
Harvesting Runtime Values in Android Applications
That Feature Anti-Analysis Techniques

Siegfried Rasthofer, Steven Arzt, Marc Miltenberger
Secure Software Engineering Group
Technische Universität Darmstadt &
Fraunhofer SIT, Darmstadt, Germany

{siegfried.rasthofer, steven.arzt, marc.miltenberger}@cased.de

Eric Bodden∗
Software Engineering Group

University of Paderborn &
Fraunhofer IEM, Paderborn, Germany

eric.bodden@uni-paderborn.de

Abstract—It is generally challenging to tell apart malware
from benign applications. To make this decision, human analysts
are frequently interested in runtime values: targets of reflective
method calls, URLs to which data is sent, target telephone
numbers of SMS messages, and many more. However, obfuscation
and string encryption, used by malware as well as goodware, often
not only render human inspections, but also static analyses inef-
fective. In addition, malware frequently tricks dynamic analyses
by detecting the execution environment emulated by the analysis
tool and then refraining from malicious behavior.

In this work we therefore present HARVESTER, an approach
to fully automatically extract runtime values from Android
applications. HARVESTER is designed to extract values even from
highly obfuscated state-of-the-art malware samples that obfuscate
method calls using reflection, hide sensitive values in native code,
load code dynamically and apply anti-analysis techniques. The
approach combines program slicing with code generation and
dynamic execution.

Experiments on 16,799 current malware samples show that
HARVESTER fully automatically extracts many sensitive values,
with perfect precision. The process usually takes less than three
minutes and does not require human interaction. In particular,
it goes without simulating UI inputs. Two case studies further
show that by integrating the extracted values back into the app,
HARVESTER can increase the recall of existing static and dynamic
analysis tools such as FlowDroid and TaintDroid.

I. INTRODUCTION

To assess the quality or security of a mobile application,
experts are frequently interested in its runtime values. For
instance, the analyst often needs to know which method a
reflective method call is invoking, which URL a piece of data
is transmitted to, which phone numbers SMS messages are
sent to, what the contents of these messages are, and which
databases the app reads from the phone (contacts, e-mail, SMS

∗At the time this research was conducted, Eric Bodden was employed at
Fraunhofer SIT & TU Darmstadt.

1 if(Build.FINGERPRINT.startsWith("generic"))
2 return; //we are running in an emulator
3 String messageText = simCountryIso().equals("US") ? US

: INTERN;
4 String clazz = decrypt("fri$ds\&S");
5 String method = decrypt("dvdf4$DCS");
6 Class.forName(clazz).
7 getMethod(method).invoke(

"+01234",null,messageText,null,null);

Listing 1: Simplified Example

messages, etc.). Even in benign applications runtime values
are hard to extract precisely, but modern malware such as
Pincer, Obad [1] or FakeInstaller [2] creates an even greater
challenge by obfuscating runtime values deliberately. The
malware stores such values (e.g., reflective call targets, the
target telephone numbers of SMS scams, or the addresses
of remote command&control servers) in an encrypted format
inside the application code, to be decrypted only at runtime.

Listing 1 shows a simplified example, inspired by the Pincer
malware [3]. In lines 6–7, it sends an SMS message to a phone
number. Manually deducing the target of this obfuscated call
is time-consuming and tedious as the analyst needs to first
understand and reconstruct the decryption routine decrypt to
obtain the actual runtime arguments of the call. Only then, the
analyst knows that the reflective call references the SmsManager

class (line 4) and its sendTextMessage method (line 5).

This obfuscation technique not only raises the bar for human
analysts, it also effectively hinders all current static analysis
approaches. Many current static analyses either do not handle
reflection at all or only support constant target strings [4]–[6].
Therefore, they would be unable to detect that the example
sends an SMS message at all. Other approaches model the
String API to find reflective call targets [7]. In the example,
however, these approaches will likely not be able to correctly
interpret the decrypt function, especially if implemented in
native code. Consequently, those approaches would miss the
SMS message as well. In general, static analyses will always
have an incomplete picture of the code’s behavior, because their
handling of runtime values can never be complete—ultimately
due to the halting problem.

If static analysis fails one might think that maybe dynamic
analysis can come to the rescue. Current malware, however,
also fools dynamic analyses. This is because many malicious
applications nowadays contain so-called time bombs or logic
bombs [8]–[10]. Logic bombs cause an app to suppress any
malicious activity if the app itself detects that it is executing
within an analysis environment [11]. Time bombs cause an app

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’16, 21-24 February 2016, San Diego, CA, USA
Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23066

to suppress the malicious behavior in any case for a longer
period of time, or until after a reboot of the phone, etc. This
also includes botnet malware that only acts in response to
a command received from a command-and-control server—
a command that dynamic analysis tools will find virtually
impossible to guess correctly. Moreover, for all applications,
including benign ones, a dynamic analysis can only reason
about code paths that the analysis actually executes. However,
neither an automatic event-generation or UI-testing tool, nor a
human analyst can generally cover all possible execution paths
in a finite amount of time, causing most dynamic analyses to
be incomplete. Even current approaches [12] do not yet scale
very well and can take hours even for medium-sized apps.

In this work we present HARVESTER, a novel approach
that seeks to effectively address all of the above problems
for current malware samples. Even for the most sophisticated
malware families such as Obad, Pincer, or FakeInstaller,
HARVESTER is able to extract virtually all runtime values
of interest within minutes, without any user intervention, and
in our experiments with perfect accuracy. The tool, soon to be
integrated into a commercial product, works fully automatically.
The analyst only needs to provide an Android app’s binary code
and a configuration file naming the code locations at which
HARVESTER should extract values. HARVESTER works through
a particular variation of traditional static-analysis algorithms
known from program slicing combined with code generation
and concrete dynamic code execution.

Our evaluation on 16,799 current malware samples shows
that HARVESTER discovers values for 86,6% of all requests. In
particular, for the current malware samples tested, HARVESTER
can completely resolve the targets of encoded reflective method
calls in almost every single case. For a representative subset
of samples, we manually verified that HARVESTER shows a
precision and recall of 100% for extracting SMS messages,
SMS numbers and shell commands. Furthermore, on average
HARVESTER takes less than three minutes per app to extract
concrete telephone numbers and text messages from a large
number of potential SMS trojans. During our experiments,
HARVESTER reported many interesting runtime values, such as
command-and-control messages and addresses, and successfully
deobfuscated malware which hides sensitive API calls through
reflection. Moreover, HARVESTER successfully extracts the
obfuscated key used by the well-known benign WhatsApp
messaging app [13] to encrypt its message store.

In addition to the above evaluation, in this paper we
also present two case studies that showcase further important
example applications of HARVESTER’s results. We explain
how HARVESTER can improve the coverage of existing off-the-
shelf static as well as dynamic analysis tools. As the first case
study shows, static-analysis tools such as FlowDroid [4] can
greatly improve their recall, i.e., find more data leaks, when
incorporating reflection information computed by HARVESTER.
The second case study reveals that even dynamic analysis tools
such as TaintDroid [14] can benefit greatly from HARVESTER,
as an integration with HARVESTER allows the dynamic analysis
to effectively circumvent time and logic bombs and thus to
find otherwise dormant malware.

HARVESTER does not require any manipulations of the
underlying Android framework. It works purely on the bytecode

level of the target application, through a bytecode-to-bytecode
transformation.

In summary, this paper presents a novel hybrid information-
extraction approach for Android applications, and provides the
following original contributions:

• a variation of traditional slicing algorithms fine-tuned
to support the hybrid extraction of runtime values in
Android applications,

• a dynamic execution system for running the computed
code slices and extracting the values of interest without
user interaction,

• an evaluation of the approach’s feasibility for a mass-
analysis on real-world malware applications, and

• two case studies assessing how HARVESTER can
improve the coverage of existing off-the-shelf static
and dynamic analysis tools.

The remainder of this paper is structured as follows:
Section II gives a more detailed example of current, obfuscated
Android malware, Section III explains how HARVESTER is con-
figured and Section IV gives a high-level overview. In Section V,
we explain HARVESTER’s architecture and the algorithms used
to compute the runtime values in detail. Section VI reports on
our experimental evaluation, and Section VII reports on two
case studies. Further use cases of HARVESTER are discussed in
Section VIII and potential future attacks on HARVESTER are
discussed in Section IX, while Section X gives an overview of
related work and Section XI concludes the paper.

II. MOTIVATING EXAMPLE

Listing 2 shows a real-world code snippet taken from FakeIn-
staller [2]1, one of the most widespread malware families [15].
To ease understanding, we decompiled the sample to Java
source code and added comments to the code. The malware
authors obfuscated their app with random class and method
names, eliminating most semantic information. Furthermore,
FakeInstaller heavily relies on obfuscation to hide its behavior
from both analysis tools and manual investigators. At runtime,
instead of calling methods directly, FakeInstaller takes a string
previously encrypted and decrypts it using a lookup table. It
then uses reflection to find the class and method that bear the
decrypted name and to finally invoke the retrieved method.

Many current malware applications are obfuscated in a
similar way, either manually or by using commercial tools
such as DexGuard [16]. For a human analyst to understand
the runtime behavior of such obfuscated code, she must know
the target methods of the reflective calls. In the example, these
values are the decoded class name in line 6 and the decoded
method name in line 9. To find these values manually, she
would have to carefully inspect the decompiled bytecode, find
the lookup table, and manually decrypt all strings to detect
the malicious behavior. Strings decrypted for one application
once cannot usually be reused, as different malware variants
use different lookup tables.

Static code-analysis approaches such as SAAF [17] apply
techniques such as backward slicing in order to extract

1Sample MD5: dd40531493f53456c3b22ed0bf3e20ef

2

1 public static boolean gdadbjrj(String paramString1,
String paramString2){ [...]

2 // Emulator check: Evade dynamic analysis
3 if (zhfdghfdgd()) return;
4 // Get class instance
5 Class clz = Class.forName(gdadbjrj.gdadbjrj
6 ("VRIf3+In9a.aTA3RYnD1BcVRV]af"));
7 Object localObject = clz.getMethod(

gdadbjrj.gdadbjrj("]a9maFVM.9"), new
Class[0]).invoke(null, new Object[0]);

8 // Get method name
9 String s = gdadbjrj.gdadbjrj("BaRIta*9caBBV]a");

10 // Build parameter list
11 Class c = Class.forName(gdadbjrj.gdadbjrj

("VRIf3+InVTTnSaRI+R]KR9aR9"));
12 Class[] arr = new Class[] {
13 nglpsq.cbhgc, nglpsq.cbhgc, nglpsq.cbhgc, c, c };
14 // Get method and invoke it
15 clz.getMethod(s, arr).invoke(localObject, new

Object[] { paramString1, null, paramString2, null,
null });

16 }

Listing 2: Highly obfuscated code sending a text message
(FakeInstaller [2] malware family)

constant string information. These tools, however, have well-
known limitations that make them fail on highly obfuscated
applications, e.g., ones with dynamically-computed values
as shown in Listing 2. Even those static-analysis tools that
model the full string API still have limitations that can easily
be exploited by malware developers. For example, one can
implement the string-decoding method in a custom library
written in native code. To the best of our knowledge, no static
analysis tool for Android supports such native code.

The code in the example challenges dynamic analysis
approaches as well. The analyses first have to find an execution
path actually triggering the gdadbjrj method. If, for instance,
method gdadbjrj is only executed after a delay or after a specific
environment trigger, then this is a non-trivial undertaking. In
such situations, the analysis never knows when it is safe to
stop the dynamic test execution and cannot easily speed up
analysis either. Other malware might call the malicious code
only when the user clicks on a certain button. The analysis tool
must then first perform all user actions required to reach the
user-interface state displaying the button. Afterwards, it must
be able to emulate this button click.

Additionally, various anti-analysis techniques for dynamic
approaches, such as emulator-detection mechanisms [9], [10],
[18] complicate this analysis even further. The check in line 3,
for instance, prevents the malicious code from being executed if
the execution environment shows characteristics of an emulator
such as the presence of certain files or a specific timing behavior.
It also aborts if a debugger is attached to the application.
Dynamic analysis environments can never fully hide all of
these characteristics [8] and thus fail on sophisticated malware.

HARVESTER, on the other hand, fully automatically retrieves
all relevant runtime values of the example in Listing 2. The
security analyst simply specifies the variables for which runtime
values should be retrieved. For the example, we assume
that the security analyst knows that she is interested in the
parameters given to any calls to SmsManager.sendTextMessage

that the application may make. As one can easily see, the code
in Listing 2 contains no direct call to this API. Instead, the
calls to this API are issued through reflection. But HARVESTER
comes pre-configured with a setting that further extracts the
parameters to such reflective calls, and inlines calls accordingly,
once discovered.

In a first step, HARVESTER would hence attempt to extract
parameters to the forName (line 11) and the getMethod calls
(line 15). HARVESTER’s static slicer automatically extracts
all code computing those values, while crucially, however,
discarding certain conditional control-flow constructs that do
not impact the computed value. (We give details later.) In
the example, this will discard the emulator-detection check at
line 3. All code outside of gdadbjrj is removed as it is not
necessary for computing the values in question. HARVESTER’s
dynamic component then runs only the reduced code. Since all
emulator-detection checks are eliminated, the dynamic analysis
immediately executes all those parts of gdadbjrj relevant to the
computation of the selected values. At runtime, the analysis
discovers the name SmsManager.sendTextMessage of the method
called through reflection. In result, it replaces the original
reflective method call by a direct call to that very API, and
re-iterates the extraction process.

Assuming that the security analyst configured HARVESTER
to extract the arguments given to such calls, HARVESTER
performs a slicing for paramString1 and paramString2. Once
again, the emulator check is removed, but this time, the caller
of method gdadbjrj must also be analyzed. In this caller,
HARVESTER keeps exactly the code that computes the input
values paramString1 and paramString2. Afterwards, in the same
way as before, the reduced code is run, and HARVESTER reports
the concrete telephone numbers (7151, 2858 and 9151) and
bodies (701369431072588745752, 7012394196732588741192
and 7834194455582588771822) of the SMS messages sent.

Note that HARVESTER does not require any manipulations
to the underlying Android framework. It works purely on the
bytecode level of the target application, through a bytecode-to-
bytecode transformation.

III. LOGGING POINTS AND VALUES OF INTEREST

The main purpose of HARVESTER is to compute runtime
values. Formally we call these runtime values values of interest.
To use HARVESTER, a human analyst defines logging points
for which she wants to extract all values of interest. Both are
defined as follows.

Definition 1: A logging point 〈v, s〉 comprises a variable
or field access v and a statement s such that v is in scope at s.

Definition 2: A value of interest is a concrete runtime value
of variable v at a logging point 〈v, s〉.

For instance, if one is interested in runtime values passed
to a conditional check s: if(a.equals(b)) the runtime values
of a and b are both values of interest at this statement s,
inducing the two logging points 〈a, s〉 and 〈b, s〉. Another
example would be an API call to the sendTextMessage method
such as s: sendTextMessage(targetNumber, arg2, messageText,

arg4, arg5) where 〈 targetNumber, s〉 and 〈 messageText, s〉 are
possible logging points at s. Parameters arg2, arg4 and arg5

can be also defined as logging points, but do not provide
security-relevant information. The corresponding runtime values
are the values of interest. Examples for values of interest for
targetNumber would be ’+01234’ and for messageText would be
’This is a premium SMS message’.

To ease the definition of logging points for the human
analyst, HARVESTER provides a comprehensive list of pre-

3

defined logging points taken from SuSi [19], a machine-
learning approach which provides a comprehensive list of
categorized sensitive API methods. HARVESTER makes use of
these sensitive API methods by providing generic categories
such as URL, Shell-Command or SMS Number as tool-input
parameters. For instance, if one is interested in URLs inside the
application, one can run HARVESTER with the URL parameter
and all API calls that are able to call a URL are automatically
defined as logging points. This is the only human interaction
that HARVESTER requires.

IV. OVERALL APPROACH

Figure 1 depicts HARVESTER’s workflow. To compute
values of interest, HARVESTER first reads the APK file and
a configuration file defining the logging points. HARVESTER
next computes a static backwards slice starting at these code
points, as will be further explained in Section V-A. This slicing
step runs on a desktop computer or compute server. The pre-
computed slices are then used to construct a new, reduced
APK file which contains only the code required to compute
the values of interest, and an executor activity. The task of the
executor activity is to invoke the computed slices and report
the computed values of interest.

HARVESTER additionally alters those conditionals whose
value depends on the execution environment and on which
the slicing criterion, i.e., the value in question, is data-
dependent. These conditionals are replaced by simple Boolean
variables, allowing HARVESTER to force the simulation of
different environments at runtime. Listing 3 shows the output
of Harvester when requesting a slice for the parameters of the
reflective call from Listing 1. The emulator check has been
removed, as the slicing criterion is reachable only if the branch
falls through. The conditional in line 3 has been replaced by
the global variable EXECUTOR_1, making the slice parametric.

This new, reduced APK file is then executed on a stock
Android emulator or real phone, as we explain in Section V-B.
These steps are fully automated and no user interaction is
required. In a forced execution, HARVESTER explicitly triggers
all the different behaviors of the parametric slice (in Listing 3
with both true and false for EXECUTOR_1) which allows the
complete reconstruction of the values of interest, for all concrete
environments, decrypting any encrypted values. HARVESTER
instruments the reporting mechanism for the values of interest
into the slices (see line 4), making changes to the runtime
environment (emulator, Android OS) unnecessary. Note that
HARVESTER does not need to reconfigure or reset the actual
device or emulator on which the slices are executed which
is novel in comparison to other approaches that are based on
symbolic or concolic execution [20], [21].

In some highly-obfuscated applications, the logging point
cannot directly be identified. Reconsider Listing 2, in which
the application uses reflection to call the method that sends
out a text message. To handle such cases, HARVESTER can

1 String messageText = EXECUTOR_1 ? US:INTERN;
2 String clazz = decrypt("fri$ds\&S");
3 String method = decrypt("dvdf4$DCS");
4 Harvester.report(clazz,method,messageText);
5 Class.forName(clazz).
6 getMethod(method).invoke(

"+01234",null,messageText,null,null);

Listing 3: Sliced version of Listing 1

be configured to run twice, once to retrieve the targets of all
reflective method calls, and then a second time to retrieve
the telephone number and/or text messages for the reflectively
invoked calls to the SMS interface just identified.

V. DETAILED SOLUTION ARCHITECTURE

Next we provide more details about the main components
of HARVESTER namely the static backward slicing process,
the dynamic execution of the reduced APK and the injection
of runtime values into the APK, as shown in Figure 1.

A. Static Backward Slicing

Part A comprises the static analysis phase. In traditional
slicing as defined by Weiser [22], a program slice S is an
executable program that is obtained from a program P by
removing statements such that S replicates the behavior of
P [23] with respect to the so-called slicing criterion—a value
of interest selected by the user. We use Figure 2 to explain
the effect of traditional slicing on our initial example from
Listing 1. Assume that we want to slice this program such
that the parameters clazz, method and messageText passed to the
reflective final call are our slicing criteria. The reflective call is
data-dependent on all four assignments to those three variables.
The assignments to messageText are further control-dependent
on the check of the simCountryIso(). All of those statements are
further control-dependent on the check on Build.FINGERPRINT,
the environment check that circumvents the execution of the
remaining code on Android emulators. Traditional slicing
approaches such as the one by Weiser [22] would include this
check in the slice. Executing the check, however, immediately
leads to leaving the method, consequently never triggering
the “interesting code” that computes the values relevant to the
slicing criterion.

Even if the emulator check were removed, this traditional
approach would still not be sufficient as it would still retain the
environment-dependent check on simCountryIso(). In the spe-
cific scenario of malware analysis, the method simCountryIso()

will return exactly one of several country codes, depending on
the configuration of the emulator. But frequently, the malware
analyst is interested in inspecting all possible runtime values in
question. In the example, we would like to cover both possible
branches. Without further extensions to the approach this would
require a reboot and reconfiguration of the emulator, which is
a time consuming and error-prone undertaking. However, while
the assignments to msg are control-dependent on simCountryIso()

and thus also on the execution environment, there is no data
dependency. HARVESTER exploits this fact by replacing the
conditional referring to simCountryIso() by a simple global
Boolean flag EXECUTOR_1. This flag causes the slice to become
parametric: the selection of any concrete Boolean values for the
generated control variables allows the direct execution of one of
the parametric slices. This effectively breaks the dependencies
of the app’s execution on its execution environment, depicted
by the lower red cross in Figure 2.

The same concept also applies to the dependency on
Build.FINGERPRINT. In this case, the code of interest is, however,
only executed if this check returns true. In other cases, the
whole computation of the values of interest would be skipped.
Therefore, this conditional is replaced by true, resulting in a
removal of the condition as shown at the big red cross.

4

STATIC BACKWARD SLICING DYNAMIC EXECUTION OF REDUCED APK

RUNTIME VALUE INJECTION (optional)

APK

Configuration

Backward
Slicer

Slice 1

Slice N

... Preparation
Phase

Reduced
APK

Executor
(Emulator/Phone)

Runtime
Values

Bytecode
Enhancer

Enhanced
APK

(in case reflective method calls have been resolved)

A B

C

Fig. 1: Workflow of HARVESTER

if(Build.FINGERPRINT.startsWith("generic"))

if(simCountryIso().equals("US"))

messageTextE=EINTERN; messageTextE=EUS;

Class.forName(clazz).getMethod(method).invoke(
"+01234",null,messageText,null,null);

clazzE=Edec("fri$ds\&S");

methodE=Edec("dvdf4$DCS")E;

Environment
X

if(EXECUTOR_1)

X
truefalse

false true

removed program flow
program flow
removed statement
statement

Harvester.report(clazz,method,messageText)

text logging point

Fig. 2: Slice representation of Listing 1

Note that HARVESTER only parameterizes the slice at
those conditionals that are data-dependent on environment
values, while all other conditionals remain unchanged. This,
for instance, allows HARVESTER to swiftly recover the correct
value 123 for the valueOfInterest in the following example,
which contains no such reference. (Note that in this snippet
we show a goto operation. HARVESTER works directly on the
bytecode level, where all loops are expressed that way.)

int valueOfInterest = 120, i = 0;

label1: if (i < 3) {
i++;
valueOfInterest++;
goto label1;

}

send("" + valueOfInterest, "Hello");

If HARVESTER were to replace all conditionals regardless
of whether they are environment-dependent or not, the slice
for the example above would compute the incorrect value 120

when choosing false for the condition i < 3. Worse, when
choosing true for the condition, the code would loop infinitely.
At this point it is important to note that HARVESTER maintains
the assignment to control variables fixed per run, i.e., it can
only execute loops never (condition is false) or infinitely often
(condition is true). In particular, in cases in which a loop
condition does depend on an environment value, this may
cause one of HARVESTER’s dynamic runs to loop indefinitely.
HARVESTER simply addresses this problem with a timeout on
the overall execution time for every run of a slice. As evident
from our experiments, this theoretical shortcoming does not
pose a problem in practice. Developers intend computed values
such as reflective call targets or telephone numbers for SMS
scam to be independent of the execution environment.

In general, HARVESTER replaces only such conditionals
that access values dependent on the execution environment. To
be able to determine such conditionals, HARVESTER comes pre-
customized with a configuration file listing fields and methods
whose return values are known to depend on environment
settings. Vidas et. al. [24] analyzed different techniques for
Android emulator-detection and Maier et. al. [25] showed
fingerprinting techniques for mobile sandboxes. We use the
methods from these papers as a starting point for constructing
the required lists. We believe the lists to be complete for current
Android versions, but they can easily be extended.

The remainder of this section discusses the most impor-
tant challenges that arise during backward slicing and how
HARVESTER overcomes them.

Data Dependencies through Persistent Storage: Most
applications use API classes such as SharedPreferences
to persist data. Storage and retrieval can be distributed over
the program. For instance, data can be stored into a file
during application startup and read again after the reboot of
the application—a common workflow also in current Android
malware applications [26]. A slicing approach that does not
model this data dependency between user actions would yield
an incorrect slice that attempts to read non-existent data from
an uninitialized data store. To handle these cases, HARVESTER
resolves all calls within the analyzed bytecode that write
to persistent storage and prepends them to the slice. This
approximation may, however, miss some of the data if the
stored value is ambiguous, as only the last value is retained
and all earlier values are overwritten. While a better handling
might seem desirable, in our experiments the current solution
proves sufficient to produce correct values for all logging points.

5

User Input: Further special handling is required for API
calls that access environment values such as free-text user
input. It is one major contribution of this work to show that
within the slices that are frequently of interest to security
analysts, such accesses to environment values, are, however,
typically restricted to conditionals (see Section VI). Thus, they
are removed by HARVESTER, as the respective expressions
are replaced by Boolean control variables. Semantically, this
restriction applies because obfuscators and malware authors
seek to encode values independently of user input. The target
of reflective call, for instance, is assumed to always be the
same, regardless of the environment. In some few slices of
interest, however, we found user input to be accessed also
outside conditionals. In some cases this can simply happen
because the slice is less precise than one would like it to be. To
allow the execution also of such slices without user interaction,
HARVESTER injects code to short-circuit the actual API calls
that read out the UI, returning dummy values instead. Our
experiments show this workaround, albeit somewhat crude, to
be highly effective when applied to current malware.

Dynamic Code Loading and Native Code: Note that
HARVESTER can also cope with dynamic code loading and
native methods, as long as all logging points are contained
within the APK’s Dalvik bytecode. If, for instance, the value
of an SMS message is computed by a native method, the slicer
will declare this function as required and the dynamic execution
will evaluate the function just as any other, invoking the same
implementation that would also be invoked during normal app
execution. Many current malware samples encode important
values in native or dynamically loaded code, making this an
essential feature [26].

Cut-Offs for Large Programs: For very large programs
it may be infeasible to compute exact slices. HARVESTER
therefore supports cut-offs that prevent it from walking further
up (into callers) or down (into callees) along the call stack
while slicing. After the cut-off, all further callees are retained as
they are, without any slicing. All callers exceeding the cut-off
are simply disregarded, i.e., HARVESTER, assumes that the
slice constructed so far does not depend on any earlier program
logic. To avoid uninitialized variables in this case, HARVESTER
inserts artificial initialization statements that assign dummy
values. As our experiments show, only few such dummy values
are required in practice (see Section VI).

B. Dynamic Execution of Reduced APK

Part B in Figure 1 describes the dynamic analysis phase.
HARVESTER assembles every slice computed during the static
slicing phase within a single new method that becomes part of
the reduced APK. The executor activity injected into the same
APK file calls all these methods one after another, directly after
the new app has been started, e.g., on an unmodified emulator
or a stock Android phone. Since the slices are directly executed,
regardless of their original position in the application code,
HARVESTER requires no user interaction that might otherwise
be necessary to reach the code location of the computing
statements. If, for instance, the extracted code was originally
contained in a button-click handler, it would have required
the user or an automated test driver to click that button to
be executed. HARVESTER, however, executes the sliced code

directly, making these interactions unnecessary. In fact, the
reduced app does not contain any GUI elements from the
original app at all. Figure 3 shows how the slice explained in
Figure 2 would be executed. Executing this program will cause
HARVESTER to report both possible valuations for messageText,
along with the values for clazz and method.

MainActivity() Callee1()

EXECUTOR_17=7false;

Callee1();

EXECUTOR_17=7true;

Callee1();

messageText7=7INTERN; messageText7=7US;

Class.forName(clazz).getMethod(method).invoke(
"+01234",null,messageText,null,null);

clazz7=7dec("fri$ds\&S");

method7=7dec("dvdf4$DCS")7;

if(EXECUTOR_1)

false true

Harvester.report(clazz,method,messageText)

public7static7boolean7EXECUTOR_1;

Fig. 3: Dynamic Execution of Reduced APK

As explained in Section V-A, slices are parametric and
HARVESTER must explore every possible combination of
branches to retrieve all values of interest at a given logging
point. For the executor, this means that it must re-run the code
slice for all possible combinations of these Boolean values. In
the worst case (all conditions in the slice have to be replaced),
this leads to 2n paths where n is the number of conditionals
between the introduction of the variable and the position of
the logging point. Only conditions inside the slice need to
be considered. Thus, in practice, our experiments show n to
be very limited (n = 0.21 per path on average over all our
sample data, see Section VI). In the few cases in which it is
not, our experiments show many of those paths to yield the
same or at least very similar values. HARVESTER can thus
be configured to sample only a predefined number of slice
instances at random.

C. Runtime Value Injection

Part C in Figure 1 shows an optional step of HARVESTER,
runtime value injection. This step can be useful to combine
HARVESTER with existing off-the-shelf analysis tools, or to
handle reflection. Static-analysis approaches require a call graph
to determine potential targets for method invocations. For the
large fraction of malware applications that are obfuscated using
reflective method calls, such as the example in Listing 2, call
graph construction fails. Some tools do not support reflective
calls at all, while frameworks such as DOOP [27] implement a
static best-effort solution but can still be fooled through string
encoding. HARVESTER, however, can aid those off-the-shelf
tools by manifesting the runtime values of reflective call targets

6

resolved during the dynamic execution as ordinary method calls
in the application’s bytecode. This allows existing call-graph
construction algorithms to construct a sound call graph with
ease. To embed reflective calls into the program, HARVESTER
uses the same approach originally taken in the TamiFlex
tool [28]. Off-the-shelf analysis tools such as CHEX [29],
SCanDroid [30] or FlowDroid [4] can then analyze the enriched
APK file without requiring special handling for reflection or
string operations used to build the target method name. To the
best of our knowledge, HARVESTER is the first fully-automated
approach that performs such a value injection for Android.

It is important to note that this very same mechanism is also
what allows HARVESTER itself to extract runtime values from
applications whose API calls have been obfuscated through
reflection. In such cases, in phase A HARVESTER would
first construct a partial call graph that is incomplete in the
sense that it misses edges for reflective calls. It then extracts
information about the parameters to those calls and inlines the
calls as regular method calls. Finally, it reiterates the process,
constructing a new, more complete call graph, and extracting
further data values. This can be iterated up to a pre-defined
number of times, or until a fixed point has been reached. This
step is shown in Figure 1 by an edge from Enhanced APK to
Backward Slicer.

VI. EVALUATION

We evaluated HARVESTER extensively on different sets of
applications, one to address each of the following four research
questions. In total, all sets together, comprise 16,799 apps. To
the best of our knowledge, these sets faithfully model the state
of the art in malware applications.

• RQ1: What is HARVESTER’s precision and recall?

• RQ2: How does the recall of HARVESTER relate to that
of existing static and dynamic-analysis approaches?

• RQ3: How efficient is HARVESTER?

• RQ4: Which interesting values does HARVESTER
reveal?

In all experiments, the cut-offs were 20 for caller-slicing and
50 for callee-slicing which proved to be a reasonable tradeoff
between recall and performance.

RQ1: What is HARVESTER’s recall and precision?: We
evaluated HARVESTER’s recall based on the coverage of logging
points. Ideally, HARVESTER should cover every logging point.
For the covered logging points we furthermore evaluated the
precision and recall of the extracted runtime values. From our
initial malware set of 16,799 samples, we took 12 different
malware samples from 6 different malware families for an
in-depth evaluation as shown in Table I. These samples were
selected since they are representatives of various challenges
for HARVESTER. Obad [1], for instance, is one of the most
sophisticated malware families today. Many (FakeInstaller,
GinMaster and Obad) are also highly obfuscated. These samples
rely heavily on reflection to mask the targets of method calls.
Another malware family, Pincer, is known to hinder dynamic
analysis through anti-emulation techniques [9], [10]. Ssucl and
Dougalek steal various private data items. We deliberately chose

12 complex samples only, since we sought to manually verify
the precision and recall of HARVESTER.

Table I shows the evaluation results for logging points from
the categories URI, Webview, SMS Number, SMS Text, File,
Reflection and Shell Commands. The results for each malware
sample in each category are represented as circles. Grey slices
indicate the fraction of logging points that use constant values,
which can be read off directly, and where consequently no
backward-slicing and dynamic execution is necessary. Though
the complexity of HARVESTER is not necessary to extract such
constant values, HARVESTER discovers constant values at once.
Green slices indicate the fraction of logging points with non-
constant values for which HARVESTER was able to successfully
retrieve at least one value. Red slices indicate the amount of
missing logging points for which HARVESTER could not find a
runtime value. The fraction directly next to the circle indicate
the fraction of successfully extracted (non-constant) logging
points, where the fraction in brackets show the fraction of
successfully extracted logging points for constant values.

Table I shows two major facts: First, only 6.5% (bottom
right corner 56

860) of the extracted logging points contained a
constant value. This confirms that a naive approach that only
extracts constant values is not sufficient for our representative
set of current malware. Furthermore, the table also shows that
HARVESTER has a very high detection rate, since green slices
are bigger than the red slices (bottom right corner).

In summary, the table shows that, averaged over all
categories, HARVESTER detects at least one value for 86,6%
(bottom right corner 745

860) of all logging points. The fraction of
missed logging points is due to HARVESTER’s limitations (see
Section IX) such as the lack of support for inter-component
communication. HARVESTER is even able to cope with the anti-
analysis techniques used by the Pincer malware family where
it successfully extracts the SMS number and message, URIs,
shell commands and various file accesses. The small fraction
of missed logging points is mainly caused by HARVESTER’s
limitations, which will be discussed in Section IX.

We then used those apps, for which at least one value of
interest was discovered, to assess HARVESTER’s precision and
recall. Through manual inspection we were able to confirm
that all values discovered by HARVESTER are actual runtime
values, i.e., that HARVESTER has a precision of 100% on this
data set. We furthermore evaluated the recall of the extracted
SMS numbers, SMS messages and shell commands of our test
data since those values are among the most important ones in
a malware investigation. With the help of CodeInspect [31],
an interactive bytecode debugger for Android applications, an
independent ethical hacker manually reverse engineered and
confirmed that HARVESTER extracted all runtime values for
these categories. In other words, in those experiments also
HARVESTER’s recall is 100%.

HARVESTER was configured with a timeout of 10 minutes.
This timeout caused the execution to abort in fewer than 1%
of all cases. Dummy values due to cut-offs during the slicing
(see Section V-A) only needed to be inserted in about 1% of
all cases as well.

RQ2: How does the recall of HARVESTER relate to existing
static- and dynamic-analysis approaches?: We next compare
HARVESTER with purely static and purely dynamic approaches

7

URI Webview SMS No. SMS
Text

File Reflection Shell
Cmd

Sum

FakeInstaller (MD5)
b702b545d521f129e8efc1631a3abcee 3

3 (03)
4
4 (

0
4)

6
7 (17)

6
6 (06)

19
20 (

1
20)

dd40531493f53456c3b22ed0bf3e20ef 248
280 (

0
280)

248
280 (

0
280)

GinMaster (MD5)
0878b0bb41710324f7c0650daf6b0c93 4

12 (
4
12)

0
2 (

1
2)

10
14 (

2
14)

0
3 (

1
3)

14
31 (

8
31)

ebe49b1b92a3b44eb159d15ca1f25c70 7
9 (29)

1
1 (

0
1)

25
30 (

3
30)

33
40 (

5
40)

Obad (MD5)
e1064bfd836e4c895b569b2de4700284 185

185 (
0

185)
185
185 (

0
185)

dd1a3ff43330165298db703f7f0626ce 157
161 (

2
161)

157
161 (

2
161)

Pincer (MD5)
b2b7d5999dce0559d13ab06d30c2c6ec 2

2 (02)
1
2 (12)

2
2 (02)

6
13 (

6
13)

2
3 (13)

1
1 (01)

14
23 (

8
23)

9c9afd6b77d8d3a66a2db2d2cf0b94b3 3
3 (03)

1
2 (12)

2
2 (02)

6
13 (

6
13)

2
3 (13)

1
1 (01)

15
24 (

8
24)

Ssucl (MD5)
f0bf007b3d2580297b208868425e98c7 6

9 (29)
1
1 (01)

1
1 (01)

11
22 (

8
22)

0
2 (22)

19
35 (

12
35)

c5a2d14bc52f109a06641c1f15e90985 7
10 (

2
10)

1
1 (01)

1
1 (01)

12
19 (

4
19)

1
3 (23)

22
34 (

8
34)

Dougalek (MD5)
95a04cfc5ed03c54d4749310ba29dda9 2

2 (02)
2
2 (02)

2
2 (02)

10
18 (

4
18)

16
24 (

4
24)

91d57eb7ee2582e0600f21b08dac9538 3
3 (03)

3
3 (03)

SUMMARY 37
53 (

10
53)

5
7 (

1
7)

6
8 (28)

8
8 (08)

86
136 (

34
136)

600
641 (

5
641)

3
7 (47)

745
860 (

56
860)

non-constant

constant

#(all non-constant) + #(all constant)

#(extracted non-constant)

#(all non-constant) + #(all constant)

#(extracted constant)()
TABLE I: Recall-Evaluation of HARVESTER. Green slices: amount of logging points with non-constant values where a dynamic
analysis is necessary for value extraction. Red slices: amount of missing logging points. Grey slices: amount of logging points
with constant values where no static/dynamic analysis is necessary. Fraction next to circle: fraction of successfully extracted
logging points for non-constant values. Fraction in brackets: fraction of successfully extracted logging points for constant values.

for automatically extracting values of interest from malicious
applications.

Static Analysis: We compared HARVESTER with
SAAF [17], a static approach for identifying parameter values
based on a backward slicing approach starting from a method
call. This method is similar to the static backward-analysis
part in HARVESTER but uses traditional slicing. HARVESTER
was evaluated on the same 6,100 malware samples as SAAF
was evaluated (taken from MobileSandbox [32]). The logging
points for both tools were the number and the corresponding
message of text messages. The results for SAAF show that
the tool has some issues with certain string operations such as

concatenation. Instead of the concatenated string, SAAF reports
the two distinct operands. This gives only partial insight into the
behavior of the application. In some cases, HARVESTER found
more fragments of the target telephone number as SAAF.2
In contrast, HARVESTER extracts the final, complete SMS
numbers for all of the samples, even in cases in which SAAF
did not yield any data. Furthermore, SAAF does not support
extracting the texts of the SMS messages being sent since they
are usually not string constants, but built through concatenation
and string transformation. Due to its static nature, opposed

2e.g. number 1065-5021-80133 in sample with MD5 hash
b238628ff1263c0cd3f0c03e7be53bfd

8

to HARVESTER, SAAF cannot handle reflective calls with
obfuscated target strings either. We further evaluated SAAF
on current Android malware taken from Table I including the
most sophisticated Android malware families: Obad, Pincer,
Ssucl and Dougalek. SAAF was configured to extract values
of interest for reflective method calls, SMS numbers and SMS
messages. The tool was not able to extract any value of interest
for Obad, Pincer and Ssucl. For Dougalek, SAAF found the
same SMS numbers as HARVESTER, but was not able to extract
SMS messages. The SMS numbers can be extracted in a static
way (static backward slicing) since no obfuscation is applied to
the constant string values. In summary, this shows that hybrid
approaches such as HARVESTER can handle current malware
samples more effectively than purely static ones like SAAF.

Dynamic Analysis: Extracting values of interest can also
be achieved by executing the app and applying code coverage
techniques [33]–[37] that try to reach the statement of the
logging point. To evaluate HARVESTER on dynamic approaches,
we randomly chose a set of 150 samples from 18 malware
families from the Malware Genome Project [38]. We compared
HARVESTER’s recall with 5 different state-of-the-art testing-
based approaches that were publicly available to us and
could be setup with reasonable effort: Google’s Monkey [33],
PUMA [35], AndroidHooker [39], DynoDroid [34] and a naive
approach that starts the app, waits for 10 seconds and quits
the app. Unfortunately, we were not able to test Acteve [37]
and SwiftHand [36] on our samples due to tool-internal issues.

The goal was to find the telephone numbers to which SMS
messages are sent (all 150 samples contained at least one
API call for sending SMS messages). To count how many
logging points were reached by the dynamic testing tools, we
instrumented the malware samples’ bytecode to create a log
entry directly before sending the message. After running the
testing tools, we evaluated the log output taken from the Logcat
tool. All tests were carried out on an Android 4.1 emulator
(API version 16).

Table II shows that HARVESTER’s recall is around four
to six times higher than the one of current state-of-the-art
dynamic analysis approaches. One reason for the particularly
poor recall of the existing dynamic testing tools are emulator-
detection techniques. These checks prevent the tools (which
run the potentially malicious apps on an emulator for security
reasons [32], [40]) from ever reaching a logging point in most
malware samples.

Approaches total logging-points covered
Simply open and close app 14.1%
Monkey 15.6%
PUMA 17.3%
AndroidHooker 16.2%
Dynodroid 22.3%
HARVESTER 83.4%

TABLE II: Measuring Recall of HARVESTER in Comparison
to State-Of-The-Art Dynamic Testing Tools

As an example for such an emulator check, Listing 4 shows
malicious code extracted from the “DogWars” application.
It accesses the user’s contact database in line 3. Only if
contacts are available on the phone (line 5), the app sends
out the premium SMS message (line 11). When a dynamic tool

runs the app on an emulator, the contact database is usually
empty and the logging point for sending SMS messages is
thus never executed. As our results confirm, such behavior
is common among modern malware applications. Since such
checks, however, do not influence the target telephone number,
HARVESTER simply removes the respective condition and
correctly retrieves the number 73822. Note that the taunting
text messages (line 9) get sent to every telephone number in
the user’s address book and are thus data-dependent on the
environment (i.e., the contact database). Thus no fixed target
phone number can be retrieved by any tool. In such cases,
HARVESTER reports a constant string with information about
the source (e.g., contact database information). Many malicious
applications such as the GoldDream, BaseBridge, and BgServ
malware families, as well as the DogWars app, perform their
malicious activities in a background service that is started
only after the phone is rebooted. Apps from the GPSSMSSpy
family act on incoming SMS messages. To obtain the respective
runtime values, traditional dynamic approaches must generate
such external events and restart the phone. HARVESTER instead
directly executes the code slices containing the logging points
and thus does not need to emulate these events.

To overcome simple environment checks, Android-
Hooker [39] and Dynodroid [34] first prepare the emulator with
fake “personal user data” such as contacts. Only afterwards, they
install the application and exercise it. Both also send external
events such as incoming SMS messages and AndroidHooker
even reboots the emulator during the test to trigger actions that
only happen at boot time. AndroidHooker was able to reveal
the premium SMS message in the DogWars app, but does not
solve the code-coverage problem in general. For instance, it
still fails if the malicious code is only executed after receiving
a command from a remote server, such as in the GoldDream
malware family. Due to such problems, AndroidHooker only
covered 16.2% of all logging points. In only 10.67% of all apps
it covered any logging point at all—a marginal improvement
over running Monkey as is. In summary, these results show
that current state-of-the art testing tools are not sufficient
for revealing malicious behavior of current state-of-the art
malicious applications. HARVESTER succeeds in all cases, as
the conditional checking for the server’s command is not part of
the slice that HARVESTER computes, and the code containing
the logging point is executed directly and unconditionally.

All in all, dynamic tools only reach a small fraction of
all logging points for these malware samples. It is worth
mentioning that a naive approach that starts an app, waits
for ten seconds and closes the app, produces similar results

1 public void onStart(Intent intent, int i)
2 ContentResolver cr = getContentResolver();
3 Cursor contacts = cr.query(CONTENT_URI, null, ...);
4 SmsManager sms = SmsManager.getDefault();
5 if (contacts.getCount() > 0) {
6 do {
7 int colIdx = contacts.getColumnIndex("data1");
8 String telNo = contacts.getString(colIdx);
9 sms.sendTextMessage(telNo, null, "I take

pleasure in hurting small animals, just thought you
should know that", ...);

10 } while (contacts.moveToNext());
11 sms.sendTextMessage("73822", null, "text", ...);
12 }
13 }

Listing 4: “DogWars” Game from Malware Genome Project

9

(first line in table) as Google’s Monkey approach. HARVESTER,
on the other hand, covers 83.4% of all logging points and thus
shows a much higher recall.

RQ3: How efficient is HARVESTER?: App Stores such as the
Google Play Store receive thousands of new or updated Android
apps per day [41] which they need to check for malicious
behavior. Therefore, one requires fast tools which scale to the
size of the market. We tested HARVESTER on our full set
of 16,799 malware samples (which includes all samples from
the previous sections). We configured HARVESTER with two
logging-points (SMS phone numbers and the respective text
messages) for each sending SMS API call included in the app’s
bytecode. We focused on SMS numbers and messages since
SMS trojans are among the most sophisticated malware apps
today [15]. With HARVESTER, one can effectively find the
real values for phone numbers and text messages and compare
them to known blacklists or apply existing filters for identifying
scamming malware.

The performance evaluation reported in this section was run
on a compute server with 64 Intel Xeon E5-4650 cores running
Ubuntu Linux 14.04 with Oracle’s Java HotSpot 64-Bit Server
VM version 1.7.0 and a maximum heap size of 20 GB to avoid
intermediate garbage collection. We used the Android ARM
emulator in version 22.6.0. On average, HARVESTER took about
2.5 minutes per application. This shows that HARVESTER can
be used for mass analyses and delivers results very quickly.
On average over all slices in all our samples, HARVESTER had
to try different values for 0.21 EXECUTOR flags per slice. The
highest average number of EXECUTOR flags we encountered per
slice in a single app was 1.31.

RQ4: Which interesting values does HARVESTER reveal?:
We next report interesting values that HARVESTER extracted
from malware applications. Our analysis is based on our full
sample set of 16,799 malware apps. Some of these results
have already been found through earlier manual investigation
by security experts. However, to the best of our knowledge,
HARVESTER is the first fully-automated approach that is able
to reveal all of these findings. HARVESTER found a lot of
cases where malicious applications used reflective method
calls to hide sensitive method calls such as “getDeviceId” or
“sendTextMessage”. In some applications even the reflective
calls themselves were again called via reflection to produce
a multi-stage obfuscation. HARVESTER is able to extract the
called methods in all of our samples.

HARVESTER also discovered that current SMS trojans
are far more sophisticated then just sending a hard-coded
number of premium-rate SMS messages per time frame or upon
certain actions (e.g., every time the victim opens the malicious
application). Some SMS trojans store the number of messages
sent in SharedPreferences, a key-value storage provided
by the Android framework. HARVESTER uncovers many keys
like “SENDED SMS COUNTER KEY” or “sendCount” used
for this purpose. Some samples even use keys like “cost” for
storing the total amount of money stolen so far. Based on these
values, the malware decides when the next premium-rate SMS
message is sent. We also found applications that contact a
command-and-control (C&C) server via SMS messages. Since
the same commands reappear in many samples, they also could
be used for blacklisting.

Some benign applications encrypt sensitive data such as
chat conversations, or credit card information, before storing
it locally on the phone. This encryption, however, is rendered
useless if the same hard-coded symmetric key is used for all
installations of the app. Interestingly, this is the case in the
popular WhatsApp messenger app [13]. Since the encrypted
database is stored on the SD card, malicious applications can
easily access it. Once the key is known, it can be decrypted
and leaked. HARVESTER can fully automatically extract the
WhatsApp encryption key by obtaining the values passed to
the constructor of the SecretKeySpec class.

A more detailed overview of HARVESTER’s findings can
be found in our technical report [42].

VII. CASE-STUDIES

While the previous section focused on how well HAR-
VESTER can extract runtime values from (obfuscated) Android
applications, we report on two case studies that assess how
existing off-the-shelf static and dynamic analysis tools can
benefit from a lightweight integration with HARVESTER.
Figure 4 shows which step of our approach can be further
used for the improvement of static and dynamic analysis tools.

Improvements to Static Analysis Tools

For the first case study, we used HARVESTER to inject
information about discovered reflective calls into the original
app’s bytecode (phase C in Figure 4). We then compared the
recall of the FlowDroid [4] static data flow tracker on real-world
malware applications with and without this call information. For
this comparison, we chose the Fakeinstaller.AH [2] malware
family 3 which is known for leaking private data, but also for its
massive use of reflection to hide calls to sensitive API methods.
On the original obfuscated sample, FlowDroid detected only
9 distinct leaks. After using HARVESTER with the option of
replacing reflective calls with their respective actual callees,
FlowDroid detected 26 privacy leaks, almost three times as
many as before. These 26 leaks included stealing the IMEI or
phone number via SMS.

To evaluate in more detail how HARVESTER improves the
precision and recall of existing tools on obfuscated applications,
we tested FlowDroid on ten randomly-picked applications from
DroidBench [4] which we obfuscated using DexGuard [16].
All API method calls were replaced with reflective calls on
encrypted strings. Table III compares the detection rate of
FlowDroid on the obfuscated applications without applying
HARVESTER (BEFORE - column 2 and 4) to the respective
detection rates after applying HARVESTER (AFTER - column
3 and 5). These results show that FlowDroid was initially
not able to detect any leak in the obfuscated apps. After
deobfuscating the apps with HARVESTER through runtime-
value injection (see Section V-C), FlowDroid found the same
leaks as in the unobfuscated original version. The enhanced
APK with the injected runtime-values is shown in Figure 4.
In “PrivacyDataLeak3”, FlowDroid always misses one of the
two leaks, even in the original, unobfuscated file, for reasons
unrelated to the work presented here.

3Sample MD5: 38a9ed0b5577af6392096b4dc4a61e02

10

DYNAMIC EXECUTION OF REDUCED APK RUNTIME VALUE INJECTION (optional)

Preparation
Phase

Reduced
APK

Dynamic
Execution

(Emulator/Phone)
Runtime
Values

Bytecode
Enhancement

Enhanced
APK

B C

COTS static
analyzer, e.g.

CHEX, SCanDroid,
FlowDroid, ...

COTS dynamic
analyzer, e.g.

TaintDroid

...

Fig. 4: Workflow for Improving Static and Dynamic Taint Flow Analyses

Improvements to Dynamic Analysis Tools

Dynamic analysis tools can only inspect code that is actually
executed. If an analyst wants to find malicious behavior in a
suspicious app using such a dynamic tool, she must therefore
ensure that the malicious code is indeed triggered. As we
have shown in our evaluation in Section VI, current testing
approaches for Android, however, often fail to trigger the
malicious behavior in current malware samples.

HARVESTER’s static slicer extracts exactly the code required
for computing a specific value of interest. Afterwards, only this
code is run on an emulator or a real phone. Most importantly,
the reduced code executed by HARVESTER does not include
any emulator checks or other techniques targeted at hindering
dynamic analysis. Furthermore, no user interaction with the
application is required anymore, eliminating code coverage
issues with existing input generation approaches. Running
existing off-the-shelf dynamic analysis tools not on the original
APK, but on the reduced APK (see phase B in Figure 4) created
by HARVESTER can thus greatly improve their recall as we
show in this section. In our second case study, we compare the
recall of the well-known dynamic taint tracker TaintDroid on
the original APK file and on HARVESTER’s reduced version.

In an approach similar to Anubis [43], TaintDroid 4.1 was
run inside the emulator on the Tapsnake [38] malware sample4

which steals location data only after a delay of 15 minutes [44].
On the original malware, the analyst needs to know that she
has to wait this time. With the app reduced by HARVESTER’s
slicing approach, TaintDroid reports the leak instantly, without
any UI interaction.

We again took 10 randomly-picked examples from Droid-
Bench and obfuscated them with DexGuard. Table III compares
the recall of TaintDroid on the obfuscated apps with the
recall after using HARVESTER’s value injection. In the original
app, TaintDroid missed leaks depending on user actions
such as in “Button3”. On apps containing emulator-detection
checks it failed as well. When running the slices extracted by
HARVESTER (see “Reduced APK” in Figure 4), both types
of leaks are found fully automatically without any user or
machine interaction. The remaining missing leaks occur due
to TaintDroid not considering Android’s logging functions
(e.g., Log.i()) as sinks, as we confirmed with the authors of
TaintDroid.

4Sample MD5: 7937c1ab615de0e71632fe9d59a259cf

? = correct warning, = missed leak
multiple circles in one row: multiple leaks expected

App (Obfuscated) TaintDroid FlowDroid
Enhancement BEFORE AFTER BEFORE AFTER
Button1 ? ?

Button3 ? ? ?

FieldSensitivity3 ? ? ?

ActivityLifecycle2 ? ? ?

PrivateDataLeak3 ? ? ?

StaticInitialization2 ? ? ?

EmulatorDetection1 ? ? ?

EmulatorDetection2 ? ? ?

LoopExample1 ? ? ?

Reflection1 ? ? ?

TABLE III: Leak detection by TaintDroid and FlowDroid on
Obfuscated DroidBench Apps before and after Value Injection
/ Slicing. Note that we did not have to interact with the app
for the TaintDroid test.

VIII. FURTHER USES CASES

The primary goal of HARVESTER is to extract runtime
values, even from obfuscated Android applications. Aside from
improving the effectiveness of static and dynamic taint analyses
as shown in Section VII we now discuss further uses cases that
we plan to explore in future work, at the same time inviting
other researchers to join us in this process.

Simplifying inter-component communication

In Android, inter-application and inter-component commu-
nication is usually performed using intents, where the target
can be specified as a string. If this string is obfuscated, static
analyses can no longer determine the intent’s recipient. There-
fore, current state-of-the-art tools such as EPICC [6], IccTA [5]
and IC3 [45] can only conservatively over-approximate in
such cases, which leads to potential false positives. With
HARVESTER, the actual runtime values can be integrated into
the app as constant strings, reducing the risk of such false
positives.

Improving Sandbox Output

Different sandboxing approaches such as Andrubis [40]
or Mobile Sandbox [32] apply different static as well as
dynamic analysis techniques for producing a security-report
of an application. Most of the time, these approaches apply
lightweight code-analysis techniques, such as finding statically
coded URLs with the help of a regular expression [32]. However,
this results in little to no output for obfuscated applications
that try to hide their URL, for instance. HARVESTER can help
recover these values as part of the toolchain.

11

Improving Malware Detection Approaches

There exist different machine learning approaches [46]–
[49] that try to ‘learn‘ how a benign or malicious application
looks like in order to find new malicious applications. These
approaches are trained with different features on a set of
applications. However, if the feature set is not significant enough
to differentiate between malicious and benign applications, it
produces too many false positives. HARVESTER’s output can
improve this situation by defining precise features that couldn’t
be used with previous approaches. Example features would be
runtime values passed into method calls or resolved reflective
method calls (e.g. obfuscated sensitive API calls).

Improving Fuzzing Approaches

Fuzzing approaches are an essential technique for a fast
detection of critical security vulnerabilities in various applica-
tions [50]. Fuzzing, for instance, helped identify the critical
Stagefright Vulnerability [51] in the Android OS. However,
most of the fuzzing approaches rely on an input set. This is
especially problematic if one needs a specific input format,
such as incoming SMS messages from a C&C server, or a
specific intent, in order to trigger a certain security vulnerability.
HARVESTER can be used to generate such proper input sets
for fuzzing tools based on concrete runtime values.

IX. LIMITATIONS AND SECURITY ANALYSIS

While HARVESTER improves over the state of the art
significantly, like any approach it comes with some limitations.
We next discuss those limitations and how malware authors
could potentially exploit them. Attempting to overcome those
limitations will make for an interesting piece of future research.

Attacking Timeout Mechanism

To compute the values of interest, HARVESTER executes the
extracted slices. Execution ends if either all values of interest
have been computed, or a timeout occurs. An attacker can
theoretically exploit this timeout by deliberately creating large
apps with many data-flow dependencies on the values of interest.
Such an attack would lead to larger slices, and hence, longer
execution times per slice, making timeouts - and thus missed
values - more likely. An analyst can, however, easily increase
the timeouts if she detects that they happen too frequently and
results are poor. Additionally, one has to keep in mind that
such Data- and Control-flow obfuscations also increase the
code size and execution time of the original app. This would
severely limit the practical applicability of such obfuscators.

Overwhelming the Analyst with Spurious Values

Since HARVESTER over-approximates the paths to be
executed, it may yield false positives, i.e., values that cannot
be computed by the original program in any given environment.
The code in Listing 5 computes a different telephone number for

1 String number = null;
2 if(simCountryIso().equals("DE"))
3 number = 9371;
4 if(simCountryIso().equals("XX"))
5 number = 0000;
6 sendTextMessage(number, "msg");

Listing 5: Path Over-Approximation

every mobile carrier country. The code assigning the value 0000,
however, can never be reached in the original program because
there is no environment with an XX country code. Since HAR-
VESTER cannot make any such assumptions about the possible
set of environments, it explores this path as well, reporting the
spurious value 0000. For future work, we will additionally add
semantic checks that try to verify the validity of an environment-
check (e.g., whether if(simCountryIso().equals("XX")) is a valid
check or not) to eliminate fake environment checks.

Hiding Logging Points

HARVESTER is currently implemented for the Dalvik part of
Android applications. Section V-A described that HARVESTER
is able to handle applications containing native method calls as
long as the logging point is still contained in the Dalvik code. If,
for instance, an SMS message is sent by native code, this hidden
call to sendTextMessage() cannot be used as a logging point. If
an attacker, hides the complete computation of the value of
interest in native code and never yields the computed result
back to the Dalvik layer, HARVESTER will not be able to extract
these values. However, according to previous research, current
state-of-the art banking trojans [26] use native code mainly
to hide sensitive information but leak the data in the Dalvik
part. In such cases, HARVESTER can extract this sensitive
information, returned by the native methods, without problems.

HARVESTER can succeed, however, if the app loads Dalvik
code dynamically. In such a situation, the analyst would first
run HARVESTER once to obtain the dynamically loaded code
(which is just another runtime value), and then once again to
extract the values of interest. In the first run, the dynamically
loaded code will be merged into the dex-file and in the second
step the hidden logging point in the merged dex-file will be
recognized and analyzed by HARVESTER.

Attacking Static Backward Slicing

Attackers could also focus on the static backward slicing.
To compute a static program slice, a complete callgraph is
indispensable, as with an incomplete call graph the slices may
be incomplete as well. If an app therefore contains multiple
layers of reflective calls, the slices computed by HARVESTER
will be incomplete. However, since HARVESTER is able to
replace reflective method calls with their original call targets
(see Section V-C), an analyst can run HARVESTER multiple
times, removing one layer of reflective calls per run. In the
end, HARVESTER is able to construct a complete callgraph
and, hence, a complete slice. The same technique of multiple
executions can also be used if reflective calls occur in the code
that computes the target of further reflective calls.

At the moment, HARVESTER does not support slices that
span multiple Android components. If a value, for instance, is
computed in one activity and then sent to a second one which
then contains the logging point, this value will be missed. In
the future, we plan to extend HARVESTER with support for
inter-component communication, by integrating an existing
inter-component analysis tool such as EPICC [6] or IC3 [45].
Since both tools are based on Soot, just like HARVESTER, they
should be directly compatible.

Furthermore, we assume the values of interest not to be
data-dependent on environment values. For current malware this
proves to be a reasonable assumption. If malware developers

12

were to introduce such dependencies in the future, one could
react by extending HARVESTER to detect and report such cases
to a human analyst. This can be achieved with the help of a
static data flow tracking approach that tries to identify whether
the logging point is data-dependent on an environment value.
While this approach can be attacked due its static nature, such
a detection would significantly raise the bar for an attacker.
Note that HARVESTER can be applied iteratively to remove
layers of obfuscation (e.g., replace reflective calls with direct
method invocations). In every run, the app gets simpler and,
thus, more accessible to such static detections.

Attacking the Completeness of Values of Interest

If values of interest are computed using data from external
resources such as servers on the web, we assume this data to be
static. If, for instance, a remote server returns different target
phone numbers for an SMS scam every day, HARVESTER will
only be able to recover the value of interest for the present
day.

X. RELATED WORK

Researchers have proposed various approaches for analyzing
the behavior of Android applications. Tools which simply
convert the Android dex code back to Java source code such as
ded [52] or Dare [53] suffer from the problem that obfuscated
applications do not contain sensitive values such as URLs or
telephone numbers in plain, but the analyst rather needs to
reconstruct them by manually applying the deobfuscation steps
that would normally execute at runtime.

The remainder of this section describes more advanced
approaches that provide a higher level of automation using
static, dynamic, or hybrid analysis techniques.

Static Analysis: FlowDroid [4] or DroidSafe [54] are
static taint analysis tools which determine whether sensitive
information is leaked in an Android application. Due to their
static nature, they cannot handle reflective calls whose target
class or method name is decrypted or concatenated dynamically
at runtime. CHEX [29], IC3 [45] or Amandroid [55] are static
approaches that face the problem of inter-component data flow
tracking in Android applications. Just like FlowDroid, the
approaches rely on a complete call graph and thus fail if call
targets are obfuscated using reflection. They would thus also
benefit from our runtime value injection for a more complete
analysis. SAAF [17] is a purely static tool for finding constant
strings in Android applications based on backwards slicing. It
does not aim at providing any runtime semantics, e.g., if an
application decrypts a constant string at runtime, SAAF will
only produce the original ciphertext, leaving substantial work
with the human analyst.

Dynamic Analysis: Dynamic approaches that profile run-
time behavior such as Google Bouncer [56] can only detect
runtime values that violate the Play Store’s policy (e.g.,
blacklisted URLs or telephone numbers) if they are actually
used in API calls during the test run. Malware, however, often
employs sophisticated mechanisms to detect whether it is run
in an emulator or simply waits for longer than the test run
lasts before starting the malicious behavior. TaintDroid [14] is
a dynamic data-flow tracker which detects leaks of sensitive
information at runtime. Other techniques such as Aurasium [57]

inject a native code layer between the operating system and
the Android application which intercepts sensitive API calls
and checks the data passed to them. All these approaches share
the problem of only finding values in code that is actually
executed, thus requiring a test driver with full code coverage.
HARVESTER circumvents this problem by directly executing
the code of interest regardless of its position in the original
application. Dynamic determinacy analysis [58] is an approach
for identifying values that always have the same value in all
executions of a program, regardless of the input values. This
model, however, does not allow for sets of values that are
constant for a given environment only.

Hybrid Analysis: TamiFlex [28] monitors reflective method
calls in Java applications at runtime and injects the found
call targets into the application as call edges to aid static
analysis tools. It does not support Android, however, and
employs no slicing. Instead, it always executes a full, single
run, leaving open how full coverage of callees is to be achieved.
AppDoctor [59] slices Android applications to find user
interactions that lead to application crashes. AppDoctor’s hybrid
slice-and-run principle is similar to HARVESTER. However,
AppDoctor executes the complete derived UI actions, while
HARVESTER’s slices only contain code contributing to the value
of a concrete value of interest. AppSealer [60] performs static
taint tracking on an Android application and then instruments
the app along the respective propagation paths to monitor for
actual leaks at runtime, effectively ruling out false positives
introduced by the static analysis. It then fixes component-
hijacking vulnerabilities at runtime if sensitive data reaches a
sink. This approach can, however, not find leaks missed by the
static analysis and thus inherits the problem of reflective method
calls. SMV-Hunter [61] scans for custom implementations
of the SSL certificate validation in Android applications. It
first statically checks whether custom validation routines are
present. If so, the dynamic part attempts to trigger this code
and confirm a man-in-the-middle vulnerability. The tool only
supports simple UI interactions that neither span multiple pages
nor require complex inputs. Rozzle [62], a tool for de-cloaking
internet malware has a similar goal as HARVESTER, but has
its limitation in triggering the malicious behavior. For instance,
it can not handle timing or logic bombs. Zhou et. al. [63]
present an approach that is, just like HARVESTER, based on
slicing and execution. They, however, execute the app inside a
custom interpreter which is also responsible for steering the
execution into specific branches. As this approach completely
replaces the Android OS, it requires a very precise model of
the OS and its libraries. Roundy et al. [64] combine static and
dynamic code analysis in order to make the CFG more precise
in cases where malware is packed, obfuscated or dynamically
loads additional code. Zhao et al. [65] provide an approach
for extracting runtime values for native binaries. They also
combine static backward slicing with dynamic code execution,
but their extracted slice contains an unmodified code, including
conditions. This results in a lack of extracting values of interest
since only one path will be executed during runtime.

UI-Automation: SwiftHand [36] uses machine-learning to
infer a model of the application which is then used to generate
concrete input sequences that visit previously unexplored states
of the app. On complex user interfaces, however, SwiftHand’s
code coverage can fall under 40% according to the numbers

13

stated in the paper. Code that is only executed in specific
environments (e.g., depending on data loaded from the Internet)
might not be reached at all. Dynodroid [34] instruments the
Android framework for capturing events from unmodified
applications, generated both by automatic techniques such as
MonkeyRunner [33] and by human analysts. On average, it
achieves a code coverage of 55%. Brahmastra [66] is another
UI-testing tool that combines static analysis with bytecode
rewriting in order to directly execute certain code statements.
Since the tool relies on a complete static callgraph, it has its
limitation in applications that are obfuscated with reflective
method calls such as the one used in the Obad malware family.
AppsPlayground [67] uses an enhanced version of TaintDroid
[14] for dynamic data flow tracking. The authors changed the
Android framework to additionally monitor specific API and
kernel level methods. For exercising the application at runtime,
they use random testing guided by heuristics leading to a code
coverage of about 33%. As HARVESTER directly executes the
code fragments of interest, it does not need a method for UI
automation, avoiding the problem of poor coverage and recall.

XI. CONCLUSIONS

In this paper, we presented HARVESTER, a novel hybrid
approach for extracting runtime values from Android appli-
cations even in the case of obfuscation and powerful anti-
analysis techniques (e.g., emulator detection, time bombs or
logic bombs). We have shown that HARVESTER can be used as a
deobfuscator and finds, among other things, plain-text telephone
numbers of SMS trojans, command and control messages of
bots, and reflective call targets of various types of malware.
Opposed to current state-of-the art UI automation approaches
HARVESTER yields an almost perfect coverage of logging
points. We have evaluated HARVESTER both as a standalone
tool and as an aid for existing static and dynamic analyses by
enhancing applications with the deobfuscated runtime values.
Our results show that HARVESTER significantly improves the
recall of current static and dynamic data-flow analysis tools. On
average, HARVESTER analyzes an application in less than three
minutes, yielding many dynamically computed runtime values
that no previous automated approach was able to retrieve.

Acknowledgements: This work was supported by the
BMBF within EC SPRIDE and ZertApps, by the Hessian
LOEWE excellence initiative within CASED, and by the DFG
through the projects TESTIFY and RUNSECURE, the Collab-
orative Research Center CROSSING and the Priority Program
1496 Reliably Secure Software Systems. We would like to
thank our shepherd Christopher Kruegel and all anonymous
reviewers throughout the project for improving the paper and
HARVESTER.

REFERENCES

[1] E. Tinaztepe, D. Kurt, and A. Güleç, “Android obad,” COMODO, Tech.
Rep., Jul. 2013.

[2] F. Ruiz, “Fakeinstaller leads the attack on android phones,” McAfee Labs
Website, Oct 2012, https://blogs.mcafee.com/mcafee-labs/fakeinstaller-
leads-the-attack-on-android-phones.

[3] F-Secure Labs, “Trojan:android/pincer.a,” Blog, Apr. 2013, https://www.f-
secure.com/weblog/archives/00002538.html.

[4] C. Fritz, S. Arzt, S. Rasthofer, E. Bodden, A. Bartel, J. Klein,
Y. le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint analysis
for android apps,” in PLDI ’14, Jun. 2014. [Online]. Available:
http://www.bodden.de/pubs/far+14flowdroid.pdf

[5] L. Li, A. Bartel, T. F. Bissyande, J. Klein, Y. L. Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “IccTA: Detecting
inter-component privacy leaks in android apps,” in ICSE ’15, 2015.

[6] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and
Y. Le Traon, “Effective inter-component communication mapping in
android with epicc: An essential step towards holistic security analysis,”
in USENIX Security ’13. Berkeley, CA, USA: USENIX Association,
2013, pp. 543–558.

[7] D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel, “Composite
constant propagation: Application to android inter-component communi-
cation analysis,” in Proceedings of the 37th International Conference
on Software Engineering (ICSE), 2015.

[8] K. Coogan, S. Debray, T. Kaochar, and G. Townsend, “Automatic static
unpacking of malware binaries,” in WCRE ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 167–176.

[9] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, and
S. Ioannidis, “Rage against the virtual machine: Hindering dynamic
analysis of android malware,” in EuroSec ’14. New York, NY, USA:
ACM, 2014, pp. 5:1–5:6.

[10] T. Vidas and N. Christin, “Evading Android runtime analysis via sandbox
detection,” in ASIACCS ’14, Kyoto, Japan, Jun. 2014.

[11] L. Kelion, “Android adware ’infects millions’ of phones and tablets,”
BBC, Feb. 2015, http://www.bbc.com/news/technology-31129797.

[12] C. S. Jensen, M. R. Prasad, and A. Møller, “Automated testing with
targeted event sequence generation,” in ISSTA ’13. New York, NY,
USA: ACM, 2013, pp. 67–77.

[13] Google Play, “Whatsapp messenger,” Google PlayStore Website, Mai
2014, https://play.google.com/store/apps/details?id=com.whatsapp.

[14] W. Enck, P. Gilbert, B. gon Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. Sheth, “Taintdroid: An information-flow tracking system for realtime
privacy monitoring on smartphones,” in OSDI ’10, 2010, pp. 393–407.

[15] F-Secure, “Mobile threat report q1 2014,” Apr. 2014,
http://www.f-secure.com/static/doc/labs global/Research/Mobile
Threat Report Q1 2014 print.pdf.

[16] S. A. C. Technology, “Dexguard,” Saikoa Website, Feb 2014, http:
//www.saikoa.com/dexguard.

[17] J. Hoffmann, M. Ussath, T. Holz, and M. Spreitzenbarth, “Slicing
droids: Program slicing for smali code,” in SAC ’13. New
York, NY, USA: ACM, 2013, pp. 1844–1851. [Online]. Available:
http://doi.acm.org/10.1145/2480362.2480706

[18] T. Raffetseder, C. Kruegel, and E. Kirda, “Detecting system emulators,”
in ISC ’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 1–18.

[19] S. Rasthofer, S. Arzt, and E. Bodden, “A machine-learning approach
for classifying and categorizing android sources and sinks,” NDSS ’14,
February 2014.

[20] Z. Xu, J. Zhang, G. Gu, and Z. Lin, “Goldeneye: Efficiently and
effectively unveiling malwares targeted environment,” in Research in
Attacks, Intrusions and Defenses, ser. Lecture Notes in Computer Science,
A. Stavrou, H. Bos, and G. Portokalidis, Eds. Springer International
Publishing, 2014, vol. 8688, pp. 22–45.

[21] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution paths
for malware analysis,” in Proceedings of the 2007 IEEE Symposium
on Security and Privacy, ser. SP ’07. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 231–245.

[22] M. Weiser, “Program slicing,” in ICSE ’81. Piscataway, NJ, USA:
IEEE Press, 1981, pp. 439–449.

[23] F. Tip, “A survey of program slicing techniques.” Amsterdam, The
Netherlands, The Netherlands, Tech. Rep., 1994.

[24] T. Vidas and N. Christin, “Evading android runtime analysis via sandbox
detection,” in ASIA CCS ’14. New York, NY, USA: ACM, 2014, pp.
447–458.

[25] D. Maier, T. Muller, and M. Protsenko, “Divide-and-conquer: Why
android malware cannot be stopped,” in ARES ’14, Sept 2014, pp.
30–39.

[26] S. Rasthofer, I. Asrar, S. Huber, and E. Bodden, “How current android
malware seeks to evade automated code analysis,” in 9th International
Conference on Information Security Theory and Practice (WISTP’2015).

[27] M. Bravenboer and Y. Smaragdakis, “Strictly declarative specification of
sophisticated points-to analyses,” in OOPSLA ’09, 2009, pp. 243–262.

14

https://blogs.mcafee.com/mcafee-labs/fakeinstaller-leads-the-attack-on-android-phones
https://blogs.mcafee.com/mcafee-labs/fakeinstaller-leads-the-attack-on-android-phones
https://www.f-secure.com/weblog/archives/00002538.html
https://www.f-secure.com/weblog/archives/00002538.html
http://www.bodden.de/pubs/far+14flowdroid.pdf
http://www.bbc.com/news/technology-31129797
https://play.google.com/store/apps/details?id=com.whatsapp
http://www.f-secure.com/static/doc/labs_global/Research/Mobile_Threat_Report_Q1_2014_print.pdf
http://www.f-secure.com/static/doc/labs_global/Research/Mobile_Threat_Report_Q1_2014_print.pdf
http://www.saikoa.com/dexguard
http://www.saikoa.com/dexguard
http://doi.acm.org/10.1145/2480362.2480706

[28] E. Bodden, A. Sewe, J. Sinschek, M. Mezini, and H. Oueslati, “Taming
reflection: Aiding static analysis in the presence of reflection and custom
class loaders,” in ICSE ’11. New York, NY, USA: ACM, 2011, pp.
241–250.

[29] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically vetting
android apps for component hijacking vulnerabilities,” in CCS ’12, 2012,
pp. 229–240.

[30] P. Adam, A. Chaudhuri, and J. Foster, “Scandroid: Automated security
certification of android applications,” in SP ’09, 2009.

[31] Secure Software Engineering Group Darmstadt, “Codeinspect binary
android analysis,” Blog, http://sseblog.ec-spride.de/tools/codeinspect/.

[32] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, and J. Hoffmann,
“Mobile-sandbox: Having a deeper look into android applications,” in
SAC ’13. New York, NY, USA: ACM, 2013, pp. 1808–1815.

[33] Google Developers, “monkeyrunner,” Google Developer Website, Mai
2014, http://developer.android.com/tools/help/monkeyrunner concepts.
html.

[34] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for android apps,” in ESEC/FSE ’13. New York, NY, USA:
ACM, 2013, pp. 224–234.

[35] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “Puma:
Programmable ui-automation for large-scale dynamic analysis of mobile
apps,” in Proceedings of the 12th Annual International Conference on
Mobile Systems, Applications, and Services, ser. MobiSys ’14. New
York, NY, USA: ACM, 2014, pp. 204–217.

[36] W. Choi, G. Necula, and K. Sen, “Guided gui testing of android apps
with minimal restart and approximate learning,” in OOPSLA ’13. New
York, NY, USA: ACM, 2013, pp. 623–640.

[37] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic
testing of smartphone apps,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
ser. FSE ’12. New York, NY, USA: ACM, 2012, pp. 59:1–59:11.

[38] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in SP ’12. Washington, DC, USA: IEEE Computer
Society, 2012, pp. 95–109.

[39] G. Bossert and D. Kirchner, “How to play hooker: Une solution d’analyse
automatisée de markets android.”

[40] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio,
V. van der Veen, and C. Platzer, “Andrubis - 1,000,000 Apps Later:
A View on Current Android Malware Behaviors,” in Proceedings of
the the 3rd International Workshop on Building Analysis Datasets and
Gathering Experience Returns for Security (BADGERS), 2014.

[41] A. Stats, “Number of android applications,” Android Statistics Page
of AppBrain, March 2014, http://www.appbrain.com/stats/number-of-
android-apps.

[42] S. Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden, “Harvesting
runtime data in android applications for identifying malware and
enhancing code analysis,” EC SPRIDE, Tech. Rep. TUD-CS-2015-0031,
Feb. 2015.

[43] I. S. S. Lab, “Anubis - malware analysis for unknown binaries,” Anubis
Website, mai 2014, http://anubis.iseclab.org.

[44] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang, “Appintent:
analyzing sensitive data transmission in android for privacy leakage
detection,” in CCS ’13. New York, NY, USA: ACM, 2013, pp. 1043–
1054.

[45] D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel, “Com-
posite Constant Propagation: Application to Android Inter-Component
Communication Analysis,” in Proceedings of the 37th International
Conference on Software Engineering (ICSE), May 2015.

[46] S. Chakradeo, B. Reaves, P. Traynor, and W. Enck, “Mast: Triage for
market-scale mobile malware analysis,” in WiSec ’13. New York, NY,
USA: ACM, 2013, pp. 13–24.

[47] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior
against app descriptions,” in ICSE ’14, May 2014.

[48] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket,” in NDSS’14, San Diego, CA, February 2014.

[49] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer,
and E. Bodden, “Mining apps for abnormal usage of sensitive data,” in

Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International
Conference on, vol. 1, May 2015, pp. 426–436.

[50] P. Godefroid, M. Y. Levin, and D. Molnar, “Sage: Whitebox fuzzing
for security testing,” Queue, vol. 10, no. 1, pp. 20:20–20:27, Jan. 2012.

[51] J. Drake, “Stagefright: Scary code in the heart of android,” BlackHat
USA 2015, Aug. 2015.

[52] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of android
application security,” in USENIX Security ’11. Berkeley, CA, USA:
USENIX Association, 2011, pp. 21–21.

[53] D. Octeau, S. Jha, and P. McDaniel, “Retargeting android applications
to java bytecode,” in FSE ’12. New York, NY, USA: ACM, 2012, pp.
6:1–6:11.

[54] M. I. Gordon, D. Kim, J. Perkins, L. Gilham, N. Nguyen, and M. Rinard,
“Information-flow analysis of Android applications in DroidSafe,” in
Proceedings of the 22nd Annual Network and Distributed System Security
Symposium (NDSS’15), 2015.

[55] F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A precise and general
inter-component data flow analysis framework for security vetting of
android apps,” in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’14. New York,
NY, USA: ACM, 2014, pp. 1329–1341.

[56] J. Oberheide and C. Miller, “Dissecting the android bouncer,” Summer-
Con2012, New York, 2012.

[57] R. Xu, H. Saı̈di, and R. Anderson, “Aurasium: practical policy enforce-
ment for android applications,” in USENIX Security ’12, 2012.

[58] M. Schäfer, M. Sridharan, J. Dolby, and F. Tip, “Dynamic determinacy
analysis,” in PLDI ’13. New York, NY, USA: ACM, 2013, pp. 165–174.

[59] G. Hu, X. Yuan, Y. Tang, and J. Yang, “Efficiently, effectively detecting
mobile app bugs with appdoctor,” EuroSys, 2014.

[60] M. Zhang and H. Yin, “Appsealer: Automatic generation of vulnerability-
specific patches for preventing component hijacking attacks in android
applications,” in NDSS’14, San Diego, CA, Feb. 2014.

[61] D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and L. Khan, “Smv-
hunter: Large scale, automated detection of ssl/tls man-in-the-middle
vulnerabilities in android apps,” in NDSS’14, San Diego, CA, February
2014.

[62] C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert, “Rozzle: De-cloaking
internet malware,” in Proceedings of the 2012 IEEE Symposium on
Security and Privacy, ser. SP ’12. Washington, DC, USA: IEEE
Computer Society, 2012, pp. 443–457.

[63] Y. Zhou, L. Wu, Z. Wang, and X. Jiang, “Harvesting developer credentials
in android apps,” in Proceedings of the 8th ACM Conference on Security
and Privacy in Wireless and Mobile Networks, ser. WiSec ’15, 2015.

[64] K. A. Roundy and B. P. Miller, “Hybrid analysis and control of malware,”
in Proceedings of the 13th International Conference on Recent Advances
in Intrusion Detection, ser. RAID’10. Berlin, Heidelberg: Springer-
Verlag, 2010, pp. 317–338.

[65] Z. Zhao, G.-J. Ahn, and H. Hu, “Automatic Extraction of Secrets from
Malware,” in Proceedings of the 18th Working Conference on Reverse
Engineering, M. Pinzger, D. Poshyvanyk, and J. Buckley, Eds. IEEE
Computer Society, 2011, pp. 159–168.

[66] R. Bhoraskar, S. Han, J. Jeon, T. Azim, S. Chen, J. Jung, S. Nath,
R. Wang, and D. Wetherall, “Brahmastra: Driving apps to test the
security of third-party components,” in Proceedings of 23rd USENIX.
Berkeley, CA, USA: USENIX Association, 2014, pp. 1021–1036.

[67] V. Rastogi, Y. Chen, and W. Enck, “Appsplayground: Automatic security
analysis of smartphone applications,” in CODASPY ’13. New York,
NY, USA: ACM, 2013, pp. 209–220.

15

http://sseblog.ec-spride.de/tools/codeinspect/
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://www.appbrain.com/stats/number-of-android-apps
http://www.appbrain.com/stats/number-of-android-apps
http://anubis.iseclab.org

	Introduction
	Motivating Example
	Logging Points and Values of Interest
	Overall Approach
	Detailed Solution Architecture
	Static Backward Slicing
	Dynamic Execution of Reduced APK
	Runtime Value Injection

	Evaluation
	Case-Studies
	Further Uses Cases
	Limitations and Security Analysis
	Related Work
	Conclusions
	References

