späth (PhD 2019) has a research background in static
program analysis and completed his PhD at the University of Pader-
born in 2019. His research interests lie in pointer analysis and taint
analysis with applications for automated detection of security vulner-
abilities. During his PhD he worked on CogniCrypt, an eclipse-based
IDE plugin that supports developers in using cryptographic APIs in
Java. Since 2020, Johannes is a co-founder of CodeShield, a startup
that focuses on cloud application security.

Ingo Budde (B.Sc 2018) is a Software Engineer at Fraunhofer IEM
in Paderborn. He received his B.Sc degree in Computer Science from
Paderborn University (2018) and is interested in static code analysis.

Eric Bodden is a full professor for Secure Software Engineering at
the Heinz Nixdorf Institute of Paderborn University, Germany. He is
further the director for Software Engineering and IT Security at the
Fraunhofer Institute for Engineering Mechatronic Systems Design.
Prof. Bodden has been recognized several times for his research
on program analysis and software security, most notably with the
German IT-Security Price and the Heinz Maier-Leibnitz Price of
the German Research Foundation, as well as with several distin-
guished paper and distinguished reviewer awards. He is an ACM
Distinguished Member.

Page 33 of 33 104Empir Software Eng (2022) 27: 104

	Fluently specifying taint-flow queries with fluentTQL
	Abstract
	Introduction
	Requirements for a Taint Analysis DSL
	Selection of Sensitive Methods
	Selection of In- and Out-Values
	Composition of Taint-Flows
	Detailed Error Message
	Integration into Developer's Workflow
	Independence of Concrete Taint Analysis

	fluentTQL
	Concrete Syntax
	Abstract Syntax
	Methods
	Required Propagators
	Taint-Flow Queries
	Imports and Reuse

	Semantics
	Calculating Traces
	Report Message
	Usability Versus Expressiveness

	Implementation

	Evaluation
	Methodology
	Setup
	Questionnaire
	Participants
	Statistical Tests

	RQ1 Usability of fluentTQL
	RQ2 Comparison of fluentTQL and CodeQL
	RQ3 Expressiveness
	RQ4 Analyzing Java/Android Applications
	Detecting Taint-Flows Through Files

	Threats to Validity
	External Validity
	Internal Validity
	Construct Validity

	Related Work
	Graph-Based Approaches
	Typestate Approaches
	Other Approaches

	Conclusion
	References

