DroidSearch: A Tool for Scaling Android App
Triage to Real-World App Stores

Siegfried Rasthofer!, Steven Arzt', Max Kolhagen', Brian Pfretzschner!,
Stephan Huber?, Eric Bodden'2, Philipp Richter?
Center for Advanced Security Research Darmstadt (CASED)
! Technische Universitit Darmstadt, Germany
2 Fraunhofer SIT, Darmstadt, Germany
3 Universitit Kassel, Germany
{firstname lastname } @cased.de

Abstract—The Android platform now features more than a
million apps from thousands of developers. This abundance is
convenient, as it caters to almost every need. But users and
researchers also worry about the security and trustworthiness of
these apps. While precise program-analysis tools are helpful in
this context, unfortunately they do not scale to the large number
of apps present in current app stores.

In this work we thus present DROIDSEARCH, a search engine
that aids a multi-staged analysis in which fast pre-filtering
techniques allow security experts to quickly retrieve candidate
applications that should be subjected to further automated and/or
manual analysis. DROIDSEARCH is supported by DROIDBASE, a
middleware and back-end database which associates apps with
metadata and the results of lightweight analyses on bytecode and
configuration files that DROIDBASE automatically manages and
executes.

Experiments on more than 235,000 applications from six
different application stores including Google Play reveal many
interesting findings. For instance, DROIDSEARCH identifies 40
known malware applications in Google Play and detects over
35,000 applications that use both http and https connections
for accessing the same resources, effectively rendering the https
protection ineffective. It also reveals 11,995 applications providing
access to potentially sensitive data through unprotected content
providers.

I. INTRODUCTION

According to a recent market study, more than 500 million
smartphones will be sold in 2014 [21]. Android leads the
market with a share of more than 80% [12]. Much of this
popularity is due to the availability of applications for almost
every need. Smartphones are at the center of lively app markets
in which not only companies, but also individual developers
can offer their products. In total, the app market is expected
to reach a volume of about 35 billion dollars in 2015 [27].
Current markets such as the Google Play Store contain more
than one million applications and grow at fast speed. However,
such rising app ecosystems raise a lot of questions. Security
analysts wonder which applications contain known security
vulnerabilities such as allowing data theft through unprotected
content providers or which applications exhibit known mal-
ware patterns such as data theft, SMS fraud, or SMS message
interception. Social scientists are interested in how (potentially
malicious) behavior influences the app ratings and comments
in the store. End users wonder which apps are safe to install

and which ones may misuse their private data. Finally, app-
market providers wonder how they can best prevent such apps
from entering their market that are of low quality or are
outright malicious.

Because of the sheer number of apps available in current
eco systems, it is impossible to answer those questions through
manual analysis. Even automated analyses have their limits:
Highly precise analyses take several minutes per app [2],
which is already too long to scale to full markets. A practical
process for large-scale app evaluation thus has to be multi-
staged: Lightweight pre-filters retrieve only those apps that
can possibly exhibit the behavior in question. Applications that
e.g., dont even have the permissions required to read certain
types of data cannot possible leak them. Similarly, apps that
e.g., don’t have the permission to send SMS messages cannot
conduct SMS fraud. Such apps can be ruled out quickly with
a pre-filter that conducts a very shallow, but fast analysis. The
pre-filter only leaves those applications as candidates for a
more in-depth analysis for which it cannot directly decide
that the behavior in question is impossible. These apps are
then passed on to more precise (and probably costly) analysis
tools or to a human export for manual inspection. Note that
the pre-filter is an over-approximation: It will only rule out
impossibilities and always pass on an application when in
doubt.

To provide a means for such pre-filtering, this paper pro-
poses DROIDSEARCH, a sophisticated app analysis and search
engine for Android applications. DROIDSEARCH combines
DROIDBASE, a database associating application metadata and
analysis results, with a web-based and scriptable search fron-
tend that allows analysts to pre-filter and assess apps with
ease using expressive queries. The database is automatically
maintained by crawlers and analyzers that do not require any
human interaction. DROIDSEARCH thereby acts as a semantic
pre-filter to the underlying application store without being
store- or analysis-specific. All specific filtering knowledge
is provided in the user’s queries which makes the database
applicable to even pre-filter for attacks yet to be discovered.

The instance of DROIDBASE used for this paper comprises
more than 235,000 applications from six different application
stores, including over 210,000 applications from Google Play
and almost 27,000 collected malware applications. With it,
we identified 40 malware applications in the Google Play

Crawler Crawler

DroidSearch

API

DroidBase

;

Overall Architecture Overview

Fig. 1.

Store and over 35,000 applications that use both http and
https connections for accessing the same resources, effec-
tively rendering the ht tps protection ineffective. We further-
more detected 11,995 applications that contain open content
providers, allowing unrestricted access to potentially sensitive
data. To summarize, this paper presents the following original
contributions:

e the design and implementation of DROIDBASE, a mid-
dleware for apps, app metadata and analysis results,

e the design and implementation of DROIDSEARCH, an
expressive frontend over DROIDBASE,

e and a number of interesting findings in a large sample
set of apps from various stores, including reports
on malicious applications, vulnerabilities in benign
applications, and general market statistics.

The remainder of this paper is structured as follows: Sec-
tion II explains the architecture of DROIDBASE and DROID-
SEARCH. We then demonstrate how the tool can help in large-
scale security analyses on Android app markets in Section III.
Section IV discusses legal aspects. In Section V we present
related work, and in Section VI we conclude.

II. ARCHITECTURE

Figure 1 shows the overall architecture of the system. An
arbitrary number of crawlers constantly crawls the various
app stores such as Google Play, AppChina, or ApkHiapk to
find new or updated Android applications as explained in
Section II-A. The analyzer which we explain in Section II-B
then takes these applications and creates the analysis data
that will be stored along with the application. DROIDBASE
(see Section II-C) is the storage and coordination middleware
at the center of the system. It not only provides a seman-
tic interface to the underlying relational database, but also
manages application analysis states (already analyzed or not,
analyzer version, etc.) and overall statistics. DROIDSEARCH
(see Section II-D) finally allows researchers to access the data
stored in DROIDBASE and execute semantic queries either
through a web application or through custom scripts.

A. Crawler

The crawlers constantly scan the various application stores
for new or updated applications. There is one specific crawler
implementation for each store. For the purpose of this paper,
we used DROIDBASE to crawl apps from Google Play, FDroid,
FreewareLovers, SlideMe, ApkHiapk, and AppChina. One can
easily extend the tool with more crawlers for other stores or
sophisticated crawling tools such as PlayDrone [24].

Note that we download only free apps. Obtaining paid apps
would require special contracts with app store providers and/or
app developers to provide for a cost-efficient and legal solution.
Downloading the apps is a requirement for analyzing them
since the bytecode is otherwise not available.

B. Analyzer

The analyzer produces semantic data for the Android
applications obtained by the various crawlers. Since the goal of
DROIDSEARCH and DROIDBASE is to act as a fast pre-filter,
the analyzer does not need to conduct highly precise analyses.
The data should rather be efficiently extractable, and should
allow the triage of interesting apps which will then be passed
to more sophisticated, longer-running analyses, for instance the
FlowDroid [2] static data-flow tracker or the EPICC [17] inter-
component communication analyzer, or to a human expert.

In our current setup, the analyzer extracts the following
main types of information for DROIDBASE:

e App Store specific data (App description, number of
downloads, etc.)

e User ratings and reviews
e All information in the AndroidManifest .xml file
e The certificate used to sign the application

e Libraries used in the application (both for functional
purposes and for advertisement)

e The list of files contained in the application package
e URIs with which the application interacts
e All Android API calls made in the application

e Sensitive sources and sinks of private data called in
the application

e Uses of reflective calls or native methods

The security-related information (e.g., API calls, native
methods, URIs, etc.) provided by the app’s bytecode are
directly extracted from the classes.dex file. To retain
effciency, DROIDBASE does not decompile the bytecode into
an intermediate representation such as smali/baksmali [22], but
instead directly processes the binary dex file using a custom
parser implementation.

C. DroidBase

DROIDBASE provides a middleware based on IBM DB2
for storing and accessing the analysis results for the Android
applications retrieved from the various stores. We chose DB2
as it supports XML searching capabilities using XPath (used

for searching Android manifest files) as well as a full text
search index (used for application descriptions and user com-
ments) out of the box. Furthermore, DB2 can be extended with
user-defined functions which simplifies the implementation.

In contrast to other approaches for large-scale app analysis
that are based on ElasticSearch, our database cannot easily be
distributed across multiple servers. We favored complex search
features over distributivity since all metadata collected for our
more than 235,00 apps fitted in a database of 34 GB that could
be handled by a machine with three virtualized cores and 8
GB of memory. Note that the APK files need not be retained
after the respective applications have been analyzed: Only the
extracted metadata is required for running the DROIDSEARCH
queries.

DROIDBASE also manages the analysis status of all ap-
plications. This status is either zero if the app has not been
analyzed yet, or the version number of the analyzer that has
processed the app. While the database is central and cannot
be distributed in our approach, the status flag allows running
multiple distributed analyzers on different machines that each
process a certain fraction of the overall crawled app set.
Even more, the version flag also allows incremental updates
to the analyzers. If an app has a non-zero status code, only
the analyses that have been added or changed between the
respective analyzer versions need to be re-executed on the app.

D. DroidSearch

DROIDSEARCH is the search engine that runs on top of
DROIDBASE. It allows security analysts to retrieve Android
applications that fulfill certain properties such as declaring a
specific set of permissions, calling a specific API method, or
using reflective method calls. The search engine is provided
both through a web application and an API that serves queries
issued by custom scripts. The latter allows for extendability
and is intended to encourage integration into other research
projects.

With the query builder shown in Figure 2, users can create
so-called matchers. A matcher is a set of field-operator-value
triples which are implicitly connected by a logical and. One
matcher can for instance require the permission list to contain
android.permission.ACCESS_FINE_LOCATION and
the app name to contain the word “weather”. The operators
used in matchers include equality, arithmetic comparison, sub-
string matching, and XPath matching for the Android manifest
file.

Matchers can freely be combined using the and and or
logical operators to form more complex queries such as those
used to produce the findings on which we report in the follow-
ing sections. DROIDSEARCH converts these queries to SQL
select statements which are passed to DROIDBASE and
executed on the underlying DB2 relational database. Figure 3
shows a query combined from three matchers.

Executing the SQL qureries generated by DROIDSEARCH
is usually very fast and takes less than a minute. This makes
DROIDSEARCH an ideal pre-filter. With most analyses, pro-
cessing even a handful of spurious applications that cannot
exhibit a certain behavior in question takes longer than hav-
ing these applications filtered out by DROIDSEARCH before
starting the actual analysis.

Developer]
User Reviews o]
Publish date

< 3 o i

User name

Comment

contains &

Rating

< 3

Language

-
= ¥ -

Fig. 2. DROIDSEARCH Filter Excerpt

Query Builder

(AND
App Name contains wheather
Permission = android.permission.ACCES_FINE_LOCATION
Type = reflections

)

Add =~ Remove = Toggle type

Fig. 3. DROIDSEARCH Query Builder

III. THE USAGE OF DROIDSEARCH

The following section describes how DROIDSEARCH can
be used to pre-filter Android application markets for potentially
vulnerable apps (Section III-A), and candidates of malicious
behavior (Section III-B). We also give security-related statistics
on the Google Play Store (Section III-C). For all our findings,
we describe which DROIDSEARCH queries were used to either
directly identify these problems or pre-filter the applications
for further analysis.

A. Application Vulnerabilities

In this section, we show how DROIDSEARCH can be used
to identify applications that are potentially vulnerable to certain
types of attacks.

1) SSL Certificate Validation: When an application com-
municates with a remote server via SSL, the identity of this
server needs to be verified. The Android operating system pro-
vides a default verification implementation for its WebView
component, but developers can overwrite certificate validation
and error handling. The latter is often used during development

to allow the use of arbitrary self-signed certificates until a final
certificate has been obtained. In some cases, developers forget
to re-enable SSL validation before the app is deployed to the
market which allows for man-in-the-middle attacks [6].

DROIDSEARCH is used to pre-filter applications that have
the permission to access the Internet (XPath query on the
manifest) and which overwrite the onReceivedSslError
method of the WebViewclient class. 59,269 (28.3%) of
the 209,507 applications we crawled from the Google Play
Store are potentially vulnerable. Appicaptor [20], a commercial
Android security testing framework, confirmed a Webview-
based SSL vulnerability in 11,802 apps, which is 19.9% of our
prefiltered set and 5.6% of the overall Play Store sample.

Faulty implementations of the TrustManager interface are
also prominent in Android apps. Using DROIDSEARCH, we
identified 49,339 apps with custom implementations. App-
icaptor confirmed 32,600 apps with vulnerable TrustMan-
agers, which is 55% of the prefiltered apps and 15% of
all apps we crawled from the Play Store. Note that these
TrustManagers might only be enabled in debug configura-
tions in some cases. Determing whether this flaw can actually
be exploited in these applications is beyond the scope of this

paper.

In both cases, the pre-filtering using DROIDSEARCH sig-
nificantly reduced the number of applications that had to be
processed by Appicaptor.

2) Mixed http / hittps Access: Many applications access
sensitive data stored in the cloud or on external servers using
the https protocol for security. However, if the developer
is not careful and the webserver does not refuse to accept
unsecured http connections as well, mixed access patterns
might occur: Data is sometimes accessed via https, but
sometimes also using plain http where it is transmitted in
plain and easily accessible.

Using DROIDSEARCH’s URI functionality, we queried the
database for apps that contain URL patterns matching both
http://<url> and https://<url> with <url> being
the same string in both cases. This filter matched 35,143
applications in the Google Play Store which is 16.6% of all
applications that we crawled. We found 3,041 different apps
that use Twitter’s implementation of the OAuth authentication
protocol both through http and https. A further, more
precise analysis is not even necessary in this case as all such
mixed access patterns can possibly be exploited.

3) Static Passwords: When connecting to some FTP
servers or to web servers, credentials must be supplied. These
credentials are often included in the bytecode as constant
strings. Attackers can simply decompile the app and retrieve
these credentials to access the respective server on their own.

DROIDSEARCH can evaluate regular expressions on con-
stant strings extracted from the applications. With this feature,
we uncovered 4 unique credentials in 4 Play Store apps which
were sent over unencrypted http connections, including one
user name admin. The respective web site, however, was
no longer available for confirmation. For one website, the
respective URL returned an HTTP-404 (not found) error. One
URL still contained the XML file addressed by the URL and
required the credentials we obtained from the app. The URL

on which the fourth credential was used was also accessible
without authentication.

4) Android Manifest Settings: The
AndroidManifest.xml files defines basic settings for an
Android application. DROIDBASE stores the complete contents
of this file in the database. This allows DROIDSEARCH to
evaluate XQuery expressions against the collected manifests
which can also be combined with arbitrary other analysis data
in DROIDBASE to form complex queries.

The manifest file defines, among other settings, whether
the operating system shall allow a debugger to be attached to
the app. While this feature is useful during development, it
can be abused in a productive scenario to obtain sensitive data
processed by the app. In our crawled subset of the Google Play
Store, we found 12,206 applications which allow debugger
attachment. This is 5.8% of the overall sample for this store.
27,720 apps (13,1%) explicitly disable it. All other applications
do not explicitly set the debugger flag and rely on the system
default which is false for non-debug builds.

Applications can register broadcast receivers in their
AndroidManifest.xml file. If the respective callback is
sent by either the operating system or a different application,
it is sequentially dispatched to all receivers registered for
the respective intent. The dispatch order is controlled by the
priority values of the registered listeners. Applications can
abuse this to be the first to receive an intent and then suppress
it. Using DROIDSEARCH, we found 5,357 applications in the
Google Play Store that register broadcast receivers with a
priority greater than 10 which is 2.5% of our sample. A manual
analysis shows, though, that most uses are benign.

5) Content Provider Leakage: Data stored on the smart-
phone such as contacts, e-mails, and accounts is usually
managed through so-called Content Providers which are de-
fined in the AndroidManifest.xml file of the managing
application. If a provider is marked as exported and no required
permission is defined for it, the stored information is freely
accessible to malicious applications installed on the same
phone [15]. Data leakage is one of the most common malware
patterns [7].

Open content providers can be found using DROID-
SEARCH’s XPath feature by searching for content provider
with the exported flag, but no definition of authorities
or readPermission. 2,861 apps in the Google Play Store
(1.4%) contain a content provider which is explicitly marked as
exported. 7,358 applications (3.5%) contain a content provider
explicitly marked as non-exported. 9,698 apps (4.6%) contain
content providers for which the exported attribute is not
specified which makes them exported on Android API versions
16 and lower. Though the behavior was changed after Android
API version 16, applications configured for earlier versions
retain the old default for backwards compatibility.

Note that one application can specify multiple content
providers with different settings, so there can be an overlap in
the numbers reported above. In total, 12,774 apps (6.0%) apps
contain externally-accessible content providers. 11,995 apps
(5.7% of all apps or 93.9% of all apps with exported content
providers) do not require any permissions for apps requesting
data from their content providers.

In some cases it was intended by the developer to provide
application data to other apps without requiring permissions.
Other apps might implement custom security checks in their
content providers without relying on the mechanisms provided
by the operating system. We randomly picked 100 candidate
applications returned by DROIDSEARCH and subjected them
to a more precise analysis. We ran drozer, a security audit
and attack framework, on these apps and were able to confirm
security vulnerabilities in 15 of these 100 apps. We were even
able to generate working exploits from the URIs extracted from
these apps. The confirmed vulnerable apps included calendars,
file explorers, games, and even financial apps.

6) Applications Using Root Access: The Android operating
system does not allow applications to be run as root by default.
This can be bypassed to enable benign uses such as full-
system backups, but a root account can also be exploited for
malicious purposes. Once an application has root access, it
can no longer be isolated from other applications and the
operating system. Therefore, “rooting” a device can easily
introduce grave security issues for the device as a whole. One
would therefore only expect a small number of applications
requesting root access.

DROIDBASE stores all constant strings used in an ap-
plication. We used DROIDSEARCH to search for calls to
su executables such as /system/xbin/su installed by
common rooting tools. DROIDSEARCH identified 16,444 of
our analyzed 211,500 applications in the Google Play Store
(about 7.8%) require or request root access to the device
which violates the normal Android security model. A manual
inspection over some of these applications identified apps
with root access that for instance synchronize pictures with
Facebook. From a first inspection of these apps, it was not
clear why these apps should need to be run as root.

B. Malware

In this section, we present current Android threats and
show how applications potentially containing such malicious
behavior can be pre-filtered by DROIDSEARCH.

1) Known Malware in Public Stores: For each application,
DROIDBASE stores a SHA-256 hash of the respective apk
file. Using DROIDSEARCH, we compared the hashes of the
applications we downloaded from the Google Play Store
with the hashes of already-identified malware applications for
Android taken from VirusShare [25], the Malware Genome
Project [1], VirusTotal [26], DroidAnalytics [29], McAfee, and
GData. DROIDSEARCH found an intersection of 1,994 APKs
which were contained both in our malware sample set and in
our sample crawled from the Google Play Store.

The majority of these known malware apps contain adware.
It is well known from existing work [31] that advertisement
frameworks within applications collect personal user data in
order to build profiles for targeted advertising. To distinguish
outright malicious applications from such ‘“grayware”, we
subjected the 1,994 apps returned by DROIDSEARCH to a
second filter that takes concrete virus scanner classifications
into account. This post-processing yielded 40 well-known truly
malicious applications (not adware or greyware) which we
verified by hand. Some of them were still in the Google Play

Store at the time of writing. We reported these findings to the
Android security team.

Apparently, some Play Store accounts are dedicated to
malware distribution. DROIDBASE stores the certificate along
with every application. We used an XPath query on this data to
list the certificate issuer names for our set of known malware
applications. About 400 samples of our original intersection of
1,994 apps were signed with a key generated for a company
called “Moskow Droid Development”. 500 malware applica-
tions were signed by “Mobile Sevices 500”. The developer
”912-Studios” that created the Easy Button FREE spyware
produced 21 applications in total, all of which are very similar
spyware apps, as if built from a template. 5 of those apps are
still in the Play Store. We found these relations by searching
for the names of known malware authors in the certificates
of the store apps using DROIDSEARCH. We propose blocking
store accounts if a certain number of malware applications
has been uploaded from them. Since creating an account
requires a payment in Google Play, it is not easy for malware
developers to switch to fake accounts as every blocked account
costs money. New accounts must furthermore be paid with a
different credit card once the old account (including the credit
card used to pay for it) got blocked.

2) SMS Message Interception: Android applications with
the RECEIVE_SMS permission can intercept incoming SMS
messages. Banking trojans use this method to access mo-
bile transaction numbers (mTANS) which they can then
use for fraudulent transactions. Using DROIDSEARCH, we
identified 6,201 apps requesting this permission in the
Google Play Store (2.9% of the sample). 2,379 apps
register a broadcast receiver for android.provider.
Telephony.SMS_RECEIVED intents in their manifest file
as we found using DROIDSEARCH’s XPath query func-
tion on manfiest files. The other applications that bear
the permission, but do not register a broadcast receiver
might register the respective receivers at runtime or might
simply be over-privileged and not actually use this per-
mission. 1,032 apps are especially interesting as they not
only register a broadcast for incomig SMS messages and
have the necessary permission but also assign an unusu-
ally high priority (> 10) to this receiver. 18 of these
apps call the BroadcastReceiver.abortBroadcast
method that stops other apps from receiving the SMS message.
DROIDSEARCH makes it possible to only analyze those 18
applications in detail while discarding others that are not as
likely to be potentially malicious. These 18 apps however seem
benign from a first manual inspection.

3) User Reviews: Many app stores allow users to rate
applications they have previously downloaded and installed on
their devices. This information shall help other users decide
whether an application suits their requirements, is stable, and
trustworthy. DROIDBASE stores these user reviews and ratings
for applications from the Google Play Store together with
the respective application which we used to look for reviews
containing the words “malware”, “malicious” or “virus”. Most
ratings were related to users pointing that their anti-virus appli-
cation classified the application as malware. Manual analysis
showed that all of these applications contained advertisement
libraries which were identified as Adware by the analysis
tools.

Only a minority of our sample (2%) was commented with
texts such as “Virus spyware. Do not download.”, “Virus If
installed” or “It has a virus he or she can read your phone
number and do stuff without you knowing”. Such concrete
warnings by users should give the app store operator hints
on which applications should be more thoroughly checked for
malicious behavior.

4) App Descriptions: Many application developers provide
short summaries for their applications in which they describe
functionality, supported devices, and other useful information.
For the user, the longer and the more comprehensive the
description is, the clearer is the impression she gets of the
application.

Since many malware detection approaches presented in
literature [10, 18] rely on the app description, we evaluated
how meaningful and reliable these descriptions actually are.
Using DROIDSEARCH, we counted the number of words used
in real-world app descriptions. On average, an app description
in the samples we crawled from the Google Play Store uses
117 words. 4% of all descriptions contain less than 5 words,
14% contain less than 20 words, 38% contain between 50
and 150 words and only 26% contain more than 150 words.
This shows that the number of words used in descriptions is
mostly very low: One thus needs to question whether these
descriptions are really meaningful to both users and malware
detection approaches.

5) Stealing Personal Data From Storage: Some applica-
tions store sensitive user data on the phone’s SD card. All ap-
plications with the READ_EXTERNAL_STORAGE permission
can read from this storage. As there is no further protection,
this implicit sharing can lead to data disclosure vulnerabilities
such as in the well-known WhatsApp [28] messaging applica-
tion. It stores all sent and received messages as well as personal
data such as photos or videos on the SD card. Previous versions
of the application did not protect the data in any way. The latest
version of WhatsApp encrypts the data, but uses a hard-coded
symmetric key which has become known by now. Therefore,
the WhatsApp data stored on the SD card is again readable to
all applications which are allowed access to the SD card [23].

DROIDSEARCH is able to search for URLs and file names
accessed in applications which we used to identify 4 apps in
the Google Play Store that attempt to access the WhatsApp
database. One of these applications has already been removed
from the market, two applications claim to access WhatsApp
data for benign reasons, and one application removed the
access to WhatsApp data in its latest version. The two applica-
tions that still access the WhatsApp data should be analyzed
by more precise tools or human security analysts which is
however out of the scope of this paper.

6) Suspicious Package Names: Repackaging exisiting ap-
plications is a well-known method for spreading malware in
application markets [30]. Attackers take a popular benign
application, add malware to it and re-upload it to the store
where it then coexists with the original benign application. As
stores might check whether a package name has been used
by a different application yet, some malware authors use dif-
ferent packages than the original application, sometimes even
randomly generated ones such as Tenee9chi.ceebah0Se
for a clone of ICQ Mobile. As a countermeasure, market

operators could regularly scan their markets for applications
sharing the same name, but having different package names,
and then block all but the real, benign package name. Together
with a block of re-using the same package name for multiple
applications, this makes it harder to convincingly advertise a
repackaged application in the store. The application name is
stored in the manifest file, which can be queried by DROID-
SEARCH.

7) Attempted Use of System Permissions: Some permis-
sions on the Android operating system are only available to
applications signed with a manufacturer key. Nevertheless,
some applications include requests to such permissions in
their manifest file. Table I contains examples in which user-
level applications attempt to request such system permissions,
including the brick permission which can be used to disable
a phone or the FACTORY_TEST permission which allows code
to be run under the identity of the root user. Such applications
are candidates for potential malicious behavior and should be
subjected to further analyses.

Permission # of apps
READ_LOGS 5,577
DISABLE_KEYGUARD 4,251
MOUNT_UNMOUNT_FILESYSTEMS 3,912
INSTALL_PACKAGES 1,232
CALL_PRIVILEGED 795
DELETE_PACKAGES 709
WRITE_SECURE_SETTINGS 620
CONTROL_LOCATION_UPDATES 405
DEVICE_POWER 591
HARDWARE_TEST 209
MOUNT_FORMAT_FILESYSTEMS 222
REBOOT 177
DIAGNOSTIC 26
MASTER_CLEAR 18
FACTORY_TEST 17
BRICK 11

TABLE 1. REQUESTS OF SYSTEM PERMISSIONS

C. Market Statistics

In this section, we provide statistical data on applications
available in the Google Play Store. While this data is not
directly related to security vulnerabilities or malware, it gives
important hints as to which analyses are important to consider
in real-world store operations and academic research to cover
widely used features of the Android platform.

1) File Extensions: DROIDBASE stores the name, exten-
sion, and mime type of all files contained in an APK file.
Table II shows the top 15 file extensions used in apps in the
Google Play Store in an overview. The so extension for native
code libraries is for instance the 11th-most prevalent extension
which shows that native code analysis is an important target
for security research. 718 apps contained 881 other apk files.
Such application nesting is usually used to hide functionality
from analysis tools as only the code contained in the outer APK
code is usually analyzed. At runtime, this code then loads and
executes the inner one. Such nesting is an important challenge
for analysis tools.

DROIDSEARCH can also be used to detect mismatches
between the file extension and the actual mime type of the

Rank Extension # of files # of apps
1 png 26,346,358 208,994
2 xml 9,711,276 209,510
3 jpg 1,928,071 75,031
4 no extension 1,405,589 28,822
5 html 632,446 46,428
6 mp3 537,901 21,838
7 js 340,348 32,164
8 txt 294,880 37,440
9 gif 279,363 31,124
10 ogg 190,553 13,197
11 SO 134,471 30,601
12 properties 123,204 34,764
13 css 107,226 24,735
14 ttf 81,486 23,099
15 json 77,975 11,562

TABLE II. FILE EXTENSIONS IN APPS

respective file. This can, for instance, be image files that
are not actually images, but ELF binaries containing native
code with a root exploit. In the samples we crawled from
Google Play Store, we found 635 files that actually contained
native code, but did not carry the so extension. 461 files had
empty file extensions, the remaining 174 ones had misleading
ones such as mp3, png, or jet. We found these files by
querying DROIDBASE for mismatches between the proclaimed
file extension and the result of querying a lookup table of file
extensions for the respective actual mime types which were
identified using the Apache Tika library.

2) Language Features: DROIDSEARCH supports querying
the API methods used by an application. We found that
94,686 apps use classloaders to dynamically load code which
is 44.76% of our sample from the Google Play Store. For
static program analyses this poses the challenge of not all code
being directly available for analysis. Only few apps however
directly contain secondary dex or apk files. Therefore, one
must conclude that the other apps either generate the code
they load dynamically at runtime or download it from an
external location. In either case, making such code available
for static analysis or app vetting processes in a general way is
a complicated challenge.

Using a similar search for API methods, we found that
166,434 apps (78.67%) use reflection to call methods. Many
static analysis approaches do not support such calls at all or
only if the target method and class names are constant strings.
With reflective calls being so prevalent, this design decision
must be questioned.

30,601 apps (14.5%) use native code. These numbers are
in line with existing work [24] which reported 14% of apps to
include native code, excluding the few big and popular appli-
cations with 50 million downloads or more which contained a
larger amount of native code.

3) Permissions: In this section we compare the ten most
frequently used permissions in malicious apps and in be-
nign applications from Google Play, FDroid, FreewareLovers,
SlideMe, ApkHiapk, and AppChina. A similar comparision
was already done by Hoffmann et al. [11]. We used a larger
sample set than previous work for this evaluation. We took
216,464 benign applications from various stores and 26,865
malware applications in total in comparsion to 136,603 benign

applications from Google Play only and 6,187 malware appli-
cations used by Hoffmann et. al. We therefore obtain slightly
different results than existing work as shown in Table III.

As Table III shows, the INTERNET permission is used
most frequently. Out of the 211,561 apps we crawled from the
Google Play Store alone, 178,545 apps (84.4%) requested the
INTERNET permission. This is in line with Google’s update
to the Play Store [9] after which the store no longer lists the
Internet access permission on the primary screen since it is
requested by almost all applications and thus does not provide
much information to the user.

Market Malware
1 INTERNET INTERNET
2 ACCESS_NETWORK_STATE READ_PHONE_STATE
3 WRITE_EXTERNAL_STORAGE | WRITE_EXTERNAL_STORAGE
4 READ_PHONE_STATE ACCESS_NETWORK_STATE
5 ACCESS_FINE_LOCATION ACCESS_WIFI_STATE
6 ACCESS_COARSE_LOCATION WAKE_LOCK
7 WAKE_LOCK RECEIVE_BOOT_COMPLETED
8 VIBRATE SEND_SMS
9 ACCESS_WIFI_STATE ACCESS_COARSE_LOCATION
10 | RECEIVE_BOOT_COMPLETED VIBRATE

TABLE IIIL Top 10 PERMISSIONS

4) Apps Sharing Same Package Name: On the Android
operating system, the package name uniquely identifies an
application. No two applications with the same package
name may be installed on the same phone. Interestingly,
the malware samples from VirusShare, GData, and McAfee
contain a large number of shared package names such as
com.software.application (more than 1,600 times),
com.soft.android.appinstaller (more than 500
times), or com.software.marketapp (more than 100
times). These applications are neither updates nor repackaged
applications, but are advertised using very different names
in the store. Some com.soft.android.appinstaller
applications are called Skype, others Mobile Internet Browser
3.7. We found these applications by selecting the counts of
package names grouped by package name in DROIDBASE.

5) Typing Mistakes in Permission Names: Android appli-
cations must a priori declare all permissions they need in
their manifest file. Beside the system-provided permissions for
accessing sensitive resources such as the location data or the
camera, applications are also free to declare own permissions
to protect own resources and request permissions defined by
other apps. If an application therefore attempts to request a
system permission, but the permission name is misspelled (e.g.,
andriod. instead of android.), this will be considered as
a request for a custom permission defined by some (potentially
not yet installed) other application and the operating system
will not fail the app installation. The originally intended system
permission is of course not granted and one would expect the
application to fail with a security exception at runtime since
the permission was requested for a purpose. Even more, such
issues should be detected during testing before releasing the
app to the market. Nevertheless, DROIDSEARCH found 756
applications with misspelled permission names in the Google
Play Store which is 0.34% of all apps we downloaded from
the store.

IV. LEGAL ASPECTS

DROIDBASE and DROIDSEARCH are intended for the
scientific community and potential end-users who wish to

inform themselves about the privacy implications of certain
Android applications. From a legal perspective, the described
approach might on one hand strengthen malware detection
by professionals as well as user privacy, informational self-
determination and data security by educating and enabling
users to make informed choices, which apps they deem secure
and appropriate for themselves. On the other hand, legal issues
may arise with respect to copyright law and legal provisions
concerning trade secrets. A conflict between these two legal
objectives, data security and user privacy on the one side
and intellectual property rights on the other side, is slowly
emerging as an important issue in the field of informational
self-protection [3].

All of the technical steps described are legal if store owners
and app developers agree and see scientific analysis of apps as
a normal part of product testing by third parties, as widely
applied by anti-malware developers or consumer protection
organizations. Some app stores such as FDroid even provide
the source code of their apps. Legal problems may only arise
where right holders do not consent with such actions.

App stores are online product catalogues, and as such
might be protected data banks. A sui generis protection for
data banks has been established in the EU, but not in the
USA and would thus be applicable only to European app
stores [5, p. 1259-1260]. Even if app stores are protected
as data banks, (automatic) searching is not prohibited, in
contrast to reproducing, distributing or publicly displaying
them without the right holder’s consent. Searching app stores
with crawlers instead of by clicking through them manually
might, however, violate the concrete store’s terms of use. The
terms and conditions of the Google Play Store for instance
restrict use of the service to the interface provided by Google.

Downloading an app from the store means to reproduce
it which is generally allowed only with the consent of the
copyright holder. Since only cost-free apps are downloaded
by our crawlers, one might assume anybody to be permitted
to download the apps in question. Even if not, the download
should generally not collide with copyright law, as long as it
is done for strictly scientific reasons [4, p. 26] [5, p. 1387].

Analyzing the functionality of the apps is carried out
without decompiling them as information is gathered directly
from the bytecode. In general, analyzing apps and publishing
information for scientific reasons and for public education on
malware and privacy threats should be no legal problem.

Legal details need to be analyzed in future research and
may differ from case to case, but generally speaking, compa-
rable approaches to malware detection are widely spread and
do not generally produce legal actions.

V. RELATED WORK

While DROIDBASE and DROIDSEARCH provide a layer
around conventional application stores, certifying application
stores [14] or store-based validation techniques [16] aim at
not allowing applications violating the store’s policies into the
store in the first place. This concept is however limited to
policies known to the store designer and fails if researchers or
end-user define new policies or refine existing ones when the
apps are already in the store. Our approach on the other hand

can find candidates that might violate the (new) policy and
subject them to further analyses without having to re-certify
or re-check the entire store.

Existing analysis tools such as FlowDroid [2] or
CHEX [15] greatly benefit from pre-filtering target applica-
tions using DROIDSEARCH as without pre-filtering, these tools
usually do not scale to size of full markets. Analyzing 24,000
applications is reported to take approximetly 30 hours in
AndroidLeaks [8] while only finding potential leaks of private
data in 7,414 apps. A pre-filter such as DROIDSEARCH can
help rule out apps that obviously cannot leak data since they
e.g., miss the required permissions.

For some dynamic analysis tools such as AppsPlay-
ground [19], large-scale analyses have been conducted, but no
performance statistics have been reported. From our experi-
ence, we can assume that installing and test-driving thousands
of apps is a time-consuming undertaking that could also be
improved by applying a pre-filter such as DROIDSEARCH.

AndRadar [13] is an Android malware tracking and mon-
itoring system which focuses on alternative Android markets.
It tracks the distribution of malicious applications in real-
time. The system identifies malware by comparing applications
to known malware seeds using the package name, certificate
fingerprint, apk file hash, and method signatures. This func-
tionality can be simulated by DROIDSEARCH as all required
matchers are available in the DROIDSEARCH query builder.
Executing these queries in real-time whenever new apps are
crawled can easily be added to our system.

PlayDrone [24] is a tool for conducting large-scale analyses
on the Google Play Store. PlayDrone provides statistics on
aspects such as the prevalence of native code in apps, the
relation between app ranking and download count, or the most
common libraries. It also finds secret keys in many productive
applications. The system is however directly tailored towards
specific analyses while DROIDBASE and DROIDSEARCH are
inteded as a generic store-agnostic pre-filter for arbitrary static
and dynamic analyses.

VI. CONCLUSIONS

In this paper, we presented DROIDSEARCH, an approach
for making available to researchers semantic metadata on
Android applications obtained from various application stores.
Using DROIDSEARCH, we crawled more than 235,000 apps
from Google Play, and almost 27,000 known malicious apps
from various sources. Using various examples, we showed
how DROIDSEARCH and its backend DROIDBASE can be used
to pre-filter applications that may exhibit a certain malicious
behavior or suffer from known security vulnerabilities. These
findings can then be subjected to an additional, more precise
analysis if required. DROIDSEARCH thereby reduces the work-
load for the consecutive processing step, be it a more precise
automated analysis tool or a human analyst by reducing the
number of applications that still need to be examined.

We found 40 known malicious applications in Google Play,
and found that more than 35,000 apps use a mixture of http
and https connections for the same resource, effectively
rendering the ht tps protection useless. We furthermore found
a number of username and password combinations hard coded

into apps, as well as 11,995 applications providing access to
possibly sensitive data through unprotected content providers.

Acknowledgements: We would like to thank our stu-

dents Brian Pfretzschner, Max Kolhagen, Benedikt Hiemenz,
Patrick Lowin and Huong Luu Thu for supporting us with
DROIDSEARCH as well as DROIDBASE. We also would like to
thank Jan Peter Stotz for supporting us with Appicaptor. This
work was supported by the BMBF within EC SPRIDE and by
the Hessian LOEWE excellence initiative within CASED.

(1]
(2]

(3]

(4]

(5]
(6]

(7]

(8]

(9]
[10]

[11]

[12]

[13]

REFERENCES

Android Malware Genome Project. 2014. URL: http://
www.malgenomeproject.org/.
S. Arzt et al. “Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for
android apps”. In: PLDI’14. ACM. 2014, p. 29.
E. Bodden et al. “Schutzmafnahmen gegen datenschutz-
unfreundliche Smartphone-Apps”. German. In: Daten-
schutz und Datensicherheit - DuD 37.11 (2013),
pp. 720-725. 1SSN: 1614-0702.
Deutscher Bundestag. Printed Matter of the German
Federal Parliament (Bundestag). 15/38. 2002.
T. Dreier and G. Schulze. Urheberrechtsgesetz. 4th
Edition. 2013. 1SBN: 978-3-406-62747-7.
S. Fahl et al. “Why Eve and Mallory Love Android: An
Analysis of Android SSL (in)Security”. In: Proceedings
of the 2012 ACM Conference on Computer and Commu-
nications Security. CCS ’12. Raleigh, North Carolina,
USA: ACM, 2012, pp. 50-61. 1SBN: 978-1-4503-1651-
4.
A. P. Felt et al. “A Survey of Mobile Malware in
the Wild”. In: Proceedings of the 1st ACM Workshop
on Security and Privacy in Smartphones and Mobile
Devices. SPSM ’11. Chicago, Illinois, USA: ACM,
2011, pp. 3-14. I1SBN: 978-1-4503-1000-0.
C. Gibler et al. “AndroidLeaks: Automatically Detecting
Potential Privacy Leaks in Android Applications on a
Large Scale”. English. In: Trust and Trustworthy Com-
puting. Ed. by S. Katzenbeisser et al. Vol. 7344. Lecture
Notes in Computer Science. Springer Berlin Heidelberg,
2012, pp. 291-307. ISBN: 978-3-642-30920-5. DOI: 10.
1007/978-3-642-30921-2_17. URL: http://dx.doi.org/
10.1007/978-3-642-30921-2_17.
Google. Review App Permissions. URL: https://support.
google.com/googleplay/answer/6014972?hl=en.
A. Gorla et al. “Checking App Behavior Against App
Descriptions”. In: ICSE’14. Hyderabad (India), 31 May
- 7 June, 2014.
J. Hoffmann et al. “Slicing Droids: Program Slicing for
Smali Code”. In: SAC’13. SAC *13. Coimbra, Portugal:
ACM, 2013, pp. 1844-1851. 1SBN: 978-1-4503-1656-9.
International Data Corporation. Worldwide Quarterly
Mobile Phone Tracker 3Q12. Nov. 2012. URL: http:
//www .idc . com/ tracker/showproductinfo . jsp ? prod \
id=37.
M. Lindorfer et al. “AndRadar: Fast Discovery of An-
droid Applications in Alternative Markets”. English. In:
Detection of Intrusions and Malware, and Vulnerability
Assessment. Ed. by S. Dietrich. Vol. 8550. Lecture Notes
in Computer Science. Springer International Publishing,
2014, pp. 51-71. 1SBN: 978-3-319-08508-1.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]
[23]

[24]

[25]
[26]
[27]

(28]

[29]

(30]

(31]

S. Lortz, H. Mantel, and A. Starostin. “A Sound
Information-Flow Analysis for Cassandra”. In: (2014).
L. Lu et al. “CHEX: statically vetting Android apps for
component hijacking vulnerabilities”. In: CCS’12. 2012,
pp. 229-240.

J Oberheide and C Miller. “Dissecting the android
bouncer”. In: SummerCon2012, New York (2012).

D. Octeau et al. “Effective inter-component communi-
cation mapping in android with epicc: An essential step
towards holistic security analysis”. In: Proceedings of
the 22nd USENIX Security Symposium. 2013.

R. Pandita et al. “WHYPER: Towards Automating
Risk Assessment of Mobile Applications”. In: Pro-
ceedings of the 22Nd USENIX Conference on Security.
SEC’13. Washington, D.C.: USENIX Association, 2013,
pp- 527-542. 1SBN: 978-1-931971-03-4.

V. Rastogi, Y. Chen, and W. Enck. “AppsPlayground:
Automatic Security Analysis of Smartphone Applica-
tions”. In: Proceedings of the Third ACM Conference on
Data and Application Security and Privacy. CODASPY
’13. San Antonio, Texas, USA: ACM, 2013, pp. 209—
220. ISBN: 978-1-4503-1890-7. po1: 10.1145/2435349.
2435379. URL: http://doi.acm.org/10.1145/2435349.
2435379.

Reuters. Appicaptor, Framework for app security tests.
URL: https : // www . sit . fraunhofer . de / fileadmin /
dokumente/Projektblaetter/Appicaptor_en.pdf.

Reuters. Smartphone sales to touch 1 billion-unit mark
in 2014: Credit Suisse. 2012.

Smali - An assembler/disassembler for Android’s dex
format. URL: https://code.google.com/p/smali/.

Steal WhatsApp update. 2014. URL: http://bas.bosschert.
nl/steal-whatsapp-database/.

N. Viennot, E. Garcia, and J. Nieh. “A Measurement
Study of Google Play”. In: The 2014 ACM International
Conference on Measurement and Modeling of Computer
Systems. SIGMETRICS ’ 14. Austin, Texas, USA: ACM,
2014, pp. 221-233. ISBN: 978-1-4503-2789-3.

Virus Share. 2014. URL: http://virusshare.com/.

Virus Total. 2014. URL: https://www.virustotal.com/.
M. de Vries et al. “POPSIS - Pricing Of Public Sector
Information Study”. In: European Commission Informa-
tion Society and Media Directorate-General (2011).
WhatsApp Messenger. 2014. URL: https://play.google.
com/store/apps/details 7id=com.whatsapp.

M. Zheng, M. Sun, and J. C. S. Lui. “Droid Analytics:
A Signature Based Analytic System to Collect, Extract,
Analyze and Associate Android Malware”. In: TRUST-
COM °13. 2013, pp. 163—171. 1SBN: 978-0-7695-5022-
0.

W. Zhou et al. “Fast, Scalable Detection of “Piggy-
backed” Mobile Applications”. In: Proceedings of the
Third ACM Conference on Data and Application Secu-
rity and Privacy. CODASPY ’13. San Antonio, Texas,
USA: ACM, 2013, pp. 185-196. 1SBN: 978-1-4503-
1890-7.

Y. Zhou and X. Jiang. “Dissecting Android Malware:
Characterization and Evolution”. In: Proceedings of the
2012 IEEE Symposium on Security and Privacy. SP 12.
Washington, DC, USA: IEEE Computer Society, 2012,
pp- 95-109. 1SBN: 978-0-7695-4681-0.

