
McGill University

School of Computer Science

Sable Research Group

Transforming Timeline specifications into automata for
runtime monitoring (extended version)

Sable Technical Report No. 2008-1

Eric Bodden and Hans Vangheluwe

School of Computer Science
McGill University, Montréal, Québec, Canada

February 3rd, 2008

w w w . s a b l e . m c g i l l . c a

Contents

1 Introduction 3

2 The Timeline formalism 4

2.1 Timeline abstract syntax in AToM3 . 5

2.2 Timeline concrete syntax in AToM3 . 6

3 Transformation into finite automata 7

4 Eliminating unreachable states 13

5 Applicability to runtime monitoring 13

5.1 Per-object specifications . 14

5.2 Is Timeline optimal? . 15

6 User experience with AToM3 suggested improvements of the tool 16

6.1 What worked well . 16

6.2 Suggestions for improvements . 16

7 Conclusion and future work 17

List of Figures

1 Timeline specification . 5

2 Abstract syntax of the Timeline formalism in AToM3 6

3 Adding the artificial end event . 7

4 Adding states . 8

5 Marking the initial state . 9

6 Creating transitions . 9

7 Folding constraints . 10

8 Applying constraint start and end points (left-hand sides) 11

9 Applying constraint bodies to the loops (left-hand side) 11

10 Correcting the semantics of fail events . 12

11 Example - resulting automaton . 12

12 Base case for calculating the transitive closure . 13

1

13 Step case for calculating the transitive closure . 13

14 Automaton-based tracematch checking for writes to closed files 14

2

Abstract

In runtime monitoring, a programmer specifies code to execute whenever a sequence of events
occurs during program execution. Previous and related work has shown that runtime monitoring
techniques can be useful in order to validate or guarantee the safety and security of running pro-
grams. Those techniques have however not been incorporated in everyday software development
processes. One problem that hinders industry adoption is that the required specifications use a
cumbersome, textual notation. As a consequence, only verification experts, not programmers,
can understand what a given specification means and in particular, whether it is correct. In
2001, researchers at Bell Labs proposed the Timeline formalism. This formalism was designed
with ease of use in mind, for the purpose of static verification (and not, as in our work, for
runtime monitoring).

In this article, we describe how software safety specifications can be described visually in
the Timeline formalism and subsequently transformed into finite automata suitable for runtime
monitoring, using our meta-modelling and model transformation tool AToM3. The synthesized
automata are subsequently fed into an existing monitoring back-end that generates efficient
runtime monitors for them. Those monitors can then automatically be applied to Java programs.

Our work shows that the transformation of Timeline models to automata is not only feasible
in an efficient and sound way but also helps programmers identify correspondences between the
original specification and the generated monitors. We argue that visual specification of safety
criteria and subsequent automatic synthesis of runtime monitors will help users reason about
the correctness of their specifications on the one hand and effectively deploy them in industrial
settings on the other hand.

1 Introduction

Static program verification in the form of model checking and theorem proving has in the past been
very successful, however mostly when applied to small embedded systems. The intrinsic exponential
complexity of the involved algorithms makes it hard to apply them to large-scale applications. Run-
time monitoring or runtime verification [1] tries to find new ways to support automated verification
of such applications. This is done by combining declarative safety specifications with automated
tools that allow verification of these properties, not statically but dynamically, when the program
under test is executed. Research has produced a variety of such tools over the last years, many of
which have helped find real errors in large-scale applications. Yet, those techniques have not yet
been able to make the transition to everyday use in regular software development processes. This
is due to two reasons. Firstly, many of the existing runtime monitoring tools cause a significant
runtime overhead, lengthening test runs unduly. Secondly, the kind of specifications that can be
verified by such tools often use a quite cumbersome notation. This leads to the fact that only
verification experts, not programmers, can understand what a given specification means and in
particular, whether it is correct.

The first problem of generating efficient runtime monitors has been addressed extensively in pre-
vious [2–4] and related [5, 6] work. In particular, our research group maintains an efficient imple-
mentation of tracematches [7], an implementation of runtime monitoring that allows specifications
to match on the dynamic execution trace, using regular expressions with free variables than can
bind objects. For instance, a pattern of the form File f: open(f) dispose(f) over the alpha-
bet Σ = {open,dispose} could denote disposing a file that is currently open. Such a specification
might seem easy to read, but sometimes subtle problems can arise. For example, the aforementioned
pattern would also match the event sequence open(f1) close(f1) dispose(f1), where a file f1

3

is properly closed before it is disposed. In order to fix the pattern, one would have to change the
alphabet of the regular expression to Σ = {open,close,dispose}. We strongly believe that such
subtle difficulties with existing specification formalisms are among the main reasons why formal
verification techniques such as runtime monitoring have, despite their effectiveness and efficiency,
not yet found widespread industry adoption.

In 2001, Smith et al. from Bell Labs proposed the Timeline formalism as a way to ease the specifica-
tion of temporal properties [8]. They presented a visual tool to design Timeline specifications. The
tool converts those specifications into Büchi automata, suitable for static verification. However,
this translation is done in code, and hence it is hidden from the user. We believe that the Timeline
formalism is indeed much more comprehensible than many other temporal specification formalisms.
However, we also believe that a tool can and should benefit from explicit visual graph rewriting
techniques. Implementing formalism (such as Timeline) semantics via visual graph transformations
allows (1) to easily experiment with different semantics by altering transformation rules and (2)
once the semantics is fixed, to easily reason about its correctness. Hence, in the following, we pro-
pose an explicit visual graph transformation using the AToM3 tool [9], that rewrites specifications
in the Timeline formalism to corresponding finite state machines suitable for runtime monitoring.
Those state machines can then be fed into our tracematch-based back-end, which generates an
equivalent and efficient runtime monitor. This monitor can be applied to arbitrary Java programs
through compilation.

It is also noted that Smith et al. did not take into account per-object specifications such as the
per-file specification mentioned above. In this work we show how the Timeline formalism can be
used for such specifications as well. The generated Java monitors automatically take into account
the necessary object bindings, exploiting our performance optimizations from previous work.

The remainder of this paper is organized as follows. In Section 2 we introduce the Timeline
formalism, its visual concrete syntax, and its semantics. The visual specification of transformation
into finite automata is described in Section 3. In Section 4 we further describe an (optional)
optimization that eliminates unreachable states. This optimization is also implemented via graph
transformations, in a way which we find very natural and elegant. In Section 5, we sketch how
the resulting automata can be used in our runtime monitoring back-end. Finally, we conclude and
state future work in Section 7.

2 The Timeline formalism

Each Timeline specification consists of a single time line, which is independent of all the others.
This is important, as it enabled modular reasoning. A time line makes sense in its own right and
its truth value does not depend on the presence of other time lines.

Each time line represents an ordered sequence of events. The first event is a distinguished start
event, representing the time of start-up of the application. All events but this start event are
associated with a label and one of the following three event types.

regular event Such an event may or may not occur. It imposes no requirement and is only used
to build up context for a complete pattern match. Regular events are denoted with the letter
e.

required event A required event must occur, whenever its left-context on the time line was

4

matched. Required events are denoted with the letter r.

fail events A fail event must not occur after its left context has matched. Such an event is denoted
with the letter X.

Along with those events, a time line can be augmented with constraints, restricting the matching
process. A constraint holds a Boolean combination of propositions and may include or exclude the
start and/or end event it is attached to.

While Smith et al. used a motivating example [8] specifying a dial-tone feature used at Bell labs,
we here use a running example motivated by our own work. Fig. 1 shows an extension of the
aforementioned file/dispose example. We wish to specify that a file must not be disposed as long
as it is open. Furthermore, we would like to make sure that any open file is closed at some point
in time, before the program exits. The Timeline specification directly states both requirements
together : After seeing a regular event open, we require an event close (in the end of the time
line) and in between we state that no dispose event may occur (excluded event, marked with an
X). A constraint between the open and dispose events is used to state that those requirements

Stage:

start e

open

X

dispose

r

close

!closeincl incl

!openincl excl

Figure 1: Timeline specification stating that any opened file should be closed and should not be
disposed before closing it.

only apply if the file has not been closed already prior to disposal. A second constraint on the left
states that we are only interested in the last open event, as our translation will assure that former
events were already handled once we get to this stage of evaluation. Fig. 1 shows the Timeline
specification as it is denoted in a modelling environment built using AToM3 [9]. This environment
uses the following abstract syntax in order to represent such specifications.

2.1 Timeline abstract syntax in AToM3

We model an event as an object with a string label and one of five types: start, regular, required,
fail and end. The “end” event is artificial. It cannot be specified by the user and is only used
within the translation to finite automata.

A time line consists of a sequence of events. The sequence is established via an ordering relation. A
further relation between events describes the constraints among them. Each constraint is modelled

5

as an edge between two events. It can include or exclude the event at its start and/or end.
Furthermore it is labelled with a string label, stating the actual constraint expression.

Fig. 2 shows the class diagram for the abstract syntax of Timeline in AToM3. In addition to
the aforementioned entities, it shows a Stage class. As we will explain in Section 3, we use a
singleton object of this class for each Timeline specification to be able to implement its translation
in a stateful way. This is a workaround because the version of AToM3 used did not yet support
programmed graph rewriting.

Attributes:

 - type :: Enum

 - label :: String

Cardinalities:

 - From Order: 0 to N

 - To Order: 0 to N

 - From Constraint: 0 to N

 - To Constraint: 0 to N

Event

Attributes:

 - stage :: String

 - stageNum :: Integer

Stage

Constraint

Attributes:

 - label :: String

 - start :: Enum

 - end :: Enum

Cardinalities:

 - To Ev: 0 to N

 - From Ev: 0 to N

Order

Cardinalities:

 - To Ev: 0 to N

 - From Ev: 0 to N

Figure 2: Abstract syntax of the Timeline formalism in AToM3

The static semantics of the Timeline formalism imposes the following type checks on correct Time-
line specifications. (see [8] for details)

1. Each time line must be fully connected by the Order relationship. In particular, this order is
anti-symmetric, transitive and total.

2. In each time line, the smallest event in this relationship must be of type “start”.

3. Each event must have at most one immediate predecessor and successor in this relationship.

4. When a constraint relation starts at an event e1 and ends at e2, then e1 must be smaller than
e2 in the Order.

5. There must not exist any two subsequent fail events.

6. A constraint may not begin or end at a fail event, unless the fail event is the first event or
last event of the time line.

The translation we give in Section 3 is based on the above assumptions. They can relatively easily
be verified in the AToM3 modelling tool, at design time.

2.2 Timeline concrete syntax in AToM3

Each abstract syntax entity is given a concrete visual representation. Events are represented by
vertical lines, while the temporal order relation between them is drawn as a directed edge. Con-
straints are undirected edges with labels. As Fig. 1 shows, AToM3 has built-in support for displaying
attribute values of entities in a text box as of its visual representation.

6

3 Transformation into finite automata

We assume a given time line t which fulfils the constraints mentioned in Section 2.1. Further, we
formally denote t by t = (E,O,C) with:

• E, a finite set of events;

• O ⊂ E × E, a total order, the temporal order relationship;

• C, a finite set of constraints.

Each event e ∈ E is of the form e = (le, te) with le a string label and

te ∈ {start, regular, required, fail, end}.

We then transform each Timeline specification into a finite state machine, using eight transfor-
mation stages that are executed in sequential order. In our model-driven approach, each of those
stages is explicitly modelled by one or more graph grammar rules. In the following, we explain each
stage in detail.

Stage 1 - Add an end event. For the subsequent transformation stages it will be useful to have
an additional end event, which marks the last event in the time line. Hence, our first rule adds such
an event to the one and only event of the time line which has no outgoing edge in the temporal
order relation. Note that there can only be one such event because the temporal order, being a
total order on a finite number of elements, has a unique largest element. The graph rewriting rule
stating this transformation is depicted in Fig. 3. The left-hand side of this rule is annotated with an
additional matching condition, stating that there may be no outgoing edge in the Order relation:

matchcond(e) := ¬∃e′ ∈ E . (e, e′) ∈ O

Note how number labels on left-hand side (LHS) and right-hand side (RHS) of rules allow one to
relate nodes on both sides. Labels present on both sides denote retained nodes, labels present only
on the LHS denote deleted nodes, and labels present only on the RHS denote created nodes. On the
LHS, <ANY> matches any attribute value. On the RHS, the notation <COPIED> denotes attribute
copying from the LHS, <SPECIFIED> denotes an explicitly computed attribute.

<ANY>

<ANY>

1

<COPIED>

<COPIED>

end

end

1 3

2

Figure 3: Adding the artificial end event

7

e

<ANY>

1

False

False

initial:

final:

<COPIED>

<COPIED>

3

1

2

r

<ANY>

1

False

True

initial:

final:

<COPIED>

<COPIED>

3

1

2

end

<ANY>

1

False

False

initial:

final:

e

3

1

2

X

<ANY>

1

False

False

initial:

final:

False

True

initial:

final:

<COPIED>

<COPIED>

3 5

1

8 <SPECIFIED>

7

true

6

Figure 4: Adding states

Stage 2 - Add states. For each event we then generate a state which reflects the point in time
immediately before the associated event occurs. We do so by using four different transformation
rules, one each for regular, required and fail events plus one for the end event. We use multiple
rules here, because the kind of state we generate depends on the event type.

The rules are shown in Fig. 4. For a regular event (marked with an e), we simply generate a
non-final state. We add a generic edge between the event and the state to be able to relate them
to each other in later transformation stages. AToM3 allows generic edges to connect any kind of
nodes. Other connections are constrained by the formalism’s meta-model. For a required event we
generate a final state accordingly. This is because the generated state machine is meant to accept
an input stream of events if and only if it violates the specification. Hence, in case the monitor
has not seen a required event yet, it has to be in an accepting state. Similarly, for a fail event we
actually add two states. The first one is non-final and reflects the point in time before the event
occurs. The second one is final and contains a true loop. This “sink” state has special semantics
in the sense that it allows for early error detection: once it is visited, we know that the property
is violated no matter what suffix of the trace will follow. The incoming transition to this state is
labelled with le, the label of the matched event. We copy the value from the event label. Finally,
the end event is treated as a regular event.

Stage 3 - Marking the initial state. In order to construct a valid finite automaton, we have to
mark its initial state as initial. We identify this initial state as the unique state that is associated
with the unique successor of the start event in the temporal order relation. The corresponding rule
is shown in Fig. 5.

Stage 4 - Adding transitions. This step adds the necessary transitions between the states. For
any two states belonging to two events ei, ei+1 where ei+1 follows ei in the temporal order, we

8

<ANY>

<ANY>

initial:

final:

start

<ANY>

<ANY>

<ANY>

4

1 2

3

5

<SPECIFIED>

<COPIED>

initial:

final:

<COPIED>

<COPIED>

<COPIED>

<COPIED>

4

1 2

3

5

Figure 5: Marking the initial state

add a transition between those states, labelled with lei
, simply because we want to move from the

state representing “before ei” to its successor, when lei
occurs. We also add a loop to the state

associated with ei, holding the label !lei
(read “not lei

”), so that we do not discard a partial match
only because lei

has not been seen yet. Fig. 6 shows our rule for creating transitions.

<ANY>

<ANY>

initial:

final:

<ANY>

<ANY>

initial:

final:

<ANY>

<ANY>

<ANY>

<ANY>

4 5

1 2

3

6 7
<SPECIFIED>

<SPECIFIED>

<COPIED>

<COPIED>

initial:

final:

<COPIED>

<COPIED>

initial:

final:

<COPIED>

<COPIED>

<COPIED>

<COPIED>

8

9

4 5

1 2

3

6

7

Figure 6: Creating transitions

Stage 5 - Folding constraints. The automaton we now have associated with the original time
line is already a valid finite automaton, equivalent to the time line, not taking constraints into
account. Hence, the constraints are handled next. The idea is to copy constraints over from the
time line onto the transitions of the resulting automaton. However, one problem still exists: a
constraint may be linked to two states which are not immediate successors in the temporal order,
i.e., between events ei, ej with j − i > 1. In such a case, the constraint also takes effect at all
events ei+1, . . . , ej−1, even though those are not directly connected to the constraint. In [8], Smith
et al. propose a tableau based approach in order to calculate the constraints which apply to each
single transition. We rather opted for a visual approach, which we find easier to understand and
implement.

The rule we describe here resolves the transitive notion of a constraint by connecting all the in-
termediate events explicitly to an equivalent constraint. This is depicted in Fig. 7 and makes the
above observation explicit: whenever we see two events ei, ej with a constraint between them and
there exists an event ej−1 preceding ej in the temporal order, then we split the constraint into two,
one covering the region between ei and ej−1 and one covering the step from ej−1 to ej . Note that
the first of those two constraints might still reach over multiple events. In the general case, where
δ := j − i, we hence have to apply this rule δ − 1 times until the fixed point is reached. This is
automatically performed by virtue of AToM3’s graph transformation semantics. When folding the
constraints in this way, we also have to make sure that the first constraint includes its starting
event only when the original constraint did so. Similarly, the second constraint must include its
end event only if the original constraint did so. We hence copy over those properties. Fig. 7 reflects
this by showing <SPECIFIED> at the appropriate labels. For the intermediate events it is clear that

9

<ANY>

<ANY> <ANY>

<ANY>

<ANY>

<ANY>

5

1

2

3

<ANY>
<ANY> <ANY>

6

<COPIED>

<COPIED> <COPIED>

<COPIED>

<COPIED>

<COPIED>

5

1

2
3

<SPECIFIED><SPECIFIED> incl

8

<SPECIFIED>
incl <SPECIFIED>

9

Figure 7: Folding constraints

those have to be included. Hence, we set this property explicitly to that value.

Stage 6 - Applying the constraints. After having folded the constraints, we can safely assume
that constraints only exist between immediate successor events ei, ei+1. This assumption provides
us with a direct and local mapping between any two events, their associated constraints and states.
In the following, we explain three different rules which are used to propagate the constraints onto
the related transitions of the finite automaton.

Applying a constraint at its start point. The first rule is shown in Fig. 8(a) (we only show the
left-hand side here, as the right-hand side has the same structure). Its purpose is to propagate a
constraint from an included start event of a constraint to the corresponding transition. If a starting
event e is included in a constraint c this means that we only accept this event (i.e., make progress
in the automaton) if c holds when e occurs. Consequently, we propagate c from the left event onto
the transition connecting the two associated states — the label of that transition changes from l

to (l and c). We remind the reader that the left state of the two reflects the point in time before
e was read and the right one the point in time after e was read. Also, we should mention that we
made the rule match only if the constraint does not already exist at the target transition. This
prevents AToM3 from applying the same rule repeatedly.

Applying a constraint at its end point. Similarly, we have to handle cases where the end point
of a constraint is included. The rule in Fig. 8(b) shows how we propagate the constraint label onto
any transition moving out of the end state of the constraint, in case the right event is included in
the constraint.

Applying a constraint to an interval. The “body” of the constraint, i.e., the part between its
start point and end point finally has to be applied to the corresponding loop, since the loop — as
is the case with the constraint — describes what behaviour is allowed before the next event occurs.
The left-hand side of the equivalent transformation rule is shown in Fig. 9. For each such match

10

<ANY>

<ANY>

initial:

final:

<ANY>

<ANY>

initial:

final:

<ANY>

<ANY>

<ANY>

<ANY>

5 8

1 2

3

6 9

<ANY>incl <ANY>

4

<ANY>

10

(a) Applying at start points

<ANY>

<ANY>

initial:

final:

<ANY>

<ANY>

initial:

final:

<ANY>

<ANY>

<ANY>

<ANY>

5 8

1 2

3

6

<ANY>
<ANY> incl

4

<ANY>

9

(b) Applying at end points

Figure 8: Applying constraint start and end points (left-hand sides)

we add the negation of the label of the constraint onto the label of the loop, which means that
whenever the constraint is violated, we may not return to this state, i.e., in the absence of other
matching transitions, the partial match is discarded.

<ANY>

<ANY>

initial:

final:

<ANY>

<ANY>

<ANY>

<ANY>

5

1 6

3

2

<ANY>

7

<ANY>
<ANY> <ANY>

4

Figure 9: Applying constraint bodies to the loops (left-hand side)

Stage 7 - Implement semantics of fail events. The way we generated states for fail events does
not yet exactly reflect the semantics given in [8]. In the current state machine, the scope of a
fail event would extend until the end of the input instead of only until the event following the fail
event. This means that we would falsely detect a violation if the fail event occurs anywhere on the
remaining path. However the semantics state that it only must not occur until the next regular (or
required) event occurs. The rule shown in Fig. 10 depicts the appropriate change to implement the
correct fail event semantics.

Assume that e is a fail event. We eliminate the state qe, changing its incoming transition to have
qe+1 as target state. The transition from qe to the failure state q′e is changed to start at qe+1.

We wish to remind the reader that each state qe in the automaton models the point in time right
before event e was seen. Taking this into account, we can now see that after the transformation,
the semantics are implemented correctly: when reading the event preceding e, we move to the state
associated with the event following e directly, because this is the next event on our “progress path”.
Should in the meantime however, the fail event occur, then we move to the failure state.

11

<ANY>

<ANY>

initial:

final:

<ANY>

<ANY>

initial:

final:

<ANY>

<ANY>

initial:

final:

<ANY>

True

initial:

final:

<ANY>

<ANY>

X

<ANY>

<ANY>

<ANY>

4 5 6

10

1 2 3

7 8 9

<ANY>

11

<ANY>

12

<ANY>

13

<COPIED>

<COPIED>

initial:

final:

<COPIED>

<COPIED>

initial:

final:

<COPIED>

<COPIED>

initial:

final:

<COPIED>

<COPIED>

<COPIED>

<COPIED>

<COPIED>

<COPIED>

4 6

10

1 2 3

7 9

17

<SPECIFIED>

15

<SPECIFIED>

16

Figure 10: Correcting the semantics of fail events

Stage 8 - Removing the events. After all the previous steps we now have a finite automaton
model which encodes the semantics of the original Timeline model. Hence, we can remove all event
information. Here, it suffices to remove the events alone, because AToM3 automatically removes
all (dangling) associated relations automatically. Consequently, we can simply implement this step
by means of a rule with an unspecified event on the left-hand side and an empty right-hand side.
Fig. 11 shows the result of the complete translation (steps 1 through 8) of our example from Fig. 1.

False

False

initial:

final:

False

True

initial:

final:

True

False

initial:

final:

False

True

initial:

final:

Cleanup events

Stage:

!open

!close

!close && open

close

true

dispose && !clos

Figure 11: Example - resulting automaton

Stateful transformations, termination and correctness. In order to prevent unwanted recursive
application of the different transformations, we had to make parts of the graph transformation
model stateful, which means that we carry around an explicit state, giving information about what
rule was last applied. This prevents for instance the rule for “adding transitions” being applied
again after transitions have been removed by the correction step for the fail event semantics. We
store the state in a visual label called “stage” as shown in Fig. 11. Future versions of AToM3 will
support programmed graph rewriting, allowing for the elegant and explicit description of trans-
formation stages. Each stage terminates due to implicit or explicit termination conditions. The
folding of constraints, for instance, automatically reaches a fixed point when there is no constraint
any more that spans more than two events. The propagation of constraint values, however, uses
a hand-coded check as described above. With respect to correctness it is noted that a formal
proof of transformation properties such as termination is out of the scope of this paper. Neverthe-
less, such a proof by structural induction over the different Timeline language constructs is quite
straightforward.

12

4 Eliminating unreachable states

Despite the fact that the resulting finite automaton accurately reflects the semantics of the original
Timeline model, it may still contain states which are unproductive. That is, no final state can be
reached from such states, as can be seen on the right side of Fig. 11.

Denoting a finite automaton A by the usual quintuple A = (Q,Σ, q0,∆, F), a state q ∈ Q is said to
be unproductive if there exists no path from q to some qF ∈ F ⊆ Q. The set P ⊆ Q of productive
states can hence be defined as the smallest set for which holds:

F ⊆ P ; qj ∈ P ∧ ∃l ∈ Σ . (qi, l, qj) ∈ ∆ → qi ∈ P

As one can see, this definition is recursive. It implies that a state is productive if a final state can
be reached via the transitive closure of the transition relation. In our approach, we explicitly model
the transitive closure of the transition relation in AToM3 by two rules. The base case is shown in
Fig. 12 where we add a generic edge wherever a transition exists.

<ANY>

<ANY>

initial:

final:

<ANY>

<ANY>

initial:

final:

1 2

<ANY>

3

<COPIED>

<COPIED>

initial:

final:

<COPIED>

<COPIED>

initial:

final:
4

1 2

5

6

<COPIED>

3

Figure 12: Base case for calculating the transitive closure

The step case is shown in Fig. 13: For each two consecutive generic edges we add a third one
bridging the two. The AToM3 tool automatically applies this rule until a fixed point is reached. In
the fixed point there exists a generic edge (qi, qj) if and only if qj is reachable from qi.

<ANY>

<ANY>

initial:

final:

<ANY>

<ANY>

initial:

final:

<ANY>

<ANY>

initial:

final:

5 8

1 2 3

6
7

9
10

False

False

initial:

final:

False

False

initial:

final:

<COPIED>

<COPIED>

initial:

final:

5 8

12

1 2 3

6
7

9
10

13 14

Figure 13: Step case for calculating the transitive closure

Given the transitive closure, we can now simply remove any state which is not (directly) connected
to a final state via the transitive closure relation. In Fig. 11 this would eliminate the right-most
state.

5 Applicability to runtime monitoring

As mentioned earlier, the generated finite state machines can be used for the purpose of runtime
verification. While Büchi automata, which are used for static verification, read an input of infinite

13

length, the automata we use here accept a finite input. This is because in runtime verification a
program is indeed executed and hence, every event sequence is terminated as the program shuts
down.

As described in [7], our current implementation of tracematches generates finite-state monitors
from regular expressions with free variables, where each variable is bound to matching objects
at runtime. Hence, it is relatively easy to modify the back-end in such a way that it does not
generate the finite state monitor from a given regular expression but instead reads it in directly.
In tracematches, abstract events are mapped onto concrete events in the code via pointcuts in the
aspect-oriented programming language AspectJ [10]. A pointcut in this setting is a predicate over
runtime events.

1 tracematch(File f) {
2 sym close after returning: call(∗ File.close ()) && target(f);
3 sym write before: call(∗ File.write (..)) && target(f);
4 sym dispose before: call(∗ File.delete ()) && target(f);
5

6 initial state 0; final state 1; final state 2; //define states
7 (0,open,1); (1,dispose ,2); //define transitions
8 { System.err.println(”State violation on file ”+f+”.”); }
9 }

Figure 14: Automaton-based tracematch checking for writes to closed files

Fig. 14 shows what such a state-based tracematch syntax could look like for our file example
(automatic generation of this textual representation is future work). In its header in line 1, the
tracematch declares to reason about a single file f. Lines 2-4 hold two user-defined symbols based
on AspectJ pointcuts. The transition table for the tracematch automaton follows in lines 6-7. This
part of the specification can be directly generated from the visual state machine model. Note that
unreachable states do not show up, cf. Section 4. Also, certain negated labels on transitions
do not need to be copied due to the event-based semantics of tracematch automata. Line 8 finally
holds the body of code that is to be executed on each single match. Note that this body has access
to the bound variable of f, an important feature of tracematches.

5.1 Per-object specifications

As we saw in the introduction, many interesting safety properties need to be evaluated “per object”.
For instance, if we want to say that a file must be closed after it was opened, this is a property
per file. While tracematches support such per-object specifications by default, Timeline was not
designed with such specifications in mind. Nevertheless, we claim that Timeline specifications could
be modified to incorporate such a feature. One possibility would be to replace an event e by an
e(x) where x is a free variable binding an object. For our file example, we could change the time
line to include events open(f) and close(f). An alternative would be to combine Timeline with
object life lines. We leave further investigation such extensions to future work.

14

5.2 Is Timeline optimal?

In this paper we stated a graphical translation from Timeline to runtime monitors. The intend was
to see whether such a translation is feasible and whether it would in fact enhance our understanding.
Looking at our running example, we can find the following advantages of Timeline over the existing
tracematches syntax.

Conciseness of representation In tracematches, a regular pattern matches a violating sequence.
This is roughly equivalent to stating a Timeline specification consisting of a sequence of regular
events and ending in a fail event. Timeline is more direct when it comes to specifying that an
event has to occur. We simply state a required event. In tracematches, such a pattern would have
to be simulated. For example, for the requirement that a file must be closed after it was opened,
we would have to match the regular pattern open shutdown over an alphabet {open, close,

shutdown}, where shutdown would be the event of shutting down the program. A violation would
occur whenever we see open followed by shutdown with no close in between. Although such
simulation is possible, we claim that it is indirect and hence make specifications harder to read.

Compositionality and fail events In our example, we further saw that two requirements could
easily be combined in a single time line: (1) Always close a file after it was opened and (2)
do not dispose the file before this required close-event. In tracematches, such a pattern would
have to be written using a logical “or” operator: open shutdown | open dispose or alternatively
open (shutdown | dispose), over an alphabet {open, close, dispose, shutdown}. While the
Timeline specification exactly states the requirement that there must be a close-event following the
open-event, with no dispose-event in between, the tracematch specification states this requirement
only implicitly, by defining that shutdown and dispose are both forbidden after open, (if there has
no close event happened in between). Again, we feel that the direct way of composing required and
fail events directly in one specification makes this specification easier to read.

Constraints in an event-based setting Timeline was initially developed to generate Büchi au-
tomata which were then fed into the model checker Spin [11]. Traditionally, such model checkers
were used to check propositional logics. Such logics are based on the notion of a proposition, a
statement that at each program state can either hold nor not. Using static verification, one can
then for example show that a given proposition holds in all states (or possibly a subset of states,
defined by some other proposition). While in a static view such specifications make sense, in the
field of runtime verification such a property would be hard to validate, since it would have to be
checked after the execution of each single instruction. Hence, in runtime verification one is much
more interested in events: The constraint that a variable i should never have a value smaller than 0
would be expressed by stating that no event should occur, setting i to such a value. Consequently,
constraints, as present in Timeline, are probably not really suitable to include in a specification
formalism meant for runtime verification. Again, we leave the investigation of concrete alternatives
to future work.

Applicability to real-world specifications Generally, we believe that Timeline or Timeline-based
formalisms should scale very well. This is because with any event added to the time line, this
time line only needs to be extended with that event. This is in contrast to temporal logics like

15

LTL [12] where each additional event increases the nesting depth of the formula, rendering nontrivial
specifications almost unreadable. Interestingly though, a study conducted by Dwyer et al. [13]
suggests that even real-world specifications used in industry are usually of a fairly simple structure.
The researchers even go so far to propose a pattern language to cover the most common specification
patterns.

6 User experience with AToM3 suggested improvements of the tool

In this section we briefly summarize our experience with using AToM3 as a tool for visual speci-
fication of modelling languages and model transformations. We highlight what worked for us but
also needs for further improvements.

6.1 What worked well

The following worked very well.

Modelling with concrete syntax The ability to describe both models and transformations, in
concrete syntax is useful for domain experts. Indeed, we identified this as the number one reason
for using visual graph transformations opposed to hand written code. With concrete syntax, the
transformation becomes visually explicit to the modeller. It is straightforward to picture the effects
of a transformation in one’s mind, because this transformation can directly be seen already in the
transformation rules themselves.

Large productivity increase In [8] the original creators of the Timeline formalism reported that
they spent about one month on implementing a modelling environment for Timeline. Using AToM3

we were able to achieve the same task in less than three days. A more experienced user of AToM3

would probably have been able to finish the implementation in an even smaller amount of time.
Furthermore, because in AToM3 the semantics are implemented via visual graph transformation
rules, this implementation will easily allow us to experiment with different semantics, by just
modifying the rewrite rules accordingly.

6.2 Suggestions for improvements

We believe that although our overall user experience with AToM3 was highly satisfying, the following
issues remain.

Negative application conditions. In many instances negative application conditions (NACs) would
have been very useful to prevent a rule from applying in certain situations. The Montréal version
of AToM3 we used allowed such conditions only in hand coded form, via inserting Python code.
Note that the Madrid version of AToM3 does have support for NACs.

Programmed graph rewriting was lacking In addition, we had to insert the aforementioned
“Stage” label into each of our visual specifications. This label was then used to keep track of

16

the current rewriting phase in order to schedule the rewriting correctly. The actual scheduling
was again written in Python code. Programmed graph rewriting is a solution to this problem as
put forward by the PROGRES [14] model transformation tool. Recent AToM3 developments [15]
presented at AGTIVE do support programmed graph rewriting.

Copying/computation of labels not visually explicit We further found that the way in which
labels are copied from one model object to another should be more visually explicit. As our figures
show, AToM3 currently only shows <SPECIFIED> at labels where values are explicitly specified.
In our opinion it would help if the labels that are specified to be copied there were displayed. A
color-coding scheme could enhance user experience further.

Static semantics were hard to specify Often the programmer of a graph transformation might
wish to specify rules that check the static semantics of a given visual model. For instance in our case
we wanted to make sure that the “Order” relationship is a total ordering, without cycles. In AToM3

we had to program this check manually in Python code. However for future versions we envision
a more explicit mechanism in the form of negative application conditions that are evaluated not
at transformation time but rather when the model is saved. In our particular case, the user could
draw a circular dependency with the “Order” relation. The semantics would then demand that this
pattern may not match when the validity of a given model is evaluated. Note that PROGRES [14]
has some limited support for static checks of that kind.

Layouting not yet optimal We found the layout algorithms in AToM3 to be suboptimal. Although
in general best effort is made by the AToM3 modelling environment, it still happens that nodes
or edges overlap. Even in cases where no overlapping occurs, objects might be arranged in a way
that to the tool user hardly makes sense. For instance in the case of Timeline, the time line should
really be a line, with arrows starting on the left and ending to the right. There should be layout
algorithms available which take such constraints into account. Maier and Minas have devised a
generic layout algorithm for meta-model based editors [16] which promises to mitigate some of
those problems.

7 Conclusion and future work

In this work we have shown that it is feasible to visually specify the transformation from the
Timeline temporal specification formalism to finite automata suitable for runtime monitoring. The
resulting automata can directly be used to generate efficient finite-state monitors for Java programs
using an existing back-end for tracematches [7].

We believe that this explicit way of transforming specifications to monitors facilitates reasoning
about and debugging of specifications. In particular, our translation is completely visual and
provides a one-to-one mapping between entities in the Timeline specification and the resulting
finite automaton. We plan to express this bi-directional relationship (i.e., backward trace-ability)
between Timeline and finite automata in the form of Triple Graph Grammars [17]. These allow
for the declarative specification of consistency relationships between graphs. This will enable us to
easily relate errors at execution level to constraints in the original Timeline specification. We believe

17

that our approach is yet another stepping stone on our path to bringing temporal specifications
and runtime monitoring closer to widespread industry adoption.

In future work, we also plan to give a formal description of the actual tracematch code and how
it is generated from the obtained finite state machines. We also wish to study the scalability of
temporal specification formalisms with respect to the size of the pattern that needs to be specified.
Last but not least, we want to apply our approach to real-world applications, for instance parts of
the DaCapo benchmark suite [18].

Acknowledgements We wish to thank the anonymous reviewers for their pertinent comments.
Further we thank the organizers of AGTIVE for making this symposium an unforgettable event.
Last but not least, the first author wished to express his gratitude towards the Deutsche Forschungs-
gemeinschaft (DFG) and the AGTIVE steering committee for the awarded travel grant. The second
author acknowledges partial support of this work by the Canadian National Sciences and Engineer-
ing Research Council.

References

[1] 1st to 7th Workshop on Runtime Verification (RV’01 - RV’07). (2001-2007)
http://www.runtime-verification.org/.

[2] Avgustinov, P., Tibble, J., Bodden, E., Lhoták, O., Hendren, L., de Moor, O., Ongk-
ingco, N., Sittampalam, G.: Efficient trace monitoring. Technical Report abc-2006-1,
http://www.aspectbench.org/ (March 2006)

[3] Avgustinov, P., Tibble, J., de Moor, O.: Making trace monitors feasible. SIGPLAN Not.
42(10) (2007) 589–608

[4] Bodden, E., Hendren, L.J., Lhoták, O.: A staged static program analysis to improve the
performance of runtime monitoring. In Ernst, E., ed.: ECOOP. Volume 4609 of Lecture Notes
in Computer Science., Springer (2007) 525–549

[5] Martin, M., Livshits, B., Lam, M.S.: Finding application errors using PQL: a program query
language. In: Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages and Applications. (2005) 365–383

[6] Fink, S., Yahav, E., Dor, N., Ramalingam, G., Geay, E.: Effective typestate verification in
the presence of aliasing. In: ISSTA’06: Proceedings of the 2006 international symposium on
Software testing and analysis, New York, NY, USA, ACM Press (2006) 133–144

[7] Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, O., de Moor,
O., Sereni, D., Sittampalam, G., Tibble, J.: Adding Trace Matching with Free Variables
to AspectJ. In: Object-Oriented Programming, Systems, Languages and Applications, ACM
Press (2005) 345–364

[8] Smith, M.H., Holzmann, G.J., Etessami, K.: Events and Constraints: A Graphical Editor
for Capturing Logic Requirements of Programs. Proceedings of the 5th IEEE International
Symposium on Requirements Engineering (2001) 14–22

18

[9] de Lara, J., Vangheluwe, H.: AToM3: A tool for multi-formalism and meta-modelling. Eu-
ropean Joint Conference on Theory And Practice of Software (ETAPS), Fundamental Ap-
proaches to Software Engineering (FASE) (2002) 174–188

[10] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An overview
of AspectJ. In Knudsen, J.L., ed.: European Conference on Object-oriented Programming.
Volume 2072 of Lecture Notes in Computer Science., Springer (2001) 327–353

[11] Holzmann, G.: The Spin Model Checker, Primer and Reference Manual. Addison-Wesley,
Reading, Massachusetts (2003)

[12] Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE Symposium
on the Foundations of Computer Science, IEEE Computer Society Press (1977) 46–57

[13] Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for finite-state
verification. In: FMSP ’98: Proceedings of the second workshop on Formal methods in software
practice, New York, NY, USA, ACM Press (1998) 7–15

[14] Schürr, A.: Developing Graphical (Software Engineering) Tools with PROGRES. In: Inter-
national Conference of Software Engineering. (1997) 618–619

[15] Syriani, E., Vangheluwe, H.: Programmed Graph Rewriting with DEvS. [19] To appear.

[16] Maier, S., Minas, M.: A Generic Layout Algorithm for Meta-model based Editors. [19] To
appear.

[17] Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In Tinhofer, G.,
ed.: WG’94 20th International Workshop on Graph-Theoretic Concepts in Computer Science.
Volume 903 of Lecture Notes in Computer Science (LNCS)., Heidelberg, Springer Verlag (1994)
151–163

[18] Blackburn, S.M., Garner, R., Hoffman, C., Khan, A.M., McKinley, K.S., Bentzur, R., Diwan,
A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A., Jump, M., Lee, H., Moss,
J.E.B., Phansalkar, A., Stefanović, D., VanDrunen, T., von Dincklage, D., Wiedermann, B.:
The DaCapo benchmarks: Java benchmarking development and analysis. In: OOPSLA ’06:
Proceedings of the 21st annual ACM SIGPLAN conference on Object-Oriented Programing,
Systems, Languages, and Applications, New York, NY, USA, ACM Press (October 2006)
169–190

[19] Nagl, M., Schürr, A., eds.: Applications of Graph Transformation with Industrial Relevance
(AGTIVE), Kassel, Germany. In Nagl, M., Schürr, A., eds.: Applications of Graph Transfor-
mation with Industrial Relevance (AGTIVE), Kassel, Germany, Springer (October 2007) To
appear.

19

