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Abstract
Many critical codebases are written in C, and most of them use preprocessor direc-
tives to encode variability, effectively encoding software product lines. These pre-
processor directives, however, challenge any static code analysis. SPLlift, a previ-
ously presented approach for analyzing software product lines, is limited to Java 
programs that use a rather simple feature encoding and to analysis problems with 
a finite and ideally small domain. Other approaches that allow the analysis of real-
world C software product lines use special-purpose analyses, preventing the reuse of 
existing analysis infrastructures and ignoring the progress made by the static analy-
sis community. This work presents VarAlyzer, a novel static analysis approach for 
software product lines. VarAlyzer first transforms preprocessor constructs to plain 
C while preserving their variability and semantics. It then solves any given distribu-
tive analysis problem on transformed product lines in a variability-aware manner. 
VarAlyzer ’s analysis results are annotated with feature constraints that encode in 
which configurations each result holds. Our experiments with 95 compilation units 
of OpenSSL show that applying VarAlyzer enables one to conduct inter-proce-
dural, flow-, field- and context-sensitive data-flow analyses on entire product lines 
for the first time, outperforming the product-based approach for highly-configurable 
systems.

Keywords  Inter-procedural static analysis · Software product lines · Preprocessor · 
LLVM · C/C++

 *	 Philipp Dominik Schubert 
	 philipp.schubert@upb.de

Extended author information available on the last page of the article

http://orcid.org/0000-0002-8674-1859
http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-022-00333-1&domain=pdf


	 Automated Software Engineering (2022) 29:35

1 3

35  Page 2 of 37

1  Introduction

Software product lines (SPLs) enable software developers to encode a set of soft-
ware products in a common code base. The different variations, so-called con-
figurations, are typically described with the help of static conditionals, so-called 
features, that enable conditional compilation. In the programming languages C 
and C++, developers typically use the preprocessor’s functionalities, particularly 
the well-known #ifdef directives, to establish SPLs. The preprocessor’s static 
conditionals allow developers to check the presence of a symbol or its value—
an integer or a string literal. At compile time, the preprocessor transforms every 
compilation unit according to the given set of symbols (and their respective val-
ues), before the preprocessed compilation unit is handed over to the actual com-
piler. The compiler thus only compiles the code that has been included by the 
preprocessor, which allows it to produce efficient object code. This also means 
that in the worst case an SPL induces a number of software products that is expo-
nential in the number of static conditionals.

Static data-flow analysis is not only used as a basis for compiler optimizations 
(GCC-Optimize-Options 2018; ICCOptimizeOptions 2018), but also for bug finding 
(Coverity-(SAST) 2018; CodeSonar 2018) and software hardening (Arzt et al. 2014; 
Krüger et al. 2017; Livshits and Lam 2005; Hermann et al. 2015; Holzinger et al. 
2017). However, previous software vulnerabilities such as Apple’s FileVault vulner-
ability (FileVaultBug 2012) show that program analysis of configurable systems is 
crucial. The FileVault vulnerability was caused by accidentally shipping a Mac OS 
X version with logging code enabled that stored the user login passwords in clear 
text. Such a vulnerability might have been detected early, had Apple had the capabil-
ity to analyze FileVault’s codebase with respect to all possible configurations.

The problem with traditional static analysis techniques, however, is that they can-
not be applied to software product lines directly. Instead, one must first generate a 
concrete software product by preprocessing the common code base and then analyze 
the resulting plain C/C++ program. Due to the possibly exponential number of soft-
ware products in practice, this process becomes prohibitively expensive even when 
analyzing only a few variants, let alone all possible software products.

SPLlift (Bodden et al. 2013) was proposed to analyze an entire SPL as a whole, 
a so-called family-based approach (Thüm and Apel 2012), which avoids generat-
ing all potential software products. While doing so, it avoids an exponential blowup 
through a time and memory efficient encoding of feature constraints in distributive 
flow functions. However, SPLlift is restricted to Interprocedural Finite Distributive 
Subset (IFDS) (Reps et al. 1995) problems, which include simple problems such as 
taint analysis, but exclude problems with large or potentially infinite domains such 
as constant propagation (Sagiv et al. 1996) or typestate analysis (Strom 1983; Strom 
and Yemini 1986). More importantly, it is a prototype for a seldom-used product-
line dialect of Java (Kästner et al. 2009) and thus cannot be applied to real-world 
SPLs, particularly not those that use the C preprocessor.

Existing techniques that are able to analyze real-world SPLs written in C 
operate on un-preprocessed C code and include new or modified algorithms for 
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parsing (Kästner et  al. 2011; Gazzillo and Grimm 2012; Garrido and Johnson 
2005), data-flow analysis (Liebig et  al. 2013; Rhein et  al. 2018), type checking 
(Kästner et al. 2012), and rewriting (Iosif-Lazar et al. 2017). The only available 
data-flow analysis (Liebig et al. 2013; Rhein et al. 2018), however, is intra-proce-
dural only. In addition, all those techniques are special-purpose analyses, making 
it infeasible to reuse existing state-of-the-art static analysis infrastructures. The 
situation becomes even more complicated when looking at the long term. While 
the research on “variability-oblivious” program analysis marches on, those varia-
bility-aware toolchains must be maintained in parallel, doubling the engineering 
effort, which explains why none of the above approaches has been maintained in 
the long term. Other works proposed new preprocessors (McCloskey and Brewer 
2005; Kästner 2010). Language adoption, however, is a notoriously slow devel-
opment. And even if those new preprocessors get adopted over time, one cannot 
expect that millions of lines of existing legacy code will be rewritten. Despite 
C’s known issues, it is the most popular programming language according to the 
TIOBE programming index.1

In this work, we present the design and implementation of VarAlyzer, a novel 
static data-flow analysis approach built on top of SuperC (Gazzillo and Grimm 2012) 
and PhASAR (Schubert et al. 2019). The idea is to revoke the preprocessor’s special 
role by first transforming preprocessor directives into ordinary C code. Preproces-
sor conditionals are replaced with C conditionals, preprocessor macros are replaced 
with C variables, and the existence of declarations is controlled via C expressions 
that use these declarations. The transformation uses a configuration-aware type 
checker which supports static behaviors at runtime that could not be implemented 
before, e.g. type errors caused by infeasible configurations are expressed as runtime 
calls to an error function. VarAlyzer allows one to automatically make any exist-
ing (or new) distributive data-flow analysis on real-world C software product lines 
variability-aware which it then solves in a single analysis run on the transformed 
software product line.

On top, and in contrast to SPLlift, VarAlyzer supports not just analyses encoded 
in IFDS (Reps et  al. 1995) but also in Interprocedural Distributive Environments 
(IDE) (Sagiv et  al. 1996), which includes problems with infinite domains. As a 
result, VarAlyzer outputs the fully context- and flow-sensitive data-flow facts along 
with a feature constraint describing the product configurations for which they hold. 
This allows developers to find bugs and vulnerabilities much earlier in the develop-
ment process, requiring no product to be generated. Whereas previously developers 
of highly-configurable software had to identify vulnerabilities separately for each 
concretely preprocessed variant, using VarAlyzer they can exclude such vulnerabil-
ities in all relevant configurations ahead of time.

We evaluate VarAlyzer ’s effectiveness by conducting a typestate analysis 
(Strom 1983; Strom and Yemini 1986) that checks for the correct usages of OpenS-
SL’s Envelope (EVP) APIs on 95 compilation units. Typestate analysis belongs to 
an important class of analyses whose efficient encoding, due to the internal state, 

1  As of March, 2021, TIOBE programming index https://​www.​tiobe.​com/​tiobe-​index/.

https://www.tiobe.com/tiobe-index/
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requires IDE (Sagiv et al. 1996) or equally expressive frameworks such as weighted 
pushdown systems (Reps et al. 2003). The IFDS-based SPLlift approach thus could 
not solve such an analysis on realistic programs. The (hand-)written compilation 
units in C comprise realistic uses of EVP’s APIs for message digest (MD), encryp-
tion/decryption (CIPHER), and message authentication codes (MAC). The compila-
tion units, ranging from 8 to 219 lines of code, comprise preprocessor conditionals 
and valid as well as invalid API usages. For this work, we have to restrict ourselves 
to evaluating our approach on individual compilation units because several funda-
mental challenges that are beyond the scope of this paper currently prevent us from 
evaluating VarAlyzer on full SPLs. Large-scale projects not only encode variability 
in the preprocessor but also in other parts of the system software toolchain. To sup-
port full SPLs, an approach would additionally need to solve the difficult problem of 
supporting variability-aware linking and build automation. VarAlyzer provides full 
support for application configurations. However, system configuration macros pro-
vide yet another challenge. Not only would an approach need to support platform-
dependent header file differences, but would also require one to construct a superset 
of all C variations. We detail on these challenges in Sect. 4.1.4.

We will make the implementation of VarAlyzer available as open source. We 
will subject it to artifact evaluation and make it available under the permissive MIT 
license. All accompanying artifacts of this paper, including processed analysis tar-
gets and result data, are available as supplemental material (Artifacts 2021).

In summary, this paper makes the following contributions:

•	 A novel end-to-end variability-aware static analysis approach that enables vari-
ational analysis of C software product lines. The approach transforms software 
product lines to ordinary C code while preserving the complete preprocessor 
semantics and performs an automated lifting that allows one to solve arbitrary 
distributive data-flow problems in a variability-aware manner.

•	 An open-source implementation based on SuperC (Gazzillo and Grimm 2012) 
and PhASAR (Schubert et al. 2019).

•	 An experimental evaluation of VarAlyzer, which assesses its effectiveness in 
solving general IDE (Sagiv et al. 1996) problems on 95 compilation units that 
use OpenSSL.

•	 An assessment of the further challenges that need to be overcome to make static 
analysis of arbitrary C applications a reality.

2 � Motivating example

To motivate the need for variability-aware analyses, we show an example using 
typestate analysis on a software product line. Most APIs are required to be called 
in a particular order or pattern. The valid sequences of operations can be encoded 
using state machines. A typestate analysis (Strom 1983; Strom and Yemini 1986) 
or protocol analysis is a static analysis that tracks variables of a certain type and 
their associated states through the program. Typestates define sequences of oper-
ations that may be performed upon a variable. The state information associated 
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with each variable is used to determine—at compile-time—the validity of opera-
tions invoked upon variables. Existing analysis techniques for SPLs that rely on 
special-purpose analyses formulated for variability-preserving ASTs cannot solve 
this problem class.

The state machine shown in Fig.  1 describes the valid usages of OpenSSL’s 
EVP message digest (MD) API. An SPL that performs a message digest using 
OpenSSL’s EVP message digest (MD) API is shown Listing 1. The SPL com-
prises a debugging feature encoded with the symbol DEBUG. When this symbol is 
enabled in the preprocessor, and therefore debugging is enabled at runtime, MD’s 
API protocol is violated as the call to EVP_DigestFinal_ex() at line 21 is 
omitted—a potential security threat. Even variability-aware intra-procedural data-
flow analysis cannot properly solve this analysis problem in our example program 
because the variable MDCTX that carries the state information is processed across 
multiple different functions.

Traditional techniques would first generate a particular variant (and all var-
iants we are interested in, possibly all of them) of the SPL, and then uncover 
this problem in a static analysis of that particular variant. A brief inspection of 
our example SPL using the GCC compiler shows that it comprises 6,946 pre-
processor macros and (transitively) includes 221 different header files. 261 of 
those 6,946 macros are used in preprocessor conditionals. Therefore, traditional 
analysis techniques can not scale. Instead, it is desirable to analyze all potential 
configurations, i.e., feature combinations, at the same time. By transforming the 
preprocessor directives into ordinary C code, our approach allows to employ 
any existing C analysis tools to analyze the entire SPL as a whole. PhASAR ’s 
traditional typestate analysis, for instance, would be able to detect the protocol 
breach caused by the missing call to EVP_DigestFinal_ex(). In more com-
plex scenarios, however, it would also report a large number of false positives 
because the results are valid across all configurations, making any findings virtu-
ally impossible to debug. Traditional analysis would need to merge information at 
control-flow merge points even for branches that originate from static preproces-
sor conditionals, which is impossible in practice. Therefore, it is desirable to have 
an analysis that can handle preprocessor variability to produce results that are 
actually useful to the analysis users.

Fig. 1   State machine that describes the correct usages of the OpenSSL EVP message digest (MD) API
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3 � Background on IFDS and IDE

In the following, we present the conceptual Interprocedural Finite Distributive 
Subset (IFDS) (Reps et al. 1995) framework and its generalization, the Interpro-
cedural Distributive Environments (IDE) (Sagiv et  al. 1996) framework. Both 
frameworks support the efficient, summary-based solving of distributive (Bodden 
2018) data-flow problems. We will later use the IDE framework to encode any 
given distributive data-flow problem and solve it in a variability-aware manner.
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Both IFDS and IDE solve a data-flow problem by constructing an exploded 
super-graph (ESG). By construction, a data-flow fact d holds at statement s, if a 
node (s, d) in the ESG is reachable from a special, tautological node Λ . The ESG 
is constructed for a given program by replacing every node of its inter-procedural 
control-flow graph (ICFG) (oftentimes also referred to as supergraph) with the 
bipartite graph representation of the respective flow function. Every flow func-
tion that is distributive can be represented as a bipartite graph without loss of 
precision. The common flow functions identity, generate (Gen), and remove (Kill) 
are distributive and thus, all Gen/Kill data-flow problems can be encoded within 
IFDS and IDE.

An exemplary ESG for a taint analysis encoded in IFDS that showcases how 
bipartite graphs can be used to represent flow functions is shown in Fig. 2. A taint 
analysis tracks tainted variables generated by so-called source functions through the 
program and reports potential security vulnerabilities whenever a tainted variable 
reaches a call to a sink function. The function getPasswd() acts as a source in 
our example as it retrieves sensitive user information and the print() function 
presents a sink as sensitive information must not leak. The taint analysis detects the 
potential leak at line 7 in the program since the ESG node (stmt:7, p) is reachable by 
the tautological Λ fact.

To achieve fully context-sensitive, inter-procedural analysis, IFDS and IDE fol-
low the summary-based approach (Sharir and Pnueli 1978), creating procedure sum-
maries that can be reused and instantiated in multiple calling contexts. Summaries 
are created by composing the flow functions of adjacent statements. The composi-
tion h = g◦f  of two flow functions f and g, called jump function, can be obtained 
by combining their bipartite graph representations. The graph of h can be produced 
by merging the nodes of g with the corresponding nodes of the domain of f. Once a 
summary � for a complete procedure p has been constructed, it can be re-applied in 
any other contexts in which the procedure p is called. Jump functions are indicated 
using dashed arrows in Fig. 2.

Fig. 2   An exemplary exploded 
super-graph for a taint analysis 
encoded in IFDS (Reps et al. 
1995). Individual flow func-
tions are indicated with solid 
edges ( → ) and flow function 
summaries (also known as jump 
functions) are indicated with 
dashed edges ( ⤏)
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In IDE, the ESG edges carry additional distributive functions. Those edge func-
tions can be used to describe an additional value computation problem over a value 
domain V that is solved while performing the reachability check in the ESG. The 
runtime complexity of both algorithms is O(|N| ⋅ |D|3) , where N is the set of pro-
gram statements and D is the data-flow domain, i.e., the set of data-flow facts. 
Importantly, the complexity is independent of |V|, which allows IDE to conduct 
efficient computations even using large or even infinite value domains (e.g., sets of 
states of larger state machines in a typestate analysis or the set of natural numbers 
as is required in constant propagation). Attempts to encode such problems in IFDS 
will lead to state-space explosion or even non-termination. While one can generally 
encode a linear constant propagation in IFDS using D = (v, c) , where v ∈ V is the 
set of program variables and c ∈ ℤ , i.e., with tuples of program variables and associ-
ated integer values, this encoding drastically impedes performance. This is because 
IFDS was built to solve problems with finite domains but ℤ is infinite. Even in cases 
where one bounds its size artificially, solving performance will be bad. A linear con-
stant propagation can be encoded much more efficiently instead in IDE, using D = V 
and V = ℤ, such as to reduce the size of the data-flow domain and to utilize the edge 
functions’ value domain V—computing a variable’s value using the context-inde-
pendent edge functions. Since the complexity of IDE’s solving algorithm depends 
only on the size of D and not V and therefore is independent of the infinite size of ℤ , 
such an encoding will scale (Sagiv et al. 1996). An exemplary ESG for a linear con-
stant propagation encoded in IDE is shown in Fig. 7. We explain this ESG in detail 
in Sect. 4.2.

4 � VarAlyzer

In this section, we detail our approach to statically analyzing C software product 
lines. VarAlyzer consists of two phases. First, it transforms software product lines 
into an intermediate representation (IR). Second, it applies a novel data-flow solver 
that enables variational analysis of arbitrary distributive analysis problems and pro-
duces precise results for all variants of a software product line in a single analysis 
run.

4.1 � Transforming preprocessor directives

The main idea of VarAlyzer ’s transformation is that the static preprocessor condi-
tionals are automatically replaced with runtime C conditionals. The key challenge 
is that preprocessor conditionals may appear around any arbitrary set of C tokens, 
irrespective of C’s syntax (Ernst et al. 2002; Liebig et al. 2011), while C condition-
als may only appear around complete statements. For instance, in Fig. 3a, preproc-
essor conditionals appear around a declaration (lines 2–3) and a function definition 
(lines  6–7) of the same name. While the preprocessor technically has a language 
distinct from pure C, we take the view that unpreprocessed C files are effectively 
written in a single, mixed language. To preserve the encoding of variability in 
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unpreprocessed C, VarAlyzer desugars source files into ordinary C, which is a sub-
set of the mixed language.

The preprocessor performs macro evaluation, header inclusion, and conditional 
compilation to generate C code at compile-time. With conditional compilation, the 
preprocessor selects which parts of the source code to send to the compiler by evalu-
ating the values of configuration macros passed into the preprocessor at compile-
time. Developers use these preprocessor conditionals to encode variability.

Developers may wrap these conditionals around any fragment of the C code. 
Common patterns in real-world code include putting conditionals around entire 
functions, declarations, and even individual C tokens. Since preprocessing happens 
before parsing in the compiler, these conditionals do not need to respect C’s syntax. 
Developers may even wrap them around incomplete C constructs, so-called “undis-
ciplined” uses (Liebig et al. 2011). Figure 4a is an example of this usage, where a 
preprocessor conditional surrounds all but the else-branch body of an if-then-else 
statement (lines 2–4).

Since our goal is to preserve the behavior of these preprocessor conditionals, 
we need to consider their meaning when they interact with C constructs. While 
a preprocessor conditional has simple semantics (i.e., it conditionally includes or 
excludes the contained C fragment), its effect on C program behavior depends on 
what C constructs it surrounds. For instance, it is illegal in C’s semantics to write 
multiple declarations of the same variable to vary its type. By surrounding these 

Fig. 3   Desugaring a variational function definition, adapted from Linux v4.18 kernel/sched/sched.h

Fig. 4   Desugaring a variational if statement, adapted from Linux v2.6.33.3 drivers/input/mousdev.c
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declarations with mutually-exclusive preprocessor conditionals, it is “legalized”: the 
preprocessor only chooses one declaration to send to the C compiler. The only way 
to allow such multiple declarations in C is to use unique variable names. In contrast, 
a preprocessor conditional around a C statement behaves much like a C conditional, 
except that the preprocessor does not respect C’s scoping rules and it takes configu-
ration macros instead of C variables.

4.1.1 � Phases of the desugarer

VarAlyzer takes unpreprocessed C code, such as that in Fig. 4a, and produces an 
equivalent C program using run-time conditionals to preserve variability (Fig. 4b). 
There are three phases in VarAlyzer ’s desugarer: (1) parsing, (2) type checking, 
and (3) rewriting. Parsing takes the unpreprocessed C code and produces an AST 
that preserves all preprocessor behavior. Type checking collects symbols and their 
types across all variations of the SPL. Rewriting emits ordinary C code that corre-
sponds to the unpreprocessed C constructs.

Parsing For parsing, we reuse an existing parser, SuperC (Gazzillo and Grimm 
2012). Unlike the standard C preprocessor and parser, SuperC solves the problem 
of parsing all variations of a C file. It provides a complete solution to parsing C 
syntax even when mixed with any combinations of preprocessor usage. Eschewing 
incomplete heuristics, SuperC ’s parsing formalism enables comprehensive parsing 
of unpreprocessed C, supporting complicated and even pathological cases, such as 
conditionally-defined macros and headers, macros with incomplete C syntax, string-
ification and token-pasting combined with ifdefs, and more. Listing 2 and Listing 3 
present two more complex examples that use a combination of some of these fea-
tures. The specifics of this parser can be found in Gazzillo and Grimm (2012). An 
overview of the possible interactions between the C preprocessor and C’s language 
features is shown in Table 1. SuperC ’s output is a C AST that has special “static 
conditional” nodes that capture every possible variation of the syntax of the input 
source file. The parsing algorithm ensures that conditional nodes are guaranteed to 
appear around complete C syntactic units, even when the unpreprocessed input file 
does not, by duplicating any tokens needed to comphrehensively represent all varia-
tions of the nearest ancestor construct. For instance, Fig. 4a’s AST will have a static 
conditional node with two branches, one for MACRO and the other for !MACRO. The 
former branch will contain a complete if-then-else statement with no other static 
conditionals inside and the latter will have a single assignment statement.
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Type checking Traditionally, type checking ensures the absence of type errors at 
runtime. VarAlyzer, however, relies on the type checking phase to enable desug-
aring. To emit C code equivalent to the unpreprocessed C, the desugarer needs to 
know what variables have been declared (or left undeclared) in all the variations of 
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the source code. As with typical C type checking, we maintain a symbol table and 
apply C type checking rules with semantic actions during parsing. A symbol’s entry 
in the table, however, depends on what variation we are analyzing. For instance, in 
Fig. 3a, declarations of f (lines 3 and 7) have incompatible type qualifiers (extern 
and static). However, these two declarations can never appear in the same varia-
tion. VarAlyzer ’s type checker needs to track both types throughout the source file.

The symbol table binds a symbol to all of its possible types across all variations 
of the source code. The binding is akin to a “variational set” (Walkingshaw et al. 
2014), where each type element is tagged with configuration information. The set 
also includes special entries to record the conditions under which the symbol is 
undeclared or has a type error in its declaration. This is necessary because a typical 
type checker will use the absence of a binding to mean undeclared and will simply 
halt on a type error. When desugaring, only some of the variations of the source file 
may have an undeclared symbol or other type errors. We continue to desugar any 
valid configurations instead of halting. Our type checker, in effect, tracks types in all 
variations of the source code simultaneously.

For instance, the symbol table entry for f in Fig. 3a contains a set with four ele-
ments, one for each possible variation of this source code. f is undeclared if both M1 
and M2 are undefined. f is a redeclaration type error if both M1 and M2 are defined. 
There are two more entries for the valid type declarations, which happen when only 
one of M1 and M2 is defined, but not both. The resulting symbol table entry for f is 
as follows:

Rewriting The rewriting phase produces ordinary C code that preserves the behav-
ior of the unpreprocessed source file. The underlying parser of VarAlyzer ensures 
static conditionals are lifted around only complete C syntax, i.e., syntactic lifting, 
but our rewriter still needs to consider the behavior of static conditionals on those 
C constructs. When a static condition surrounds a construct, VarAlyzer lifts the 
construct’s semantic value to the nearest ancestor that is a statement, declaration, 
or function definition, if not already one of these. This step ensures that VarAlyzer 
will output valid C code by only inserting C conditional around complete statements.

The rewriting rules depend on what C construct a preprocessor conditional sur-
rounds: statements, declarations, etc. In general, statements are surrounded by a C 
conditional and configuration macros are transformed to C constant variables. Fig-
ure 4b shows the result of desugaring Fig. 4a. Recall that the parser ensures that the 
static conditionals appear around a complete if-then-else statement and a complete 
assignment statement. The desugarer declares a new C constant called MACRO on 
line 1, and then emits a C conditional that uses this variable around the two com-
plete C constructs. Notice that any tokens shared by the two complete constructs are 
duplicated under the C conditional, which provides guarantees of “disciplined” uses 
of conditionals.

� ↦

⎧
⎪⎨⎪⎩

������ ���� �� �� ∧ ¬��

������ ���� �� ¬�� ∧ ��

<ERROR> �� �� ∧ ��

<UNDECLARED> �� ¬�� ∧ ¬��
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Declarations and function definitions cannot be desugared by surrounding them 
with a C conditional, since they are not statements. VarAlyzer handles multiply-
declared symbols by emitting all declarations unconditionally, resolving name 
clashes by renaming the symbols. VarAlyzer preserves variability at runtime 
by instead emitting C conditionals where the symbols are used in statements. In 
Fig. 3b, VarAlyzer creates fresh identifiers for the two declarations (lines 3 and 5). 
The usage of the symbol f is replaced with a C conditional (lines  7–8) and the 
mutual exclusion of the two declarations in different configurations is preserved in 
lines 9–10.

The type checking phase is instrumental in VarAlyzer. It records all variations 
of the original symbol, which enables VarAlyzer to assign a fresh name to each 
of the variational set’s entries, e.g., __f_1 and __f_2 in Fig. 3b. In addition, the 
type checker records which configurations have type errors. Type errors are nor-
mally emitted at compile-time. VarAlyzer, however, cannot halt with such errors 
when only some variations have them. Instead, it preserves type errors as runtime 
errors, by transforming them into calls to a specially-defined __type_error func-
tion that always halts. In Fig. 3b, VarAlyzer preserves the type error with line 10, 
reflecting the fact that there is no declaration of f when macros M1 and M2 are both 
undefined and a conflicting declaration if both macros are defined. The subsequent 
analysis can then rule out invalid configurations as unreachable code, avoiding the 
imprecision by analyzing these configurations.

4.1.2 � Desugaring C type specifications

While duplicating multiply-declared symbols is sufficient for variables and func-
tions, C also supports user-defined types via typedefs, structs, unions, and enums. 
The latter three can also appear within declarations. The declaration in Fig.  5a 
declares var to be a new type struct s. Structs and unions contain field declara-
tions which themselves may contain struct and union definitions. A naive desugar-
ing could take all combinations of struct/union definitions and emit each one as a 
separate declaration in the output C program. Real-world SPLs, however, may have 
highly-configurable structs, where some fields only appear in certain variations. 

Fig. 5   Desugaring variational if statement. Adapted from Linux v2.6.33.3 drivers/input/mousdev.c
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Struct fields may also be declared using highly-configurable structs, further explod-
ing the possible combinations of declarations.

In addition, C allows forward references to type definitions under certain condi-
tions, which originally made one-pass compilation possible. A struct, for instance, 
may be referenced in a declaration of a variable before the struct itself is defined, at 
least in the global scope. Handling forward references would require multiple passes 
of the AST, making a complete desugaring not possible in a single pass.

To solve these problems, VarAlyzer handles type definitions separately from 
variable and function declarations. In addition to storing type declarations in the 
symbol table, as with typical C type checking, we maintain a separate table for 
struct, union, and enum type definitions. This table collects all possible field varia-
tions (or enumerators) for each type definition, regardless of where in the scope they 
are defined. As with the symbol table, we are tagging each field definition with a 
logic formula describing which variations contain the particular field. Then, before 
emitting the desugared contents of each static scope, we emit a single declaration 
of the struct, union, or enum containing all possible fields or enumerators. When a 
struct variable accesses its field, we emit runtime checks for type errors.

For instance, in Fig.  5b, the resulting desugared struct definition contains both 
the x and y fields, because there is no language construct in pure C for defining 
conditionally-defined structs. But y is only meant to be defined under configura-
tions that have MACRO enabled. Since the desugarer’s struct symbol table tracks the 
configurations under which each field is defined, the desugarer accounts for the con-
figuration where fields are accessed, rather than where they are defined. For exam-
ple, in Fig. 5b the desugarer has transformed the access of field y to a C conditional 
(lines 6–10) that covers both possible variations of the struct. The first branch of this 
conditional covers configurations where MACRO is enabled and therefore the field y 
exists (line 7). The else branch accounts for all other configurations, where accesses 
to y are type errors, since the field is not defined those configurations. The desugarer 
preserves this type error as a run-time error with a call to a specially-defined func-
tion on line 9.

Forward references to structs, unions, and enums require further special handling 
in order to desugar in a single pass. Since VarAlyzer does not know yet what all 
fields or enumerators of the type will be, it instead emits a fresh type name for the 
forward reference. Once it has collected all fields for a given type at the end of the 
static scope, it emits a definition of the fresh forward reference type that contains a 
field for each definition of the type symbol.

4.1.3 � Desugaring function definitions

C function definitions combine a type declaration of the function name with a com-
pound statement for its body, so VarAlyzer needs to both preserve all variations of 
the function in its symbol table and emit all variations of the function’s body. VarA-
lyzer uses its variation-preserving symbol table to hold function symbols, while the 
function body is transformed like any other compound statement using C condition-
als to preserve variations in statements.
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As with declarations, a function with multiple variations of its type is desugared 
into multiple function definitions to reflect each variation. Any calls to the origi-
nal function name are replaced by all renamed variations of the function, as long 
as the function type matches the type at the call site. All top-level declaration and 
definitions in a C file are global and externally-linked by default, unless specified 
otherwise with the static keyword. Therefore, any renaming at the global scope 
affects the symbols exported for linking by the compiler. Since C does not provide 
language constructs for defining modules, it relies on the underlying system’s object 
file format, linker, and build system to coordinate interfaces between C source files. 
In this work, we focus on desugaring variability encoded by the preprocessor within 
a C file and leave the support for build system and linker variability as future work.

Instead, we assume a project only exports one type per global symbol, emitting 
a type warning when a global symbol has multiple, incompatible type declarations. 
Each C file that uses functions defined externally needs a copy of the external func-
tions’ declarations, typically provided in a shared header file that developers copy 
into the source file using a preprocessor #include directive. It is then up to the 
compiler to produce an object file with a linker table that maps global functions and 
variables to either their addresses in the object file or to a placeholder. The linker 
can then automatically match undefined symbols from one object file with its defi-
nition in another, as long as the developer has properly defined the build sequence 
with, for instance, a Makefile.

If a globally-defined symbol’s declaration depends on what variation of the pro-
gram is being compiled, i.e., it is affected by preprocessor conditionals, then pre-
serving all variations of the SPL requires modeling the behavior of the linker across 
all variations. Such a variation-preserving linker would need to record all renamings 
of multiply-declared global symbols and resolve these across all C files that com-
prise the project. This resolution, in turn, depends on knowing what C files are to be 
linked during the build of the project, information that is only captured in Makefiles 
or whatever build automation, if any, a project uses. In this work, we focus on des-
ugaring variability encoded by the preprocessor in C files and instead assume a pro-
ject only exports one type per global symbol, emitting a type warning when a global 
symbol has multiple, incompatible type declarations.

4.1.4 � Limitations of the transformation

VarAlyzer ’s transformation part is generally complete and supports the full 
(mixed) C language. However, we discuss some fundamental challenges that we dis-
covered while pursuing this research in what follows.

While VarAlyzer translates variability encoded in the preprocessor, large-scale 
projects also encode variability in other parts of the system software toolchain. All 
top-level declaration and definitions in a C file are global and externally-linked by 
default, unless specified otherwise with the static keyword. Object files act as 
modules that import and export these external symbols used in other object files. 
The definitions of these external symbols can vary based on configuration options, 
which introduces variability in the linking process. VarAlyzer leaves the difficult 
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problem of supporting variability-aware linking and build automation to future work 
and focuses on the variability within C files.

Real-world software often includes dozens or hundreds of header files for the C 
standard and additional libraries. As shown in Sect. 2, such headers may add hun-
dreds or thousands of function declarations and macro definitions to a C file. These 
function declarations and macro definitions have to be processed over and over again 
for each C file that includes the respective headers. Since these header files them-
selves also encode variability to support different operating systems, various com-
piler versions, and programming languages (C vs. C++), they currently still pose a 
scalability challenge to VarAlyzer. Tackling this scalability issue for the transfor-
mation requires numerous technical details and implementation tricks that are out 
of scope for this piece of research and require thorough descriptions on their own. 
One particular compelling idea is to partially preprocess system headers for specific 
system configurations to counteract unnecessary processing of these headers at each 
place they are included. In another branch of research, we have started to implement 
this idea and have since then be able to successfully transform larger programs such 
as BusyBox, Toybox and axTLS. Table 2 shows some preliminary results for these 
programs and should give a first impression in which order of magnitude realistic 
programs can be transformed.

We support variability across application configurations, but assume a single 
system configuration. System configuration macros provide several challenges for 
desugaring variability; they require supporting the header file differences between 
multiple operating systems, multiple (versions of the same) compiler(s), multiple 
versions of system libraries, etc. These differences not only cause the number of 
possible configurations to explode, even when the application code’s behavior does 
not depend on them, but they also impose foundational challenges. VarAlyzer can-
not leave these system configuration macros unresolved during transformation since 
the transformed code could then not be compiled to an intermediate representation 
for analysis. However, resolving these system configuration macros requires infor-
mation on all possible operating systems, system libraries, etc. which can hardly be 
obtained, if at all. And even if it could be, a software product line could not be com-
piled to an intermediate representation since the environment and the compiler used 
to produce the intermediate representation of the machine on which the transforma-
tion takes place are fixed. In addition, SuperC ’s underlying parser is based on one 
particular version of C as implemented by GCC. Supporting multiple versions of 
compilers would require constructing a superset of all C variations, a daunting and 
potentially infeasible task.

Table 2   Preliminary 
transformation times for 
transformations that use 
partially preprocessed system 
headers

Program Runtime in 
seconds

#Source files #Configura-
tion vari-
ables

axTLS 302 28 94
Toybox 586 230 316
BusyBox 484 554 998
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4.2 � Variational data‑flow analysis

We next explain how VarAlyzer makes the analysis variability-aware. This 
allows one to compute, for all configurations at the same time, results that pin-
point under which configurations they are valid.

VarAlyzer accepts as input any given distributive data-flow problem encoded 
within IFDS (Reps et  al. 1995) or IDE (Sagiv et  al. 1996), and transforms it 
into a variational version of the problem which can then be solved on an SPL 
that has been desugared according to Sect. 4.1. Because IFDS problems can be 
encoded within IDE by using edge functions that operate on the binary lattice 
V =

⊤
⊥
 (Sagiv et al. 1996), we continue by presenting how we model general IDE 

problems in a variability-aware manner.
VarAlyzer builds on SPLlift ’s idea to make use of IDE’s edge functions to 

encode all variants of possible data flows a SPL might induce. SPLlift, how-
ever, only allowed “lifting” IFDS-based analyses. As mentioned earlier, this pre-
cludes an efficient encoding of any problem with a large or even infinite abstract 
domain, e.g., typestate analysis and constant propagation. To efficiently com-
pute on such large (or infinite) domains, we must instead encode the computa-
tion within the edge functions of the IDE framework, but it means that the value 
computation already occupies the edge functions. Therefore, we then cannot use 
the edge functions (directly) to capture an SPL’s variability information. To be 
able to solve general IDE problems that already use the edge functions for com-
puting while still capturing an SPL’s variability, we need to solve two different 
value computation problems using IDE’s edge functions.

VarAlyzer thus lifts edge functions of the user-defined IDE problem by 
extending their value domain Vu to produce lifted edge functions that operate 
on the cartesian product domain Vl = C × Vu , where C is the domain of feature 
constraints used to describe the variability induced by the preprocessor. This 
enables VarAlyzer to solve both value computation problems at once, relating 
analysis results to the exact feature constrains under which they hold. A lifted 
edge function ê ∶ C ↦ Vu is thus a mapping from edge functions that describe 
the feature constraints to the respective user-defined edge functions that spec-
ify the value computation problem that is valid under the associated constraint. 
Whenever a reachability check is performed on the exploded super-graph that 
has been produced by the lifted analysis problem Pl , the analysis computes the 
values specified by the user edge functions and the corresponding constraints 
that are associated with those values. The result for each reachability check of 
an ESG node (s, d) for a given statement s and data-flow fact d, i.e., the evalu-
ation of a lifted edge function, is a mapping from feature constraints to their 
corresponding value {ci ↦ vi} . In the following, we describe this lifting in more 
detail. Note that our solution is fully transparent: VarAlyzer can automatically 
lift any IFDS/IDE analysis problem pre-defined for C programs to software 
product lines without having to change a single line of code.
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4.2.1 � Automated lifting of edge functions

The IDE algorithm is guided through the program using its inter-procedural 
control-flow graph (ICFG). VarAlyzer operates on a variability-aware version 
of the control-flow graph ICFGv . The ICFGv respects the encoding of preproc-
essor directives as presented in Sect. 4.1. Preprocessor symbols are modeled as 
extern global variables that follow a special naming convention. An ICFGv can 
be queried for those global variables and their usages. Any statement that directly 
interacts with one of those global variables through a def-use chain has been 
artificially introduced by the code transformation. This allows us to distinguish 
between any ordinary statement su that originates from the user program and any 
statement sp that is generated by VarAlyzer transformation parts, originating 
from preprocessor directives (PPDs).

Initially, i.e., at lifting-time, a lifted edge function ê maps exactly one edge 
function that describes a feature constraint to an edge function that, in turn, rep-
resents a (user-defined) value computation for a given statement under analysis. 
The lifting process is depicted in Fig. 6. Ordinary statements su have no effect on 
the presence of a certain feature. VarAlyzer thus lifts its user-defined edge func-
tion eu to ê ∶= (𝜆c.c) ↦ eu . Here, the identity edge function �c.c over constraints 
expresses that the feature constraint is not altered. The statement’s original flow 
function (opposed to edge function) remains as is.

For statements sp that are generated from the preprocessor directives, the 
analysis can safely ignore the non-branching statements since they have been 
artificially introduced by the transformation and must have no effect on the user-
defined value computation. For these statements, VarAlyzer applies the identity 
flow and edge function. For each generated branching statement sb

p
 that originates 

from a preprocessor directive, VarAlyzer produces the corresponding edge func-
tion ê by conjoining the feature constraint F specified by the respective preproc-
essor conditional with the incoming constraint c, i.e., ê ∶= (𝜆c. c ∧ F) ↦ (𝜆x.x) . 
Here on the right-hand side, we use the identity edge function �x.x because the 
statement does not influence the user-defined value computation.

Fig. 6   Lifting of edge functions for an ordinary user statement su (left) and a branching statement sb
p
 that 

originates from a preprocessor directive (right). For the statement su , the user edge function is queried 
and results in �x.x + 42 . Because the statement has no effects on the preprocessor constraints, the edge 
function for the constraint domain is modeled as identity. For sb

p
 , the user edge function is modeled as 

identity because it has no effects on the user’s value computation. However, it extends the domain with 
edge functions that add the preprocessor feature-constraints F and !F, respectively



1 3

Automated Software Engineering (2022) 29:35	 Page 21 of 37  35

4.2.2 � Operations on lifted edge functions

To allow for the construction of the exploded super-graph, edge functions need to 
support the following four operations:

The composition operation ( ◦ ) composes two edge functions e and f. This opera-
tion is used to extend an edge function e and is required to construct the so-called 
jump functions (summaries) that describe the effects of sequences of code. An 
example is shown in Fig. 7. The edge functions e, f, and g can be composed to pro-
duce the jump function i = g◦(f◦e) = 𝜆x.x + 2◦(𝜆x.1◦⊥) = 𝜆x.3 , which describes 
the value computation problem for variable a from line 1 to after line 3.

The join ( ⊔ ) operation is applied when two paths in the exploded super-graph 
lead to a common ESG node and the respective edge functions must be combined, 
for instance, as a result of branching. Consider the example in Fig. 7: the two jump 
functions i and j are joined to produce the new function k = i ⊔ j that describes the 
value computation problem for variable a from lines 1 to 5. An equals ( = ) operation, 
comparing two edge functions for equality, is required to update jump functions effi-
ciently within the IDE algorithm, and to ensure termination.

Once an ESG, i.e., all jump functions, is constructed, the value computation 
problem that is specified by the jump functions can be solved for any given ESG 
node by simply applying these jump functions. Practical implementations usually 
do not construct and store the complete ESG but rather only maintain the essential 
jump functions. To determine the possible value that may be printed in line 6 of 
Fig. 7, one evaluates ( ↪ ) the respective jump function k. The analysis finds that any 
value may be printed as a result of ↪ k = i ⊔ j = ⊤.

We next show how to define these four operations for the lifted edge functions 
that operate on the extended user domain Vl = C × Vu such that a transformed prob-
lem Pl can be solved by the IDE algorithm.

Join To join information that is obtained along two (or more) different paths in 
the ESG, a binary join operation is required, see Definition 1. An example of the 
join operation is shown in Fig. 8. When joining, we wish to join also user-defined 

Fig. 7   An exemplary exploded 
super-graph for a linear constant 
analysis encoded in IDE (Sagiv 
et al. 1996). The ESG shows 
the various operations that 
edge functions must support. 
Identity edge functions have 
been omitted to avoid cluttering. 
Individual flow functions have 
been indicated by solid edges 
and jump functions have been 
indicated by dotted and dashed 
edges
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edge functions for such constraints that are equal along both branches, as these 
cases relate to identical feature configurations. Hence the edge functions c1, c2 that 
describe the constraints of the lifted edge functions to be joined are compared pair-
wise. If c1 = c2 , their corresponding user edge functions u1 and u2 are joined. This 
situation is depicted in the left-hand side graph of Fig. 8. Else if c1 ≠ c2 , both results 
are simply joined by set union, retaining all information about the varying con-
straints. The latter situation is shown in the right-hand side graph of Fig. 8.

Definition 1  ⊔ : Let ê = {ci
e
↦ ui

e
}
n
i=0

 and f̂ = {c
j

f
↦ u

j

f
}
m
j=0

 be two lifted edge func-
tions. We define the join operation as:

Composition Definition 2 defines the composition operator for lifted edge func-
tions. The program’s control can flow only along the two functions’ respective pro-
gram statements when the preprocessor directives that guard these statements are 
both enabled. Hence, the compose operator conjoins the respective feature con-
straints. The user-defined edge functions meanwhile are composed using their own 
original composition operator. Whenever the composition operator is applied, one 
of those edge functions comprises exactly one map entry and the other one may 
comprise one or more map entries due to potential prior applications of the join 
operation. Those two possible situations for the composition operation are shown 
in Fig. 9. The left-hand side graph of Fig. 9 shows the composition of lifted edge 
functions for non-branching code. In this case, the edge functions c1, c2 that describe 
the constraints and the user edge functions u1, u2 must be composed with each other. 
As the join of two lifted edge functions at merge points may produce a new edge 
function that comprises multiple map entries {c1 ↦ u1, c2 ↦ u2} that need to be 
composed with the lifted edge function {c3 ↦ u3} of the next common successor 
statement, a pairwise composition must be applied. This situation is depicted in the 
right-hand side graph of Fig. 9.

Definition 2  ◦ : Let ê = {ci
e
↦ ui

e
}
n
i=0

 and f̂ = {c
j

f
↦ u

j

f
}
m
j=0

 be two lifted edge func-
tions. We define the compose operator as:

ê ⊔ f̂ ∶=
⋃

(ce ↦ ue) ∈ ê,

(cf ↦ uf ) ∈ f̂

{
{ce ↦ ue ⊔ uf } if ce = cf
{ce ↦ ue, cf ↦ uf } otherwise

Fig. 8   Join of lifted edge functions that have been computed along different control-flow edges. Indi-
vidual edge functions are denoted by straight arrows ( → ). Jump functions are denoted by dashed arrows 
( ⤏ ). The graph on the left depicts the situation when two lifted edge functions must be merged whose 
constraints are equal. In this case, their user edge functions must be joined. In case the constraints are not 
equal, they must be left unmerged as two separate pairs of edge functions
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Equality In addition, the IDE algorithm needs to be able to check for equality of 
two edge functions. Since we maintain the feature constraints in normalized form, 
we are able to define two edge functions to be equal if they are equal structurally.

Evaluation Once an exploded super-graph has been constructed, the solver evalu-
ates the value-computation problems described by the jump functions. The value for 
each ESG node (s, d) that is reachable from the tautological Λ fact is computed by 
evaluating its associated jump function. We define the unary evaluate operation in 
Definition 3. The evaluation operation of a jump function applies the constraint and 
user edge-function components of each map entry to the tautological constraint true 
and the bottom element ⊥ of the user-defined problem, respectively. The result is a 
map of values that the data-flow fact d can assume, each of which is associated with 
the feature constraint that encodes the set of configurations under which d holds.

Definition 3 ↪ : Let ê = {ce ↦ ue}
n
i=0

 a lifted jump function. We define the unary 
evaluate operator valuate↪ as:

4.2.3 � Why IDE is the ideal framework of choice

While VarAlyzer supports IDE, and not only IFDS, IDE still has the restriction 
that flow functions and edge functions must distribute over the merge operator. The 
advantage of using such a distributive analysis framework to solve data-flow prob-
lems on SPLs is that this allows merging variability information directly at each 
control-flow merge point, without loss of precision. This is because for any flow 
function f and any two abstract domain values x and y of a distributive analysis prob-
lem, by definition it holds that f (x) ⊔ f (y) = f (x ⊔ y) . As a result, the meet-over-all-
paths solution, which is undecidable in general, can be efficiently computed within 
such frameworks through the maximal-fixed-point solution (Bodden 2018). This 
solution is the most precise solution possible. The use of IDE thus is guaranteed to 

f̂◦ê ∶=
⋃

(ce↦ue)∈ê,(cf↦uf )∈f̂

{ce ∧ cf ↦ uf◦ue}

↪ ê ∶= { ci
e
(true) ↦ ui

e
(⊥) }n

i=0

Fig. 9   Composition of lifted edge functions. The left-hand side graph shows the composition of lifted 
edge functions for non-branching code. The join of two lifted edge functions at merge points may pro-
duce a new edge function that comprise multiple edge function pairs that need to be composed with the 
edge function of the next common successor statement. This situation is depicted in the right-hand side 
graph
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retain full precision w.r.t. a product-based analysis on pure C code, and it guarantees 
an efficient handling of feature constraints because they are merged and simplified at 
the earliest opportunity. In result, IDE is the most expressive framework that one can 
choose without jeopardizing efficiency.

Our idea of capturing variability by using a transparent extension of the user’s 
analysis domain could theoretically also be applied to non-distributive problems. 
However, this would sacrifice precision and, due to missing summarization capabili-
ties, would likely be prohibitively expensive for any real-world application.

5 � Implementation

We implemented VarAlyzer on top of the SuperC (Gazzillo and Grimm 2012) 
parser and the PhASAR (Schubert et  al. 2019) static analysis framework. SuperC 
supports Bison-style grammars (Bison 2020) for implementing language processors, 
and automatically parses all variations of a SPL. C constructs with multiple vari-
ations due to #ifdefs are combined with a static choice tree node that captures 
each variation and its condition as represented with a logical formula.

VarAlyzer uses SuperC ’s existing C grammar and implements the desugarer 
using semantic actions. A semantic action defines a snippet of code to be executed 
after each language construct and produces a semantic value for that construct. 
VarAlyzer records all variations of a construct’s desugaring transformation, along 
with each static condition, as the semantic value of the grammar production. The 
semantic actions are executed bottom-up, and VarAlyzer gradually constructs the 
complete, desugared version of the input program by combining the desugared child 
constructs into larger constructs until reaching the top of the grammar.

VarAlyzer preserves semantic preprocessor information using calls to artificial 
function headers. Type errors, caused by invalid configurations, are transformed 
into runtime function calls. VarAlyzer makes the information on symbol renam-
ing available by introducing a symbol table. For each compilation unit, it emits a 
definition of a static initializer function that specifies the renaming using a function 
call for each renamed symbol. The static initializer function can be thought of the 
compilation unit’s initializer, because it has no other runtime behavior. The static 
conditional variables are declared as global boolean variables, since preprocessor 
macros have no scope and are project-wide. We model preprocessor conditionals 
using logic formulas and emit a mapping that associates the conditional variables 
with their respective textual Z3 (de Moura and Bjørner 2008) solver representation 
using function calls within the initializer function.

VarAlyzer implements the variational analysis presented in Sect. 4.2 on top 
of PhASAR (Schubert et al. 2019). VarAlyzer provides a wrapper type that can 
be wrapped around any of PhASAR ’s IFDS and IDE analyses. The wrapper type 
wraps the regular user-defined edge functions in a special variability-aware edge 
function that supports the required operations as described in Sect. 4.2.2. Before 
VarAlyzer starts the actual analysis at the given entry points on the given target 
code, it analyzes the aforementioned static initializer function and retrieves the 
symbol table as well as the preprocessor conditionals. It then decodes the textual 
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Z3 (de Moura and Bjørner 2008) solver representations of the preprocessor con-
ditionals into their corresponding in-memory z3::expr representations, which 
the analysis uses as part of its lifted edge-function domain. After construction, 
the variability-aware edge functions are passed to the data-flow solver. The solver 
follows the control flow of a variability-aware, LLVM-based ICFG implementa-
tion that is able to distinguish ordinary instructions from instructions that origi-
nate from the preprocessor and have been artificially generated by VarAlyzer ’s 
SPL-transformation part. Once the exploded super-graph is built, the IDE solver 
solves the value-computation problems, thereby also collecting and computing 
the feature constraints that are associated with each of the original user-defined 
edge functions and their respective evaluations.

6 � Evaluation

Our empirical evaluation addresses the following research questions:

•	 RQ1. Does VarAlyzer produce results that are identical with these of a prod-
uct-based analysis?

•	 RQ2. How efficient is VarAlyzer compared to a product-based analysis?
•	 RQ3. To what degree is variational analysis necessary to solve semantic analy-

ses on VarAlyzer-transformed code?

To address RQ1 and RQ2, we compiled each of our 95 benchmark subjects once 
using VarAlyzer ’s conditional compilation approach and once exhaustively 
using the standard compilation approach for all software products. We then sub-
jected the resulting compiles to VarAlyzer ’s variability-aware analysis and a 
traditional product-based analysis that analyzes each individual software product, 
respectively. Our benchmark comprises 95  compilation units that make use of 
OpenSSL’s EVP library. For each software product line, we compared the analy-
sis results obtained by VarAlyzer to the results obtained by the product-based 
approach. We ran each compilation and analysis step five times to account for 
variance. To address RQ3 and to answer the question whether variability aware-
ness is necessary, we ran a traditional variability-oblivious inter-procedural 
typestate analysis encoded in IDE using PhASAR on VarAlyzer-transformed 
code. We parameterized the typestate analysis for three different APIs of OpenS-
SL’s EVP library. We discuss the precision of the results produced by the tradi-
tional variability-oblivious analysis and comment on the reusability of existing 
static analysis infrastructure on the desugared code.

Unfortunately, comparisons of the VarAlyzer approach to existing tools such 
as TypeChef (Kenner et al. 2010) or Hercules (Hercules 2020) are either not pos-
sible or not very meaningful as the implementations of previous works are not 
maintained or use different analysis techniques that do not allow one to solve 
more complex, inter-procedural data-flow analysis problems.
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6.1 � Experimental setup

We have evaluated VarAlyzer using benchmark subjects consisting of 95  hand-
written C compilation units ranging from 8  to 219  lines of source code that com-
prise correct as well as incorrect usages of OpenSSL’s EVP library parts. These 
compilation units comprise between zero and eleven features and comprise intra- as 
well as inter-prodcedural usages of the EVP library. We also included compilations 
units with zero features to assess the potential overhead of VarAlyzer ’s conditional 
compilation and variability-aware data-flow analysis. To obtain correct API uses, 
we used the code examples presented in OpenSSL’s wiki.2 To ensure that our bench-
mark programs comprise realistic API usages, we mined 15 SPLs on GitHub using 
the advanced search and aimed for high-stared and popular projects that make use 
of OpenSSL’s EVP library parts.3 We then extracted the compilation units that com-
prise usages of the EVP library and used these to help modeling our benchmark. 
Surprisingly, several of the real-world API usages completely omit error handling. 
We thus also omitted error handling code in our benchmark subjects to allow for 
easier debugging of our transformation and analysis. We then introduced different 
kinds of protocol breaches, some of them unconditionally and some of them depend-
ing on certain (invalid) configurations.

To evaluate VarAlyzer, we used a client typestate analysis T  that had been inde-
pendently implemented using PhASAR ’s implementation of the IDE framework. To 
allow the analysis to validate useful typestate properties w.r.t. OpenSSL, we param-
eterized it for the OpenSSL EVP APIs message digests TMD , encryption/decryption 
(cipher) TCPR , and message authentication codes TMAC . OpenSSL’s EVP function-
alities provide a high-level interface to OpenSSL’s cryptographic functions that are 
commonly used by projects that require such cryptographic functionalities.

We set up the parameterized typestate analyses to run both in a traditional, var-
iability-oblivious manner using plain PhASAR, which we denote as TPSR , and in a 
variability-aware manner, which we denote as TVAR . For RQ1 and RQ2, we exhaus-
tively sampled and compiled all concrete software products for each SPL of our 
benchmark to LLVM intermediate representation (LLVM IR) to run the traditional, 
variability-oblivious typestate analysis TPSR . To be able to run VarAlyzer ’s varia-
bility-aware analysis TVAR , we desugared each SPL using VarAlyzer ’s transforma-
tion and then compiled the transformed C code to LLVM IR. We used the standard 
Clang compiler to produce LLVM IR. For each matching analysis pair, e.g. TPSR

MD
 

(variability-oblivious typestate analysis parameterized for the message digest API) 
and TVAR

MD
 (variability-aware typestate analysis parameterized for the message digest 

API), we automatically checked if the data-flow results produced by TVAR coincide 
with all sampled results produced by TPSR , to evaluate the correctness of VarA-
lyzer ’s lifted analysis (RQ1). The running times and memory usages of the two 
approaches are compared in RQ2. For RQ3, we ran the traditional feature-oblivious 

2  OpenSSL Wiki https://​wiki.​opens​sl.​org/.
3  Github advanced search https://​github.​com/​search/​advan​ced.

https://wiki.openssl.org/
https://github.com/search/advanced
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typestate analysis TPSR on VarAlyzer-transformed code and compared with its 
results with the variability-aware analysis TVAR to assess TPSR ’s precision.

We measured the running times and memory usages for the experiments on an 
Intel i7-5600U CPU@2.60GHz machine running Ubuntu 16.04 with 16GB main 
memory. We ran each experiment five times, removed the minimum and maximum 
measuring and computed the average of the remaining three values. We determined 
the runtimes and peak memory usages of the experiments using the UNIX time 
tool. We measured the lines of code of the compilation units using the UNIX wc 
tool. We formatted the code using the clang-format tool and its default settings 
to allow for a fair comparison of the lines of code measurement. Our benchmark 
programs, the raw as well as the processed data produced in our evaluation is avail-
able in our artifact (Artifacts 2021).

6.2 � RQ1: analysis correctness

The PhASAR framework comprises a variety of unit tests for various different para-
metrizations of the typestate analysis to assess its correctness. It contains tests for 
parametrizations for C’s file API(s) that are concerned with the type FILE, OpenS-
SL’s secure heap and secure memory APIs as well as OpenSSL’s EVP key deriva-
tion API. We developed the typestate parametrizations for OpenSSL’s EVP message 
digest (MD), encryption/decryption (CIPHER), and message authentication codes 
(MAC) and manually checked their correctness on individually software products 
that we derived from our benchmark targets. Hence, we can ensure the correctness 
of the variability-oblivious typestate analysis for the parametrizations TPSR

MD
 , TPSR

CIPHER
 , 

T
PSR
MAC

 w.r.t. derived programs they have been tested with.
VarAlyzer ’s process of lifting IFDS- and IDE-based analysis has been designed 

to be fully transparent, i.e., it does not modify the semantics of the analysis that is 
lifted but instead lifts its domain to make it variability-aware—allowing it to dis-
tinguish between data-flow facts that have been computed under different feature 
constraints.

To show that not only theoretically but also in practice VarAlyzer-lifted analy-
ses retain precision compared to their un-lifted, product-based counterpart and also 
compute the results of all possible software products in a single analysis run, we 
wrote an automated comparison tool. The comparison tool ran our variational analy-
sis TVAR on each benchmark subject and then ran its variability-oblivious counter-
part TPSR on all of the exhaustively sampled concrete software products, perform-
ing an in-memory comparison of the results. The tool found that the results of TVAR 
included the results produced by each analysis run of TPSR . All results, i.e., proto-
col breaches—on a data-flow fact-level—for each analysis run of TPSR on a sampled 
software product can be found in the mapping from feature constraints to data-flow 
facts produced by TVAR for the respective feature constraints that describes the soft-
ware product. Besides that, TVAR does not introduce spurious data-flow facts that 
cannot be found in the results of TPSR run on any concrete software product and 
hence, VarAlyzer ’s results in fact coincide with the results produced by a product-
based analysis.
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Our variability-aware analysis approach produces results that coincide with the 
results computed using a corresponding variability-oblivious product-based analysis.

6.3 � RQ2: analysis efficiency

Figure  10 presents the results concerning VarAlyzer ’s efficiency. Due to space 
restrictions we can only include the data for the analysis of the 36  benchmark pro-
grams that use the OpenSSL EVP encryption/decryption (CIPHER) API and report 
on the accumulated data for the remaining ones. We have made the complete results 
available (Artifacts 2021).

Our experiments show that the standard Clang compiler requires between 0.07   
and 188.1  seconds to exhaustively compile all concrete software products of a soft-
ware product line in our benchmark set. VarAlyzer ’s two-step desugaring compila-
tion (comprising desugaring and compilation of the desugared code) is, on average, 
7.1   times faster, ranging between 0.6   and 1.6   seconds. Running the variability-
aware analysis TVAR on a complete SPL is, on average, 8.0   times faster than ana-
lyzing the target software product line using the product-based approach TPSR that 
needs to analyze each software product in separate. In total, the complete variabil-
ity-aware TVAR pipeline that includes variational compilation and variability-aware 
analysis is, on average, 7.5  times faster than compiling and analyzing each concrete 
software product derived from a SPL, while the analysis’s memory usage increases 
by a factor of 1.17.

Figure 10 shows the number of features on a linear scale (the y axis at the bot-
tom), and the accumulated compilation and analysis times of a product-based 
approach using plain PhASAR for analyzing all sampled concrete software prod-
ucts and VarAlyzer per target program concerning OpenSSL’s CIPHER API on a 
logarithmic scale (the y axis at the top). For the benchmark targets that comprise no 
variability, the running times of VarAlyzer are generally higher than those of the 
product-based approach. For most of the compilation units that do comprise varia-
bility, the variability-aware approach runs faster than the products-based one as soon 
as the target comprises more than four features with only one exception. This trend 
is particularly clear on programs with more features (e.g., ciis9.c and ciise7.c in 
Fig. 10). On two occasions (cise4, cise7), however, VarAlyzer ’s variability-aware 
data-flow analysis runs significantly slower than expected. We manually checked the 
SPLs’ source code and found that they use preprocessor integer arithmetic which in 
our current implementation translates to a relatively long and complex Z3 constraint 
that slows down the analysis during constraint simplification. The running times of 
VarAlyzer, apart from the aforementioned two exceptions, generally remain in the 
same order of magnitude while those of the product-based approach clearly grow 
exponentially in the number of features reflecting the fact that a software product 
line may comprise up to 2#features individual software products.

In terms of code size, VarAlyzer ’s desugarer causes an increase in lines 
of code by a factor of 9.2, on average. This is mainly because the desugarer 
emits artificial function declarations and definitions to preserve the preproces-
sor’s semantics. The definition of the static initializer function, which encodes 
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the symbol table for the renamings applied by VarAlyzer and the preprocessor 
conditionals in Z3’s textual representation as described in Sect.  5, is the main 
cause for the increase in code size. Each renamed symbol leads to an additional 
line of code, and each preprocessor conditional leads to at least one more line 
of code. Nevertheless, because the static initializer function is not called within 
the program but is only used to describe semantics, it does not affect traditional 
variability-oblivious static analyzers.

VarAlyzer outperforms the product-based approach in all cases that com-
prise more than four features except for one which the current implementation 
cannot yet handle efficiently. The results would favor the variability-aware anal-
ysis even more with an increasing number of features. While the product-based 
approach requires one to compile and analyze each product, VarAlyzer only 
requires a single desugaring-compilation and analysis pass.

6.4 � RQ3: analysis precision

By comparing the results obtained from running the traditional variability-
oblivious analysis TPSR on VarAlyzer-transformed code, we can assess the pre-
cision gained by making the analysis variability-aware. We manually checked 
the results produced by these analysis runs for the 95 benchmark subjects and 
observed that the over-approximation leads to great imprecision that renders the 
results practically unusable. This is because the analysis incorrectly introduces 
interaction between data flows computed within different features that—accord-
ing to the preprocessor’s semantics—cannot happen in any concrete product. We 
find that whenever an API’s respective context variable is modified across multi-
ple features that cannot actually be enabled together, the typestate analysis TPSR 
directly associates those variables with an error state. We can observe that TPSR 
returns the most coarse-grain analysis element for the context variables for all 
68 compilation units that do comprise variability and whose features differ in 
the modifications made to the context variable.

Existing analysis approaches presented in literature such as the one by Iosif-Lazar 
et  al. (2017) only employ code transformations to enable the (re)use of existing, 
unmodified feature-oblivious static analyzers for software product lines. However, 
information on variability is not preserved and even if it would be, cannot be under-
stood by existing feature-oblivious analyzers. While this generally allows one to 
apply existing analyzers to entire software product lines, their results are unusable 
for semantic program analysis as our manual inspection of the results produced by 
T
PSR on VarAlyzer-transformed code shows. And while simpler, syntax-based anal-

yses may report bugs, it is hard to impossible to account them to a specific feature 
combination in order to validate and action on them.

For more complex semantic analyses, variability awareness is essential to allow 
one to distinguish information that is obtained along different mutually exclusive 
features. To produce useful analysis results on software product lines, one not only 
requires variability awareness for the transformation, but also the analysis parts.
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7 � Related work

Several previous approaches address, in part, the difficult problem of statically ana-
lyzing real-world software product lines (Kästner et al. 2011; Gazzillo and Grimm 
2012; Kästner et  al. 2012; Chen et  al. 2012; Brabrand et  al. 2012; Bodden et  al. 
2013; Midtgaard et al. 2015; Classen et al. 2013; Dimovski 2016). Prior work either 
created new analyses that had to account for the semantics of the static conditions 
(Kästner et al. 2011; Gazzillo and Grimm 2012; Garrido and Johnson 2005; Kästner 
et al. 2012; Kenner et al. 2010) or performed limited syntactic transformations from 
the preprocessor into C and used off-the-shelf tools (Iosif-Lazar et  al. 2017). The 
works that lift the analysis (Kästner et  al. 2011; Gazzillo and Grimm 2012; Gar-
rido and Johnson 2005; Kästner et al. 2012; Kenner et al. 2010) must work on the 
combined preprocessor/C languages which makes those harder to implement. This 
causes these approaches to resort to simpler analyses. The approach presented by 
Iosif-Lazar et  al. (2017) misses preprocessor semantics which passes the problem 
to downstream analyses. The only available data-flow analysis for software prod-
uct lines written in C (Liebig et al. 2013; Brabrand et al. 2012) is intra-procedural 
only. To employ precise, inter-procedural static analysis the transformation of the 
preprocessor directives into ordinary C must be able to handle all of the preproc-
essor’s constructs and, in addition, preserve full information on static preprocessor 
conditionals. The latter requirement is necessary to make this information available 
to downstream analysis to avoid a loss in precision.

SPLlift (Bodden et al. 2013) avoids generating all potential software products by 
analyzing the entire SPL as a whole. This so-called family-based approach encodes 
feature constraints in distributive flow functions. SPLlift solves IFDS (Reps et  al. 
1995) problems on SPLs using IFDS’s generalization IDE (Sagiv et al. 1996). How-
ever, SPLlift can only solve data-flow problems with the small and finite domains, 
limited by IFDS. SPLlift is a prototype for a seldom-used product-line dialect of 
Java (Kästner et  al. 2009) and thus cannot be applied to real-world product lines, 
especially not those that use the C preprocessor.

SuperC (Gazzillo and Grimm 2012) presents a configuration-preserving lexer, 
preprocessor, and parser. Its preprocessor resolves includes and macros while leav-
ing static conditionals intact to preserve its variability. A configuration-preserving 
parser then generates an abstract syntax tree (AST) that is additionally amended 
with static choice nodes to represent the static conditionals. SuperC uses a perfor-
mant fork-merge parsing: it forks subparsers whenever a choice node is encountered 
and merges after the conditionals. The approach explores how to perform syntactic 
analysis of C code while preserving its variability. SuperC provides detailed insights 
on preprocessor usages and interactions of preprocessor usages of software product 
lines.

TypeChef (Kenner et  al. 2010) is another variability-aware parser and type-
checker for product lines written in C and allows for detecting variability-induced 
bugs in configurable systems. It avoids combinatorial explosion by parsing the 
entire source code in a variability-aware fashion without preprocessing. Similar 
to SuperC, it produces an AST that captures the variability using static choice 
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nodes. Based on TypeChef ’s AST, a variability-aware type system has been 
developed that type-checks C code with compile-time configurations. While it is 
possible to implement static program analyses that operate on variability-aware 
ASTs, those analyses would still only be syntax based and, in addition, would still 
need to encode the variability themselves (e.g., Liebig et al. 2013; Brabrand et al. 
2012). Variability-aware control-flow and syntax-based data-flow analysis can 
also be implemented on top of TypeChef. However, this requires the development 
of syntactic AST-based analyses from scratch for the preprocessor/C language. 
Instead, our approach does not need to capture the static behavior. This allows 
us to build on existing, sophisticated program analyses; we use PhASAR and our 
variability-aware extension VarAlyzer.

Hercules (Hercules 2020), a rewriting and refactoring engine built on top of 
TypeChef, is a source-code transformation tool similar to the goal of SuperD. It 
transforms compile-time variability into runtime variability. It no longer relies 
solely on syntactic analysis only but also allows for more difficult semantic analy-
ses as well. Hercules, however, relies on TypeChef ’s variability-aware parsing and 
analysis infrastructure which limits the application to code that is type-error-free, 
a requirement that real-world code does not hold. Our approach is able to pass all 
information of static preprocessor conditionals to our downstream analysis. This 
allows for more precise subsequent analyses. For instance, it expresses type errors 
as ordinary function calls, which allows its subsequent analysis to collect type errors 
while analyzing the program without the need to exit immediately.

Iosif-Lazar et al. (2017) created C Reconfigurator that translates product lines 
into single programs by replacing compile-time variability with run-time variability. 
The resulting programs can be analyzed using traditional off-the-shelf analysis tools 
such as clang-tidy (clang tidy 2018) or Frama-C (Cuoq et  al. 2012). However, C 
Reconfigurator does not preserve information on the origin of a static conditional, 
making the results produced by the off-the-shelf tools on the transformed code var-
iability-unaware. Instead, our approach preserves full information on the preproces-
sor’s semantics and can compute the analysis results and their respective variants 
on-the-fly in a single analysis run. C Reconfigurator also does not include feasible 
but invalid configurations in the transformed program, making the bugs caused by 
these configuration impossible to detect.

Le and Pattison (2014) presented the Hydrogen framework that introduced mul-
tiversion inter-procedural control-flow graphs (MVICFGs). MVICFGs represent the 
control flows of multiple versions of a program in a single graph whose edges are 
annotated with the version(s) under which a control flow is feasible. MVICFGs can 
be used for incremental update analysis and for determining the bug/patch impact 
for multiple program releases. The ICFGs of VarAlyzer-transformed programs can 
be viewed as MVICFGs with the difference that VarAlyzer ’s ICFGs represent all 
possible variants of a software product line instead of (potentially) all versions of an 
individual software product. While Hydrogen employs a demand-driven symbolic 
analysis whose queries must be parameterized with a specific version for which to 
compute results, VarAlyzer ’s lifted distributive data-flow analyzes compute the 
results for all possible software products in a single analysis run and accounts them 
to the constraints under which they are valid.
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8 � Conclusions

We have presented the design and implementation of VarAlyzer. VarAlyzer 
allows one to produce a configuration-preserving encoding off all variability in 
regular C code which it then subjects to a variability-aware, context- and flow-
sensitive data-flow analysis. It enables computing precise results on entire soft-
ware product lines, annotated with feature constraints that encode in which prod-
uct configurations each result is valid. Our empirical study using 95 compilation 
units that make use of OpenSSL shows that this approach outperforms a tradi-
tional product-by-product analysis as soon as more than four products need to be 
analyzed. As a result, for the first time VarAlyzer allows one to conduct an effec-
tive static data-flow analysis of software product lines on real-world C code. This 
has the great potential to allow developers to find bugs and vulnerabilities much 
earlier in the development process. For instance, whereas previously developers 
using OpenSSL had to identify vulnerabilities separately for each concretely pre-
processed variant of OpenSSL, using VarAlyzer now has the potential to allow 
the OpenSSL maintainers to detect such vulnerabilities for all relevant configura-
tions ahead of time.
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