
Into the Woods: Experiences from Building a
Dataflow Analysis Framework for C/C++

Philipp Dominik Schubert∗, Richard Leer∗, Ben Hermann† and Eric Bodden∗‡
∗Paderborn University, Paderborn, Germany, {philipp.schubert, eric.bodden}@upb.de, rleer@mail.upb.de

†Technische Universität Dortmund, Dortmund, Germany, ben.hermann@cs.tu-dortmund.de
‡Fraunhofer IEM, Paderborn, Germany

Abstract—While traditional static analysis—albeit its
complexity—is a topic that is well understood, we especially
struggle when it comes to implementing its concepts. Designing
and modeling software that implements static analysis is a
challenging task. However, developing usable static analysis
implementations and providing toolboxes to researchers and
practitioners is key to advance the overall progress in this field.
This paper reports on the lessons learned from developing the
PhASAR and Soot static data-flow analysis frameworks. We
present some of the key mistakes of our first implementations
of PhASAR and their corrections. From those corrections we
distill guidelines that will be helpful to static analysis developers
and their users. In our work, we identified modularity as the
key guiding principle supported—directly or indirectly—by
virtually all other guidelines.

Index Terms—static analysis, guidelines, framework, C/C++,
LLVM

I. INTRODUCTION

We implemented the PhASAR framework [1] and open-

sourced it in 2018 due to the lack of open-source data-flow

analysis implementations for C/C++ that suited our needs. The

analysis of C/C++ programs is notoriously hard, as this family

of languages presents some unique properties that are seldom

found in other languages. These properties include its low-

levelness, arbitrary pointers to memory (including void*),

its deliberately unsafe type system, multiple inheritance, pos-

session of a preprocessor, and language features such as

const_cast and setjmp/longjmp—to list only a few.

Yet, these languages are heavily used in practice making them

relevant analysis targets.

While there are relatively lightweight analysis approaches

that conduct syntactic checks on a given target program, and

which are able to analyze even million lines of code in

minutes, analysis approaches that compute semantic properties

of a program are more heavyweight. Many interesting static

analysis problems, such as data-flow-, shape, or typestate

analysis require detailed, inter-procedural semantic program

information. To solve these kinds of analysis problems, de-

tailed abstractions are required that involve complex data-flow

solvers, complex analysis domains, and oftentimes multiple

different, potentially interleaving, helper analyses, forming an

”analysis blend” that eventually provides useful results. This

paper focuses on such semantic analyses.

For many real-world sized target programs, detailed abstrac-

tions that are necessary to solve those more heavyweight anal-

ysis problems lead to high runtime and memory requirements.

This makes it almost impossible to integrate such analyses

into software development processes, let alone compilers [2].

Actual solutions to analysis problems are often undecidable,

forcing analysis developers to resort to approximations. In ad-

dition, the complex concepts and algorithms that are required

to solve analyses that reason about semantic properties of a

program are one of the (many) reasons that lead to a restricted

supply of static-analysis implementations that are able to solve

those kinds of analysis problems.
Because there is no reference implementation, guide, or any

form of advice on how to build a static data-flow analysis

framework for C/C++, we initially borrowed several design

decisions from the Soot framework [3], [4], and LLVM [5].

We built PhASAR on top of LLVM as it provides a usable,

industrial-strength compiler infrastructure that offers an inter-

mediate representation (IR) and, in addition, provides compi-

lation of target programs into IR and all basic functionalities

for inspection and transformation of the IR. Although we were

able to use existing, static-analysis toolboxes and compiler

infrastructures that allowed us to avoid repeating engineering

mistakes others made before, such as (accidentally) introduc-

ing tight coupling, we still encountered various difficulties and

had to learn many lessons the hard way.
In this work, we thus report on our findings of what makes

the development of such frameworks easier. We present the

basic concepts of static data-flow analysis in a nutshell and

report on the key mistakes and design flaws of early imple-

mentations of PhASAR for which we drew several design

ideas from Soot [3] and LLVM [5]. From their corrections and

PhASAR’s partial redesign we elaborate guidelines on how to

model and implement static analysis that is usable in practice.
We found that the dominating overall design principle that

static analysis implementations must follow is modularity. A

modular design greatly counters complexity and allows one

to build further abstractions on top of basic building blocks.

Modularity is involved—directly or indirectly—in six of our

eight major guidelines that we distilled from our experience.
In summary, this paper makes the following contributions:

• It presents a report on the key mistakes and their correc-

tions in designing and implementing the concepts of static

data-flow analysis within the PhASAR [1] framework,

• and shows guidelines derived from the corrections that

will be useful to static analysis developers and their users.

18

2021 IEEE 21st International Working Conference on Source Code Analysis and Manipulation (SCAM)

DOI 10.1109/SCAM52516.2021.00011

20
21

 IE
EE

 2
1s

t I
nt

er
na

tio
na

l W
or

ki
ng

 C
on

fe
re

nc
e

on
 S

ou
rc

e
C

od
e

A
na

ly
si

s a
nd

 M
an

ip
ul

at
io

n
(S

C
A

M
) |

 9
78

-1
-6

65
4-

48
97

-0
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
SC

A
M

52
51

6.
20

21
.0

00
11

978-1-6654-4897-0/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on September 08,2022 at 13:13:09 UTC from IEEE Xplore. Restrictions apply.

Points-to (I)CFG Type hierarchy

Data-flow(s) ClientRepresentation

Points-to (I)CFG Type hierarchy

Data-flow(s) ClientRepresentation

Fig. 1: Dependency model of a concrete client analysis.

II. BACKGROUND

In this section, we briefly present the basic concepts of static

analysis that need to be taken into account when modeling and

implementing a static data-flow analysis framework.

A. Client Analyses and Their Dependencies

For presentation here we assume that a concrete client data-

flow analysis problem has to be solved.

An analysis problem is solved on a given target program that

usually has been translated to some intermediate representation

that allows for easier analysis due to a reduced instruction set

and an accompanying API to inspect the IR. Depending on

the program property that the concrete client analysis is inter-

ested in, the client may impose several, possibly interleaving,

dependencies on additional helper analyses shown in Figure 1.

These also need to be conducted on the given target program.

To check whether a property of interest holds, the client

analysis requires data-flow information of one or more data-

flow analyses which can be computed by generic solvers

that are parameterized with a description of the problem.

Depending on the nature of the client problem—distributive or

non-distributive—various data-flow solvers may be used [6].

In an intra-procedural setting, non-distributive problems can

be solved with the monotone framework [7]. In an inter-

procedural setting, the call-strings [8] or VASCO [9] ap-

proaches are required. Distributive problems can be solved

efficiently using the inter-procedural finite distributive sub-
set (IFDS) [10], inter-procedural distributive environments
(IDE) [11] or (weighted) pushdown systems ((W)PDS) [12]

approaches, all of which compute fine-grain, per-fact, re-

usable procedure summaries.

Those data-flow solvers are always depending on the target

program’s (inter-procedural) control-flow graph (ICFG) that

guides the solvers through the program, indicated by a solid

edge in Figure 1. In addition, they may depend on points-to

and type hierarchy information in case variables of pointer

types are encountered which is indicated by dotted edges in

Figure 1. Depending on the desired precision, the ICFG, in

turn, may depend on points-to, type-hierarchy, and virtual-

function-table information. A cyclic dependency is introduced

due to the fact that precise points-to information also depends

on ICFG information [6].

Information on the type hierarchy (and virtual function

tables in object oriented languages) have no further depen-

dencies. A client analysis is likely to transitively depend on

all of the above information.

B. Parametrization and Configurations

Virtually every algorithm that computes a piece of static

analysis information can be heavily parameterized; oftentimes

to trade off precision and scalability [13]. Depending on

the concrete client analysis and given target program, some

parametrizations may be more preferable than others.

In addition to the parametrization of individual analysis

algorithms that even affect each others’ properties, several

configuration options may be applied that can be considered

global. Those global configuration options apply to entire

analysis runs, i.e., they apply to every entity involved in

the dependency model presented in Section II-A. Some of

the configuration options are implementation independent. For

instance, one could model soundness as a global option that

may carry one of the values sound, soundy [14], or unsound.

That option uniformly applies to all analyses required by a

client and is independent of any concrete implementation.

Other configuration options such as logging, export of results,

etc. are global but implementation-dependent.

C. Analysis Styles

On top of the dependencies and setup presented above,

various analysis styles or strategies may be used to conduct an

analysis. Those styles include, among others, whole program,

incremental, demand-driven, and compositional analysis. All

these analysis styles require the same static-analysis informa-

tion but each style requires them in a slightly different form.

Demand-driven analysis, for instance, requires information on

forward and backward control flows [15]. Incremental up-

date analysis even requires additional communication between

those different pieces of information.

III. LESSONS LEARNED

In this section, we elaborate on implementation mistakes

and design flaws we made and had to fix in PhASAR’s

initial implementations, respectively. We consider it a mistake

whenever changes in the code or design have been necessary

that required a disproportionate amount of time when building

novel (analysis) abstractions on top of existing ones.

A. Modularity and Encapsulation

To allow for efficient inter-procedural analysis, we built our

initial implementation of PhASAR starting from a generic and

parameterizable IFDS/IDE solver implementation similar to

the HEROS [16] data-flow solver frequently used with Soot.

From our experience on Soot we knew that modularity

is a key element when it comes to designing an analysis

framework. Many of Soot’s important data types are imple-

mented as singletons that make it easy to globally access

information wherever needed, but also break modularity and

local reasoning. When requiring callgraph information, for

example, a user sets up an instance of a callgraph type using its

constructor. Especially novice users, however, cannot possibly

know that there are additional setup possibilities using a

singleton configuration object, as there is no direct coupling of

the type’s interface and its setup. Those singletons also prevent

19

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on September 08,2022 at 13:13:09 UTC from IEEE Xplore. Restrictions apply.

several important use cases as it prevents loading multiple

target programs into a single analysis process, for instance.

We borrowed several design decisions regarding the mod-

eling of the solver interfaces from Soot. Thus, the solver

operates on a ”problem” interface whose implementations

correspond to concrete analysis problems. The problem in-

terface’s constructor takes an implementation of the ICFG
interface that guides the solver through the program. The

client problem is also free to use the information provided

by the ICFG. PhASAR manages the underlying target code

using the ProjectIRDB type. One may thus conclude that

providing an ICFG implementation that computes control

flows on the code managed by the ProjectIRDB to the

analysis ”problem” would be sufficient.

While this design allowed us to implement and debug

the solver, and generally allows to specify and solve basic

inter-procedural client analysis problems, it oversimplifies the

concepts of static analysis. For instance, the existence of

points-to or type-hierarchy information is not mentioned at

all, making it unusable for more complex client analyses.

Because of our modular design and missing capabilities

to globally access information, it led to several severe code

smells such as passing points-to information via the concrete

ICFG implementation to the client problem and eventually

prevented us from building further abstractions on top without

completely breaking modularity and encapsulation, and thus

losing control over the complexity.

Hence, we improved on our model and implemented it

according to Section II-A. We modeled each entity as an

individual interface that can be separately used from all others.

We employ the type system to match our model shown in

Figure 1 and express intent: an analysis problem always needs

an ICFG implementation that guides the solver through the

program and is passed as a reference, and may uses additional

information which we pass as pointers. These pointers can be

nullptrs to indicate information not available/used. As the

client analysis is potentially provided with all information on

the helper analyses, it can, in turn, spawn additional (helper)

data-flow analyses itself, if required.

Modularity and Encapsulation: Modularity and encapsulation

are key to keep complexity manageable which has been

impressively shown by the LLVM project [5], too. Design a

model that is expressive enough to capture all interactions of

the different analysis algorithms that are interesting to you,

explicitly. Implement each entity of your model such that it

can be used (and tested) individually.

B. Accessing Information

Depending on what needs to be computed, the various

involved algorithms will need to share lots of information.

Due to our prior experience with stateful singletons in

Soot that not only decrease its maintainability but are also

particularly bad for thread-parallelism, we could avoid large

collections of information that are shared globally. When-

ever possible we make information available using uniform

parametrization across all entities of a certain type. For in-

stance, we offer uniform constructors for all types of data-flow

problems: call strings, IFDS, IDE, etc.—they all accept equal

parameter lists.

This allows us to build further abstractions on top of our

model shown in Figure 1. We recently started implementing

an analysis strategy concept as presented in Section II-C. It

enables users to set up entire analysis runs that use one of the

presented strategies in only a few lines of code.

To allow for an exchange of information for strategies

that not only need to share but also update depending in-

formation like incremental update analysis, we use a special

ReviseInfo type. We modeled the type to carry information

on which kind of information needs updates and what pieces of

code are affected. The corresponding strategy implementation

has been built on top of the ReviseInfo type and controls

the actual exchange of information using a mediator pattern.

By using this model, we can keep a strict modular design and

avoid making every piece of information globally available.

Similar to the above, Helm et al. present a novel approach that

allows for modular, collaborative program analysis by using

so-called blackboard systems in [17].

Even the information that is general to all respective algo-

rithms, such as the level of soundness that we implemented as

suggested in Section II-B, is managed separately for each anal-

ysis run. Modeling this information as global variables would

forbid us from running individual analyses concurrently: a

functionality that is often needed by more complex analyses

that need to spawn additional helper analyses.

In our experience, the only information that can be shared

globally safely is implementation-specific information that

does not affect the semantics of an analysis. Thus, we im-

plemented the constant global implementation-specific infor-

mation about the system as a special thread-safe singleton

configuration type that allows one to access this information.

Accessing Information: Avoid weakening interface bound-

aries that counteract modularity and encapsulation. If needed,

rather than giving individual unrelated components access

to each other, exchange information with help of proxy

exchange types which are handled by a mediator. Provide

unified interfaces to access information to ease building

novel abstractions on top of existing ones.

C. Bugs and Debugging

Once we solved analysis problems with a first version of the

basic analysis infrastructure, we frequently observed crashes,

strange program behavior, and incorrect analysis results.

Finding the root causes of bugs in static analysis is a chal-

lenging and time-consuming task, as many different analyses

are involved while performing a concrete analysis run [18].

Standard debugging techniques such as debuggers are hard to

use, as one needs to step through a tremendous amount of non-

related solver code when debugging a client analysis. Complex

analysis domains make it hard to even display interesting

pieces of information in a meaningful way.

20

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on September 08,2022 at 13:13:09 UTC from IEEE Xplore. Restrictions apply.

For that reason in a subsequent revision we instrumented

the entire framework. Each piece of code involved in solving

a concrete analysis run has been instrumented using logging

techniques and functionalities to record data that is relevant

to static analysis like number of callgraph edges per call-

site, data-flow facts generated per statement, etc. After post-

processing the recorded data, we are able to gain insights about

the undesired program behavior that eventually let us track

down bugs. We describe this approach in detail in [18].

Nguyen et al. built a specialized debugger called Visu-

Flow [19] to ease the debugging process. Unfortunately, this

approach is currently only applicable to the Java ecosystem.

Extending on Lerch and Hermann’s insights [20], we ad-

ditionally follow a test-driven approach in PhASAR. We fre-

quently observed that when implementing novel features, other

seemingly unrelated parts of the framework broke; bringing

us back to the problem described in this section. Those bugs

would, without corresponding unit tests, either provoke further

undesired behavior causing time-consuming debugging ses-

sions, or—even worse—produce bugs that remain undetected

and may corrupt critical analysis users. As a consequence, we

now use test-driven development to implement all major parts

of the framework.

Bugs and Debugging: Integrate means to allow for debugging

especially complex parts, e.g. using instrumentation. Imple-

ment individual components using test-driven development

to ensure their correctness and retain the ability to check

correctness continuously in an automated manner.

D. Parametrization, Configuration and Usability

The large amount of parametrization and setup options

decrease overall usability, especially for novices.

In a first implementation of the IR-managing

ProjectIRDB type, we offered a broad variety of

functionalities, many of which could be accessed through

public member functions, which in some instances required

a distinct order of function calls, e.g. certain IR annotation

passes needed to be run before being used by other

functionalities. This design turned out to be error prone and

difficult to use as it is too easy to introduce mistakes by

confusing the order of calls.

To make it more difficult to use the ProjectIRDB
class in an incorrect manner, we thus revised large parts

and moved lots of tasks directly into constructors. Based

on the experience gained from Soot we avoided separat-

ing a type’s interface and its setup. To reduce the amount

of configuration needed, for non-essential parameters and

configuration options we chose sensible default parameters.

Whenever possible we reduced the number of parameters

even further. For instance, a callgraph based on points-

to information can be constructed by specifying the enu-

merator option CallGraphAnalysisType::OTF in the

LLVMBasedICFG constructor’s parameter list. This specific

callgraph option requires additional points-to information.

However, if no additional points-to information are provided

by a user of that type, the required information is constructed

on-the-fly.

Parametrization, Configuration and Usability: Model entities

from static analysis as types and couple a type’s setup

directly to its interface. If possible, avoid complex setup

mechanisms, use simple constructors instead. For novice

users, make it sufficiently hard to misuse a type. Reduce the

amount of essential parameters to a minimum by providing

suitable default parameters. Compute missing information

on-the-fly rather than aborting with an error message.

E. Flexible Usage Modes

Initially, we implemented PhASAR as a command-line tool.

However, we received many requests to also allow for further

use cases. We extended the framework to allow for the usage

of a plugin mechanism. Users can thus ignore most of the

framework’s infrastructure and focus on specific details they

are interested in without the need for modification and costly

recompilation of PhASAR’s code base. C++ compilation times

are typically relatively long compared to C or Java, even for

incremental builds. Reasons for that include the hundreds or

even thousands of header files that need to be (re)processed

for every compilation unit, the monolithic linking process,

complex parsing of the complex syntax, code generated by

templates, and optimizations. We counteract the compilation

times with potent build machines.

Due to the framework’s modularity, we could also offer

individual functionalities as libraries. Thus, users are free to

only choose whatever functionalities they are interested in and

can integrate these parts in their own tools. We added full

CMake support to PhASAR which eases using it as a library

and building tools on top of it.

Since the removal of the aforementioned restrictions of the

usages, we noticed that the number of people interested in the

framework increased. We could observe a growing number

of users and recently received several valuable performance

optimizations for our callgraph algorithms from a company

that uses our callgraph construction functionalities in their

software product.

Flexible Usage Modes: Provide flexible use cases unless you

have good reason to apply restrictions. Do not make any

assumptions on the users’s workflows because people will

come up with usages that you did not think of.

F. Build Systems

The earliest versions of PhASAR used Makefile as a build

system. This worked as long as PhASAR comprised only a

few source files, but after a few months we realized that this

harmed the project’s maintainability. The monolithic Makefile

made it difficult to organize the project in suitable subcom-

ponents, to integrate other libraries, and to allow for cross-

platform support.

At the point at which only the initial creator of the Makefile

could maintain it, we stopped and replaced the build system

21

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on September 08,2022 at 13:13:09 UTC from IEEE Xplore. Restrictions apply.

with CMake. CMake is an open-source, cross-platform, mod-
ular tool chain that is designed to build, test and package

software. It is now also the de-facto standard for many modern

C and C++ open-source projects. Due to its modularity it

allows for an easy integration with other software projects—a

property that makes it suitable especially for research projects

that often need to combine multiple projects to create a

prototypical implementation quickly.

Build Systems: Choose a build system that suites the

project’s needs and integrates well with others in advance.

Think ahead and assume that the project will grow not only

in terms of its code base but also its number of users.

G. LLVM IR Generation

Following Section III-C, we develop small micro bench-

marks comprising several single-file programs that are used to

test certain aspects of an analysis implementation.

While LLVM IR can be obtained for individual compilation

units by running the clang compiler with the -emit-llvm
flag, it is difficult to obtain LLVM IR for larger, more complex

projects. However, that is exactly what analysis writers wish

to do in order to evaluate an analysis’ scalability and ability

to deal with real-world code. C and C++ neither have a real

module system nor a standardized build mechanism. Instead,

individual compilation units are compiled into object files

that are eventually linked to (hopefully) produce the desired

binary. Preprocessor macros and other important flags passed

to the compiler can change the semantics and correctness of

the final binary. To produce LLVM bitcode for a given real-

world project, one needs to extract the exact compile and link

commands encoded in the build system used by the project.

Doing so manually is an infeasible task if one recalls the

multitude of different build systems such as Makefile, CMake,

Bazel, etc.—if the project uses a build system at all.

Luckily, compiler wrappers such as WLLVM [21] and

(a faster implementation in Go) GLLVM [22] have been

developed. These tool chains interrupt the compiler and extract

the compile command to produce LLVM bitcode for the com-

pilation unit under processing. The path to the LLVM bitcode

is stored in an artificial section in the resulting object code.

Linker commands are interrupted as well, and, in addition to

the ordinary linking job, the bitcode paths of the object codes

that are linked are collected and placed in an artificial section

of the resulting binary. To produce whole program LLVM IR,

the paths to the bitcode files that constitute the binary can be

automatically extracted and linked, and finally subjected to a

whole program analysis.

LLVM IR Generation: Use WLLVM [21] and GLLVM [22]

to build whole program LLVM bitcode files from unmodified

C/C++ projects.

H. Contributing Guidelines

We are still affected by having failed to provide contributing

guidelines in the early days. Initially, we did not provide

suitable contributing guidelines and coding standards, and after

we did, we did not enforce them at first. Due to the various

contributions from students and practitioners that the project

received over time, it has picked up different coding styles and

code of varying quality.

A unification of coding styles and overall improvement

of code quality using automated analysis and transformation

tools such as clang-tidy was not directly possible due to

various corner cases that those automated approaches cannot

handle. Manual unification was very expensive and underwent

an incremental process. We updated pieces of code that are

adjacent to new features to ensure software evolution over

time. It finally allowed us to remove those corner cases and

to employ automated tooling.

Contributing Guidelines: Provide contributing guidelines and

documentation at the beginning of the project. Assume that

the framework has multiple users and developers that provide

contributions, which is what eventually will happen. Use

tools for automated analysis and transformation to retain

a uniform and high-quality code base. Take measures to

support community building and communication.

IV. RELATED WORK

Whereas there are several mature program-analysis frame-

works from academia like Soot [3], OPAL [23], WALA [24],

or Doop [25], there is very little advice on how to actually

design and implement the underlying theory.

Some insights on good design of static analysis frameworks,

provided by Soot’s maintainers [4], refer to avoiding redundant

re-computations by using incremental or reactive computation,

and quasiquoting for easily generating code from templates.

Allowing to independently release framework extensions with-

out having them included in the main distribution also greatly

benefits the tool and its community.

Experience reports on applying static analysis tools in

commercial context emphasise the importance of low false

positive rates and clear error messages to overcome warning

blindness of tool users [26]. Additionally, tools must handle

real-world code: resilience and robustness is vital when coping

with large code bases and peculiar code constructs [27].

An extensive experience report on how to employ dis-

tributive, summary-based static analysis to benefit analysis

precision and performance is given by Bodden [6]. The report

presents practical design tricks for data-flow analysis.

Schubert et al. presents an approach that modularly com-

putes and summarizes all pieces of static analysis information

required to answer queries of a concrete client analysis as

shown in Figure 1 in [28]. This approach shows that modular-

ity not only eases implementation but also improves flexibility

and counters the complexity of static analysis itself.

V. CONCLUSION

In this paper, we reported on major design flaws and

implementation mistakes that we detected in our first imple-

mentations of the PhASAR framework. From those incidents,

for which we had to provide corrections in order to keep the

22

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on September 08,2022 at 13:13:09 UTC from IEEE Xplore. Restrictions apply.

complexity manageable, we distilled guidelines that we think

are useful to static analysis writers and its users.
As shown in this paper, even when using knowledge of the

past and falling back to design ideas of existing frameworks

one may still suffer from design decisions that turn out to be

not advisable. Applying those guidelines helped us to improve

PhASAR’s overall quality. It reduced complexity, made its

usage less error prone and eased building novel abstractions,

eventually advancing the progress in this field. We recognized

that PhASAR gained more attention from the community as

the latest statistics on GitHub suggest.

ACKNOWLEDGMENT

This work was partially supported by the German Research

Foundation (DFG) within the Collaborative Research Cen-

tre 901 ”On-The-Fly Computing” under the project number

160364472-SFB901/3 and the Heinz Nixdorf Foundation.

REFERENCES

[1] P. D. Schubert, B. Hermann, and E. Bodden, “Phasar: An inter-
procedural static analysis framework for c/c++,” in Tools and Algorithms
for the Construction and Analysis of Systems, T. Vojnar and L. Zhang,
Eds. Cham: Springer International Publishing, 2019, pp. 393–410.

[2] “Personal communication with domagoj babic, google,” 2018.
[3] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,

“Soot - a java bytecode optimization framework,” in Proceedings of the
1999 Conference of the Centre for Advanced Studies on Collaborative
Research, ser. CASCON ’99. IBM Press, 1999, p. 13.

[4] P. Lam, E. Bodden, O. Lhoták, and L. Hendren, “The Soot framework
for Java program analysis: a retrospective,” in Cetus Users and
Compiler Infrastructure Workshop (CETUS 2011), Oct. 2011. [Online].
Available: http://www.bodden.de/pubs/lblh11soot.pdf

[5] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed
and Runtime Optimization, ser. CGO ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 75–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=977395.977673

[6] E. Bodden, “The secret sauce in efficient and precise static analysis:
The beauty of distributive, summary-based static analyses (and how to
master them),” in Companion Proceedings for the ISSTA/ECOOP 2018
Workshops, ser. ISSTA ’18. New York, NY, USA: ACM, 2018, pp. 85–
93. [Online]. Available: http://doi.acm.org/10.1145/3236454.3236500

[7] J. B. Kam and J. D. Ullman, “Monotone data flow analysis frameworks,”
Acta Inf., vol. 7, no. 3, p. 305–317, Sep. 1977. [Online]. Available:
https://doi.org/10.1007/BF00290339

[8] M. Sharir and A. Pnueli, Two approaches to interprocedural data flow
analysis. New York, NY: New York Univ. Comput. Sci. Dept., 1978.
[Online]. Available: https://cds.cern.ch/record/120118

[9] R. Padhye and U. P. Khedker, “Interprocedural data flow analysis
in soot using value contexts,” in Proceedings of the 2nd ACM
SIGPLAN International Workshop on State Of the Art in Java
Program Analysis, ser. SOAP ’13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 31–36. [Online]. Available:
https://doi.org/10.1145/2487568.2487569

[10] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural dataflow
analysis via graph reachability,” in Proceedings of the 22Nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’95. New York, NY, USA: ACM, 1995, pp.
49–61. [Online]. Available: http://doi.acm.org/10.1145/199448.199462

[11] M. Sagiv, T. Reps, and S. Horwitz, “Precise interprocedural dataflow
analysis with applications to constant propagation,” Theor. Comput.
Sci., vol. 167, no. 1-2, pp. 131–170, Oct. 1996. [Online]. Available:
http://dx.doi.org/10.1016/0304-3975(96)00072-2

[12] T. Reps, S. Schwoon, and S. Jha, “Weighted pushdown systems and
their application to interprocedural dataflow analysis,” in Proceedings
of the 10th International Conference on Static Analysis, ser. SAS’03.
Berlin, Heidelberg: Springer-Verlag, 2003, pp. 189–213. [Online].
Available: http://dl.acm.org/citation.cfm?id=1760267.1760283

[13] M. Hind and A. Pioli, “Which pointer analysis should i use?” in
Proceedings of the 2000 ACM SIGSOFT International Symposium on
Software Testing and Analysis, ser. ISSTA ’00. New York, NY, USA:
Association for Computing Machinery, 2000, p. 113–123. [Online].
Available: https://doi.org/10.1145/347324.348916

[14] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N. Amaral,
B.-Y. E. Chang, S. Z. Guyer, U. P. Khedker, A. Møller, and
D. Vardoulakis, “In defense of soundiness: A manifesto,” Commun.
ACM, vol. 58, no. 2, pp. 44–46, Jan. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2644805

[15] S. Jaiswal, U. P. Khedker, and S. Chakraborty, “Bidirectionality
in flow-sensitive demand-driven analysis,” Science of Computer
Programming, vol. 190, p. 102391, 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167642320300022

[16] E. Bodden, “Inter-procedural data-flow analysis with ifds/ide and
soot,” in Proceedings of the ACM SIGPLAN International Workshop
on State of the Art in Java Program Analysis, ser. SOAP ’12.
New York, NY, USA: ACM, 2012, pp. 3–8. [Online]. Available:
http://doi.acm.org/10.1145/2259051.2259052

[17] D. Helm, F. Kübler, M. Reif, M. Eichberg, and M. Mezini, “Modular
collaborative program analysis in opal,” in Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2020. New York, NY, USA: Association for
Computing Machinery, 2020, p. 184–196. [Online]. Available: https:
//doi.org/10.1145/3368089.3409765

[18] P. D. Schubert, R. Leer, B. Hermann, and E. Bodden, “Know your
analysis: How instrumentation aids understanding static analysis,” in
Proceedings of the 8th ACM SIGPLAN International Workshop on State
Of the Art in Program Analysis, ser. SOAP 2019. New York, NY,
USA: Association for Computing Machinery, 2019, p. 8–13. [Online].
Available: https://doi.org/10.1145/3315568.3329965

[19] L. Nguyen, S. Krüger, P. Hill, K. Ali, and E. Bodden, “Visuflow, a
debugging environment for static analyses,” in International Conference
for Software Engineering (ICSE), Tool Demonstrations Track, 1 Jan.
2018.

[20] J. Lerch and B. Hermann, “Design your analysis: A case study
on implementation reusability of data-flow functions,” in Proceedings
of the 4th ACM SIGPLAN International Workshop on State Of
the Art in Program Analysis, ser. SOAP 2015. New York,
NY, USA: ACM, 2015, pp. 26–30. [Online]. Available: http:
//doi.acm.org/10.1145/2771284.2771289

[21] (2021, March) Wllvm—whole program llvm. [Online]. Available:
https://github.com/travitch/whole-program-llvm

[22] (2021, March) Gllvm—whole program llvm in go. [Online]. Available:
https://github.com/SRI-CSL/gllvm

[23] M. Eichberg and B. Hermann, “A software product line for static
analyses: The opal framework,” in Proceedings of the 3rd ACM
SIGPLAN International Workshop on the State of the Art in Java
Program Analysis, ser. SOAP ’14. New York, NY, USA: ACM,
2014, pp. 1–6. [Online]. Available: http://doi.acm.org/10.1145/2614628.
2614630

[24] (2019, April) Wala. [Online]. Available: http://wala.sourceforge.net/
wiki/index.php/Main Page

[25] (2018, August) Doop. [Online]. Available: http://doop.program-analysis.
org/

[26] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and C. Jaspan,
“Lessons from building static analysis tools at google,” Commun.
ACM, vol. 61, no. 4, p. 58–66, Mar. 2018. [Online]. Available:
https://doi.org/10.1145/3188720

[27] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler, “A few billion
lines of code later: Using static analysis to find bugs in the real
world,” Commun. ACM, vol. 53, no. 2, pp. 66–75, Feb. 2010. [Online].
Available: http://doi.acm.org/10.1145/1646353.1646374

[28] P. D. Schubert, B. Hermann, and E. Bodden, “Lossless, Persisted
Summarization of Static Callgraph, Points-To and Data-Flow Analysis,”
in 35th European Conference on Object-Oriented Programming
(ECOOP 2021), ser. Leibniz International Proceedings in Informatics
(LIPIcs), A. Møller and M. Sridharan, Eds., vol. 194. Dagstuhl,
Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021, pp.
2:1–2:31. [Online]. Available: https://drops.dagstuhl.de/opus/volltexte/
2021/14045

23

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on September 08,2022 at 13:13:09 UTC from IEEE Xplore. Restrictions apply.

		2022-08-25T00:56:28-0400
	Preflight Ticket Signature

