
Vol.:(0123456789)

Automated Software Engineering (2022) 29:35
https://doi.org/10.1007/s10515-022-00333-1

1 3

Static data‑flow analysis for software product lines in C

Revoking the preprocessor’s special role

Philipp Dominik Schubert1  · Paul Gazzillo2 · Zach Patterson3 · Julian Braha2 ·
Fabian Schiebel4 · Ben Hermann5 · Shiyi Wei3 · Eric Bodden1,4

Received: 27 July 2021 / Accepted: 15 February 2022 / Published online: 25 March 2022
© The Author(s) 2022

Abstract
Many critical codebases are written in C, and most of them use preprocessor direc-
tives to encode variability, effectively encoding software product lines. These pre-
processor directives, however, challenge any static code analysis. SPLlift, a previ-
ously presented approach for analyzing software product lines, is limited to Java
programs that use a rather simple feature encoding and to analysis problems with
a finite and ideally small domain. Other approaches that allow the analysis of real-
world C software product lines use special-purpose analyses, preventing the reuse of
existing analysis infrastructures and ignoring the progress made by the static analy-
sis community. This work presents VarAlyzer, a novel static analysis approach for
software product lines. VarAlyzer first transforms preprocessor constructs to plain
C while preserving their variability and semantics. It then solves any given distribu-
tive analysis problem on transformed product lines in a variability-aware manner.
VarAlyzer ’s analysis results are annotated with feature constraints that encode in
which configurations each result holds. Our experiments with 95 compilation units
of OpenSSL show that applying VarAlyzer enables one to conduct inter-proce-
dural, flow-, field- and context-sensitive data-flow analyses on entire product lines
for the first time, outperforming the product-based approach for highly-configurable
systems.

Keywords  Inter-procedural static analysis · Software product lines · Preprocessor ·
LLVM · C/C++

 *	 Philipp Dominik Schubert
	 philipp.schubert@upb.de

Extended author information available on the last page of the article

http://orcid.org/0000-0002-8674-1859
http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-022-00333-1&domain=pdf

	 Automated Software Engineering (2022) 29:35

1 3

35  Page 2 of 37

1  Introduction

Software product lines (SPLs) enable software developers to encode a set of soft-
ware products in a common code base. The different variations, so-called con-
figurations, are typically described with the help of static conditionals, so-called
features, that enable conditional compilation. In the programming languages C
and C++, developers typically use the preprocessor’s functionalities, particularly
the well-known #ifdef directives, to establish SPLs. The preprocessor’s static
conditionals allow developers to check the presence of a symbol or its value—
an integer or a string literal. At compile time, the preprocessor transforms every
compilation unit according to the given set of symbols (and their respective val-
ues), before the preprocessed compilation unit is handed over to the actual com-
piler. The compiler thus only compiles the code that has been included by the
preprocessor, which allows it to produce efficient object code. This also means
that in the worst case an SPL induces a number of software products that is expo-
nential in the number of static conditionals.

Static data-flow analysis is not only used as a basis for compiler optimizations
(GCC-Optimize-Options 2018; ICCOptimizeOptions 2018), but also for bug finding
(Coverity-(SAST) 2018; CodeSonar 2018) and software hardening (Arzt et al. 2014;
Krüger et al. 2017; Livshits and Lam 2005; Hermann et al. 2015; Holzinger et al.
2017). However, previous software vulnerabilities such as Apple’s FileVault vulner-
ability (FileVaultBug 2012) show that program analysis of configurable systems is
crucial. The FileVault vulnerability was caused by accidentally shipping a Mac OS
X version with logging code enabled that stored the user login passwords in clear
text. Such a vulnerability might have been detected early, had Apple had the capabil-
ity to analyze FileVault’s codebase with respect to all possible configurations.

The problem with traditional static analysis techniques, however, is that they can-
not be applied to software product lines directly. Instead, one must first generate a
concrete software product by preprocessing the common code base and then analyze
the resulting plain C/C++ program. Due to the possibly exponential number of soft-
ware products in practice, this process becomes prohibitively expensive even when
analyzing only a few variants, let alone all possible software products.

SPLlift (Bodden et al. 2013) was proposed to analyze an entire SPL as a whole,
a so-called family-based approach (Thüm and Apel 2012), which avoids generat-
ing all potential software products. While doing so, it avoids an exponential blowup
through a time and memory efficient encoding of feature constraints in distributive
flow functions. However, SPLlift is restricted to Interprocedural Finite Distributive
Subset (IFDS) (Reps et al. 1995) problems, which include simple problems such as
taint analysis, but exclude problems with large or potentially infinite domains such
as constant propagation (Sagiv et al. 1996) or typestate analysis (Strom 1983; Strom
and Yemini 1986). More importantly, it is a prototype for a seldom-used product-
line dialect of Java (Kästner et al. 2009) and thus cannot be applied to real-world
SPLs, particularly not those that use the C preprocessor.

Existing techniques that are able to analyze real-world SPLs written in C
operate on un-preprocessed C code and include new or modified algorithms for

1 3

Automated Software Engineering (2022) 29:35	 Page 3 of 37  35

parsing (Kästner et al. 2011; Gazzillo and Grimm 2012; Garrido and Johnson
2005), data-flow analysis (Liebig et al. 2013; Rhein et al. 2018), type checking
(Kästner et al. 2012), and rewriting (Iosif-Lazar et al. 2017). The only available
data-flow analysis (Liebig et al. 2013; Rhein et al. 2018), however, is intra-proce-
dural only. In addition, all those techniques are special-purpose analyses, making
it infeasible to reuse existing state-of-the-art static analysis infrastructures. The
situation becomes even more complicated when looking at the long term. While
the research on “variability-oblivious” program analysis marches on, those varia-
bility-aware toolchains must be maintained in parallel, doubling the engineering
effort, which explains why none of the above approaches has been maintained in
the long term. Other works proposed new preprocessors (McCloskey and Brewer
2005; Kästner 2010). Language adoption, however, is a notoriously slow devel-
opment. And even if those new preprocessors get adopted over time, one cannot
expect that millions of lines of existing legacy code will be rewritten. Despite
C’s known issues, it is the most popular programming language according to the
TIOBE programming index.1

In this work, we present the design and implementation of VarAlyzer, a novel
static data-flow analysis approach built on top of SuperC (Gazzillo and Grimm 2012)
and PhASAR (Schubert et al. 2019). The idea is to revoke the preprocessor’s special
role by first transforming preprocessor directives into ordinary C code. Preproces-
sor conditionals are replaced with C conditionals, preprocessor macros are replaced
with C variables, and the existence of declarations is controlled via C expressions
that use these declarations. The transformation uses a configuration-aware type
checker which supports static behaviors at runtime that could not be implemented
before, e.g. type errors caused by infeasible configurations are expressed as runtime
calls to an error function. VarAlyzer allows one to automatically make any exist-
ing (or new) distributive data-flow analysis on real-world C software product lines
variability-aware which it then solves in a single analysis run on the transformed
software product line.

On top, and in contrast to SPLlift, VarAlyzer supports not just analyses encoded
in IFDS (Reps et al. 1995) but also in Interprocedural Distributive Environments
(IDE) (Sagiv et al. 1996), which includes problems with infinite domains. As a
result, VarAlyzer outputs the fully context- and flow-sensitive data-flow facts along
with a feature constraint describing the product configurations for which they hold.
This allows developers to find bugs and vulnerabilities much earlier in the develop-
ment process, requiring no product to be generated. Whereas previously developers
of highly-configurable software had to identify vulnerabilities separately for each
concretely preprocessed variant, using VarAlyzer they can exclude such vulnerabil-
ities in all relevant configurations ahead of time.

We evaluate VarAlyzer ’s effectiveness by conducting a typestate analysis
(Strom 1983; Strom and Yemini 1986) that checks for the correct usages of OpenS-
SL’s Envelope (EVP) APIs on 95 compilation units. Typestate analysis belongs to
an important class of analyses whose efficient encoding, due to the internal state,

1  As of March, 2021, TIOBE programming index https://​www.​tiobe.​com/​tiobe-​index/.

https://www.tiobe.com/tiobe-index/

	 Automated Software Engineering (2022) 29:35

1 3

35  Page 4 of 37

requires IDE (Sagiv et al. 1996) or equally expressive frameworks such as weighted
pushdown systems (Reps et al. 2003). The IFDS-based SPLlift approach thus could
not solve such an analysis on realistic programs. The (hand-)written compilation
units in C comprise realistic uses of EVP’s APIs for message digest (MD), encryp-
tion/decryption (CIPHER), and message authentication codes (MAC). The compila-
tion units, ranging from 8 to 219 lines of code, comprise preprocessor conditionals
and valid as well as invalid API usages. For this work, we have to restrict ourselves
to evaluating our approach on individual compilation units because several funda-
mental challenges that are beyond the scope of this paper currently prevent us from
evaluating VarAlyzer on full SPLs. Large-scale projects not only encode variability
in the preprocessor but also in other parts of the system software toolchain. To sup-
port full SPLs, an approach would additionally need to solve the difficult problem of
supporting variability-aware linking and build automation. VarAlyzer provides full
support for application configurations. However, system configuration macros pro-
vide yet another challenge. Not only would an approach need to support platform-
dependent header file differences, but would also require one to construct a superset
of all C variations. We detail on these challenges in Sect. 4.1.4.

We will make the implementation of VarAlyzer available as open source. We
will subject it to artifact evaluation and make it available under the permissive MIT
license. All accompanying artifacts of this paper, including processed analysis tar-
gets and result data, are available as supplemental material (Artifacts 2021).

In summary, this paper makes the following contributions:

•	 A novel end-to-end variability-aware static analysis approach that enables vari-
ational analysis of C software product lines. The approach transforms software
product lines to ordinary C code while preserving the complete preprocessor
semantics and performs an automated lifting that allows one to solve arbitrary
distributive data-flow problems in a variability-aware manner.

•	 An open-source implementation based on SuperC (Gazzillo and Grimm 2012)
and PhASAR (Schubert et al. 2019).

•	 An experimental evaluation of VarAlyzer, which assesses its effectiveness in
solving general IDE (Sagiv et al. 1996) problems on 95 compilation units that
use OpenSSL.

•	 An assessment of the further challenges that need to be overcome to make static
analysis of arbitrary C applications a reality.

2 � Motivating example

To motivate the need for variability-aware analyses, we show an example using
typestate analysis on a software product line. Most APIs are required to be called
in a particular order or pattern. The valid sequences of operations can be encoded
using state machines. A typestate analysis (Strom 1983; Strom and Yemini 1986)
or protocol analysis is a static analysis that tracks variables of a certain type and
their associated states through the program. Typestates define sequences of oper-
ations that may be performed upon a variable. The state information associated

1 3

Automated Software Engineering (2022) 29:35	 Page 5 of 37  35

with each variable is used to determine—at compile-time—the validity of opera-
tions invoked upon variables. Existing analysis techniques for SPLs that rely on
special-purpose analyses formulated for variability-preserving ASTs cannot solve
this problem class.

The state machine shown in Fig. 1 describes the valid usages of OpenSSL’s
EVP message digest (MD) API. An SPL that performs a message digest using
OpenSSL’s EVP message digest (MD) API is shown Listing 1. The SPL com-
prises a debugging feature encoded with the symbol DEBUG. When this symbol is
enabled in the preprocessor, and therefore debugging is enabled at runtime, MD’s
API protocol is violated as the call to EVP_DigestFinal_ex() at line 21 is
omitted—a potential security threat. Even variability-aware intra-procedural data-
flow analysis cannot properly solve this analysis problem in our example program
because the variable MDCTX that carries the state information is processed across
multiple different functions.

Traditional techniques would first generate a particular variant (and all var-
iants we are interested in, possibly all of them) of the SPL, and then uncover
this problem in a static analysis of that particular variant. A brief inspection of
our example SPL using the GCC compiler shows that it comprises 6,946 pre-
processor macros and (transitively) includes 221 different header files. 261 of
those 6,946 macros are used in preprocessor conditionals. Therefore, traditional
analysis techniques can not scale. Instead, it is desirable to analyze all potential
configurations, i.e., feature combinations, at the same time. By transforming the
preprocessor directives into ordinary C code, our approach allows to employ
any existing C analysis tools to analyze the entire SPL as a whole. PhASAR ’s
traditional typestate analysis, for instance, would be able to detect the protocol
breach caused by the missing call to EVP_DigestFinal_ex(). In more com-
plex scenarios, however, it would also report a large number of false positives
because the results are valid across all configurations, making any findings virtu-
ally impossible to debug. Traditional analysis would need to merge information at
control-flow merge points even for branches that originate from static preproces-
sor conditionals, which is impossible in practice. Therefore, it is desirable to have
an analysis that can handle preprocessor variability to produce results that are
actually useful to the analysis users.

Fig. 1   State machine that describes the correct usages of the OpenSSL EVP message digest (MD) API

	 Automated Software Engineering (2022) 29:35

1 3

35  Page 6 of 37

3 � Background on IFDS and IDE

In the following, we present the conceptual Interprocedural Finite Distributive
Subset (IFDS) (Reps et al. 1995) framework and its generalization, the Interpro-
cedural Distributive Environments (IDE) (Sagiv et al. 1996) framework. Both
frameworks support the efficient, summary-based solving of distributive (Bodden
2018) data-flow problems. We will later use the IDE framework to encode any
given distributive data-flow problem and solve it in a variability-aware manner.

1 3

Automated Software Engineering (2022) 29:35	 Page 7 of 37  35

Both IFDS and IDE solve a data-flow problem by constructing an exploded
super-graph (ESG). By construction, a data-flow fact d holds at statement s, if a
node (s, d) in the ESG is reachable from a special, tautological node Λ . The ESG
is constructed for a given program by replacing every node of its inter-procedural
control-flow graph (ICFG) (oftentimes also referred to as supergraph) with the
bipartite graph representation of the respective flow function. Every flow func-
tion that is distributive can be represented as a bipartite graph without loss of
precision. The common flow functions identity, generate (Gen), and remove (Kill)
are distributive and thus, all Gen/Kill data-flow problems can be encoded within
IFDS and IDE.

An exemplary ESG for a taint analysis encoded in IFDS that showcases how
bipartite graphs can be used to represent flow functions is shown in Fig. 2. A taint
analysis tracks tainted variables generated by so-called source functions through the
program and reports potential security vulnerabilities whenever a tainted variable
reaches a call to a sink function. The function getPasswd() acts as a source in
our example as it retrieves sensitive user information and the print() function
presents a sink as sensitive information must not leak. The taint analysis detects the
potential leak at line 7 in the program since the ESG node (stmt:7, p) is reachable by
the tautological Λ fact.

To achieve fully context-sensitive, inter-procedural analysis, IFDS and IDE fol-
low the summary-based approach (Sharir and Pnueli 1978), creating procedure sum-
maries that can be reused and instantiated in multiple calling contexts. Summaries
are created by composing the flow functions of adjacent statements. The composi-
tion h = g◦f of two flow functions f and g, called jump function, can be obtained
by combining their bipartite graph representations. The graph of h can be produced
by merging the nodes of g with the corresponding nodes of the domain of f. Once a
summary � for a complete procedure p has been constructed, it can be re-applied in
any other contexts in which the procedure p is called. Jump functions are indicated
using dashed arrows in Fig. 2.

Fig. 2   An exemplary exploded
super-graph for a taint analysis
encoded in IFDS (Reps et al.
1995). Individual flow func-
tions are indicated with solid
edges ( → ) and flow function
summaries (also known as jump
functions) are indicated with
dashed edges ( ⤏)

	 Automated Software Engineering (2022) 29:35

1 3

35  Page 8 of 37

In IDE, the ESG edges carry additional distributive functions. Those edge func-
tions can be used to describe an additional value computation problem over a value
domain V that is solved while performing the reachability check in the ESG. The
runtime complexity of both algorithms is O(|N| ⋅ |D|3) , where N is the set of pro-
gram statements and D is the data-flow domain, i.e., the set of data-flow facts.
Importantly, the complexity is independent of |V|, which allows IDE to conduct
efficient computations even using large or even infinite value domains (e.g., sets of
states of larger state machines in a typestate analysis or the set of natural numbers
as is required in constant propagation). Attempts to encode such problems in IFDS
will lead to state-space explosion or even non-termination. While one can generally
encode a linear constant propagation in IFDS using D = (v, c) , where v ∈ V is the
set of program variables and c ∈ ℤ , i.e., with tuples of program variables and associ-
ated integer values, this encoding drastically impedes performance. This is because
IFDS was built to solve problems with finite domains but ℤ is infinite. Even in cases
where one bounds its size artificially, solving performance will be bad. A linear con-
stant propagation can be encoded much more efficiently instead in IDE, using D = V
and V = ℤ, such as to reduce the size of the data-flow domain and to utilize the edge
functions’ value domain V—computing a variable’s value using the context-inde-
pendent edge functions. Since the complexity of IDE’s solving algorithm depends
only on the size of D and not V and therefore is independent of the infinite size of ℤ ,
such an encoding will scale (Sagiv et al. 1996). An exemplary ESG for a linear con-
stant propagation encoded in IDE is shown in Fig. 7. We explain this ESG in detail
in Sect. 4.2.

4 � VarAlyzer

In this section, we detail our approach to statically analyzing C software product
lines. VarAlyzer consists of two phases. First, it transforms software product lines
into an intermediate representation (IR). Second, it applies a novel data-flow solver
that enables variational analysis of arbitrary distributive analysis problems and pro-
duces precise results for all variants of a software product line in a single analysis
run.

4.1 � Transforming preprocessor directives

The main idea of VarAlyzer ’s transformation is that the static preprocessor condi-
tionals are automatically replaced with runtime C conditionals. The key challenge
is that preprocessor conditionals may appear around any arbitrary set of C tokens,
irrespective of C’s syntax (Ernst et al. 2002; Liebig et al. 2011), while C condition-
als may only appear around complete statements. For instance, in Fig. 3a, preproc-
essor conditionals appear around a declaration (lines 2–3) and a function definition
(lines 6–7) of the same name. While the preprocessor technically has a language
distinct from pure C, we take the view that unpreprocessed C files are effectively
written in a single, mixed language. To preserve the encoding of variability in

1 3

Automated Software Engineering (2022) 29:35	 Page 9 of 37  35

unpreprocessed C, VarAlyzer desugars source files into ordinary C, which is a sub-
set of the mixed language.

The preprocessor performs macro evaluation, header inclusion, and conditional
compilation to generate C code at compile-time. With conditional compilation, the
preprocessor selects which parts of the source code to send to the compiler by evalu-
ating the values of configuration macros passed into the preprocessor at compile-
time. Developers use these preprocessor conditionals to encode variability.

Developers may wrap these conditionals around any fragment of the C code.
Common patterns in real-world code include putting conditionals around entire
functions, declarations, and even individual C tokens. Since preprocessing happens
before parsing in the compiler, these conditionals do not need to respect C’s syntax.
Developers may even wrap them around incomplete C constructs, so-called “undis-
ciplined” uses (Liebig et al. 2011). Figure 4a is an example of this usage, where a
preprocessor conditional surrounds all but the else-branch body of an if-then-else
statement (lines 2–4).

Since our goal is to preserve the behavior of these preprocessor conditionals,
we need to consider their meaning when they interact with C constructs. While
a preprocessor conditional has simple semantics (i.e., it conditionally includes or
excludes the contained C fragment), its effect on C program behavior depends on
what C constructs it surrounds. For instance, it is illegal in C’s semantics to write
multiple declarations of the same variable to vary its type. By surrounding these

Fig. 3   Desugaring a variational function definition, adapted from Linux v4.18 kernel/sched/sched.h

Fig. 4   Desugaring a variational if statement, adapted from Linux v2.6.33.3 drivers/input/mousdev.c

	 Automated Software Engineering (2022) 29:35

1 3

35  Page 10 of 37

declarations with mutually-exclusive preprocessor conditionals, it is “legalized”: the
preprocessor only chooses one declaration to send to the C compiler. The only way
to allow such multiple declarations in C is to use unique variable names. In contrast,
a preprocessor conditional around a C statement behaves much like a C conditional,
except that the preprocessor does not respect C’s scoping rules and it takes configu-
ration macros instead of C variables.

4.1.1 � Phases of the desugarer

VarAlyzer takes unpreprocessed C code, such as that in Fig. 4a, and produces an
equivalent C program using run-time conditionals to preserve variability (Fig. 4b).
There are three phases in VarAlyzer ’s desugarer: (1) parsing, (2) type checking,
and (3) rewriting. Parsing takes the unpreprocessed C code and produces an AST
that preserves all preprocessor behavior. Type checking collects symbols and their
types across all variations of the SPL. Rewriting emits ordinary C code that corre-
sponds to the unpreprocessed C constructs.

Parsing For parsing, we reuse an existing parser, SuperC (Gazzillo and Grimm
2012). Unlike the standard C preprocessor and parser, SuperC solves the problem
of parsing all variations of a C file. It provides a complete solution to parsing C
syntax even when mixed with any combinations of preprocessor usage. Eschewing
incomplete heuristics, SuperC ’s parsing formalism enables comprehensive parsing
of unpreprocessed C, supporting complicated and even pathological cases, such as
conditionally-defined macros and headers, macros with incomplete C syntax, string-
ification and token-pasting combined with ifdefs, and more. Listing 2 and Listing 3
present two more complex examples that use a combination of some of these fea-
tures. The specifics of this parser can be found in Gazzillo and Grimm (2012). An
overview of the possible interactions between the C preprocessor and C’s language
features is shown in Table 1. SuperC ’s output is a C AST that has special “static
conditional” nodes that capture every possible variation of the syntax of the input
source file. The parsing algorithm ensures that conditional nodes are guaranteed to
appear around complete C syntactic units, even when the unpreprocessed input file
does not, by duplicating any tokens needed to comphrehensively represent all varia-
tions of the nearest ancestor construct. For instance, Fig. 4a’s AST will have a static
conditional node with two branches, one for MACRO and the other for !MACRO. The
former branch will contain a complete if-then-else statement with no other static
conditionals inside and the latter will have a single assignment statement.

1 3

Automated Software Engineering (2022) 29:35	 Page 11 of 37  35

Ta
bl

e 
1  

In
te

ra
ct

io
ns

 b
et

w
ee

n
C

 p
re

pr
oc

es
so

r a
nd

 la
ng

ua
ge

 fe
at

ur
es

. R
ep

ro
du

ce
d

fro
m

 G
az

zi
llo

 a
nd

 G
rim

m
 (2

01
2)

La
ng

ua
ge

 C
on

str
uc

t
Im

pl
em

en
ta

tio
n

Su
rr

ou
nd

ed
 b

y
C

on
di

-
tio

na
ls

C
on

ta
in

 C
on

di
tio

na
ls

C
on

ta
in

 M
ul

tip
ly

-D
efi

ne
d

M
ac

ro
s

O
th

er

Le
xe

r
La

yo
ut

A
nn

ot
at

e
to

ke
ns

Pr
ep

ro
ce

ss
or

M
ac

ro
 (U

n)
D

efi
ni

tio
n

U
se

 c
on

di
tio

na
l m

ac
ro

ta

bl
e

A
dd

 m
ul

tip
le

 e
nt

rie
s t

o
m

ac
ro

 ta
bl

e
D

o
no

t e
xp

an
d

un
til

in

vo
ca

tio
n

Tr
im

 in
fe

as
ib

le
 e

nt
rie

s o
n

re
de

fin
iti

on
O

bj
ec

t-L
ik

e
M

ac
ro

 In
vo

-
ca

tio
ns

Ex
pa

nd
 a

ll
de

fin
iti

on
s

Ig
no

re
 in

fe
as

ib
le

 d
efi

ni
-

tio
ns

Ex
pa

nd
 n

es
te

d
m

ac
ro

s
G

et
 g

ro
un

d
tru

th
 fo

r b
ui

lt-
in

s f
ro

m
 c

om
pi

le
r

Fu
nc

tio
n-

Li
ke

 M
ac

ro

In
vo

ca
tio

ns
Ex

pa
nd

 a
ll

de
fin

iti
on

s
Ig

no
re

 in
fe

as
ib

le
 d

efi
ni

-
tio

ns
H

os
t c

on
di

tio
na

ls
 a

ro
un

d
in

vo
ca

tio
ns

Ex
pa

nd
 n

es
te

d
m

ac
ro

s
Su

pp
or

t d
iff

er
in

g
ar

gu
m

en
t

nu
m

be
rs

 a
nd

 v
ar

ia
di

cs
To

ke
n

Pa
sti

ng
 &

 S
tri

ng
i-

fic
at

io
n

A
pp

ly
 p

as
tin

g
&

 st
rin

gi
fic

at
io

n
H

os
t c

on
di

tio
na

ls
 a

ro
un

d
to

ke
n

pa
sti

ng
 &

 st
rin

gi
fic

a-
tio

n
Fi

le
 In

cl
ud

es
In

cl
ud

e
an

d
pr

ep
ro

ce
ss

fil

es
Pr

ep
ro

ce
ss

 u
nd

er
 p

re
se

nc
e

co
nd

iti
on

s
H

oi
st

co
nd

iti
on

al
s a

ro
un

d
in

cl
ud

es
Re

in
cl

ud
e

w
he

n
gu

ar
d

m
ac

ro
 is

 n
ot

 fa
ls

e
St

at
ic

 C
on

di
tio

na
ls

Pr
ep

ro
ce

ss
 a

ll
br

an
ch

es
C

on
jo

in
 p

re
se

nc
e

co
nd

iti
on

s
Ig

no
re

 in
fe

as
ib

le
 d

efi
ni

-
tio

ns
C

on
di

tio
na

l E
xp

re
ss

io
ns

Ev
al

ua
te

 p
re

se
nc

e
co

nd
i-

tio
ns

H
oi

st
co

nd
iti

on
al

s a
ro

un
d

ex
pr

es
si

on
s

Pr
es

er
ve

 o
rd

er
 fo

r n
on

-
bo

ol
ea

n
ex

pr
es

si
on

s
Er

ro
r D

ire
ct

iv
es

Ig
no

re
 e

rr
on

eo
us

 b
ra

nc
he

s
Li

ne
, W

ar
ni

ng
, P

ra
gm

a
D

ire
ct

iv
es

Tr
ea

t a
s l

ay
ou

t

Pa
rs

er
C

 C
on

str
uc

ts
U

se
 F

M
LR

 P
ar

se
r

Fo
rk

 a
nd

 m
er

ge
 su

bp
ar

se
rs

Ty
pe

de
f N

am
es

U
se

 c
on

di
tio

na
l s

ym
bo

l
ta

bl
e

A
dd

 m
ul

tip
le

 e
nt

rie
s t

o
sy

m
bo

l t
ab

le
Fo

rk
 su

bp
ar

se
rs

 o
n

am
bi

gu
-

ou
s n

am
es

	 Automated Software Engineering (2022) 29:35

1 3

35  Page 12 of 37

1 3

Automated Software Engineering (2022) 29:35	 Page 13 of 37  35

Type checking Traditionally, type checking ensures the absence of type errors at
runtime. VarAlyzer, however, relies on the type checking phase to enable desug-
aring. To emit C code equivalent to the unpreprocessed C, the desugarer needs to
know what variables have been declared (or left undeclared) in all the variations of

	 Automated Software Engineering (2022) 29:35

1 3

35  Page 14 of 37

the source code. As with typical C type checking, we maintain a symbol table and
apply C type checking rules with semantic actions during parsing. A symbol’s entry
in the table, however, depends on what variation we are analyzing. For instance, in
Fig. 3a, declarations of f (lines 3 and 7) have incompatible type qualifiers (extern
and static). However, these two declarations can never appear in the same varia-
tion. VarAlyzer ’s type checker needs to track both types throughout the source file.

The symbol table binds a symbol to all of its possible types across all variations
of the source code. The binding is akin to a “variational set” (Walkingshaw et al.
2014), where each type element is tagged with configuration information. The set
also includes special entries to record the conditions under which the symbol is
undeclared or has a type error in its declaration. This is necessary because a typical
type checker will use the absence of a binding to mean undeclared and will simply
halt on a type error. When desugaring, only some of the variations of the source file
may have an undeclared symbol or other type errors. We continue to desugar any
valid configurations instead of halting. Our type checker, in effect, tracks types in all
variations of the source code simultaneously.

For instance, the symbol table entry for f in Fig. 3a contains a set with four ele-
ments, one for each possible variation of this source code. f is undeclared if both M1
and M2 are undefined. f is a redeclaration type error if both M1 and M2 are defined.
There are two more entries for the valid type declarations, which happen when only
one of M1 and M2 is defined, but not both. The resulting symbol table entry for f is
as follows:

Rewriting The rewriting phase produces ordinary C code that preserves the behav-
ior of the unpreprocessed source file. The underlying parser of VarAlyzer ensures
static conditionals are lifted around only complete C syntax, i.e., syntactic lifting,
but our rewriter still needs to consider the behavior of static conditionals on those
C constructs. When a static condition surrounds a construct, VarAlyzer lifts the
construct’s semantic value to the nearest ancestor that is a statement, declaration,
or function definition, if not already one of these. This step ensures that VarAlyzer
will output valid C code by only inserting C conditional around complete statements.

The rewriting rules depend on what C construct a preprocessor conditional sur-
rounds: statements, declarations, etc. In general, statements are surrounded by a C
conditional and configuration macros are transformed to C constant variables. Fig-
ure 4b shows the result of desugaring Fig. 4a. Recall that the parser ensures that the
static conditionals appear around a complete if-then-else statement and a complete
assignment statement. The desugarer declares a new C constant called MACRO on
line 1, and then emits a C conditional that uses this variable around the two com-
plete C constructs. Notice that any tokens shared by the two complete constructs are
duplicated under the C conditional, which provides guarantees of “disciplined” uses
of conditionals.

� ↦

⎧
⎪⎨⎪⎩

������ ���� �� �� ∧ ¬��

������ ���� �� ¬�� ∧ ��

<ERROR> �� �� ∧ ��

<UNDECLARED> �� ¬�� ∧ ¬��

1 3

Automated Software Engineering (2022) 29:35	 Page 15 of 37  35

Declarations and function definitions cannot be desugared by surrounding them
with a C conditional, since they are not statements. VarAlyzer handles multiply-
declared symbols by emitting all declarations unconditionally, resolving name
clashes by renaming the symbols. VarAlyzer preserves variability at runtime
by instead emitting C conditionals where the symbols are used in statements. In
Fig. 3b, VarAlyzer creates fresh identifiers for the two declarations (lines 3 and 5).
The usage of the symbol f is replaced with a C conditional (lines 7–8) and the
mutual exclusion of the two declarations in different configurations is preserved in
lines 9–10.

The type checking phase is instrumental in VarAlyzer. It records all variations
of the original symbol, which enables VarAlyzer to assign a fresh name to each
of the variational set’s entries, e.g., __f_1 and __f_2 in Fig. 3b. In addition, the
type checker records which configurations have type errors. Type errors are nor-
mally emitted at compile-time. VarAlyzer, however, cannot halt with such errors
when only some variations have them. Instead, it preserves type errors as runtime
errors, by transforming them into calls to a specially-defined __type_error func-
tion that always halts. In Fig. 3b, VarAlyzer preserves the type error with line 10,
reflecting the fact that there is no declaration of f when macros M1 and M2 are both
undefined and a conflicting declaration if both macros are defined. The subsequent
analysis can then rule out invalid configurations as unreachable code, avoiding the
imprecision by analyzing these configurations.

4.1.2 � Desugaring C type specifications

While duplicating multiply-declared symbols is sufficient for variables and func-
tions, C also supports user-defined types via typedefs, structs, unions, and enums.
The latter three can also appear within declarations. The declaration in Fig. 5a
declares var to be a new type struct s. Structs and unions contain field declara-
tions which themselves may contain struct and union definitions. A naive desugar-
ing could take all combinations of struct/union definitions and emit each one as a
separate declaration in the output C program. Real-world SPLs, however, may have
highly-configurable structs, where some fields only appear in certain variations.

Fig. 5   Desugaring variational if statement. Adapted from Linux v2.6.33.3 drivers/input/mousdev.c

	 Automated Software Engineering (2022) 29:35

1 3

35  Page 16 of 37

Struct fields may also be declared using highly-configurable structs, further explod-
ing the possible combinations of declarations.

In addition, C allows forward references to type definitions under certain condi-
tions, which originally made one-pass compilation possible. A struct, for instance,
may be referenced in a declaration of a variable before the struct itself is defined, at
least in the global scope. Handling forward references would require multiple passes
of the AST, making a complete desugaring not possible in a single pass.

To solve these problems, VarAlyzer handles type definitions separately from
variable and function declarations. In addition to storing type declarations in the
symbol table, as with typical C type checking, we maintain a separate table for
struct, union, and enum type definitions. This table collects all possible field varia-
tions (or enumerators) for each type definition, regardless of where in the scope they
are defined. As with the symbol table, we are tagging each field definition with a
logic formula describing which variations contain the particular field. Then, before
emitting the desugared contents of each static scope, we emit a single declaration
of the struct, union, or enum containing all possible fields or enumerators. When a
struct variable accesses its field, we emit runtime checks for type errors.

For instance, in Fig. 5b, the resulting desugared struct definition contains both
the x and y fields, because there is no language construct in pure C for defining
conditionally-defined structs. But y is only meant to be defined under configura-
tions that have MACRO enabled. Since the desugarer’s struct symbol table tracks the
configurations under which each field is defined, the desugarer accounts for the con-
figuration where fields are accessed, rather than where they are defined. For exam-
ple, in Fig. 5b the desugarer has transformed the access of field y to a C conditional
(lines 6–10) that covers both possible variations of the struct. The first branch of this
conditional covers configurations where MACRO is enabled and therefore the field y
exists (line 7). The else branch accounts for all other configurations, where accesses
to y are type errors, since the field is not defined those configurations. The desugarer
preserves this type error as a run-time error with a call to a specially-defined func-
tion on line 9.

Forward references to structs, unions, and enums require further special handling
in order to desugar in a single pass. Since VarAlyzer does not know yet what all
fields or enumerators of the type will be, it instead emits a fresh type name for the
forward reference. Once it has collected all fields for a given type at the end of the
static scope, it emits a definition of the fresh forward reference type that contains a
field for each definition of the type symbol.

4.1.3 � Desugaring function definitions

C function definitions combine a type declaration of the function name with a com-
pound statement for its body, so VarAlyzer needs to both preserve all variations of
the function in its symbol table and emit all variations of the function’s body. VarA-
lyzer uses its variation-preserving symbol table to hold function symbols, while the
function body is transformed like any other compound statement using C condition-
als to preserve variations in statements.

1 3

Automated Software Engineering (2022) 29:35	 Page 17 of 37  35

As with declarations, a function with multiple variations of its type is desugared
into multiple function definitions to reflect each variation. Any calls to the origi-
nal function name are replaced by all renamed variations of the function, as long
as the function type matches the type at the call site. All top-level declaration and
definitions in a C file are global and externally-linked by default, unless specified
otherwise with the static keyword. Therefore, any renaming at the global scope
affects the symbols exported for linking by the compiler. Since C does not provide
language constructs for defining modules, it relies on the underlying system’s object
file format, linker, and build system to coordinate interfaces between C source files.
In this work, we focus on desugaring variability encoded by the preprocessor within
a C file and leave the support for build system and linker variability as future work.

Instead, we assume a project only exports one type per global symbol, emitting
a type warning when a global symbol has multiple, incompatible type declarations.
Each C file that uses functions defined externally needs a copy of the external func-
tions’ declarations, typically provided in a shared header file that developers copy
into the source file using a preprocessor #include directive. It is then up to the
compiler to produce an object file with a linker table that maps global functions and
variables to either their addresses in the object file or to a placeholder. The linker
can then automatically match undefined symbols from one object file with its defi-
nition in another, as long as the developer has properly defined the build sequence
with, for instance, a Makefile.

If a globally-defined symbol’s declaration depends on what variation of the pro-
gram is being compiled, i.e., it is affected by preprocessor conditionals, then pre-
serving all variations of the SPL requires modeling the behavior of the linker across
all variations. Such a variation-preserving linker would need to record all renamings
of multiply-declared global symbols and resolve these across all C files that com-
prise the project. This resolution, in turn, depends on knowing what C files are to be
linked during the build of the project, information that is only captured in Makefiles
or whatever build automation, if any, a project uses. In this work, we focus on des-
ugaring variability encoded by the preprocessor in C files and instead assume a pro-
ject only exports one type per global symbol, emitting a type warning when a global
symbol has multiple, incompatible type declarations.

4.1.4 � Limitations of the transformation

VarAlyzer ’s transformation part is generally complete and supports the full
(mixed) C language. However, we discuss some fundamental challenges that we dis-
covered while pursuing this research in what follows.

While VarAlyzer translates variability encoded in the preprocessor, large-scale
projects also encode variability in other parts of the system software toolchain. All
top-level declaration and definitions in a C file are global and externally-linked by
default, unless specified otherwise with the static keyword. Object files act as
modules that import and export these external symbols used in other object files.
The definitions of these external symbols can vary based on configuration options,
which introduces variability in the linking process. VarAlyzer leaves the difficult

	 Automated Software Engineering (2022) 29:35

1 3

35  Page 18 of 37

problem of supporting variability-aware linking and build automation to future work
and focuses on the variability within C files.

Real-world software often includes dozens or hundreds of header files for the C
standard and additional libraries. As shown in Sect. 2, such headers may add hun-
dreds or thousands of function declarations and macro definitions to a C file. These
function declarations and macro definitions have to be processed over and over again
for each C file that includes the respective headers. Since these header files them-
selves also encode variability to support different operating systems, various com-
piler versions, and programming languages (C vs. C++), they currently still pose a
scalability challenge to VarAlyzer. Tackling this scalability issue for the transfor-
mation requires numerous technical details and implementation tricks that are out
of scope for this piece of research and require thorough descriptions on their own.
One particular compelling idea is to partially preprocess system headers for specific
system configurations to counteract unnecessary processing of these headers at each
place they are included. In another branch of research, we have started to implement
this idea and have since then be able to successfully transform larger programs such
as BusyBox, Toybox and axTLS. Table 2 shows some preliminary results for these
programs and should give a first impression in which order of magnitude realistic
programs can be transformed.

We support variability across application configurations, but assume a single
system configuration. System configuration macros provide several challenges for
desugaring variability; they require supporting the header file differences between
multiple operating systems, multiple (versions of the same) compiler(s), multiple
versions of system libraries, etc. These differences not only cause the number of
possible configurations to explode, even when the application code’s behavior does
not depend on them, but they also impose foundational challenges. VarAlyzer can-
not leave these system configuration macros unresolved during transformation since
the transformed code could then not be compiled to an intermediate representation
for analysis. However, resolving these system configuration macros requires infor-
mation on all possible operating systems, system libraries, etc. which can hardly be
obtained, if at all. And even if it could be, a software product line could not be com-
piled to an intermediate representation since the environment and the compiler used
to produce the intermediate representation of the machine on which the transforma-
tion takes place are fixed. In addition, SuperC ’s underlying parser is based on one
particular version of C as implemented by GCC. Supporting multiple versions of
compilers would require constructing a superset of all C variations, a daunting and
potentially infeasible task.

Table 2   Preliminary
transformation times for
transformations that use
partially preprocessed system
headers

Program Runtime in
seconds

#Source files #Configura-
tion vari-
ables

axTLS 302 28 94
Toybox 586 230 316
BusyBox 484 554 998

1 3

Automated Software Engineering (2022) 29:35	 Page 19 of 37  35

4.2 � Variational data‑flow analysis

We next explain how VarAlyzer makes the analysis variability-aware. This
allows one to compute, for all configurations at the same time, results that pin-
point under which configurations they are valid.

VarAlyzer accepts as input any given distributive data-flow problem encoded
within IFDS (Reps et al. 1995) or IDE (Sagiv et al. 1996), and transforms it
into a variational version of the problem which can then be solved on an SPL
that has been desugared according to Sect. 4.1. Because IFDS problems can be
encoded within IDE by using edge functions that operate on the binary lattice
V =

⊤
⊥
 (Sagiv et al. 1996), we continue by presenting how we model general IDE

problems in a variability-aware manner.
VarAlyzer builds on SPLlift ’s idea to make use of IDE’s edge functions to

encode all variants of possible data flows a SPL might induce. SPLlift, how-
ever, only allowed “lifting” IFDS-based analyses. As mentioned earlier, this pre-
cludes an efficient encoding of any problem with a large or even infinite abstract
domain, e.g., typestate analysis and constant propagation. To efficiently com-
pute on such large (or infinite) domains, we must instead encode the computa-
tion within the edge functions of the IDE framework, but it means that the value
computation already occupies the edge functions. Therefore, we then cannot use
the edge functions (directly) to capture an SPL’s variability information. To be
able to solve general IDE problems that already use the edge functions for com-
puting while still capturing an SPL’s variability, we need to solve two different
value computation problems using IDE’s edge functions.

VarAlyzer thus lifts edge functions of the user-defined IDE problem by
extending their value domain Vu to produce lifted edge functions that operate
on the cartesian product domain Vl = C × Vu , where C is the domain of feature
constraints used to describe the variability induced by the preprocessor. This
enables VarAlyzer to solve both value computation problems at once, relating
analysis results to the exact feature constrains under which they hold. A lifted
edge function ê ∶ C ↦ Vu is thus a mapping from edge functions that describe
the feature constraints to the respective user-defined edge functions that spec-
ify the value computation problem that is valid under the associated constraint.
Whenever a reachability check is performed on the exploded super-graph that
has been produced by the lifted analysis problem Pl , the analysis computes the
values specified by the user edge functions and the corresponding constraints
that are associated with those values. The result for each reachability check of
an ESG node (s, d) for a given statement s and data-flow fact d, i.e., the evalu-
ation of a lifted edge function, is a mapping from feature constraints to their
corresponding value {ci ↦ vi} . In the following, we describe this lifting in more
detail. Note that our solution is fully transparent: VarAlyzer can automatically
lift any IFDS/IDE analysis problem pre-defined for C programs to software
product lines without having to change a single line of code.

	 Automated Software Engineering (2022) 29:35

1 3

35  Page 20 of 37

4.2.1 � Automated lifting of edge functions

The IDE algorithm is guided through the program using its inter-procedural
control-flow graph (ICFG). VarAlyzer operates on a variability-aware version
of the control-flow graph ICFGv . The ICFGv respects the encoding of preproc-
essor directives as presented in Sect. 4.1. Preprocessor symbols are modeled as
extern global variables that follow a special naming convention. An ICFGv can
be queried for those global variables and their usages. Any statement that directly
interacts with one of those global variables through a def-use chain has been
artificially introduced by the code transformation. This allows us to distinguish
between any ordinary statement su that originates from the user program and any
statement sp that is generated by VarAlyzer transformation parts, originating
from preprocessor directives (PPDs).

Initially, i.e., at lifting-time, a lifted edge function ê maps exactly one edge
function that describes a feature constraint to an edge function that, in turn, rep-
resents a (user-defined) value computation for a given statement under analysis.
The lifting process is depicted in Fig. 6. Ordinary statements su have no effect on
the presence of a certain feature. VarAlyzer thus lifts its user-defined edge func-
tion eu to ê ∶= (𝜆c.c) ↦ eu . Here, the identity edge function �c.c over constraints
expresses that the feature constraint is not altered. The statement’s original flow
function (opposed to edge function) remains as is.

For statements sp that are generated from the preprocessor directives, the
analysis can safely ignore the non-branching statements since they have been
artificially introduced by the transformation and must have no effect on the user-
defined value computation. For these statements, VarAlyzer applies the identity
flow and edge function. For each generated branching statement sb

p
 that originates

from a preprocessor directive, VarAlyzer produces the corresponding edge func-
tion ê by conjoining the feature constraint F specified by the respective preproc-
essor conditional with the incoming constraint c, i.e., ê ∶= (𝜆c. c ∧ F) ↦ (𝜆x.x) .
Here on the right-hand side, we use the identity edge function �x.x because the
statement does not influence the user-defined value computation.

Fig. 6   Lifting of edge functions for an ordinary user statement su (left) and a branching statement sb
p
 that

originates from a preprocessor directive (right). For the statement su , the user edge function is queried
and results in �x.x + 42 . Because the statement has no effects on the preprocessor constraints, the edge
function for the constraint domain is modeled as identity. For sb

p
 , the user edge function is modeled as

identity because it has no effects on the user’s value computation. However, it extends the domain with
edge functions that add the preprocessor feature-constraints F and !F, respectively

1 3

Automated Software Engineering (2022) 29:35	 Page 21 of 37  35

4.2.2 � Operations on lifted edge functions

To allow for the construction of the exploded super-graph, edge functions need to
support the following four operations:

The composition operation ( ◦ ) composes two edge functions e and f. This opera-
tion is used to extend an edge function e and is required to construct the so-called
jump functions (summaries) that describe the effects of sequences of code. An
example is shown in Fig. 7. The edge functions e, f, and g can be composed to pro-
duce the jump function i = g◦(f◦e) = 𝜆x.x + 2◦(𝜆x.1◦⊥) = 𝜆x.3 , which describes
the value computation problem for variable a from line 1 to after line 3.

The join ( ⊔ ) operation is applied when two paths in the exploded super-graph
lead to a common ESG node and the respective edge functions must be combined,
for instance, as a result of branching. Consider the example in Fig. 7: the two jump
functions i and j are joined to produce the new function k = i ⊔ j that describes the
value computation problem for variable a from lines 1 to 5. An equals ( = ) operation,
comparing two edge functions for equality, is required to update jump functions effi-
ciently within the IDE algorithm, and to ensure termination.

Once an ESG, i.e., all jump functions, is constructed, the value computation
problem that is specified by the jump functions can be solved for any given ESG
node by simply applying these jump functions. Practical implementations usually
do not construct and store the complete ESG but rather only maintain the essential
jump functions. To determine the possible value that may be printed in line 6 of
Fig. 7, one evaluates ( ↪ ) the respective jump function k. The analysis finds that any
value may be printed as a result of ↪ k = i ⊔ j = ⊤.

We next show how to define these four operations for the lifted edge functions
that operate on the extended user domain Vl = C × Vu such that a transformed prob-
lem Pl can be solved by the IDE algorithm.

Join To join information that is obtained along two (or more) different paths in
the ESG, a binary join operation is required, see Definition 1. An example of the
join operation is shown in Fig. 8. When joining, we wish to join also user-defined

Fig. 7   An exemplary exploded
super-graph for a linear constant
analysis encoded in IDE (Sagiv
et al. 1996). The ESG shows
the various operations that
edge functions must support.
Identity edge functions have
been omitted to avoid cluttering.
Individual flow functions have
been indicated by solid edges
and jump functions have been
indicated by dotted and dashed
edges

	 Automated Software Engineering (2022) 29:35

1 3

35  Page 22 of 37

edge functions for such constraints that are equal along both branches, as these
cases relate to identical feature configurations. Hence the edge functions c1, c2 that
describe the constraints of the lifted edge functions to be joined are compared pair-
wise. If c1 = c2 , their corresponding user edge functions u1 and u2 are joined. This
situation is depicted in the left-hand side graph of Fig. 8. Else if c1 ≠ c2 , both results
are simply joined by set union, retaining all information about the varying con-
straints. The latter situation is shown in the right-hand side graph of Fig. 8.

Definition 1  ⊔ : Let ê = {ci
e
↦ ui

e
}
n
i=0

 and f̂ = {c
j

f
↦ u

j

f
}
m
j=0

 be two lifted edge func-
tions. We define the join operation as:

Composition Definition 2 defines the composition operator for lifted edge func-
tions. The program’s control can flow only along the two functions’ respective pro-
gram statements when the preprocessor directives that guard these statements are
both enabled. Hence, the compose operator conjoins the respective feature con-
straints. The user-defined edge functions meanwhile are composed using their own
original composition operator. Whenever the composition operator is applied, one
of those edge functions comprises exactly one map entry and the other one may
comprise one or more map entries due to potential prior applications of the join
operation. Those two possible situations for the composition operation are shown
in Fig. 9. The left-hand side graph of Fig. 9 shows the composition of lifted edge
functions for non-branching code. In this case, the edge functions c1, c2 that describe
the constraints and the user edge functions u1, u2 must be composed with each other.
As the join of two lifted edge functions at merge points may produce a new edge
function that comprises multiple map entries {c1 ↦ u1, c2 ↦ u2} that need to be
composed with the lifted edge function {c3 ↦ u3} of the next common successor
statement, a pairwise composition must be applied. This situation is depicted in the
right-hand side graph of Fig. 9.

Definition 2  ◦ : Let ê = {ci
e
↦ ui

e
}
n
i=0

 and f̂ = {c
j

f
↦ u

j

f
}
m
j=0

 be two lifted edge func-
tions. We define the compose operator as:

ê ⊔ f̂ ∶=
⋃

(ce ↦ ue) ∈ ê,

(cf ↦ uf) ∈ f̂

{
{ce ↦ ue ⊔ uf } if ce = cf
{ce ↦ ue, cf ↦ uf } otherwise

Fig. 8   Join of lifted edge functions that have been computed along different control-flow edges. Indi-
vidual edge functions are denoted by straight arrows ( → ). Jump functions are denoted by dashed arrows
( ⤏ ). The graph on the left depicts the situation when two lifted edge functions must be merged whose
constraints are equal. In this case, their user edge functions must be joined. In case the constraints are not
equal, they must be left unmerged as two separate pairs of edge functions

1 3

Automated Software Engineering (2022) 29:35	 Page 23 of 37  35

Equality In addition, the IDE algorithm needs to be able to check for equality of
two edge functions. Since we maintain the feature constraints in normalized form,
we are able to define two edge functions to be equal if they are equal structurally.

Evaluation Once an exploded super-graph has been constructed, the solver evalu-
ates the value-computation problems described by the jump functions. The value for
each ESG node (s, d) that is reachable from the tautological Λ fact is computed by
evaluating its associated jump function. We define the unary evaluate operation in
Definition 3. The evaluation operation of a jump function applies the constraint and
user edge-function components of each map entry to the tautological constraint true
and the bottom element ⊥ of the user-defined problem, respectively. The result is a
map of values that the data-flow fact d can assume, each of which is associated with
the feature constraint that encodes the set of configurations under which d holds.

Definition 3 ↪ : Let ê = {ce ↦ ue}
n
i=0

 a lifted jump function. We define the unary
evaluate operator valuate↪ as:

4.2.3 � Why IDE is the ideal framework of choice

While VarAlyzer supports IDE, and not only IFDS, IDE still has the restriction
that flow functions and edge functions must distribute over the merge operator. The
advantage of using such a distributive analysis framework to solve data-flow prob-
lems on SPLs is that this allows merging variability information directly at each
control-flow merge point, without loss of precision. This is because for any flow
function f and any two abstract domain values x and y of a distributive analysis prob-
lem, by definition it holds that f (x) ⊔ f (y) = f (x ⊔ y) . As a result, the meet-over-all-
paths solution, which is undecidable in general, can be efficiently computed within
such frameworks through the maximal-fixed-point solution (Bodden 2018). This
solution is the most precise solution possible. The use of IDE thus is guaranteed to

f̂◦ê ∶=
⋃

(ce↦ue)∈ê,(cf↦uf)∈f̂

{ce ∧ cf ↦ uf◦ue}

↪ ê ∶= { ci
e
(true) ↦ ui

e
(⊥) }n

i=0

Fig. 9   Composition of lifted edge functions. The left-hand side graph shows the composition of lifted
edge functions for non-branching code. The join of two lifted edge functions at merge points may pro-
duce a new edge function that comprise multiple edge function pairs that need to be composed with the
edge function of the next common successor statement. This situation is depicted in the right-hand side
graph

	 Automated Software Engineering (2022) 29:35

1 3

35  Page 24 of 37

retain full precision w.r.t. a product-based analysis on pure C code, and it guarantees
an efficient handling of feature constraints because they are merged and simplified at
the earliest opportunity. In result, IDE is the most expressive framework that one can
choose without jeopardizing efficiency.

Our idea of capturing variability by using a transparent extension of the user’s
analysis domain could theoretically also be applied to non-distributive problems.
However, this would sacrifice precision and, due to missing summarization capabili-
ties, would likely be prohibitively expensive for any real-world application.

5 � Implementation

We implemented VarAlyzer on top of the SuperC (Gazzillo and Grimm 2012)
parser and the PhASAR (Schubert et al. 2019) static analysis framework. SuperC
supports Bison-style grammars (Bison 2020) for implementing language processors,
and automatically parses all variations of a SPL. C constructs with multiple vari-
ations due to #ifdefs are combined with a static choice tree node that captures
each variation and its condition as represented with a logical formula.

VarAlyzer uses SuperC ’s existing C grammar and implements the desugarer
using semantic actions. A semantic action defines a snippet of code to be executed
after each language construct and produces a semantic value for that construct.
VarAlyzer records all variations of a construct’s desugaring transformation, along
with each static condition, as the semantic value of the grammar production. The
semantic actions are executed bottom-up, and VarAlyzer gradually constructs the
complete, desugared version of the input program by combining the desugared child
constructs into larger constructs until reaching the top of the grammar.

VarAlyzer preserves semantic preprocessor information using calls to artificial
function headers. Type errors, caused by invalid configurations, are transformed
into runtime function calls. VarAlyzer makes the information on symbol renam-
ing available by introducing a symbol table. For each compilation unit, it emits a
definition of a static initializer function that specifies the renaming using a function
call for each renamed symbol. The static initializer function can be thought of the
compilation unit’s initializer, because it has no other runtime behavior. The static
conditional variables are declared as global boolean variables, since preprocessor
macros have no scope and are project-wide. We model preprocessor conditionals
using logic formulas and emit a mapping that associates the conditional variables
with their respective textual Z3 (de Moura and Bjørner 2008) solver representation
using function calls within the initializer function.

VarAlyzer implements the variational analysis presented in Sect. 4.2 on top
of PhASAR (Schubert et al. 2019). VarAlyzer provides a wrapper type that can
be wrapped around any of PhASAR ’s IFDS and IDE analyses. The wrapper type
wraps the regular user-defined edge functions in a special variability-aware edge
function that supports the required operations as described in Sect. 4.2.2. Before
VarAlyzer starts the actual analysis at the given entry points on the given target
code, it analyzes the aforementioned static initializer function and retrieves the
symbol table as well as the preprocessor conditionals. It then decodes the textual

1 3

Automated Software Engineering (2022) 29:35	 Page 25 of 37  35

Z3 (de Moura and Bjørner 2008) solver representations of the preprocessor con-
ditionals into their corresponding in-memory z3::expr representations, which
the analysis uses as part of its lifted edge-function domain. After construction,
the variability-aware edge functions are passed to the data-flow solver. The solver
follows the control flow of a variability-aware, LLVM-based ICFG implementa-
tion that is able to distinguish ordinary instructions from instructions that origi-
nate from the preprocessor and have been artificially generated by VarAlyzer ’s
SPL-transformation part. Once the exploded super-graph is built, the IDE solver
solves the value-computation problems, thereby also collecting and computing
the feature constraints that are associated with each of the original user-defined
edge functions and their respective evaluations.

6 � Evaluation

Our empirical evaluation addresses the following research questions:

•	 RQ1. Does VarAlyzer produce results that are identical with these of a prod-
uct-based analysis?

•	 RQ2. How efficient is VarAlyzer compared to a product-based analysis?
•	 RQ3. To what degree is variational analysis necessary to solve semantic analy-

ses on VarAlyzer-transformed code?

To address RQ1 and RQ2, we compiled each of our 95 benchmark subjects once
using VarAlyzer ’s conditional compilation approach and once exhaustively
using the standard compilation approach for all software products. We then sub-
jected the resulting compiles to VarAlyzer ’s variability-aware analysis and a
traditional product-based analysis that analyzes each individual software product,
respectively. Our benchmark comprises 95 compilation units that make use of
OpenSSL’s EVP library. For each software product line, we compared the analy-
sis results obtained by VarAlyzer to the results obtained by the product-based
approach. We ran each compilation and analysis step five times to account for
variance. To address RQ3 and to answer the question whether variability aware-
ness is necessary, we ran a traditional variability-oblivious inter-procedural
typestate analysis encoded in IDE using PhASAR on VarAlyzer-transformed
code. We parameterized the typestate analysis for three different APIs of OpenS-
SL’s EVP library. We discuss the precision of the results produced by the tradi-
tional variability-oblivious analysis and comment on the reusability of existing
static analysis infrastructure on the desugared code.

Unfortunately, comparisons of the VarAlyzer approach to existing tools such
as TypeChef (Kenner et al. 2010) or Hercules (Hercules 2020) are either not pos-
sible or not very meaningful as the implementations of previous works are not
maintained or use different analysis techniques that do not allow one to solve
more complex, inter-procedural data-flow analysis problems.

	 Automated Software Engineering (2022) 29:35

1 3

35  Page 26 of 37

6.1 � Experimental setup

We have evaluated VarAlyzer using benchmark subjects consisting of 95 hand-
written C compilation units ranging from 8 to 219 lines of source code that com-
prise correct as well as incorrect usages of OpenSSL’s EVP library parts. These
compilation units comprise between zero and eleven features and comprise intra- as
well as inter-prodcedural usages of the EVP library. We also included compilations
units with zero features to assess the potential overhead of VarAlyzer ’s conditional
compilation and variability-aware data-flow analysis. To obtain correct API uses,
we used the code examples presented in OpenSSL’s wiki.2 To ensure that our bench-
mark programs comprise realistic API usages, we mined 15 SPLs on GitHub using
the advanced search and aimed for high-stared and popular projects that make use
of OpenSSL’s EVP library parts.3 We then extracted the compilation units that com-
prise usages of the EVP library and used these to help modeling our benchmark.
Surprisingly, several of the real-world API usages completely omit error handling.
We thus also omitted error handling code in our benchmark subjects to allow for
easier debugging of our transformation and analysis. We then introduced different
kinds of protocol breaches, some of them unconditionally and some of them depend-
ing on certain (invalid) configurations.

To evaluate VarAlyzer, we used a client typestate analysis T that had been inde-
pendently implemented using PhASAR ’s implementation of the IDE framework. To
allow the analysis to validate useful typestate properties w.r.t. OpenSSL, we param-
eterized it for the OpenSSL EVP APIs message digests TMD , encryption/decryption
(cipher) TCPR , and message authentication codes TMAC . OpenSSL’s EVP function-
alities provide a high-level interface to OpenSSL’s cryptographic functions that are
commonly used by projects that require such cryptographic functionalities.

We set up the parameterized typestate analyses to run both in a traditional, var-
iability-oblivious manner using plain PhASAR, which we denote as TPSR , and in a
variability-aware manner, which we denote as TVAR . For RQ1 and RQ2, we exhaus-
tively sampled and compiled all concrete software products for each SPL of our
benchmark to LLVM intermediate representation (LLVM IR) to run the traditional,
variability-oblivious typestate analysis TPSR . To be able to run VarAlyzer ’s varia-
bility-aware analysis TVAR , we desugared each SPL using VarAlyzer ’s transforma-
tion and then compiled the transformed C code to LLVM IR. We used the standard
Clang compiler to produce LLVM IR. For each matching analysis pair, e.g. TPSR

MD

(variability-oblivious typestate analysis parameterized for the message digest API)
and TVAR

MD
 (variability-aware typestate analysis parameterized for the message digest

API), we automatically checked if the data-flow results produced by TVAR coincide
with all sampled results produced by TPSR , to evaluate the correctness of VarA-
lyzer ’s lifted analysis (RQ1). The running times and memory usages of the two
approaches are compared in RQ2. For RQ3, we ran the traditional feature-oblivious

2  OpenSSL Wiki https://​wiki.​opens​sl.​org/.
3  Github advanced search https://​github.​com/​search/​advan​ced.

https://wiki.openssl.org/
https://github.com/search/advanced

1 3

Automated Software Engineering (2022) 29:35	 Page 27 of 37  35

typestate analysis TPSR on VarAlyzer-transformed code and compared with its
results with the variability-aware analysis TVAR to assess TPSR ’s precision.

We measured the running times and memory usages for the experiments on an
Intel i7-5600U CPU@2.60GHz machine running Ubuntu 16.04 with 16GB main
memory. We ran each experiment five times, removed the minimum and maximum
measuring and computed the average of the remaining three values. We determined
the runtimes and peak memory usages of the experiments using the UNIX time
tool. We measured the lines of code of the compilation units using the UNIX wc
tool. We formatted the code using the clang-format tool and its default settings
to allow for a fair comparison of the lines of code measurement. Our benchmark
programs, the raw as well as the processed data produced in our evaluation is avail-
able in our artifact (Artifacts 2021).

6.2 � RQ1: analysis correctness

The PhASAR framework comprises a variety of unit tests for various different para-
metrizations of the typestate analysis to assess its correctness. It contains tests for
parametrizations for C’s file API(s) that are concerned with the type FILE, OpenS-
SL’s secure heap and secure memory APIs as well as OpenSSL’s EVP key deriva-
tion API. We developed the typestate parametrizations for OpenSSL’s EVP message
digest (MD), encryption/decryption (CIPHER), and message authentication codes
(MAC) and manually checked their correctness on individually software products
that we derived from our benchmark targets. Hence, we can ensure the correctness
of the variability-oblivious typestate analysis for the parametrizations TPSR

MD
 , TPSR

CIPHER
 ,

T
PSR
MAC

 w.r.t. derived programs they have been tested with.
VarAlyzer ’s process of lifting IFDS- and IDE-based analysis has been designed

to be fully transparent, i.e., it does not modify the semantics of the analysis that is
lifted but instead lifts its domain to make it variability-aware—allowing it to dis-
tinguish between data-flow facts that have been computed under different feature
constraints.

To show that not only theoretically but also in practice VarAlyzer-lifted analy-
ses retain precision compared to their un-lifted, product-based counterpart and also
compute the results of all possible software products in a single analysis run, we
wrote an automated comparison tool. The comparison tool ran our variational analy-
sis TVAR on each benchmark subject and then ran its variability-oblivious counter-
part TPSR on all of the exhaustively sampled concrete software products, perform-
ing an in-memory comparison of the results. The tool found that the results of TVAR
included the results produced by each analysis run of TPSR . All results, i.e., proto-
col breaches—on a data-flow fact-level—for each analysis run of TPSR on a sampled
software product can be found in the mapping from feature constraints to data-flow
facts produced by TVAR for the respective feature constraints that describes the soft-
ware product. Besides that, TVAR does not introduce spurious data-flow facts that
cannot be found in the results of TPSR run on any concrete software product and
hence, VarAlyzer ’s results in fact coincide with the results produced by a product-
based analysis.

	 Automated Software Engineering (2022) 29:35

1 3

35  Page 28 of 37

Our variability-aware analysis approach produces results that coincide with the
results computed using a corresponding variability-oblivious product-based analysis.

6.3 � RQ2: analysis efficiency

Figure 10 presents the results concerning VarAlyzer ’s efficiency. Due to space
restrictions we can only include the data for the analysis of the 36 benchmark pro-
grams that use the OpenSSL EVP encryption/decryption (CIPHER) API and report
on the accumulated data for the remaining ones. We have made the complete results
available (Artifacts 2021).

Our experiments show that the standard Clang compiler requires between 0.07
and 188.1 seconds to exhaustively compile all concrete software products of a soft-
ware product line in our benchmark set. VarAlyzer ’s two-step desugaring compila-
tion (comprising desugaring and compilation of the desugared code) is, on average,
7.1 times faster, ranging between 0.6 and 1.6 seconds. Running the variability-
aware analysis TVAR on a complete SPL is, on average, 8.0 times faster than ana-
lyzing the target software product line using the product-based approach TPSR that
needs to analyze each software product in separate. In total, the complete variabil-
ity-aware TVAR pipeline that includes variational compilation and variability-aware
analysis is, on average, 7.5 times faster than compiling and analyzing each concrete
software product derived from a SPL, while the analysis’s memory usage increases
by a factor of 1.17.

Figure 10 shows the number of features on a linear scale (the y axis at the bot-
tom), and the accumulated compilation and analysis times of a product-based
approach using plain PhASAR for analyzing all sampled concrete software prod-
ucts and VarAlyzer per target program concerning OpenSSL’s CIPHER API on a
logarithmic scale (the y axis at the top). For the benchmark targets that comprise no
variability, the running times of VarAlyzer are generally higher than those of the
product-based approach. For most of the compilation units that do comprise varia-
bility, the variability-aware approach runs faster than the products-based one as soon
as the target comprises more than four features with only one exception. This trend
is particularly clear on programs with more features (e.g., ciis9.c and ciise7.c in
Fig. 10). On two occasions (cise4, cise7), however, VarAlyzer ’s variability-aware
data-flow analysis runs significantly slower than expected. We manually checked the
SPLs’ source code and found that they use preprocessor integer arithmetic which in
our current implementation translates to a relatively long and complex Z3 constraint
that slows down the analysis during constraint simplification. The running times of
VarAlyzer, apart from the aforementioned two exceptions, generally remain in the
same order of magnitude while those of the product-based approach clearly grow
exponentially in the number of features reflecting the fact that a software product
line may comprise up to 2#features individual software products.

In terms of code size, VarAlyzer ’s desugarer causes an increase in lines
of code by a factor of 9.2, on average. This is mainly because the desugarer
emits artificial function declarations and definitions to preserve the preproces-
sor’s semantics. The definition of the static initializer function, which encodes

1 3

Automated Software Engineering (2022) 29:35	 Page 29 of 37  35

Fi
g.

 1
0  

A
na

ly
si

s
effi

ci
en

cy
 o

n
th

e
be

nc
hm

ar
k

pr
og

ra
m

s
th

at
 u

se
 O

pe
nS

SL
’s

 E
V

P
C

IP
H

ER
 A

PI
. N

am
in

g
sc

he
m

e
of

 th
e

be
nc

hm
ar

k
ta

rg
et

s:
 c

{’
i’

- i
nt

ra
-,

’ii
’ i

nt
er

-p
ro

ce
-

du
ra

l}
{’

s’
 -

so
ftw

ar
e

pr
od

uc
t l

in
e,

 ’_
’ -

 n
o

so
ftw

ar
e

pr
od

uc
t l

in
e}

{’
e’

 -
er

ro
ne

ou
s A

PI
 u

sa
ge

, ’
_’

 -
co

rr
ec

t A
PI

 u
sa

ge
}

	 Automated Software Engineering (2022) 29:35

1 3

35  Page 30 of 37

the symbol table for the renamings applied by VarAlyzer and the preprocessor
conditionals in Z3’s textual representation as described in Sect. 5, is the main
cause for the increase in code size. Each renamed symbol leads to an additional
line of code, and each preprocessor conditional leads to at least one more line
of code. Nevertheless, because the static initializer function is not called within
the program but is only used to describe semantics, it does not affect traditional
variability-oblivious static analyzers.

VarAlyzer outperforms the product-based approach in all cases that com-
prise more than four features except for one which the current implementation
cannot yet handle efficiently. The results would favor the variability-aware anal-
ysis even more with an increasing number of features. While the product-based
approach requires one to compile and analyze each product, VarAlyzer only
requires a single desugaring-compilation and analysis pass.

6.4 � RQ3: analysis precision

By comparing the results obtained from running the traditional variability-
oblivious analysis TPSR on VarAlyzer-transformed code, we can assess the pre-
cision gained by making the analysis variability-aware. We manually checked
the results produced by these analysis runs for the 95 benchmark subjects and
observed that the over-approximation leads to great imprecision that renders the
results practically unusable. This is because the analysis incorrectly introduces
interaction between data flows computed within different features that—accord-
ing to the preprocessor’s semantics—cannot happen in any concrete product. We
find that whenever an API’s respective context variable is modified across multi-
ple features that cannot actually be enabled together, the typestate analysis TPSR
directly associates those variables with an error state. We can observe that TPSR
returns the most coarse-grain analysis element for the context variables for all
68 compilation units that do comprise variability and whose features differ in
the modifications made to the context variable.

Existing analysis approaches presented in literature such as the one by Iosif-Lazar
et al. (2017) only employ code transformations to enable the (re)use of existing,
unmodified feature-oblivious static analyzers for software product lines. However,
information on variability is not preserved and even if it would be, cannot be under-
stood by existing feature-oblivious analyzers. While this generally allows one to
apply existing analyzers to entire software product lines, their results are unusable
for semantic program analysis as our manual inspection of the results produced by
T
PSR on VarAlyzer-transformed code shows. And while simpler, syntax-based anal-

yses may report bugs, it is hard to impossible to account them to a specific feature
combination in order to validate and action on them.

For more complex semantic analyses, variability awareness is essential to allow
one to distinguish information that is obtained along different mutually exclusive
features. To produce useful analysis results on software product lines, one not only
requires variability awareness for the transformation, but also the analysis parts.

1 3

Automated Software Engineering (2022) 29:35	 Page 31 of 37  35

7 � Related work

Several previous approaches address, in part, the difficult problem of statically ana-
lyzing real-world software product lines (Kästner et al. 2011; Gazzillo and Grimm
2012; Kästner et al. 2012; Chen et al. 2012; Brabrand et al. 2012; Bodden et al.
2013; Midtgaard et al. 2015; Classen et al. 2013; Dimovski 2016). Prior work either
created new analyses that had to account for the semantics of the static conditions
(Kästner et al. 2011; Gazzillo and Grimm 2012; Garrido and Johnson 2005; Kästner
et al. 2012; Kenner et al. 2010) or performed limited syntactic transformations from
the preprocessor into C and used off-the-shelf tools (Iosif-Lazar et al. 2017). The
works that lift the analysis (Kästner et al. 2011; Gazzillo and Grimm 2012; Gar-
rido and Johnson 2005; Kästner et al. 2012; Kenner et al. 2010) must work on the
combined preprocessor/C languages which makes those harder to implement. This
causes these approaches to resort to simpler analyses. The approach presented by
Iosif-Lazar et al. (2017) misses preprocessor semantics which passes the problem
to downstream analyses. The only available data-flow analysis for software prod-
uct lines written in C (Liebig et al. 2013; Brabrand et al. 2012) is intra-procedural
only. To employ precise, inter-procedural static analysis the transformation of the
preprocessor directives into ordinary C must be able to handle all of the preproc-
essor’s constructs and, in addition, preserve full information on static preprocessor
conditionals. The latter requirement is necessary to make this information available
to downstream analysis to avoid a loss in precision.

SPLlift (Bodden et al. 2013) avoids generating all potential software products by
analyzing the entire SPL as a whole. This so-called family-based approach encodes
feature constraints in distributive flow functions. SPLlift solves IFDS (Reps et al.
1995) problems on SPLs using IFDS’s generalization IDE (Sagiv et al. 1996). How-
ever, SPLlift can only solve data-flow problems with the small and finite domains,
limited by IFDS. SPLlift is a prototype for a seldom-used product-line dialect of
Java (Kästner et al. 2009) and thus cannot be applied to real-world product lines,
especially not those that use the C preprocessor.

SuperC (Gazzillo and Grimm 2012) presents a configuration-preserving lexer,
preprocessor, and parser. Its preprocessor resolves includes and macros while leav-
ing static conditionals intact to preserve its variability. A configuration-preserving
parser then generates an abstract syntax tree (AST) that is additionally amended
with static choice nodes to represent the static conditionals. SuperC uses a perfor-
mant fork-merge parsing: it forks subparsers whenever a choice node is encountered
and merges after the conditionals. The approach explores how to perform syntactic
analysis of C code while preserving its variability. SuperC provides detailed insights
on preprocessor usages and interactions of preprocessor usages of software product
lines.

TypeChef (Kenner et al. 2010) is another variability-aware parser and type-
checker for product lines written in C and allows for detecting variability-induced
bugs in configurable systems. It avoids combinatorial explosion by parsing the
entire source code in a variability-aware fashion without preprocessing. Similar
to SuperC, it produces an AST that captures the variability using static choice

	 Automated Software Engineering (2022) 29:35

1 3

35  Page 32 of 37

nodes. Based on TypeChef ’s AST, a variability-aware type system has been
developed that type-checks C code with compile-time configurations. While it is
possible to implement static program analyses that operate on variability-aware
ASTs, those analyses would still only be syntax based and, in addition, would still
need to encode the variability themselves (e.g., Liebig et al. 2013; Brabrand et al.
2012). Variability-aware control-flow and syntax-based data-flow analysis can
also be implemented on top of TypeChef. However, this requires the development
of syntactic AST-based analyses from scratch for the preprocessor/C language.
Instead, our approach does not need to capture the static behavior. This allows
us to build on existing, sophisticated program analyses; we use PhASAR and our
variability-aware extension VarAlyzer.

Hercules (Hercules 2020), a rewriting and refactoring engine built on top of
TypeChef, is a source-code transformation tool similar to the goal of SuperD. It
transforms compile-time variability into runtime variability. It no longer relies
solely on syntactic analysis only but also allows for more difficult semantic analy-
ses as well. Hercules, however, relies on TypeChef ’s variability-aware parsing and
analysis infrastructure which limits the application to code that is type-error-free,
a requirement that real-world code does not hold. Our approach is able to pass all
information of static preprocessor conditionals to our downstream analysis. This
allows for more precise subsequent analyses. For instance, it expresses type errors
as ordinary function calls, which allows its subsequent analysis to collect type errors
while analyzing the program without the need to exit immediately.

Iosif-Lazar et al. (2017) created C Reconfigurator that translates product lines
into single programs by replacing compile-time variability with run-time variability.
The resulting programs can be analyzed using traditional off-the-shelf analysis tools
such as clang-tidy (clang tidy 2018) or Frama-C (Cuoq et al. 2012). However, C
Reconfigurator does not preserve information on the origin of a static conditional,
making the results produced by the off-the-shelf tools on the transformed code var-
iability-unaware. Instead, our approach preserves full information on the preproces-
sor’s semantics and can compute the analysis results and their respective variants
on-the-fly in a single analysis run. C Reconfigurator also does not include feasible
but invalid configurations in the transformed program, making the bugs caused by
these configuration impossible to detect.

Le and Pattison (2014) presented the Hydrogen framework that introduced mul-
tiversion inter-procedural control-flow graphs (MVICFGs). MVICFGs represent the
control flows of multiple versions of a program in a single graph whose edges are
annotated with the version(s) under which a control flow is feasible. MVICFGs can
be used for incremental update analysis and for determining the bug/patch impact
for multiple program releases. The ICFGs of VarAlyzer-transformed programs can
be viewed as MVICFGs with the difference that VarAlyzer ’s ICFGs represent all
possible variants of a software product line instead of (potentially) all versions of an
individual software product. While Hydrogen employs a demand-driven symbolic
analysis whose queries must be parameterized with a specific version for which to
compute results, VarAlyzer ’s lifted distributive data-flow analyzes compute the
results for all possible software products in a single analysis run and accounts them
to the constraints under which they are valid.

1 3

Automated Software Engineering (2022) 29:35	 Page 33 of 37  35

8 � Conclusions

We have presented the design and implementation of VarAlyzer. VarAlyzer
allows one to produce a configuration-preserving encoding off all variability in
regular C code which it then subjects to a variability-aware, context- and flow-
sensitive data-flow analysis. It enables computing precise results on entire soft-
ware product lines, annotated with feature constraints that encode in which prod-
uct configurations each result is valid. Our empirical study using 95 compilation
units that make use of OpenSSL shows that this approach outperforms a tradi-
tional product-by-product analysis as soon as more than four products need to be
analyzed. As a result, for the first time VarAlyzer allows one to conduct an effec-
tive static data-flow analysis of software product lines on real-world C code. This
has the great potential to allow developers to find bugs and vulnerabilities much
earlier in the development process. For instance, whereas previously developers
using OpenSSL had to identify vulnerabilities separately for each concretely pre-
processed variant of OpenSSL, using VarAlyzer now has the potential to allow
the OpenSSL maintainers to detect such vulnerabilities for all relevant configura-
tions ahead of time.

Acknowledgements  Open Access funding enabled and organized by Projekt DEAL. This work was par-
tially supported by the German Research Foundation (DFG) within the Collaborative Research Centre
901 “On-The-Fly Computing” under the project number 160364472-SFB901/3, the Heinz Nixdorf Foun-
dation, and NSF grants CCF-1840934 and CCF-1816951.

Data availability and material (data transparency)  All accompanying artifacts of this paper, including
processed analysis targets and result data, are available as supplemental material (Artifacts 2021).

Code availability (software application or custom code)  We will make the implementation of VarAlyzer
available as open source and make it available under the permissive MIT license.

Declarations 

Conflict of interest  The authors declare that they have no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	 Automated Software Engineering (2022) 29:35

1 3

35  Page 34 of 37

References

Artifacts: supplementary material (2021). https://​drive.​google.​com/​drive/​folde​rs/​1ESiS​u5iKs​FTrM2​
XqN3O​j4fhI​qVfdQ​93W?​usp=​shari​ng

Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y., Octeau, D., McDaniel,
P.: Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for
android apps. In: Proceedings of the 35th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’14, pp. 259–269. ACM, New York, NY, USA (2014).
https://​doi.​org/​10.​1145/​25942​91.​25942​99

Bison: bison. https://​www.​gnu.​org/​softw​are/​bison/ (2020)
Bodden, E., Tolêdo, T., Ribeiro, M., Brabrand, C., Borba, P., Mezini, M.: Spllift: Statically analyzing

software product lines in minutes instead of years. In: Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13, pp. 355–364.
ACM, New York, NY, USA (2013). https://​doi.​org/​10.​1145/​24919​56.​24919​76

Bodden, E.: The secret sauce in efficient and precise static analysis: The beauty of distributive, sum-
mary-based static analyses (and how to master them). In: Companion Proceedings for the ISSTA/
ECOOP 2018 Workshops, ISSTA ’18, pp. 85–93. ACM, New York, NY, USA (2018). https://​doi.​
org/​10.​1145/​32364​54.​32365​00

Brabrand, C., Ribeiro, M., Tolêdo, T., Borba, P.: Intraprocedural dataflow analysis for software product
lines. In: Proceedings of the 11th Annual International Conference on Aspect-Oriented Software
Development, AOSD ’12, pp. 13–24. Association for Computing Machinery, New York, NY, USA
(2012). https://​doi.​org/​10.​1145/​21620​49.​21620​52

Chen, S., Erwig, M., Walkingshaw, E.: An error-tolerant type system for variational lambda calculus.
In: Proceedings of the 17th ACM SIGPLAN International Conference on Functional Programming,
ICFP ’12, pp. 29–40. Association for Computing Machinery, New York, NY, USA (2012). https://​
doi.​org/​10.​1145/​23645​27.​23645​35

Clang tidy: clang-tidy (2018). http://​clang.​llvm.​org/​extra/​clang-​tidy/
Classen, A., Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A., Raskin, J.F.: Featured transition sys-

tems: foundations for verifying variability-intensive systems and their application to LTL model
checking. IEEE Trans. Softw. Eng. 39(8), 1069–1089 (2013). https://​doi.​org/​10.​1109/​TSE.​2012.​86

CodeSonar, G.: Grammatech codesonar (2018). https://​www.​gramm​atech.​com/​produ​cts/​codes​onar
Coverity-(SAST): Coverity static application security testing (SAST) (2018). https://​www.​synop​sys.​com/​

softw​are-​integ​rity/​secur​ity-​testi​ng/​static-​analy​sis-​sast.​html
Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C: a software

analysis perspective. In: Proceedings of the 10th International Conference on Software Engineering
and Formal Methods, SEFM’12, pp. 233–247. Springer-Verlag, Berlin, Heidelberg (2012). https://​
doi.​org/​10.​1007/​978-3-​642-​33826-7_​16

de Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: C.R. Ramakrishnan, J. Rehof (eds.) Tools and
Algorithms for the Construction and Analysis of Systems, pp. 337–340. Springer Berlin Heidelberg,
Berlin, Heidelberg (2008). https://​doi.​org/​10.​1007/​978-3-​540-​78800-3_​24

Dimovski, A.S.: Symbolic game semantics for model checking program families. In: Bošnački, D., Wijs,
A. (eds.) Model Checking Software, pp. 19–37. Springer International Publishing, Cham (2016).
https://​doi.​org/​10.​1007/​978-3-​319-​32582-8_2

Ernst, M.D., Badros, G.J., Notkin, D.: An empirical analysis of C preprocessor use. IEEE Trans. Softw.
Eng. 28(12), 1146–1170 (2002). https://​doi.​org/​10.​1109/​TSE.​2002.​11582​88

FileVaultBug: Apple security blunder exposes lion login passwords in clear text. https://​www.​zdnet.​com/​
artic​le/​apple-​secur​ity-​blund​er-​expos​es-​lion-​login-​passw​ords-​in-​clear-​text/ (2012)

Garrido, A., Johnson, R.: Analyzing multiple configurations of a C program. In: Proceedings of the 21st
IEEE International Conference on Software Maintenance, ICSM ’05, pp. 379–388. IEEE Computer
Society, USA (2005). https://​doi.​org/​10.​1109/​ICSM.​2005.​23

Gazzillo, P., Grimm, R.: Superc: parsing all of C by taming the preprocessor. In: Vitek, J., Lin, H., Tip, F.
(eds.) ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’12, Beijing, China - June 11–16, 2012, pp. 323–334. ACM (2012). https://​doi.​org/​10.​1145/​22540​
64.​22541​03

GCC-Optimize-Options: GCC optimize options (2018). https://​gcc.​gnu.​org/​onlin​edocs/​gcc/​Optim​ize-​
Optio​ns.​html

Hercules: Hercules. https://​github.​com/​jolie​big/​Hercu​les (2020)

https://drive.google.com/drive/folders/1ESiSu5iKsFTrM2XqN3Oj4fhIqVfdQ93W?usp=sharing
https://drive.google.com/drive/folders/1ESiSu5iKsFTrM2XqN3Oj4fhIqVfdQ93W?usp=sharing
https://doi.org/10.1145/2594291.2594299
https://www.gnu.org/software/bison/
https://doi.org/10.1145/2491956.2491976
https://doi.org/10.1145/3236454.3236500
https://doi.org/10.1145/3236454.3236500
https://doi.org/10.1145/2162049.2162052
https://doi.org/10.1145/2364527.2364535
https://doi.org/10.1145/2364527.2364535
http://clang.llvm.org/extra/clang-tidy/
https://doi.org/10.1109/TSE.2012.86
https://www.grammatech.com/products/codesonar
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-32582-8_2
https://doi.org/10.1109/TSE.2002.1158288
https://www.zdnet.com/article/apple-security-blunder-exposes-lion-login-passwords-in-clear-text/
https://www.zdnet.com/article/apple-security-blunder-exposes-lion-login-passwords-in-clear-text/
https://doi.org/10.1109/ICSM.2005.23
https://doi.org/10.1145/2254064.2254103
https://doi.org/10.1145/2254064.2254103
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://github.com/joliebig/Hercules

1 3

Automated Software Engineering (2022) 29:35	 Page 35 of 37  35

Hermann, B., Reif, M., Eichberg, M., Mezini, M.: Getting to know you: Towards a capability model
for java. In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, pp. 758–769. ACM, New York, NY, USA (2015). https://​doi.​org/​10.​1145/​27868​
05.​27868​29

Holzinger, P., Hermann, B., Lerch, J., Bodden, E., Mezini, M.: Hardening java’s access control by abol-
ishing implicit privilege elevation. In: 2017 IEEE Symposium on Security and Privacy (SP), pp.
1027–1040 (2017). https://​doi.​org/​10.​1109/​SP.​2017.​16

ICCOptimizeOptions: Intel®c++ compiler 19.0 developer guide and reference: Interprocedural optimi-
zation (IPO) (2018). https://​softw​are.​intel.​com/​en-​us/​cpp-​compi​ler-​devel​oper-​guide-​and-​refer​ence-​
inter​proce​dural-​optim​izati​on-​ipo

Iosif-Lazar, A.F., Melo, J., Dimovski, A.S., Brabrand, C., Wasowski, A.: Effective analysis of C programs
by rewriting variability. CoRR (2017). arxiv:​1701.​08114

Kästner, C., Giarrusso, P.G., Rendel, T., Erdweg, S., Ostermann, K., Berger, T.: Variability-aware parsing
in the presence of lexical macros and conditional compilation. In: Proceedings of the 2011 ACM
International Conference on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’11, pp. 805–824. Association for Computing Machinery, New York, NY, USA (2011).
https://​doi.​org/​10.​1145/​20480​66.​20481​28

Kästner, C., Ostermann, K., Erdweg, S.: A variability-aware module system. In: Proceedings of the ACM
International Conference on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’12, pp. 773–792. Association for Computing Machinery, New York, NY, USA (2012).
https://​doi.​org/​10.​1145/​23846​16.​23846​73

Kästner, C., Thum, T., Saake, G., Feigenspan, J., Leich, T., Wielgorz, F., Apel, S.: Featureide: A tool
framework for feature-oriented software development. In: 2009 IEEE 31st International Conference
on Software Engineering, pp. 611–614. IEEE (2009). https://​doi.​org/​10.​1109/​ICSE.​2009.​50705​68

Kästner, C.: Virtual separation of concerns: toward preprocessors 2.0. Ph.D. thesis, Otto von Guericke
University Magdeburg (2010). https://​doi.​org/​10.​1524/​itit.​2012.​0662. http://​edoc.​bibli​othek.​uni-​
halle.​de/​servl​ets/​Docum​entSe​rvlet?​id=​8044

Kästner, C., Apel, S., Thüm, T., Saake, G.: Type checking annotation-based product lines. ACM Trans.
Softw. Eng. Methodol. (2012). https://​doi.​org/​10.​1145/​22116​16.​22116​17

Kenner, A., Kästner, C., Haase, S., Leich, T.: Typechef: Toward type checking #ifdef variability in C. In:
Proceedings of the 2Nd International Workshop on Feature-Oriented Software Development, FOSD
’10, pp. 25–32. ACM, New York, NY, USA (2010). https://​doi.​org/​10.​1145/​18686​88.​18686​93

Krüger, S., Nadi, S., Reif, M., Ali, K., Mezini, M., Bodden, E., Göpfert, F., Günther, F., Weinert, C.,
Demmler, D., Kamath, R.: Cognicrypt: Supporting developers in using cryptography. In: Proceed-
ings of the 32Nd IEEE/ACM International Conference on Automated Software Engineering, ASE
2017, pp. 931–936. IEEE Press, Piscataway, NJ, USA (2017). http://​dl.​acm.​org/​citat​ion.​cfm?​id=​
31555​62.​31556​81

Le, W., Pattison, S.D.: Patch verification via multiversion interprocedural control flow graphs. In: Pro-
ceedings of the 36th International Conference on Software Engineering, ICSE 2014, pp. 1047–
1058. Association for Computing Machinery, New York, NY, USA (2014). https://​doi.​org/​10.​1145/​
25682​25.​25683​04

Liebig, J., Kästner, C., Apel, S.: Analyzing the discipline of preprocessor annotations in 30 million lines
of c code. In: Proceedings of the Tenth International Conference on Aspect-Oriented Software
Development, AOSD ’11, pp. 191–202. Association for Computing Machinery, New York, NY,
USA (2011). https://​doi.​org/​10.​1145/​19602​75.​19602​99

Liebig, J., von Rhein, A., Kästner, C., Apel, S., Dörre, J., Lengauer, C.: Scalable analysis of variable soft-
ware. In: Meyer, B., Baresi, L., Mezini, M. (eds.) Joint Meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-26, 2013, pp. 81–91. ACM (2013).
https://​doi.​org/​10.​1145/​24914​11.​24914​37

Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in java applications with static analysis. In:
Proceedings of the 14th Conference on USENIX Security Symposium - Volume 14, SSYM’05, pp.
18–18. USENIX Association, Berkeley, CA, USA (2005). http://​dl.​acm.​org/​citat​ion.​cfm?​id=​12513​
98.​12514​16

McCloskey, B., Brewer, E.: Astec: A new approach to refactoring c. In: Proceedings of the 10th European
Software Engineering Conference Held Jointly with 13th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ESEC/FSE-13, pp. 21–30. Association for Computing
Machinery, New York, NY, USA (2005). https://​doi.​org/​10.​1145/​10817​06.​10817​12

https://doi.org/10.1145/2786805.2786829
https://doi.org/10.1145/2786805.2786829
https://doi.org/10.1109/SP.2017.16
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-interprocedural-optimization-ipo
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-interprocedural-optimization-ipo
http://arxiv.org/abs/1701.08114
https://doi.org/10.1145/2048066.2048128
https://doi.org/10.1145/2384616.2384673
https://doi.org/10.1109/ICSE.2009.5070568
https://doi.org/10.1524/itit.2012.0662
http://edoc.bibliothek.uni-halle.de/servlets/DocumentServlet?id=8044
http://edoc.bibliothek.uni-halle.de/servlets/DocumentServlet?id=8044
https://doi.org/10.1145/2211616.2211617
https://doi.org/10.1145/1868688.1868693
http://dl.acm.org/citation.cfm?id=3155562.3155681
http://dl.acm.org/citation.cfm?id=3155562.3155681
https://doi.org/10.1145/2568225.2568304
https://doi.org/10.1145/2568225.2568304
https://doi.org/10.1145/1960275.1960299
https://doi.org/10.1145/2491411.2491437
http://dl.acm.org/citation.cfm?id=1251398.1251416
http://dl.acm.org/citation.cfm?id=1251398.1251416
https://doi.org/10.1145/1081706.1081712

	 Automated Software Engineering (2022) 29:35

1 3

35  Page 36 of 37

Midtgaard, J., Dimovski, A.S., Brabrand, C., Wasowski, A.: Systematic derivation of correct variability-
aware program analyses. Sci. Comput. Program. 105, 145–170 (2015). https://​doi.​org/​10.​1016/j.​
scico.​2015.​04.​005

Onlinedocs, G.: Gcc onlinedocs – cpp 3.4 stringizing (2021). https://​gcc.​gnu.​org/​onlin​edocs/​gcc-​11.2.​0/​
cpp/​Strin​gizing.​html#​Strin​gizing

Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via graph reachability. In: Pro-
ceedings of the 22Nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’95, pp. 49–61. ACM, New York, NY, USA (1995). https://​doi.​org/​10.​1145/​199448.​
199462

Reps, T., Schwoon, S., Jha, S.: Weighted pushdown systems and their application to interprocedural data-
flow analysis. In: Proceedings of the 10th International Conference on Static Analysis, SAS’03, pp.
189–213. Springer-Verlag, Berlin, Heidelberg (2003). http://​dl.​acm.​org/​citat​ion.​cfm?​id=​17602​67.​
17602​83

Rhein, A.V., Liebig, J., Janker, A., Kästner, C., Apel, S.: Variability-aware static analysis at scale: an
empirical study. ACM Trans. Softw. Eng. Methodol. (2018). https://​doi.​org/​10.​1145/​32809​86

Sagiv, M., Reps, T., Horwitz, S.: Precise interprocedural dataflow analysis with applications to constant
propagation. Theor. Comput. Sci. 167(1–2), 131–170 (1996). https://​doi.​org/​10.​1016/​0304-​3975(96)​
00072-2

Schubert, P.D., Hermann, B., Bodden, E.: Phasar: An inter-procedural static analysis framework for c/
c++. In: T. Vojnar, L. Zhang (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems, pp. 393–410. Springer International Publishing, Cham (2019). https://​doi.​org/​10.​1007/​978-3-​
030-​17465-1_​22

Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. New York Univ. Comput.
Sci. Dept., New York, NY (1978). https://​cds.​cern.​ch/​record/​120118

Strom, R.E.: Mechanisms for compile-time enforcement of security. In: Proceedings of the 10th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL ’83, pp. 276–
284. ACM, New York, NY, USA (1983). https://​doi.​org/​10.​1145/​567067.​567093

Strom, R.E., Yemini, S.: Typestate: A programming language concept for enhancing software reliability.
IEEE Trans. Softw. Eng. 12(1), 157–171 (1986). https://​doi.​org/​10.​1109/​TSE.​1986.​63129​29

Thüm, T., Apel, S.: Analysis strategies for software product lines. none (2012). https://​www.​cs.​cmu.​edu/​
~ckaes​tne/​pdf/​tr_​analy​sis12.​pdf

Walkingshaw, E., Kästner, C., Erwig, M., Apel, S., Bodden, E.: Variational data structures: Exploring
tradeoffs in computing with variability. In: Black, A.P., Krishnamurthi, S., Bruegge, B., Ruskiewicz,
J.N. (eds.) Onward! 2014, Proceedings of the 2014 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming & Software, part of SPLASH ’14, Portland, OR,
USA, October 20-24, 2014, pp. 213–226. ACM (2014). https://​doi.​org/​10.​1145/​26611​36.​26611​43

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and Affiliations

Philipp Dominik Schubert1  · Paul Gazzillo2 · Zach Patterson3 · Julian Braha2 ·
Fabian Schiebel4 · Ben Hermann5 · Shiyi Wei3 · Eric Bodden1,4

	 Paul Gazzillo
	 paul.gazzillo@ucf.edu

	 Zach Patterson
	 zach.patterson@utdallas.edu

	 Julian Braha
	 julianbraha@gmail.com

	 Fabian Schiebel
	 fabian.schiebel@iem.fraunhofer.de

https://doi.org/10.1016/j.scico.2015.04.005
https://doi.org/10.1016/j.scico.2015.04.005
https://gcc.gnu.org/onlinedocs/gcc-11.2.0/cpp/Stringizing.html#Stringizing
https://gcc.gnu.org/onlinedocs/gcc-11.2.0/cpp/Stringizing.html#Stringizing
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462
http://dl.acm.org/citation.cfm?id=1760267.1760283
http://dl.acm.org/citation.cfm?id=1760267.1760283
https://doi.org/10.1145/3280986
https://doi.org/10.1016/0304-3975(96)00072-2
https://doi.org/10.1016/0304-3975(96)00072-2
https://doi.org/10.1007/978-3-030-17465-1_22
https://doi.org/10.1007/978-3-030-17465-1_22
https://cds.cern.ch/record/120118
https://doi.org/10.1145/567067.567093
https://doi.org/10.1109/TSE.1986.6312929
https://www.cs.cmu.edu/%7eckaestne/pdf/tr_analysis12.pdf
https://www.cs.cmu.edu/%7eckaestne/pdf/tr_analysis12.pdf
https://doi.org/10.1145/2661136.2661143
http://orcid.org/0000-0002-8674-1859

1 3

Automated Software Engineering (2022) 29:35	 Page 37 of 37  35

	 Ben Hermann
	 ben.hermann@cs.tu-dortmund.de

	 Shiyi Wei
	 swei@utdallas.edu

	 Eric Bodden
	 eric.bodden@upb.de

1	 Paderborn University, Paderborn, Germany
2	 University of Central Florida, Florida, USA
3	 University of Texas at Dallas, Dallas, USA
4	 Fraunhofer IEM, Paderborn, Germany
5	 Technische Universität Dortmund, Dortmund, Germany

	Static data-flow analysis for software product lines in C
	Abstract
	1 Introduction
	2 Motivating example
	3 Background on IFDS and IDE
	4 VarAlyzer
	4.1 Transforming preprocessor directives
	4.1.1 Phases of the desugarer
	4.1.2 Desugaring C type specifications
	4.1.3 Desugaring function definitions
	4.1.4 Limitations of the transformation

	4.2 Variational data-flow analysis
	4.2.1 Automated lifting of edge functions
	4.2.2 Operations on lifted edge functions
	4.2.3 Why IDE is the ideal framework of choice

	5 Implementation
	6 Evaluation
	6.1 Experimental setup
	6.2 RQ1: analysis correctness
	6.3 RQ2: analysis efficiency
	6.4 RQ3: analysis precision

	7 Related work
	8 Conclusions
	References

