
McGill University

School of Computer Science

Sable Research Group

Instance keys: A technique for sharpening whole-program
pointer analyses with intraprocedural information

Sable Technical Report No. 2007-8

Eric Bodden, Patrick Lam and Laurie Hendren
School of Computer Science

McGill University
Montréal, Québec, Canada

October 20, 2007

w w w . s a b l e . m c g i l l . c a

Contents

1 Introduction 3

2 Motivation 4

2.1 Naming heap locations . 6

3 Intraprocedural Pointer Analyses 7

3.1 Must-alias analysis . 8

3.1.1 Value numbering . 8

3.1.2 Value numbering at merge points . 9

3.1.3 Treatment of redefinitions in loops . 9

3.2 Must-not-alias analysis . 11

4 Interprocedural points-to analysis 12

5 Instance keys 13

5.1 Properties of instance keys . 15

5.2 Implementation of instance keys . 15

5.2.1 Implementing the method mustNotAlias . 16

5.2.2 Implementing the method mustAlias . 17

5.2.3 Implementation of equals . 17

5.2.4 Implementation of hashCode . 19

5.3 Experience . 19

6 Related work 20

6.1 Instance keys . 20

6.2 Whole-program pointer analyses . 20

6.3 Client analyses . 21

6.4 Specializing pointer analyses . 22

7 Conclusions 23

1

List of Figures

1 local variables and their aliasing relationships . 7

2 Abstract interface for instance keys . 15

3 Decision procedure for the must-not-alias operation on instance keys 16

4 Decision procedure for the must-alias operation on instance keys 17

5 Implementation of the hashCode() method for instance keys 19

2

Abstract

Pointer analyses enable many subsequent program analyses and transformations, since they
enable compilers to statically disambiguate references to the heap. Extra precision enables
pointer analysis clients to draw stronger conclusions about programs. Flow-sensitive pointer
analyses are typically quite precise. Unfortunately, flow-sensitive pointer analyses are also of-
ten too expensive to run on whole programs. This paper therefore describes a technique which
sharpens results from a whole-program flow-insensitive points-to analysis using two flow-sensitive
intraprocedural analyses: a must-not-alias analysis and a must-alias analysis. The main tech-
nical idea is the notion of instance keys, which enable client analyses to disambiguate object
references. We distinguish two kinds of keys: weak and strong. Strong instance keys guarantee
that different keys represent different runtime objects, allowing instance keys to almost trans-
parently substitute for runtime objects in static analyses. Weak instance keys may represent
multiple runtime objects, but still enable disambiguation of compile-time values. We assign in-
stance keys based on the results of our analyses. We found that the use of instance keys greatly
simplified the design and implementation of subsequent analysis phases.

1 Introduction

Many static program analyses depend on the availability of pointer analysis information to dis-
ambiguate heap references. For instance, dependence and side-effect analyses need to know the
identities of objects that are written to. Typestate analyses must acknowledge changes to object
states even if objects are pointed to by many different variables. An analysis that determines
whether parameter fields are modified needs to know if such fields are modified through aliases.

While these analyses all need pointer information, they differ in the precision that they require.
Some analyses, such as partial redundancy elimination, dead code elimination and structure copy
optimization, appear to work adequately with imprecise pointer information [12], while other anal-
yses, such as our own analysis for tracematches [3] or analyses for typestate [9], show a need for
precise pointer information.

We believe that client analyses should be insulated from the internal workings of the pointer
analysis. When designing a client analysis, it is tempting to conflate local pointer variables v with
heap objects o. Such an approach might appear to sidestep pointer analysis questions. However,
the shortcomings of such an approach quickly become obvious; client analysis implementers end
up integrating pointer analysis into their own static analyses, hurting both the performance and
maintainability of their own analyses. Modularity in analysis design enables improvements in
pointer analysis to immediately benefit client analyses.

Our goal is to provide an interface to pointer analysis which enables client analyses to cleanly
extract the information that they need. Hiding the details of pointer analysis can simplify the
design and implementation of client analyses. Fink et al. have mentioned [9, 26] that instance
keys can serve as a convenient interface to pointer analysis. In this paper, we explore the notion of
instance keys and describe some of their properties. Essentially, instance keys assign names to heap
objects and enable client analyses to 1) disambiguate references which definitely point to different
heap objects and 2) identify references which definitely point to the same heap object.

There have been many approaches to assigning names for heap objects in the past. These include
using malloc sites as names; Heap SSA [10]; anchor handles [11]; and extended SSA number-
ing [18]. Most approaches explicitly assign names for heap objects by combining variable names

3

with additional information. Our approach differs from those approaches by decentralizing the cre-
ation of names: an instance key’s identity is a function solely of its must-alias and must-not-alias
relationships to other keys. We define and use generic interfaces to the backing must-alias and
must-not-alias analyses, enabling the use of more sophisticated or specialized pointer analyses in
the future. Our approach supports the modular, simultaneous development of pointer and client
analyses.

This is particularly important due to the well-known trade-off between analysis precision and scal-
ability. Because pointer analysis is inherently complex, an interprocedural analysis must sacrifice
some precision if it is to complete in a reasonable amount of time. For instance, the Spark pointer
analysis framework [21] and its extension, refinement-based points-to analysis [27], are reasonably
efficient. However, they are not flow-sensitive—they do not consider the ordering of statements
within a particular method. They also do not support must-alias information. On the other hand,
intraprocedural approaches can easily support flow-sensitivity and must-alias information and still
remain scalable, but lack precision if the values of variables from different methods have to be
considered.

We found that our static analysis of tracematches benefited from information from intraprocedural
pointer analyses [4]. Instance keys enabled us to combine the interprocedural information with
analysis results from precise intraprocedural points-to analyses. Some sub-analyses exploited the
defining property of strong instance keys. Different strong instance keys represent different runtime
objects. This property enables the design and implementation of static analyses that resemble their
dynamic counterparts: static instance keys can act as representatives for runtime objects.

We have implemented a static whole-program optimization using instance keys. We felt that it was
significantly easier to implement this system using instance keys compared to our initial attempt,
which stored not instance keys but variable names and then used must-alias, must-not-alias and
points-to analysis results to resolve aliasing directly.

The contributions of this paper are:

• A description of instance keys and the properties that they should have.

• An algorithm for computing instance keys, which combines analysis results from intraproce-
dural and interprocedural pointer analysis.

• A discussion of our experience with instance keys and how they helped us design client
analyses.

The structure of the remainder of this paper is as follows. Section 2 explains the context of our
work and presents the pointer analysis questions that our notation can answer. Section 3 describes
local pointer analyses that disambiguate some variables. Section 4 summarizes the whole-program
points-to analysis that handles any remaining queries. Section 5 presents instance keys, our notation
for enabling different analyses to collaboratively name heap locations. Finally, Section 6 presents
related work and we conclude in Section 7.

2 Motivation

In this section we present a number of pointer analysis clients and explain how each of them uses
pointer analysis. We present constant propagation; an analysis that determines if fields of object

4

parameters are ever modified; and typestate.

Constant propagation. Constant propagation is a basic compiler optimization that attempts to
pre-compute values of expressions at compile time. Consider the following example program.

1 p.f = 1;
2 q. f = 2;
3 x = p.f + 1;

In the absence of pointer analysis, a client analysis does not know anything about the relationship
between the values of variables p and q, and therefore could not conclude anything about the value
of x after line 3.

Instance keys associate heap locations with variables. If two variables have the same strong instance
key, then they definitely point to the same heap object. (We only use strong instance keys in the
discussion in this section.) The implication is that constant propagation only needs to store one
value per field per instance key. If p and q have the same instance key, then x gets 3 after line
3. When two variables have different instance keys, the client analysis can ask whether or not the
instance keys are known to must-not-alias. If p and q’s instance keys do must-not-alias, then x gets
2 after line 3.

Method parameters. Developers would often like to know whether or not fields of method pa-
rameters are modified within the body of a method. The complication is that fields of method
parameters can be written to indirectly, through aliases of the parameters, as seen in this simplified
example:

1 void foo(T p) {
2 T q = p;
3 q. f++;
4 }

A sound analysis must be able to determine that p’s field is modified by the write to q. f on line 3.
If p and q carry the same strong instance key, then an analysis can state that p is definitely written
to. Note how the instance key is usable in place of the actual runtime object. On the other hand, if
p and q’s instance keys must-not-alias, then the analysis can safely conclude that p is never written
to in method foo.

Typestate, tracematches and bug finding. Typestate properties augment the type of a heap
object with a time-variant state. Certain actions are not allowed on objects in certain states. As
an example, consider the safety property that programs should not read from files that have been
closed, and the following example method:

1 boolean compareone(Reader r1, Reader r2) {
2 int i = r1.read();
3 r1. close ();
4 int j = r2.read();
5 r2. close ();
6 return i == j;
7 }

5

This method reads a byte from r1 and r2 and compares them. In general, this method only satisfies
the safety property if r1 and r2’s instance keys must-not-alias, and the method definitely violates
the property if r1 and r2 have the same instance key. Note that analyzing this method requires
interprocedural information.

Now consider the property that readers should always be closed after they are opened, with the
following code:

1 Reader r = new Reader(); // open the Reader
2 // ...
3 Reader r2 = r;
4 r2. close ();

The code only satisfies the property if r and r2 point to the same heap object. If r and r2 have the
same instance key, a static analysis can safely report that the property holds.

We return to the property that reads must occur on open files. Consider the following code:

1 while (...) {
2 Reader r = new Reader();
3 r .read();
4 r . close ();
5 }

Note that different iterations of the loop have different r objects, which complicates pointer analysis.
However, in each single iteration, the instance key for r at line 3 will be in the state “open”, enabling
an analysis to verify that the call to read satisfies the safety property. In this work, we define two
different kinds of instance keys, weak and strong. Strong keys model must-alias relationships
soundly even over multiple loop iterations.

We have recently investigated tracematches [3,4], which subsume typestates by enabling developers
to state and verify properties of multiple correlated objects. The static analysis of tracematches and
related tools for bug finding and program verification all require pointer analysis, if they attempt
to reason at all about properties of heap objects at compile time. Our tracematch analysis uses
both weak and strong instance keys.

2.1 Naming heap locations

At compile time, the program under analysis manipulates reference-typed local variables. Local
variables are far more difficult to work with than heap objects: it can be difficult to determine
whether local variables v1 and v2 point to the same object. Our goal was to find a notation which
would enable the design of static analysis algorithms that are as similar as possible to dynamic
analyses, and we believe that instance keys fill this niche: if two object references have the same
instance key, then at runtime the references must point to the same object. The design of instance
keys enables our static analysis to answer the following two questions:

1. Given object references v1 and v2 at program points p1 and p2, must v1 and v2 point to
different heap objects? (must-not-alias analysis)

2. Given object references v1 and v2 at program points p1 and p2, must v1 and v2 point to the
same heap object? (must-alias analysis)

6

o1

o2

v1

v2

v3

v4

Figure 1: v1, v2, v3, v4 local variables; o1, o2 heap objects. Variables v1, v2 may-aliased; v1, v3 must-
aliased; v1, v4 must-not-aliased.

Figure 1 illustrates the situations that we are interested in. The figure contains ellipses with heap
objects o1, o2 and local variables v1 through v4. We do not know whether v2 points to o1 or o2.
The query is whether two local variables must alias or must not alias; we know that v1 and v3

must-alias, while v1 and v4 are must-not-aliased. We have no precise information about v2: it does
not must-alias nor must-not-alias any other variable.

Note that we generalize the typical setting of pointer analysis by specifying the program points
where we are querying the objects in addition to just the local variables. We need to specify
program points because we are comparing the value contained in reference v1 at point p1 with the
value in v2 at point p2; between p1 and p2, both v1 and v2 could change values. (This is even true
if p1=p2, when p1 is inside a loop.) Instance keys encapsulate information about the variable and
the program point where we are asking about that variable.

We have been careful to distinguish between the pointer variable v and the heap object o. When
reasoning about programs, it is tempting to conflate variables with their contents; however, we found
it impossible to develop precise static analyses for tracematches without carefully distinguishing
variables and heap objects. The notion of instance keys adds a layer of indirection and enables us
to design our analysis around a stable representation of heap objects.

Pointer analysis is broadly applicable as a client analysis for a range of static analyses. We therefore
believe that instance keys will be useful in many situations.

3 Intraprocedural Pointer Analyses

We first attempted to answer our questions about object references using intraprocedural tech-
niques. Such techniques are quite precise in their area of applicability and run quite quickly. Un-
fortunately, intraprocedural analyses do not have any information about object references passed in
as method parameters or read from fields, and we found that we had to combine our intraprocedural
analyses with the whole-program points-to analysis described in Section 4.

Our intraprocedural analyses can be cast as a generalized constant propagation over object reference
values [30]. Depending on whether we wish to decide whether two variables must or must-not alias,
fresh constant values are either generated at expressions in general (must-alias) or at new expressions
(must-not alias). Values are then propagated along assignments of local variables.

7

3.1 Must-alias analysis

We next present our intraprocedural must-alias analysis. Given two pointer variables v1 at program
point p1 and v2 at program point p2, our must-alias analysis determines whether they must point to
the same heap object o. Our analysis solves this problem by assigning value numbers to variables.
We designed the analysis so that if it assigns v1 and v2 the same value number, then they must
always point to the same heap object on all program executions.

Note that if two variables have the same number, then they also may alias each other. Conversely,
if two variables must-not alias, then they will be represented by different instance keys. We will
return to this point when we discuss instance keys in Section 5.

3.1.1 Value numbering

We now explain the value numbering approach in more detail. We base our solution on global value
numbering and extended SSA numbers [18]. Our intraprocedural must-alias analysis uses value
numbering to identify and discriminate different heap locations. We assign a fixed value number
to each program expression. (Note that identical expressions at different program locations are
assigned different numbers.) We maintain the invariant that if two variables contain the same
value number, then they must point to the same object. Variables have the same value number
when a variable is a copy of the value of another variable. Our abstract domain consists of value
numbers and the special values ⊤ (unknown) and ⊥ (nothing, for uninitialized values). Consider
the following example:

1 // {(i ,⊥), (j , ⊥)}
2 i = c1. iterator (); // (1)
3 // {(i ,(1)), (j , ⊥)}
4 j = i;
5 // {(i ,(1)), (j ,(1))}
6 if (p) {
7 i = c2. iterator (); // (2)
8 // {(i ,(2)), (j ,(1))}
9 }

10 // {(i ,⊤), (j ,(1))}
11 j = i;
12 // {(i ,⊤), (j ,⊤)}
13 print(j);

At the beginning all variables are assigned the uninitialized value ⊥. Line 2 then assigns the value
number (1) to i. At line 4, the value (1) is copied from i to j, so j now points to the value that
i is also pointing to, i.e. j and i are must-aliased. Our analysis models this by propagating the
number (1) to j when processing the assignment at line 4.

After line 7, things look different, since i is assigned a new value. To model this situation, we
assign i the value number (2).

When computing the analysis information before line 10, we must merge values (1) and (2) for i.
A conservative approximation yields the unknown number, ⊤. A value of ⊤ does not must-alias
any other value, not even itself.

8

One problem is now that, once i is assigned ⊤, the analysis no longer has any must-alias information
for i (until it gets redefined). In line 11, when j is copied from i again, both variables point to
⊤. Because ⊤ does not must-alias any other value, we have to assume that j does not must-alias
i, even though after line 11 it clearly does. This imprecision is unnecessary, and we next describe
how to avoid this imprecision.

3.1.2 Value numbering at merge points

At merge points, if two different value numbers for a variable v are available, the above algorithm
erases all information about v, because it is overly conservative and simply stores ⊤ as the value
for v, which does not give us any exploitable information.

But if the variable v has incoming value numbers (1) and (2) at the merge point, then we can
generate the value number {(1), (2)} to uniquely represent the two possible values of v. Hence,
before line 10 in the example, we can merge the information {(i, (1)), (i, (2))} to {(i, (3))}, where
(3) is a unique identifier for the set {(1), (2)}. At line 11 we copy (3) to j, enabling us to conclude
that i and j must be aliased.

Values at different program points. Note that our must-alias analysis can be queried with respect
to a statement. In the above example, i at line 1 and j at 10 are not must-aliased (due to the
conditional). However, our analysis can infer that i at 1 and j at 4 are must-aliased: i at 1 and j

at 4 both have the value number (1).

Queries with respect to statements are essential when client analyses need to associate analysis
information with heap objects, not variables: a variable can point to many different objects over its
lifetime. Static single assignment form (SSA form) [1,24] can be used to encode the query position
in the variable itself by splitting local variables at each redefinition.

3.1.3 Treatment of redefinitions in loops

SSA form guarantees that there is a distinct variable name for any single static assignment, i.e. each
assignment location. Thus, naively one might think that variables must always alias themselves,
because they are only assigned at a single point. We experienced a situation where this was not
quite true. Consider the following example:

1 void foo(Iterator i) {
2 Collection c; Iterator j ; Object o;
3 // {(i ,(1)), (j ,(1))}
4 while(i.hasNext()) {
5 c = i.next();
6 j = c. iterator ();
7 while (j.hasNext()) {
8 o = j.next();
9 // do something with o

10 }
11 }
12 }

9

At line 5 in the above example, j is assigned a potentially different object in every iteration of
the outer loop. Hence, in such a situation, depending on the client analysis, there might be two
possible answers to the question whether j must alias itself at line 5. The analysis that we stated
above would conclude that j must alias itself, because for the same expression at the same program
location we assign the same fixed value number. For some client analyses this might be a sound and
precise result, and we provide examples of such analyses below. However, some analyses can take
into account that j can indeed point to different values over its lifetime at the same line number 5.
One of our static analysis for tracematches is such a case. Because tracematches can reason about
the use of values over time, we had to distinguish between values the same variable was assigned
earlier from the value it has at the current time of execution. For this purpose we designed a
second variant, strong must-alias analysis, that handles redefinitions in loops via a sound over-
approximation. By contrast, we call the must-alias analysis we defined above a weak must-alias
analysis.

The definition of the strong must-alias analysis differs only slightly from its weak counterpart. In the
weak approach we assigned a fixed value number to each expression. Once this value was assigned,
it would never change (at that location). For the strong analysis, we instead do the following. If
we visit a statement of the form v = exp for the first time and exp is not a local variable, then
we assign v a fresh value number. If we then visit the statement a second time, implying that the
statement belongs to a loop, then we assign v the conservative value ⊤. That way, values that are
redefined within loops will ultimately be assigned ⊤, a sound over-approximation. In our example,
the strong analysis results would look like follows.

1 void foo(Iterator i) {
2 Collection c; Iterator i , j ; Object o;
3 // {(c,⊥), (i ,⊥), (j ,⊥), (o,⊥)}
4 while(i.hasNext()) {
5 // {(c,⊤), (i ,(1)), (j ,⊤), (o,⊤)}
6 c = i.next();
7 // {(c,⊤), (i ,(1)), (j ,⊤), (o,⊤)}
8 j = c. iterator ();
9 // {(c,⊤), (i ,(1)), (j ,⊤), (o,⊤)}

10 ...
11 }
12 // {(c,⊤), (i ,(1)), (j ,⊤), (o,⊤)}
13 }

Note that v, j and o are all assigned ⊤ because they are reassigned. The variable i, however, is
assigned the value number (1), because it is not visited twice in the computation of the analysis
result. Hence, one can correctly infer that i will always point to the same value during the execution
of the method.

Our current implementation supports both kinds of must-alias analysis. Our intraprocedural client
analysis for tracematches uses each kind of analysis where it is most appropriate. For instance, we
apply one optimization based on loop-invariance. Tracematches happen to have the nice property
that, if their evaluation is invariant in the first loop iteration, then their evaluation is also invariant
for subsequent iterations. A static analysis may therefore consider only the first iteration. In such
a situation, it is sound to use the weak must-alias analysis. Other optimizations we designed are
only sound if variables that may point to different objects at runtime do not have the same value
number (or at least one of them has ⊤), even if this concerns only one variable redefined in a loop.
For such optimizations we use the strong must-alias analysis.

10

3.2 Must-not-alias analysis

A must-not-alias analysis determines whether two variables cannot point to the same heap object.
If a must-not-alias analysis states that v1 and v2 may be aliased, then on any execution they may
or may not be aliased. Conversely, if a must-not-alias analysis states that v1 and v2 cannot be
aliased, then they definitely point to different objects. In such a case, we say that v1 and v2

“must-not-alias”.

In Section 2 we presented a number of applications of must-not-alias information. In brief, must-
not-alias information enables client analyses to conclude that two statements definitely do not
interfere with each other because they act on different parts of the heap. We have implemented a
must-not-alias analysis; like the must-alias information, it is based on value numbers.

The analysis abstraction for our must-not analysis consists of sets of value numbers, the initial
value ⊥ and the unknown value ⊤ (representing the full set that contains everything). Unlike the
must-alias analysis, which assigns a fresh value number for each expression, the must-not analysis
only assigns fresh value numbers at new expressions; otherwise it assigns ⊤. This is because for
other expressions, e.g. method calls, one cannot intraprocedurally guarantee that a fresh value is
computed. If the value is not fresh, it may be aliased. Our analysis handles x = y by copying
the value number for y to x. For merge operations, instead of generating a new value number
representing the join of both incoming value numbers as in the must-alias case, we simply join the
sets directly. This makes it easier to read off the must-not-alias relationship in the end. Consider
the following example.

1 List l ,m;
2 // {(l , ⊥), (m, ⊥)}
3 l = new List(); // (1)
4 // {(l , {1}), (m, ⊥)}
5 m = new List(); // (2)
6 // {(l , {1}), (m, {2})}
7 leak(m);
8 // {(l , {1}), (m, {2})}
9 if (p) {

10 // {(l , {1}), (m, {2})}
11 m = foo();
12 // {(l , {1}), (m, ⊤)}
13 l = new List(); // (3)
14 // {(l , {3}), (m, ⊤)}
15 }
16 // {(l , {1,3}), (m, ⊤)}}

In line 2, the values of l and m are not yet known, so we assign ⊥ to these variables. Line 3 stores
a fresh object in l, so we update it with a new value number. In line 5, the same happens with
m. In line 11, we cannot be sure whether or not foo() returns a fresh object: for instance, foo()
could return the object created at line 5, which was leaked in line 7. Hence, we assign ⊤ to m,
representing “anything”. In line 13, another fresh object is stored in l, and the analysis hence gives
l the new value number (3). At the merge point in line 16, l might contain either (1) or (3): we
know that it contains either the object created at (1) or the object created at (3). For m, we merge
{2} with ⊤, giving an abstract value of ⊤ for m.

Recall that our analysis can say whether variables must-not-alias other variables at given program
points. Querying whether l at line 4 could alias l at line 14 would give “must-not alias” because

11

the set for l at line 4 is disjoint from the set for l at line 14. Conversely, l at line 4 and l at line
16 would result in the answer “may alias”. A query on the relationship between m in line 6 and m

in line 16 would also result in “may alias”, which is sound: at line 16, the call to foo() might have
executed and returned the object created at line 5.

4 Interprocedural points-to analysis

In the previous section, we presented must-alias and must-not-alias analyses that work on a single
method at a time. Ideally, such flow-sensitive techniques would also work on a whole-program level,
giving us even more detailed pointer information (since method parameters and field values could
be known). Unfortunately, no efficient techniques for a general interprocedural flow-sensitive must-
alias analysis have yet been proposed. Flow-sensitive interprocedural approaches for the may-alias
problem do exist [7, 17,31], although even these approaches have not yet been shown to scale well
enough to process interestingly-sized programs. Flow-insensitive approaches to the pointer analysis
problem, however, have been very successful. Most of these approaches are classified as points-to
analyses.

Like our must-not-alias analysis, a points-to analysis determines the set of values (heap objects)
that reference-typed program variables could possibly point to. Interprocedural points-to analyses
resemble our local analyses in that they assign value numbers to new expressions. (In other words,
new expressions continue to serve as representatives for memory locations, possibly augmented with
context information, as we explain below.) However, interprocedural analyses can propagate value
numbers throughout the entire program rather than through just a single method body, eliminating
the need for conservative assumptions due to parameters and fields.

The following example illustrates the limitations of flow-insensitive analyses.

1 A x;
2 void f() { x = new A(); } // (1)
3 void g() { x = new A(); } // (2)
4 void main() {
5 f ();
6 g();
7 print(x);
8 }

Two different methods f() and g() assign to a field x. A main method then executes f() and
g(), with the execution of g() invalidating the value of x set by f(). No flow-insensitive analysis
could infer that x at line 7 is must-not-aliased with x after the assignment in f() in line 2. In
other words, strong updates [5] are impossible. There would be just one single points-to set for x,
{(1), (2)}, modelling that x can point to the object created at (1) or the object created at (2).

Of course, interprocedural flow-insensitive points-to analyses can still be more precise than in-
traprocedural flow-sensitive analyses, even on two variables from the same method, because the
interprocedural analysis can summarize computations outside the method that affect the method.
Consider the following example:

x = c. iterator (); // (3)

y = c. iterator (); // (4)

12

Here, any intraprocedural analysis would have no information about the internals of iterator (), and
must therefore assume that both calls to iterator () may, in principle, return the same value. We
modelled this assumption in our local analysis by assigning ⊤ as the value number for expressions
that are not new expressions, such as method calls.

Interprocedural analyses, on the other hand, typically use the internals of called procedures, or at
least summaries of their effects. The iterator function looks something like this:

1 public Iterator iterator () {
2 return new HashSetIterator(); // (5)
3 }

A context-sensitive interprocedural analysis can combine the body of the iterator function—which
contains creation site (5)—with the fact that it is called from program points (3) and (4) to
distinguish the values of x and y. A points-to analysis that uses calling-context information could
model the object returned from iterator at (3) with a pair of the form (call-site , creation-site),
i.e. (3, 5). The object returned at (4) would then be modelled with the pair (4, 5). Because the
points-to sets {(3, 5)} and {(4, 5)} are disjoint, the objects pointed to by x and y cannot alias.
Observe that interprocedural analyses give additional precision in some cases; we will exploit this
precision in the definition of instance keys.

Context information—where is (5) called from?—is critical in the above example. Without context
information, even an interprocedural analysis would model both x and y with just the creation site,
(5), making it impossible to conclude that x and y may not alias.

Applicability. With a whole-program analysis, it is difficult to soundly analyze partial programs,
since the unanalyzed portions of these programs may have unknown and hard-to-circumscribe effects
on the points-to information. Another concern is efficiency: Even if an interprocedural analysis can
process any particular method quickly, the interprocedural analysis generally needs to process all
reachable methods to ensure soundness. It is therefore difficult to quickly obtain interprocedural
analysis results; in particular, state-of-the-art machines require minutes to compute interprocedural
analysis results. Our local analyses, on the other hand, usually execute in milliseconds.

Demand-driven analyses. In our work on static tracematch optimizations, we used Sridharan and
Bod́ık’s demand-driven and refinement-based context-sensitive points-to analysis [27]. It is based
on Spark [21], a context-insensitive flow-analysis framework which is included in the Soot compiler
framework [28]. We obtain analysis results by first running Spark to generate context-insensitive
points-to sets, and then generating additional context information on demand. We only require
context information for variables that we actually query. The demand-driven approach gives precise
results (as precise as possible for a flow-insensitive approach, at least), while keeping analysis time
to a minimum.

5 Instance keys

“There are no silver bullets.” We have seen that different situations call for different pointer
analyses. In general, flow-sensitive analyses are most precise, but such analyses only work intrapro-
cedurally. Any values from outside a method must be conservatively approximated. Interprocedural

13

flow-insensitive approaches eliminate the need for conservative approximations in some cases, but
they cannot use information that is encoded in the ordering of program statements. We would like
to combine the strengths of the intraprocedural and interprocedural approaches: given a pointer
analysis query on two variables, we would like to call the optimal sequence of component analyses
to answer our query.

An additional complication is that the different component analyses have different interfaces. For
instance, a points-to analysis returns points-to sets for a given variable. Points-to sets can be
tested for non-empty intersection (“overlap”) with other points-to sets. If the points-to sets for two
variables do not overlap, then the variables cannot alias. On the other hand, the intraprocedural
must-alias and must-not-alias analyses answer the pointer analysis question directly: these analyses
take variables as input and return a boolean value (must-not-aliased or don’t know; must-aliased or
don’t know) as output. However, the intraprocedural analyses are flow-sensitive and therefore take
an additional input: they need to know the program points that the client analysis is interested in.

We attempted to design and implement a client analysis (for static tracematch optimization) that
directly queried these intraprocedural and interprocedural pointer analyses. We found that a di-
rect integration of these different analyses carried significant conceptual and implementation-level
overhead. We fought code duplication and scattering. Because our flow equations used variables,
we had to litter our code with if-then-else conditionals to select appropriate analyses for appro-
priate variables. Furthermore, we had to update flow sets when variables were updated, directly
and indirectly. Our code did not look much like its dynamic equivalent.

Conceptually, the problem was that our static analysis conflated objects with the variables that
point to those objects. If the code contained an assign statement p = new O();, we represented
the newly created object with the variable p. Variables are poor representatives for objects. One
problem was that multiple variables can point to the same object, which made it difficult to store
analysis information. Consider the following snippet of code.

1 Iterator i = new Iterator();
2 if (i .hasNext()) {
3 j = i;
4 j .next();
5 }

We found that our analysis was quite difficult to implement properly in the presence of such code.
Consider variable i. At line 2, we could store information about i by associating it with i, and
we could try to store the information in a hash map, indexing the information by i. Now, line 4
operates on variable j. But j and i represent the same object, and the information is indexed on
i. How could we look up this information? After all, line 4 makes no mention of the name “i”.
So we would have to iterate through all possible variable bindings, see if any of them must-alias
j, and if so, look up the value associated with that binding. Such an approach leads to both poor
performance and unreadable code.

Our solution, instance keys, was inspired by work by Fink et al. on static evaluation of typestate [9].
Instance keys simplify the problem by adding a level of indirection. Conceptually, they enable
analyses to reason about (static representations of) objects, not variables.

14

5.1 Properties of instance keys

The following properties should hold for instance keys:

1. Instance keys represent one or more runtime objects.

2. Instance keys support a must-not-alias operation that answers the question of whether two
keys can never actually represent the same object.

3. Two strong instance keys are equal only if they are known to represent the same concrete
object. Weak instance keys are equal only if they represent concrete objects created at the
same statement.

These properties enable direct and natural implementations of static abstract interpretations of
programs. Whenever at runtime a concrete object would be assigned, we can “assign” to the
instance key at compile time. Because two instance keys are equal if the objects they represent are
the same, we can store instance keys in associative data structures, such as hash tables.

In the example that gave us such trouble when using variables as representatives for heap objects,
we instead store the instance key of i at line 1 instead i. For the look-up at line 3, we can use the
binding for the instance key of j, which will be equal to the instance key for i and thus have the
same hash code.

5.2 Implementation of instance keys

Figure 2 presents the abstract Java interface for instance keys. They implement a must-alias and
must-not-alias operation. Furthermore, they implement the generic methods equals and hashCode

in a way that satisfies the above mentioned properties.

1 public interface InstanceKey {
2 public boolean mustAlias(InstanceKey otherKey);
3 public boolean mustNotAlias(InstanceKey otherKey);
4 public int hashCode();
5 public boolean equals(Object obj);
6 }

Figure 2: Abstract interface for instance keys

The internal state of an instance key is defined via three values, stored in fields of the InstanceKey
object:

1. a local variable name;

2. the statement for which the instance key is created;

3. the method in which the local variable is defined (and hence the method in which the assign-
ment statement resides).

15

Those three parameters are passed to the constructor of each instance key. The statement parameter
is necessary for the reasons explained earlier: The same variable in the same method can generally
be assigned multiple values in different statements. Note that this could be worked around by
using SSA form [1,24]. When using SSA form, the statement is encoded in the variable name. For
technical reasons, using SSA form was not an option in our client analysis, so we decided to store
the defining statement explicitly.

5.2.1 Implementing the method mustNotAlias

Based on the state of an instance key, we can implement the method mustNotAlias(InstanceKey)

as shown in the decision diagram in Figure 3. First, we compare the two methods of the receiver
instance key and the parameter instance key. If the two instance keys come from the same method,
we can first apply our local must-not-alias analysis (which is usually more precise). The analysis is
given the associated local variables and assignment statements as input. If the local must-not-alias
analysis determines that indeed those two variables at those statements cannot possibly point to
the same object we return true, indicating that indeed the instance keys cannot alias.

instance
keys of same

method?

start

local
must-not-alias

analysis

points-to
sets

overlap?

don’t know
(may-alias)

must
not alias

yes

no don’t know

must not alias

yes no

Figure 3: Decision procedure for the must-not-alias operation on instance keys

If the local must-not-alias analysis instead returns “don’t know”, or if the two variables come
from different methods, we consult the interprocedural points-to analysis. As Section 4 showed,

16

sometimes the interprocedural analysis can be more precise, even for two variables coming from
the same method. We construct points-to sets and refine them using context information for both
instance keys. (In fact, we cache the refined points-to sets inside the instance keys). If the resulting
points-to sets do not overlap, we return true as well, because again we know that the variables
cannot be aliased. Otherwise, we return false, indicating that we don’t know whether or not the
variables may be aliased.

5.2.2 Implementing the method mustAlias

The implementation of the method mustAlias(InstanceKey) is similar and even more straight-
forward, because must-alias analysis cannot use our interprocedural points-to analysis. Hence, only
local analysis is possible.

instance
keys of same

method?

start

local
must-alias
analysis

must-alias

don’t know
(not

must-alias)

yes

no
must alias

don’t know

Figure 4: Decision procedure for the must-alias operation on instance keys

Figure 4 presents a flowchart of our logic. First, we determine whether both instance keys represent
values in the same method. If they don’t, we simply cannot tell whether they must-alias and return
false. Otherwise, we can delegate to the local must-alias analysis and return its answer. As
we noted in Section 3.1, we implemented two different versions of the intraprocedural must-alias
analysis with different semantics for redefinitions in loops; clients may select the must-alias analysis
that best suits their needs.

Strong vs. weak instance keys The semantics of instance keys depends on which analyses are
used. Strong instance keys implement their mustAlias method via a strong must-alias analysis, as
defined in Section 3.1. Weak instance keys, on the other hand, use a weak must-alias analysis.

5.2.3 Implementation of equals

The implementation of the equals(Object) method is an important design decision. As mentioned
above, it is very desirable to look up state from hash tables using instance keys. Since all hash

17

maps and tables in the Java runtime library use the methods hashCode() and equals(Object)

to look up associations, correctly implementing these methods is very important. Using instance
keys, the semantics of equals(Object) fortunately becomes very simple. We already know that
two instance keys, by definition, represent the same object if their associated variables must-alias.
Hence, our implementation of the equals method simply checks that the object passed in is of type
InstanceKey. If it is, it delegates to the method mustAlias(InstanceKey) and returns its result.
Otherwise, it returns false.

By this mechanism it follows that the identity of an instance key is solely based on its must-alias
relationship to other keys. In particular, strong and weak instance keys will have different semantics
when being compared to other keys using equals. This is not accidental—it is intentional. As
mentioned in Section 3.1, we have different client analysis for tracematches. Some of these analyses
consider single loop iterations, while others consider multiple loop iterations. In general, client
analyses can profitably use both weak and strong instance keys, depending on their particular
needs.

Strong instance keys provide the strong guarantee that that two keys are only equal when they are
known to represent the same object. This means that instance keys can transparently represent
runtime objects, easing the design and implementation of abstract interpreters and other static
analyses. On the other hand, strong instance keys need to be handled with care in the presence of
loops. Consider the following example.

1 while(...) {
2 x = foo();
3 ...
4 }

In this code example, line 2 could create arbitrarily many objects and assign them to x over x’s
lifetime. There is no compile-time upper bound to the number of objects assigned to x. For strong
instance keys, we have to maintain the property that each key only represents one single concrete
object. This would require that the instance key representing x at line 2 in this method cannot
equal itself. (The respective strong must-alias analysis would assign ⊤ to x; remember that ⊤ also
does not equal itself either).

It is common to define data flow analyses via a fixed point iteration. The fixed point is reached if
the analysis state at any given statement after the n-th iteration is equal to the one in the previous
iteration. But for strong instance keys representing values redefined in loops as above, equals(..)
will always return false. Hence, a data flow analysis whose termination condition relies on instance
keys being equal might never terminate. Data flow analyses using strong instance keys hence have
to use an alternative termination condition. In our client analyses using strong instance keys, we
capped the maximum number of iterations.

Note that this problem is not caused by the notion of instance keys. The problem is that the
number of concrete objects assigned at runtime cannot be known at compile time. Hence, there
can only be two choices: Approximate the unbounded number of objects by a finite number of
instance keys—weak instance keys use a single key—or by an infinite number of strong instance
keys. Developers may choose the most appropriate approach for their client analysis.

18

1 Method method; //declaring method
2 String variable ; //associated variable name
3 Stmt stmt; //associated statement
4 public int hashCode() {
5 final int prime = 31;
6 int result = 1;
7 result = prime ∗ result +
8 method.fullName().hashCode();
9 result = prime ∗ result +

10 must alias analysis (method).valNumber(variable,stmt);
11 return result;
12 }

Figure 5: Implementation of the hashCode() method for instance keys (pseudo code)

5.2.4 Implementation of hashCode

For performance reasons, hash codes should differ whenever they can, but must be equal for two
instance keys whenever an invocation of equals on those keys would return true, i.e. if both keys
must be aliased. We found the following solution for computing an effective hash code for instance
keys. The code is a function of

1. the identity of the declaring method; and

2. the value number assigned to the associated variable by the local must-alias analysis of this
method at the associated statement.

Figure 5 gives our concrete implementation in Java-like pseudo code. This solution ensures that
two instance keys from different methods are likely to be assigned different hash codes. Further-
more, instance keys representing potentially different values from the same method are likely to
be assigned different keys. Moreover, keys representing the same value (with the same value num-
ber) at the same statement in the same method will be assigned the same hash code. Hence, this
implementation is sound.

Note that this hash code can be cached, as its computation only depends on constant values. Our
implementation in fact caches hash codes for improved efficiency. (In fact, in recent work researchers
have convincingly argued [29] that any sound implementation of the hashCode() method should
be a function of constant values.)

5.3 Experience

Our work on instance keys was inspired by our development of a static analysis for tracematches [3,
4]. Our initial static analysis did not use any flow-sensitive pointer information; it relied on whole-
program pointer analysis as described in Section 4. The initial static analysis included an interpro-
cedural stage that did not use any flow-sensitive information. This stage was not sufficiently precise
to get any results at all. When we manually inspected our analysis results, we found that many
cases would benefit from a flow-sensitive pointer analysis. In fact, we noticed that many of these
cases only required flow-sensitive information at the intraprocedural level. At the interprocedural
level, flow-insensitive information was sufficient for optimizing the cases that we were interested in.

19

Our initial implementations used variable names rather than instance keys for tracking heap objects,
which led to the implementation-level that we explained. In particular, the same object can be
pointed to by multiple different variables, which makes it difficult to look up analysis information.
Furthermore, propagating variable names (in place of objects) can become unsound if the variables
are redefined (potentially inside loops). Instance keys enabled us to clearly distinguish between
program variables and the heap objects that they point to. The property that a strong instance
key equals another exactly when it must alias the other one was very useful when it came to
associating analysis states with instance keys, via hash maps.

6 Related work

We discuss related work in the areas of instance keys, whole-program pointer analyses, client
analyses, flow-sensitive analyses, and specializing pointer analyses.

6.1 Instance keys

We first came across instance keys in a series of papers by Fink et al. [9,26]. The authors informally
define an instance key as an abstract name uniquely identifying a set of objects. While their work
uses instance keys heavily, the authors do not describe the properties of instance keys or how
they are computed. We found that the notion of instance keys was useful in our own research,
we explored this notion further and describe instance keys and their properties in this paper; we
believe that instance keys will be helpful to others as well.

Ghiya et al. [12] describe a memory disambiguation framework for the Intel Itanium compiler. Their
work is similar to ours in that they provide an interface for static analysis clients to query a family
of analyses (including intraprocedural and interprocedural pointer analyses) and expose abstract
storage locations (LOCs). A LOC is defined to be a “a storage object that is independent of all
other storage objects”; that is, a LOC never may-aliases any other LOC. There is no guarantee
that two variables with the same LOC must alias each other. In contrast, instance keys do support
must-alias information, and strong instance keys can therefore be used in the place of runtime
objects when implementing static analyses.

Generally, instance keys combine must and must-not aliasing information with interprocedural
points-to information. Another way to combine must and must not information is to compute them
together using a combined abstraction. Emami et al. [7] propose such a combined abstraction and
integrate it with context-sensitive interprocedural pointer analysis, using the notation of abstract
stack locations. Instance keys differ from abstract stack locations by giving names for objects on
the heap, while abstract stack locations track stack-based objects.

6.2 Whole-program pointer analyses

Our research relies on the existence of whole-program points-to analyses, which have been an
active field of research over the last 25 years. Whole-program analyses generally trade off between
precision and performance (in terms of time and space), and researchers have attempted to improve
on precision while maintaining performance, or to maintain precision while improving performance.

20

In [14], Hind surveys the most important research in this field, lists 11 open questions in points-to
analysis, and points out papers that attempt to answer these questions. Open questions include:
implementing points-to analyses for incomplete programs; designing demand-driven or incremental
analyses; and efficiently incorporating flow-sensitivity at a whole-program level.

Two examples of whole-program pointer analyses are ones by Altucher and Landi [2] and by Naik
and Aiken [22]. Altucher and Landi name allocation sites and essentially use some limited context
information by supporting custom allocation routines. They improve the results of their must-alias
analysis with some may-alias information. Naik and Aiken propose a whole-program must-not-
alias analysis which establishes facts of the form “if pointers p and q do not alias, then x and y do
not alias either.” Their analysis is a flow-insensitive whole-program approach which does not use
must-alias information.

We have used whole-program points-to analyses to relate instance keys to each other. To an-
swer aliasing queries on local variables, our component analyses only need to be able to determine
whether the points-to sets for those variables overlap. We believe that all points-to analyses im-
plement such an interface, so our approach is general enough to incorporate any whole-program
pointer analysis. In fact we experimented with a number of points-to analyses with different per-
formance/precision trade-offs in the context of our static analysis of tracematches. Instance keys
were flexible enough to incorporate all these analyses.

6.3 Client analyses

Many static analyses benefit from alias or points-to information, if they do not require it, since
explicit references are a ubiquitous feature of modern programming languages. Pioli and Hind
wrote a survey paper [15] which gives an overview of points-to analyses from a client’s perspective
and give examples of the wide range of extant client analyses. The authors mention live variable
analysis, reaching definitions analysis and interprocedural constant propagation, and compare the
precision of different points-to analyses for those client analyses. Their list is not exhaustive; many
other client analyses are interesting. We next enumerate some interesting client analyses.

• Cast elimination [27] removes unnecessary casts for variables that are known to be assigned
an object of the correct type at runtime.

• Side effect analysis [20] determines possible side effects of method calls (and side effects of
advice for aspect-oriented programs). Many optimizations and abstract interpretations can
profitably use the fact that a method is free of certain side effects, including parallelization.

• Escape analysis [23] determines if values may escape a given loop, method or class. Non-
escaping values are particularly easy to handle and quite amenable to the intraprocedural
techniques that we described in Section 3. Escape analyses are also useful for type-checking
ownership types [6], which encode ownership constraints on aliases. For instance, some owner-
ship type systems require that an object owned by some parent object is only ever be modified
by that parent.

• Thread-local objects analysis [13] determines whether a given variable is used thread-locally,
i.e. whether accesses to values stored in that variable will only ever be made by a single thread.
Flow-sensitive client analyses often (implicitly) depend on the values not being modified by

21

concurrent threads, and require at least much more conservative assumptions in the presence
of multiple threads.

• Static write barrier removal for generational garbage collectors [32] relies on intraprocedural
must-alias information and a flow-insensitive interprocedural analysis to distinguish between
heap objects. The design of this static analysis would appear to make it a good client for
instance keys.

• Automatic parallelization always relies on pointer analysis, since different processors (or pro-
cessor cores) work best if they do not have to simultaneously access the same part of the
heap.

• A static analysis of PHP code for security vulnerabilities [16] needs to use pointer analysis
to deal with aliasing between references. They have intraprocedural (may- and must-alias)
and interprocedural pointer analyses. The authors conflate heap objects with the variables
that point to these objects, and maintain the relationships between variables manually, which
leads to a complicated exposition.

• Static race detection for Java requires pointer analysis, since Java locks and the state that they
protect are both heap objects. Naik and Aiken therefore invented conditional must-not-alias
analysis for this application [22].

• The LLVM compiler infrastructure [19] supports the development of client analyses. The
infrastructure includes aggressive dead code elimination (which eliminates calls to pure func-
tions whose results are thrown away); loop invariant code motion; and a transformation that
converts calls-by-reference to calls-by-value, when it is safe. While the infrastructure supports
value numbering, the interface for querying the alias information only takes two variables and
determines whether they are aliased.

In general, all of the above client analyses work best with a maximally precise points-to or alias
analysis. But these analyses also generally require the whole program, triggering a need for a whole-
program points-to analysis. However, intraprocedural flow-sensitive must-not-alias and must-alias
information could enhance their precision. We believe that instance keys would help in the design
and implementation of all of these analyses.

6.4 Specializing pointer analyses

In [25], Rountev et al. present an analysis that treats different parts of a program with different
precision. Many programs usually use large standard libraries that are hard and expensive to
analyze precisely. The authors propose to analyze those libraries in a more coarse-grained fashion,
computing only summary information for the libraries. This summary information can then enable
a more precise analysis for the rest of the program. This work shares with our work the view
that different pointer analyses might be suitable for different purposes. However, the approaches
are orthogonal. Instance keys could be used to incorporate the results of analyses as proposed by
Rountev et al. with each other and with the result of our analyses proposed here.

In [27] Sridharan and Bod́ık present a flow-insensitive, demand-driven, refinement-based points-
to analysis (which we used for our static tracematch optimizations). Their analysis supports the
analysis of different parts of a program with different precisions, and enables client analyses to state

22

how much they care about particular points-to sets. We believe that instance keys could support
such an interface using parametrization: one instance key could be computed more carefully than
usual, if it is particularly important to the client analysis.

7 Conclusions

In this paper we have described instance keys, a notation which integrates pointer analysis results
from flow-insensitive interprocedural analyses with results from flow-sensitive intraprocedural anal-
yses. Instance keys enable clients to determine whether two variables definitely point to the same
heap object and whether two variables definitely point to different objects. Within the instance
key framework we defined two different kinds of instance keys, strong and weak, that have different
semantics with respect to the redefinition of variables within loops.

We believe that instance keys simplify the design and implementation of static analyses that rely
on pointer analyses: with instance keys, static analyses can be designed and implemented more like
the runtime systems they model.

References

[1] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables in programs.
In POPL ’88: Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 1–11, New York, NY, USA, 1988. ACM Press.

[2] R. Altucher and W. Landi. An extended form of must alias analysis for dynamic allocation.
In Proceedings of the 22nd ACM Symposium on Principles of Programming Languages (POPL
’95), pages 74–84, January 1995.

[3] E. Bodden, L. J. Hendren, and O. Lhoták. A staged static program analysis to improve the
performance of runtime monitoring. In Ernst [8], pages 525–549.

[4] E. Bodden, P. Lam, and L. Hendren. Flow-sensitive static optimizations for runtime monitor-
ing. Technical Report abc-2007-3, http://www.aspectbench.org/, 07 2007.

[5] D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of pointers and structures. In PLDI
’90: Proceedings of the ACM SIGPLAN 1990 conference on Programming language design and
implementation, pages 296–310, New York, NY, USA, 1990. ACM Press.

[6] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias protection. In
OOPSLA ’98: Proceedings of the 13th ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, pages 48–64, New York, NY, USA, 1998. ACM
Press.

[7] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive interprocedural points-to analysis
in the presence of function pointers. In PLDI ’94: Proceedings of the ACM SIGPLAN 1994
conference on Programming language design and implementation, pages 242–256, New York,
NY, USA, 1994. ACM Press.

23

[8] E. Ernst, editor. ECOOP 2007 - Object-Oriented Programming, 21st European Conference,
Berlin, Germany, July 30 - August 3, 2007, Proceedings, volume 4609 of Lecture Notes in
Computer Science. Springer, 2007.

[9] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective typestate verification in the
presence of aliasing. In Proceedings of the 2006 International Symposium on Software Testing
and Analysis, 2006.

[10] S. J. Fink, K. Knobe, and V. Sarkar. Unified analysis of array and object references in
strongly typed languages. In SAS ’00: Proceedings of the 7th International Symposium on
Static Analysis, pages 155–174, London, UK, 2000. Springer-Verlag.

[11] R. Ghiya and L. J. Hendren. Putting pointer analysis to work. In POPL ’98: Proceedings of
the 25th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
121–133, New York, NY, USA, 1998. ACM Press.

[12] R. Ghiya, D. Lavery, and D. Sehr. On the importance of points-to analysis and other memory
disambiguation methods for C programs. In Proceedings of the ACM SIGPLAN 2001 con-
ference on Programming language design and implementation (PLDI ’01), pages 47–58, New
York, NY, USA, 2001. ACM Press.

[13] R. L. Halpert, C. J. F. Pickett, and C. Verbrugge. Component-based lock allocation. In
PACT’07: Proceedings of the 16th International Conference on Parallel Architectures and
Compilation Techniques. IEEE, September 2007. To appear.

[14] M. Hind. Pointer analysis: haven’t we solved this problem yet? In PASTE ’01: Proceedings
of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and
engineering, pages 54–61, New York, NY, USA, 2001. ACM Press.

[15] M. Hind and A. Pioli. Which pointer analysis should I use? In ISSTA ’00: Proceedings of
the 2000 ACM SIGSOFT international symposium on Software testing and analysis, pages
113–123, New York, NY, USA, 2000. ACM Press.

[16] N. Jovanovic, C. Kruegel, and E. Kirda. Precise alias analysis for syntactic detection of web
application vulnerabilities. In Proceedings of PLAS ’06, 2006.

[17] W. Landi, B. G. Ryder, and S. Zhang. Interprocedural modification side effect analysis with
pointer aliasing. In PLDI ’93: Proceedings of the ACM SIGPLAN 1993 conference on Pro-
gramming language design and implementation, pages 56–67, New York, NY, USA, 1993. ACM
Press.

[18] C. Lapkowski and L. J. Hendren. Extended SSA numbering: Introducing SSA properties
to languages with multi-level pointers. In Proc. 1998 International Conference on Compiler
Construction, volume 1383 of Springer LNCS, pages 128–143, March 1998.

[19] C. Lattner. The LLVM compiler system. In Proceedings of the 2007 Bossa Conference on
Open Source, Mobile Internet and Multimedia, March 2007.

[20] A. Le, O. Lhoták, and L. Hendren. Using inter-procedural side-effect information in JIT
optimizations. In R. Bodik, editor, Compiler Construction, 14th International Conference,
volume 3443 of LNCS, pages 287–304, Edinburgh, April 2005. Springer.

24

[21] O. Lhoták and L. Hendren. Scaling Java points-to analysis using Spark. In G. Hedin, editor,
Compiler Construction, 12th International Conference, volume 2622 of LNCS, pages 153–169,
Warsaw, Poland, Apr. 2003. Springer.

[22] M. Naik and A. Aiken. Conditional must not aliasing for static race detection. In Proceedings
of the 34th ACM Symposium on Principles of Programming Languages (POPL ’07), January
2007.

[23] Y. G. Park and B. Goldberg. Escape analysis on lists. In PLDI ’92: Proceedings of the
ACM SIGPLAN 1992 conference on Programming language design and implementation, pages
116–127, New York, NY, USA, 1992. ACM Press.

[24] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and redundant com-
putations. In POPL ’88: Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 12–27, New York, NY, USA, 1988. ACM Press.

[25] A. Rountev, S. Kagan, and T. Marlowe. Interprocedural dataflow analysis in the presence
of large libraries. In International Conference on Compiler Construction, LNCS 3923, pages
2–16, 2006.

[26] S. Shoham, E. Yahav, S. Fink, and M. Pistoia. Static specification mining using automata-
based abstractions. In ISSTA07, pages 174–184, July 2007.

[27] M. Sridharan and R. Bod́ık. Refinement-based context-sensitive points-to analysis for Java.
In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN conference on Programming language
design and implementation, pages 387–400, New York, NY, USA, 2006. ACM Press.

[28] R. Vallée-Rai. Soot: A Java optimization framework. Master’s thesis, McGill University, July
2000.

[29] M. Vaziri, F. Tip, S. Fink, and J. Dolby. Declarative object identity using relation types. In
Ernst [8], pages 54–78.

[30] C. Verbrugge, P. Co, and L. J. Hendren. Generalized constant propagation: A study in C.
In Proceedings of the 5th International Conference on Compiler Construction, volume 1060 of
LNCS, pages 74–90, April 1996.

[31] J. Whaley and M. Rinard. Compositional pointer and escape analysis for Java programs. In
OOPSLA ’99: Proceedings of the 14th ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, pages 187–206, New York, NY, USA, 1999.
ACM Press.

[32] K. Zee and M. Rinard. Write barrier removal by static analysis. In Proceedings of the 17th An-
nual ACM Conference on Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA ’02), October 2002.

25

