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Abstract—Application Programming Interfaces (APIs) are the
primary mechanism that developers use to obtain access to third-
party algorithms and services. Unfortunately, APIs can be mis-
used, which can have catastrophic consequences, especially if the
APIs provide security-critical functionalities like cryptography.
Understanding what API misuses are, and for what reasons
they are caused, is important to prevent them, e.g., with API
misuse detectors. However, definitions and nominations for API
misuses and related terms in literature vary and are diverse.
This paper addresses the problem of scattered knowledge and
definitions of API misuses by presenting a systematic literature
review on the subject and introducing FUM, a novel Framework
for API Usage constraint and Misuse classification. The literature
review revealed that API misuses are violations of API usage
constraints. To capture this, we provide unified definitions and
use them to derive FUM. To assess the extent to which FUM
aids in determining and guiding the improvement of an API
misuses detectors’ capabilities, we performed a case study on
CogniCrypt, a state-of-the-art misuse detector for cryptographic
APIs. The study showed that FUM can be used to properly
assess CogniCrypt’s capabilities, identify weaknesses and assist in
deriving mitigations and improvements. And it appears that also
more generally FUM can aid the development and improvement
of misuse detection tools.

Index Terms—API misuses, API usage constraints, classifica-
tion framework, API misuse detection, static analysis

I. INTRODUCTION

Software reuse is one of the fundamental principles of good
software development [24]. To facilitate such reuse, developers
can take advantage of previously written functionality exposed
as application programming interfaces (APIs). For example,
consider Java that comes bundled with Java Class Library
(JCL) [61] - a set of APIs that, for instance, provide basic
functionality for the convenient use of data structures and
allow comfortable communication with I/O devices. Besides
language maintainers such as Oracle that provide standard
APIs, there is also the community of developers that supports
the idea of sharing functionality, e.g., by providing APIs as
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free or open-source software, e.g., the Maven repository [46]
consists of thousands of APIs provided by a huge community
that a developer can benefit from using. On average, a Java
project depends on 14 different libraries [79]. Consequently,
developers often are composers of an arrangement of APIs
instead of implementing the desired functionality from scratch.

However, the use of APIs has its drawbacks. Recent studies
show that developers often face several difficulties [22], [28],
[40], [51], [76], such as the lack of appropriate documentation,
the complexity of the API, or even an inadequate level of
abstraction [51]. As a result, developers tend to incorrectly
integrate APIs in their code which leads to misbehavior, errors,
or even program crashes. Research [2], [3], [42], [43] has
shown that the misuse of APIs goes beyond specific and
complex domains like cryptographic APIs, misuses occur all
over API usages. Amann et al. [3] examined the prevalence
of API misuses in several bug datasets [25], [31]. They
found that 89 of all 1189 reviewed bugs were API misuses
(7.49%), however, 69.5% of these caused the program to crash.
Although the number of API misuses found in the datasets was
small, the high probability of causing a crash underlines the
need for API misuse detectors. Furthermore, Li [42] performed
a systematic and extensive empirical study of API misuses
mining GitHub [20]. They found that 50.6% of all bug-fixing
commits between 2011 and 2018 were related to API misuses.
Misuses of APIs like the JCA are quite common [51] and tend
to have catastrophic effects because of their security-critical
nature, even if they do not cause crashes. Moreover, even if
high-quality documentation is provided, this may still not be
enough for developers to avoid API misuses altogether [1]. To
reduce API misuses developers need more support, e.g., in the
form of API misuse detectors [1], [17], [26], [37], [49], [50],
[52], [53], [68], [69], [75].

Using misuse detectors can be very beneficial for develop-
ers. However, they are only infrequently adopted in practice,
because of lack of analysis quality (e.g., precision and recall),
usability issues [12], and the Achilles heel of static analysis:
false positives [30]. Among other things, a main contributing
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factor to this is the quality of reporting which, in turn,
originates from a lack of standardized taxonomy of API
misuse classifications, their severity, etc. The acuteness of this
problem was discussed by Robillard et al. [71] who surveyed a
decade of studies on API misuses where the authors state “we
observe a lack of uniformity in terminology and definitions
for the properties inferred by various approaches“. Although
they observe the need for uniformity, their survey was aimed
at understanding and categorizing the API usage inference
techniques and not to standardize the misuse classification
terminologies themselves. The first approach for this was
provided by Amann et al. [1] who studied API misuses in
the wild, classified them, and introduced a taxonomy called
API-Misuse Classification framework (MuC). However, they
derived MuC empirically from API misuses instead of building
the taxonomy solely based on a theoretical foundation.

This paper presents a literature survey on API misuses and
classification taxonomies, to understand the state of the art and
to derive required definitions and an API misuse classification
framework. Specifically, we exhaustively studied the previous
work of Amann et al. [1] with MuC, refinements that Li [42]
made to MuC, and the work by Monperrus et al. [47] who
categorized the different types of API directives in API docu-
mentation. To derive a concrete classification framework, this
work focuses on API misuses in Java programs. Java is one
of the most popular languages [78] and many of its features
are representative of those in other commonly used languages.
Moreover, many previous studies on API misuses have been
performed on Java APIs, which gives us the ideal starting point
for both comparison and expansion.

To arrive at our taxonomy, we first conducted a scientific
literature study, seeking to answer the following research
question:

a) RQ1: How is the term API misuse defined, delimited,
and made tangible?
To improve the development of analysis tools for API misuse
detection, it is necessary to understand what API misuses
are and how they are caused. This requires a theoretical
foundation with clear definitions and an exploration of the
sources of API misuses inside the program, i.e., to identify
the nature of API misuses from the perspective of the API
designer/expert.1 We conducted a systematic literature study
surveying to what extent related work already provides an
appropriate framework. We found that, while relevant related
work exists, no existing work on the subject provides a
classification framework that allows fine-granular classification
based on definitions identifying the reasons for API misuses
namely API usage constraints and API misuses themselves -
thereby also associating classification types with the respective
part of the method call.

We hence posed also the following research question:
b) RQ2: What does an API classification framework

need to look like that links API misuses to their causes and

1Our focus is on the issues originating from improper use of an API and
not on social aspects such as developer skill and style.

the respective part of the method call?
The paper overall is structured as follows. We first provide

background on APIs and show an example of their (mis)use.
In section III, we provide an overview of previous works
that have declared diverse definitions related to API misuses,
elaborated on the root causes, and focused on classifying
the different misuse types. As a result, in section IV we
introduce our own definitions with respect to previous re-
search, originating from the results of RQ1. Based on this
theoretical foundation, we then address RQ2 by contributing
FUM a comprehensive „Framework for API Usage constraint
and Misuse classification“ (section V). We further clarify this
in section VI by discussing the differences between FUM
and other classification frameworks. Section VII then presents
a case study that applies FUM to the crypto-API misuse
detector CogniCrypt which is considered state of the art in API
misuse detection and shown to be able to cover a majority of
cryptographic API misuses and has better precision compared
to other cryptographic API misuse detectors [8], [18], [23].
The study shows that FUM assists one in classifying API
usage constraints, API misuses, and in improving API misuse
detectors. Section VIII concludes.

II. BACKGROUND

In modern software development, the reuse of function-
ality is a desired approach because the developer does not
have to implement it entirely from scratch. In object-oriented
languages such as Java, the functionality is usually recorded
in multiple classes bundled and offered to the developer
as a library. Classically, a library can be divided into two
areas: the public interface and the private implementation [47].
The private implementation is the part that implements the
functionality of the library. However, concrete implementation
details are usually not exposed to the developer (i.e., to
the library’s user). Further on we will not consider the part
of private implementation but the public interface, as we
focus on its misuses. The public interface exposes software
elements (e.g., classes and methods) to the outside world,
making the implemented functionality accessible. In literature,
these public interfaces are known as application programming
interfaces (APIs). Furthermore, we refer to an API class as a
class from the API and an API object as its instantiation.

At first glance, the widespread use of an API (and its
instantiated objects) seems simple because in predominant
cases, only method calls are necessary to get the desired
functionality [80]. However, it can be much more complicated.
For instance, developers must consider certain restrictions in
environments (e.g., multi-threading) or be aware of specific
properties (e.g., when performance plays an important role).

Consider, for instance, a correct application of the
java.io.FileReader [57]. Whenever a file is successfully
opened, the file’s content can be read() and following its
usage, the resource needs to be released by invoking close().
Consequently, it is a misuse not to call close() at the end of
every usage of FileReader.



To support developers, APIs are delivered with documenta-
tion, which can be very diverse in nature [47]. For example,
parts of the documentation can be related to typical use case
scenarios, code snippets, constraints, or even performance.

We now have a better understanding of the definition of
an API. However, we do not know how it relates to API
misuse, nor do we know the root cause of API misuse, and
what concrete API misuse types exist which we address in the
following sections.

III. RELATED WORK - A SURVEY OF DEFINITIONS AND
PERSPECTIVES

This section addresses RQ1, providing an overview of
several studies focused on different aspects of API documen-
tation, misuses, and even beyond. We performed a systematic
literature review [35]. As part of our literature survey, we
used keywords "API misuses", "misuse detection", "library
misuse" among other related terms in Google scholar and
IEEE explore in the time from November 2020 until February
2021. To complete the results of the literature research process,
we have snowballed relevant results backward and forwards.
Overall, we considered 69 publications in discussion with
two or more co-authors to filter out outcomes. Furthermore,
we also actively engaged in discussions with the authors of
previous studies. The most relevant publications are presented
in this paper.

Whenever an API is used, developers need comprehensive
and explanatory documentation. Past research focused on the
different kinds of API documentation. We consider previous
work by its range on different (implicit) types of API docu-
mentation and its noncompliance. For example, Robillard and
Maalej [45] focused on every part of an API documentation,
whereas Lv et al. [44] only considered those parts of docu-
mentation for which noncompliance would result in errors or
misbehavior. Further, we also show that almost every study
provides its own definitions (denoted in bold letters).

A. API Documentation Types and Definitions

Dekel and Herbsleb [13] researched how developers’ aware-
ness of usage directives could be increased. They defined
usage directives as parts of API documentation that cap-
ture nontrivial, infrequent, and possibly unexpected informa-
tion, introducing ten different types of usage directives, e.g.,
Restrictions, which address the context in which the API
method should (not) be called. They developed eMoose, an
Eclipse [15] plugin to highlight usage directives in the IDE.

Bruch et al. [9] investigated parts of API documentation
focussing on extensibility. They defined parts of API documen-
tation related to extensibility and inheritance as subclassing
directives, e.g., the subclassing directive subclasses may ex-
tend this method requires subclasses to call the super method.
In total, they introduced four types of subclassing directives.

Based on both studies, Monperrus et al. [47] derived a
classification framework of API directive types. They de-
fined API directives as natural-language statements of API
documentation that describe how to use an API correctly

and optimally. Their classification framework comprises 26
different API directive types. Moreover, they performed an em-
pirical study on the variety of API directive types in the wild,
based on the documentation of three Java libraries, namely
the Java Class Library [61], JFace [16], and the Apache
Commons Collections [4]. Analyzing 4.561 API elements (i.e.,
documentation of interfaces, packages, classes, etc.) in total,
they showed the prevalence of each type, respectively.

Robillard and Maalej [45] empirically elaborated a compre-
hensive taxonomy of API knowledge types which are patterns
of knowledge classifying a specific part of API documentation,
e.g., the type Directive specifies what developers are (not)
allowed to do with the API. Further, the Quality type describes
non-functional requirements like performance implications. In
total, they introduced twelve of these types.

B. API Usage Constraint Types and Definitions

In this section, we present studies on API documentation
subsets that a developer must comply with to avoid encoun-
tering misbehavior, errors, or vulnerabilities.

Li et al. [41] narrowed down the set of API documentation
parts to API caveats which are directives where noncom-
pliance would likely incur unexpected program behaviors or
errors. Moreover, they introduced a classification framework
of syntactic patterns that comprises ten types of API caveats.

Lv et al. [44] considered only the parts of API docu-
mentation for which noncompliance would result in severe
consequences, so-called integration assumptions (IAs). Each
IA has its constraint related to pre-conditions (e.g., parameter
length limit), post-conditions, or the invocation context.

Similarly, Nguyen et al. [54] classified constraint types that
lead to serious programming errors but without providing a
concrete definition. They categorized such constraints as tem-
poral order (e.g., API method calls are expected in a particular
order), pre-conditions and post-conditions, argument value,
and finally, exception (e.g., handling of certain exceptions).
They proposed a novel approach called Statistical Approach
for API Misuses (SAM) that tries to detect noncompliance.

Saied et al. [72] investigated so-called API usage con-
straints and found that API usage constraints are (and should
be) captured in the respective API documentation. They intro-
duced four types, namely Nullness not allowed (i.e, passing
null value results in failures), Nullness allowed (i.e., passing
null value has a certain semantics), Range limitation (i.e.,
restricted numeric value), and Type restriction (i.e., restricted
parameter type). Except Nullness allowed all introduced types
restrict the API usage, and noncompliance would result in
runtime failures. Saied et al. showed that such API usage
constraints are frequently in code but not always documented.

Addressing this problem, Amann [2] defined API usage
constraints to be (implicit) constraints not enforced by the
compiler, such as correct typing, but constraints enforced by
the API, for which noncompliance would result in runtime
errors. Based on the comprehensive classification framework
of API directives of Monperrus et al.’s [47] they provided an
overview of API usage constraints categories.



In contrast, Ren et al.’s definition also comprises parts of
the API documentation in which noncompliance does not nec-
essarily result in errors or misbehavior. They [70] defined API
usage directives as “contracts, constraints, and guidelines that
specify what developers are allowed/not allowed to do with the
API“.

In addition, several (mostly empirical) studies [6], [7], [10],
[76] investigate only very certain constraints, mostly referred
to as object protocols which according to Beckman et al. [6]
are “[...] dictating the ordering of method calls on objects
of a particular class“. An example of a predefined method
call order is the java.util.FileReader [57] where read() is only
allowed to be called if the resource was opened successfully.

C. API Misuse Types and Definitions
So far, we have only considered studies investigating the

spectrum of API directives and API usage constraints. As
shown in Figure 1, API usage constraints are a subset of API
directives for which violation results in misbehavior, errors, or
vulnerabilities at runtime (cf. section III-B). The dashed line
splits API directives and API usage constraints as they can
either be implicit or documented. Since the designer of an API
is not given language constructs provided by the programming
language to force the API user to comply with API usage
constraints [2], they can be (unintentionally) violated. Such a
violation is mostly referred to as API misuse in the literature.
We will introduce precise definitions in section IV.

The classification, detection, and mitigation of API misuses
have been studied in various specific fields of research – for
instance, cryptography [17], [39], [40], [51], machine learning
[28], stream APIs [34], and even biometric APIs [29], as
well as in the overall analysis of API misuses [2], [27], [32],
[33], [42], [73]. Further, API misuses are not specific to just
one programming language like Java. There are also studies
focusing on API misuses in different languages, e.g., C [22] or
Python [28]. Thus, API misuse is a more general problem for
which we observed different kinds of definitions in literature.
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Figure 1: Summary of different termini around the term API
misuses we observed in the literature.

Luo et al. [43] investigated the continuous and rapid de-
velopment of the Android Platform APIs [21]. They found
that Android applications (apps) often cannot keep up with
the rapid development of the underlying Android Platform
APIs. Therefore, apps can run into compatibility, security,
or reliability problems. They define an API misuse as the
violation of an API’s contract, resulting from an update to the
underlying API, but improperly maintained API calls.

Khatchadourian et al. [34] studied how Stream APIs are
misused. They defined bugs related to Stream APIs as Stream
Misuses, where the term “bug“ is no further specified. From 22
projects using streams, they identified different classifications
of Stream Misuses by analyzing Git [19] commits. They
derived a classification framework comprising 15 different
categories.

Especially in the domain of cryptography, researchers are
interested in API misuses [11], [17], [39], [40], [51]. Nadi et
al. [51] found that cryptographic APIs’ low level of abstraction
leads to incorrect usage. As a result, APIs become too complex
to use to achieve a specific goal. For example, there is the need
to compose several method calls over different API objects to
encrypt a file correctly and securely. Egele et al. [17] con-
ducted an empirical study on Android apps. They found that
88% of all apps have at least one mistake using cryptographic
APIs. They showed that an API misuse does not necessarily
result in errors or crashes but sensitive vulnerabilities causing
possible security breaches. However, they did not provide any
precise definition of an API misuse.

According to a study of Amann [2] in 2018, they were
the first to systematically define the problem space of API
misuses and empirically investigate the prevalence of API
misuses in bug datasets. They introduced a comprehensive
classification framework of 16 different API misuse categories:
MuC [1]. They defined an API misuse as a violation of an
(implicit) API usage constraint (cf. section III-B). Besides
summarizing the findings of Monperrus et al. [47], Amann
based their framework on the results from investigating about
1.200 bug reports from bug datasets like BugClassify [25] or
Defect4J [31] and Monperrus et al.’s work. They identified a
total of 164 API misuses. In addition, they provided their own
dataset with pre-classified API misuses based on MuC, the so-
called MUBench Dataset [48]. Together with MUBench [3] -
a benchmark to assess API misuse detectors - they provide a
versatile toolbox in the field of API misuse and detection.

Since MUBench is based on API misuses from bug datasets,
it might be limited. Thus, Li [42] conducted the first large-
scale empirical study of API misuses in 2020. They defined
“[...] API misuses as code edit operations related to some
APIs in a bug fix“. Although their definition is in stark
contrast to Amann’s, they followed up on MuC, refined the
classification framework by restructuring and introducing new
categories. Moreover, they mined all bug-fixing commits of
Java projects from GitHub [20] between 2011 and 2018. From
over three million investigated changes (3.197.593) in the
respective commits, Li found 50.6% were involved in API
misuses demonstrating that developers heavily struggle with
API misuses in modern software development.

IV. DEFINITIONS

As discussed, several studies provide fundamental theory.
They already present comprehensive classification frameworks
of the different types of usage constraints and misuses [2],
[6], [42], [47]. However, we observed that the definitions
surrounding the term API misuse are scattered across several



studies in different versions, sometimes targeting different
aspects of an API misuse. In fact, researchers classify API
misuse types by (i) the overall definition of an API misuse
in the specific domain and (ii) by the need of their work.
This section provides two reasons why we study the term API
misuse and its root causes again.

Reason 1 — Dispersed theory knowledge across studies

Scattered across several studies, different approaches have
already been introduced to classify usage constraints. How-
ever, some work focuses on specific areas, such as object
protocols [6], [7], [10], [76], while others try to classify -
sometimes roughly - the spectrum of API directives, usage
constraints, or API misuses [2], [7], [13], [27], [32]–[34],
[41]–[45], [47], [54], [71]–[73], [76], [80] (cf. section III).
The most comprehensive summary of relevant misuse types is
yet provided by MuC [2]. However, the high abstraction level
they chose misses several important pieces of information. For
instance, Monperrus et al. [47] mentioned the Method Parame-
ter Type Directive which mandates the allowed type of method
parameters. For example, the compareTo(Date) method of
java.sql.Timestamp [57] states: “Compares this Timestamp
object to the given Date, which must be a Timestamp object.“
Although mentioned by Amann, this type is not part of their
API misuses’ derivation. Our approach ensures such root
causes of API misuses are not missed. Essentially, we define
all necessary terms surrounding API misuses (RQ1) based on
our survey. This allows us to collect previous contributions, to
provide one comprehensive framework (RQ2).

Reason 2 — Localization of usage constraints in method calls

We show that usage constraints can be associated with
specific parts of a method call. For instance, usage constraints
of type Post-Call Directive [47] categorize requirements for
method calls that must be invoked on the returned object.
Thus, this usage constraint type only targets the return value
of a method call. We can also observe usage constraint
types associated with the invoked method itself, the passed
arguments, and the context in which the API is used. Such
localization helps to better understand the causes and types
of API misuses. There is no previous taxonomy of API usage
constraint types based on their location in API method calls.

A. Definition of “API”

We provided a definition for APIs in natural language based
on Monperrus et al.’s work [47] (cf. section II) where we
can basically divide APIs into two areas in terms of their
application domain: (i) APIs with a focus on a particular
domain. For example, cryptographic APIs implement cryp-
tographic algorithms and provide basic functionality for data
security. (ii) Other APIs are domain-independent. Consider, for
instance, java.lang.String [65]. It provides overall functionality
to work with strings that are used domain-independently. Note,
this differentiation is important because oftentimes domain-
specific APIs have more usage constraints and disclose very
specific usage constraint types which we will see for the case

study (cf. section VII) for the domain of cryptography. This
perspective on APIs leads to the following definition:

Definition IV.1. A domain-specific API offers functionality
tailored to a specific domain. Its domain determines the
achievable goal and application rules of a domain-specific
API. In contrast, non-specific APIs are not tailored to a
domain, nor do they determine a specific goal associated with
their use.

B. Definition of “API Directive”

As previous studies have shown [51], developers struggle to
understand the intended usage of an API. Therefore, the API
documentation is a core requirement that provides code exam-
ples, conceptual overviews, definitions of terms, programming
guidelines, known bugs, and documented workarounds [36].
In fact, API documentation is manifold in its nature [45],
[47]. Essential for developers are contracts enforced by the
API. Such contracts, also called API directives, describe what
developers are (not) allowed to do [45]. Monperrus et al. [47]
described them as “[...] natural-language statements that make
developers aware of constraints and guidelines related to the
usage of an API“. They consider API directives to be captured
in the respective API documentation. However, documentation
does not necessarily need to be recorded in high quality,
and thus it may be incomplete or contradictory [54], [71],
[72]. It is not uncommon for documentation to be completely
unavailable. Furthermore, some APIs take domain knowledge
for granted [51] and miss documenting such domain-specific
constraints. Therefore, we extend the definition of API direc-
tives not only to the underlying API documentation but also to
implicit statements. This conceptual expansion to Monperrus
et al.’s [47] work leads to the following definition:

Definition IV.2. An API directive is a natural-language
statement related to guidelines or constraints that describes
how to use an API correctly and optimally. It can be part
of the underlying documentation of an API. However, an API
directive can also be implicit, for example, because of incom-
plete documentation or expected domain-specific knowledge.

C. Definition of “API Usage Constraint”

API directives can also be guidelines (e.g., hints for perfor-
mance improvements). Hence, we can divide API directives
further into usage constraints. A constraint is a contract that
narrows down the actual use of an API. For example, an API
may require a method to be called only under certain condi-
tions. In the case of java.util.Iterator [60], the method next()
may only be called if the iterator contains at least one element.
At compile time, an API designer cannot force a developer to
adhere to these constraints because the programming language
does not provide any language constructs to ensure compliance
(e.g., correct typing enforced by the compiler [2]). Overall, this
implies the following definition of an API usage constraint
based on the definition of Amann [2]:

Definition IV.3. An API usage constraint is an API directive
that restricts the actual use of an API. These restrictions



are not enforced by the programming language itself, such
as correct typing. Because API usage constraints are API
directives, they are imposed by the API designer/expert.

Note that an API usage constraint is tailored to the per-
spective of an API designer/expert. They are responsible for
the API design, which includes imposing the constraints on
it. This perspective is important as API usage constraints are
API directives and therefore not imposed by any API user.

D. Definition of “API Misuse”

API usage constraints can be violated, e.g., because of
a developer’s lack of domain knowledge [51] or improper
documentation [71]. This harms the program’s further course
as it leads to misbehavior of the API, errors, crashes, or
even worse, security vulnerabilities. Therefore, we extend the
definition of Amann [2] to the following:

Definition IV.4. An API misuse is the violation of one or more
API usage constraints. Such violation leads to misbehavior of
the API, e.g. errors, crashes, or vulnerabilities.

An example of an API misuse is not releasing a recently
opened resource by calling close() after the end of using
java.io.FileReader [57] (cf. section II).

In conclusion, the definitions presented in this section have
answered the first research question (RQ1) by discussing the
relevant aspects surrounding API misuse and deriving defini-
tions concerning previously conducted studies. The provided
definitions narrow down the term API misuse, as it is a
violation of an API usage constraint. An API usage constraint
is imposed by an API designer/expert and does not necessarily
need to be captured in the respective documentation. Thus,
API usage constraints may also be part of domain-specific
knowledge that is taken for granted by the API (designer).

V. CLASSIFICATION OF API USAGE CONSTRAINTS – FUM

We next provide FUM, a comprehensive „Framework for
API Usage constraint and Misuse classification“. To accurately
assess and understand the causes and types of API misuses,
one needs to elaborate on the different types of API usage
constraints. We consider an API usage constraint to be a
concrete constraint imposed by the API. Accordingly, an API
usage constraint type (FUM type) is a set of API usage
constraints that share the same kind of constraints.

Following our definitions (cf. definition IV.3 and IV.4) the
only cause of an API misuse is a violation of the API usage
constraint(s). Therefore, FUM is based on API usage con-
straint types instead of API misuse types like other approaches
[2], [42]. Moreover, we localize each API usage constraint type
by the parts of an API method call (i.e., the API usage).

Usage Constraint Types by Parts of an API Method Call

As our study revealed, Monperrus et al. [47] so far intro-
duced the most comprehensive and fine-granular collection of
API directive kinds and an empirical study on their preva-
lence in API documentation, we extend their contribution.
We consider all their mentioned API directive kinds which

actually are API usage constraint types (cf. definition IV.3).
We then enrich their findings by contributions of previous
other studies [2], [6], [7], [10], [13], [34], [42], [43], [54],
[71], [72], [76], [80]. As a result, we introduce six new or
more fine-granular types to the API usage constraint types, i.e.,
High-Level Constraints, Post-Null-Check, Controlling Method
Call, Threading, Argument State, and finally, Pre-Null-Check
(annotated with ’*’ in Figure 2).

Since interaction with APIs is due to method invocations
[80], we assign each API usage constraint type to the different
parts of an API method call. We provide an overview of
API usage constraint types and their localization in Figure
2. Furthermore, we consider an API method call to be a
method invocation either on the API class or on the respective
instantiated object (i.e., the API object) which allows us to
clearly separate and localize API usage constraints based on
the use of APIs. We consider an API method call to have
three relevant parts: the return value, the method call itself,
and the passed arguments. There are also API usage constraint
types associated with multiple parts of the API method call
(uncolored dashed boxes).

A. FUM types associated with the “Return Value”

Here, we discuss the usage constraint types associated with
the return value of an API method, we call this main type
return value. An API can impose constraints even beyond the
method call itself (e.g., requirements in the form of methods
that need to be called on the return value). We can observe
two types of API usage constraints associated with the return
value (cf. green boxes in Figure 2).
Post-Call(s) constraints mandate calling methods on the re-
turn value [44], [47], [54]. For instance, the static method
AlgorithmParameters.getInstance(algorithm) [55] requires ini-
tializing the return value via the call of init() [47]. Note that
this API usage constraint type is a specialization of Method
Call Sequence, but with the fact that the required calls do
not necessarily refer to the same API class. Rather, the return
value may be typed differently. In total, 0.9% of all analyzed
API elements contain such usage constraint [47].
Post-Null-Check comprises (implicit) usage constraints that
require a null check on a return value to avoid runtime errors
[2], [42], [54]. We can observe such constraints whenever a
method returns either a specified value or null. For instance,
the API class java.io.InputStreamReader [59] exposes the
method getEncoding() which returns the name of the character
encoding being used by the stream or null if the stream
is closed. However, since the return value is a string, the
developer may continue to work on this return value; there is a
need to check for null beforehand. This usage constraint type
is not mentioned by Monperrus et al. [47]. Note that this kind
of usage constraint is distinguishable to Post Calls(s) because
no method call is used to check for null.

B. FUM types associated with the “Method Call”

We introduce all usage constraint types associated with the
method call itself (cf. red boxes in Figure 2) as method call.
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Figure 2: FUM - Overview of API usage constraint types associated with parts of an API method call. Types marked with
an asterisk are additionally added to the work of Monperrus et al. [47]. Dashed colored boxes are specific to one single API
method call part. Uncolored dashed boxes are API usage constraint types spanning over multiple parts of an API method call.

Some APIs restrict interactions with themselves, or methods
need to be called in a specific sequence to achieve the desired
result. There are also cases where methods are not supposed
to be called, although they are public.

Overall, we can observe mainly two reasons for constraints
on the invocation of a method. Firstly, the context in which
an API is used requires or restricts specific usage (cf. section
V-D). Secondly, the state of the API object dedicates the
allowed, required, or forbidden usage of itself [47].
Method Call Sequence are usage constraints enforcing the
requirement to call methods in a particular sequence [10],
[47]. A method call sequence can be considered as a usage
protocol [6], [13], [71], [76]. Thus, the correct usage of method
calls can be modeled with a finite-state machine [7], [71],
[80]. Furthermore, the term typestate is also often used in the
literature, i.e., the typestate defines the permitted operations on
the API object based on its state [39]. In total, up to 12.2% of
all analyzed API elements contain such usage constraint [47].
Controlling Method Call classifies constraints on a method
call that is only allowed to be called if a condition is met
beforehand [2], [6], [7], [34], [54]. Unlike Method Call Se-
quence, this usage constraint type aims to use method calls in
conditional statements. Thus, this type of method call controls
and safeguards the further program flow depending on its
return value. The return value can give information about
the state of the API object and information if a method,
including its arguments constellation, is allowed to be called.
For instance, consider the java.util.Iterator [60]. To retrieve
the next() element, there is a need to check whether the Iterator
contains at least one element - to check the respective state of
the API object that allows the call of next(). Only if calling
hasNext() returns true we are allowed to use next(). Such
controlling method calls can be seen as an interface for the
developer to react to a specific state. In fact, this is an extension
of Method Call Sequence, as it can be seen as a sequence of
method calls, however, further operations on the API object are
dependent on the return value. Note that this usage constraint
is not explicitly mentioned by Monperrus et al. [47].
Forbidden Method Call specifies that certain methods are

not allowed to be called [2], [47] and mostly is a special
case of Method Call Sequence. There exist API methods
that may not be called in an API object’s whole lifetime,
e.g., deprecated methods which are still callable for backward
compatibility [43]. Consider, for example, the static class
java.net.URLDecoder [67] where the method decode(String)
is deprecated, instead, an encoding scheme should be passed
as second parameter of decode(String, String). Note, the most
similar type of Monperrus et al. [47] is Method Call Visibil-
ity Directive addressing constraints on the calling context’s
method call. Hence, we can only estimate the prevalence of
Forbidden Method Call constraints with 4.2% [47] or less.

C. FUM types associated with “Passed Arguments”

We introduce usage constraint types related to passed argu-
ments of an API method call (orange-colored box in Figure
2) as passed arguments.
Argument State constraints require the passed argument
objects to be in a specific state or to have been correctly
generated through a predefined protocol. Such predefined
protocols specifying the composition of several API objects
are also called multi-object protocols [71], [76]. We can
typically observe this type of usage constraint in the context of
cryptography where several API objects need to be correctly
composed [39]. Besides, we can observe special cases not per-
fectly fitting into this definition, e.g., if constraints are enforced
on primitive types and string literals. We therefore further
distinguish between two special cases, i.e., String Format and
Number Range. Since we tightly refer to Monperrus et al., we
only distinguish between those. In fact, those special cases can
be extended to other primitive types as well.
String Format constraints specify a restriction for the format
of the passed string [47]. There are APIs that only allow a cer-
tain value from a set of strings. For instance, the method get-
Bytes(charsetName) provided by java.lang.String [65] needs
the argument to be a valid string from a set of supported
charsets (e.g., UTF-8). In total, 2.7% of all analyzed API
elements contain such usage constraint [47].
Number Range constraints specify that only a set or range of
numbers are allowed to be passed [47], [72]. In total, 2.7% of



all analyzed API elements contain such usage constraint [47].
Pre-Null-Check constraints state the requirement to check for
null before the argument is passed to the method [2], [42],
[47], [54], [72] and are rather implicit like Post-Null-Check
(cf. section V-A). There are cases where the documentation
explicitly restricts to pass null, e.g., the API class CollatingIt-
erator [5] exposes the method addIterator(iterator), for which
documentation states “[...] the iterator to add the collection
must not be null“. In total, 13% of all analyzed API elements
have at least one such usage constraint [47].
Method Parameter Type constraints restrict the passed argu-
ment’s type [47], [72]. Although this is contrary to object-
oriented programming principles (i.e., generalization [77]),
there are cases where this particular usage constraint exists
[47]. For instance, the java.sql.Timestamp [66] API class offers
the method compareTo(date) where the parameter date is
from type java.util.Date [56]. However, the documentation
states “Compares this Timestamp object to the given Date,
which must be a Timestamp object“ [47]. In total, 1.9% of all
analyzed API elements contain such a usage constraint [47].
Method Parameter Correlation restricts the value of passed
arguments because of their inter-dependency [47]. For in-
stance, the method setKeyEntry(alias, key, password, chain)
provided by java.security.KeyStore [63] requires passing a key
depending on the provided certificate chain. In total, 1.9% of
all analyzed API elements contain such usage constraints [47].

D. FUM types with multiple API method call associations

In addition to API usage constraint types only assigned to
one specific part of an API method call, there are also usage
constraint types assigned to multiple parts we furthermore
introduce, namely, Exception Handling, Context, and High-
Level Constraints (uncolored and light-gray dashed boxes in
Figure 2). Even though this category sounds similar to the
multi-object variant of the sequential pattern introduced by
Robillard et al. [71], their perspective is from that of an API
misuse detector, and ours is from the API usage constraints
themselves. Furthermore, our classification here involves more
fine-grained information like exceptions, context, threading,
etc. The usage constraint type Context is further divided into
two subtypes, i.e., Synchronization and Threading.
Exception Handling constraints impose requirements at the
exception-handling level. Exception Handling constraints de-
scribe the situations in which possibly thrown exceptions must
be considered and reacted to precisely [2], [34], [42]. This
type of usage constraint can be associated with all parts of
an API usage (cf. white-colored box labeled with Exception
Handling in Figure 2). In total, 4.1% of all analyzed API
elements contain such a usage constraint [47].
Context constraints are related to language constructs that
must surround the API usage, excluding constructs that are al-
ready covered by Exception Handling and Controlling Method
Call. We observed a similar usage constraint type mentioned
in previous studies [2], [13], [47], but without explicitly
limiting the constraint to surrounding language constructs. The
java.lang.Object [64] is a good example that requires using its

exposed method wait() only within loops. The most similar
API directive mentioned by Monperrus et al. [47] is again
the Method Call Visibility Directive we already introduced in
the Forbidden Method Call constraint type (cf. section V-B).
Similarly, we can only estimate the prevalence as 4.2% [47]
or less. We further subdivide Context into two more usage
constraint types, namely, Threading and Synchronization (cf.
gray-colored box in Figure 2).
Threading addresses usage constraints of using an API only on
specific threads. Consider, e.g., the javax.swing [62] API class,
where documentation states: “[all] Swing components and
related classes [...] must be accessed on the event dispatching
thread“ [62]. The most similar API directive mentioned by
Monperrus et al. [47] is again the Method Call Visibility
Directive as for Forbidden Method Call and Context with an
estimated accumulated prevalence of 4.2% [47] or less.
Synchronization comprises requirements taking care of con-
current access to the API object in a multi-threaded environ-
ment (i.e., thread-safety) [2], [34], [47]. For instance, if at least
one thread structurally modifies an instantiation of java.util.
HashMap [58], there is a need to synchronize the API object
externally (e.g., by retrieving a lock). This type also includes
requirements for proper assurance of thread-safe use, e.g., a
usage constraint of this type is violated if the lock is obtained
twice in a nested manner (deadlock). In total, 3.9% of all
analyzed API elements contain such a usage constraint [47].
High-Level Constraints address usage constraints that cannot
be covered by the previously presented types in this section.
They can cover all areas of an API usage (cf. large dashed
box in Figure 2). For example, the operating system on which
the program is executed on may be important — Windows
machines provide different algorithms for the secure genera-
tion of random numbers than Linux machines [39]. Therefore,
this may also affect the interaction with the given API that
encapsulates and provide such functionality. Note that none
of the studies we considered explicitly mentioned this type of
usage constraint, neither did Monperrus et al. [47].

E. FUM — Limitations

The work of Monperrus et al. [47] and Bruch et al. [9] also
considered types of usage constraints related to the extension
and inheritance of APIs. Monperrus et al. list these usage
constraint types under the main category Subclassing Direc-
tive. For instance, there is the type Call Contract Subclassing
Directive that whenever a defined method is overwritten, there
is a need to call other predefined methods than just calling the
super() method. However, FUM (cf. Figure 2 in section V)
only comprises usage constraint types that restrict an API’s
usage (i.e., not an extension or inheritance) for simplicity.
Furthermore, our survey and therefore FUM is based on the
Java language (cf. section I).

F. Overlapping Characteristics of FUM types

Although we provide a more fine-grained classification
framework than recent studies, in addition to an association
of usage constraint types related to the actual use of an API,



there are cases where the types are not orthogonal to each
other. For example, this is the case when we consider Pre-
Null-Check V-C and Exception Handling V-D constraints. An
API can indicate that a NullPointerException is thrown when
null is passed to a method call. However, this can be seen
as a usage constraint of Pre-Null-Check (i.e., checking the
argument for not being null before it gets passed to the method
call). Conversely, it can also be seen as a usage constraint of
Exception Handling because if it is not checked in advance,
the developer must consider the possible thrown exception.

VI. DISCUSSING DIFFERENCES OF CLASSIFICATIONS

The most similar classification framework compared to
FUM is MuC by Amann [2] and its refined version provided
by Li [42] (cf. section III-C). Both studies introduced an
exhaustive classification framework of API misuse types and
indicated the prevalence of each elaborated type. Amann’s
study is based in part on the findings of Monperrus et al.
[47], who examined the different types of API directives,
including API usage constraints. Since Li used the work of
Amann as foundation, they also implicitly used the findings
from Monperrus et al. as well as we did for FUM. Although
FUM works on the level of API usage constraint types, we
can compare FUM to theirs as a violation of an API usage
constraint is an API misuse (cf. definition IV.4), hence FUM
also can be used to classify API misuses analogously. In this
section, we show that FUM is at least as expressive as theirs.
Moreover, FUM provides a more fine-grained classification of
API usage constraint types - and API misuse types. For the
sake of clarity, we annotate Amann’s introduced types with
“A“, Li’s with “L“, and ours with “FUM“ respectively.

a) API-Misuse Classification (MuC) [2]: MuC encom-
passes four main categories: Method Calls, Condition, Excep-
tion Handling, and Iteration. Although every main category
has its subcategories, we only introduce subcategories’ details
when there are (i) clear differences between the violation of
our introduced FUM types or (ii) this subcategory does not
refer to API misuse based on our definitions.

The category Method CallsA is covered by the violation of
Method Call SequenceFUM as its constraints define the allowed
and required method calls based on the API object’s state.

Their category ConditionsA is covered by the violation
of a combination of FUM subcategories, namely Pre-Null-
ChecksFUM, Post-Null-CheckFUM, constraints of type Method
Call SequenceFUM, and Controlling Method CallFUM as well as
all the subtypes listed in Passed ArgumentsFUM (excluding Pre-
Null-CheckFUM) and Argument TypeFUM. Thus, our separation
allows us to assess API misuses more fine-grained. Further,
Redundant Value and State ConditionA aims at the use of
unnecessary conditional checks before using an API method
However, according to definition IV.4 they are not considered
as an API misuse.

The subcategory Missing Synchronization ConditionsA clas-
sifies API misuses that imply an improper use of the API
object regarding synchronization - for example, in a multi-
threaded environment where the API object is used with-

out first obtaining a lock. This covers exactly violations of
SynchronizationFUM usage constraints. In contrast, Redundant
Synchronization ConditionsA classifies API misuses for two
typical cases. First, situations in which a lock is obtained
unnecessarily and secondly, situations where a lock is obtained
twice in a nested manner, leading immediately to a deadlock.
According to our definition, the first case is no API misuse
if and only if it does not negatively affect the program (cf.
definition IV.4). The second case is covered by the violation
of SynchronizationFUM constraints.

Finally, their subcategory Missing Context ConditionsA aims
at API misuses related to threading. For example, GUI com-
ponents from SWING [62] need to be accessed on the event
dispatching thread; if not, then it is accordingly an API misuse.
These kinds of scenarios are covered by the violation of
ThreadingFUM constraints. Moreover, we provide a more fine-
granular view as our FUM type ContextFUM also comprises
constraints related to language constructs that need to surround
the API usage. The other subcategory Redundant Context
ConditionsA classifies API misuses related to threading whose
usages are merely redundant and therefore not needed which
is covered in FUM as the violation of ThreadingFUM.

The category IterationA is covered by the violation of Con-
trolling Method CallFUM and finally, the Exception HandlingA

categories are covered by the violation of either Exception
HandlingFUM or Method Call SequenceFUM.

b) Refinement of MuC by Li [42]: Following the study
by Amann [2], Li [42] did a more exhaustive and wide-
ranging empirical study on API misuses in the wild in 2020.
They restructured and refined Amann’s MuC and introduced
new subtypes in addition to Method CallsA, namely, Re-
placed ArgumentsL, Replaced NameL, Replaced Name and
ArgumentsL, and finally, Replaced ReceiverL. FUM covers
them with Method CallsFUM and Passed ArgumentsFUM.

Summary: FUM provides at least as much expressiveness
as MuC [2] and Li’s [42] refined framework. Moreover, we
provide a more natural view on API misuses by classifying
usage constraint types instead of classifying API misuse
types. We also provide a more fine-grained overview of
usage constraints. FUM includes the (new) API usage con-
straint types Method Parameter TypeFUM, Method Parameter
CorrelationFUM, and High-Level ConstraintFUM. In addition,
FUM has split individual types to better locate them based on
API method calls. For example, Missing Null CheckA is further
distinguished in Post-Null-CheckFUM and Pre-Null-CheckFUM,
which comes closer to the actual use of an API method call.
As a result, this answers our second research question (RQ2)
for a classification framework.

VII. CASE STUDY: CogniCrypt

To assess the extent to which FUM aids in determining
and guiding the improvement of an API misuses detectors’
capabilities, we performed a case study consisting of two parts:
First, we evaluate a domain-specific static analysis tool that,
due to the domain-specificity, we expect to provide only partial
coverage of FUM types. Second, we seek to assess to what



extent FUM can then be used to systematically extend the
coverage of the analysis tool to further FUM types.

As a study subject, we used CogniCrypt [37], a state-of-the-
art static analysis tool for misuse detection of cryptographic
APIs. CogniCrypt follows an allow-listing approach, consum-
ing rules of correct usages of cryptographic APIs defined with
the domain-specific language CrySL [38]. We sought to deter-
mine which API usage constraints (FUM types) CogniCrypt
can detect, and based on the assessment of the coverage, we
used FUM to identify weaknesses and to propose extensions to
improve detection coverage. Specifically, we inspected which
FUM types are specifiable with CogniCrypt [14] (version
1.0.0) and CrySL [14] (version 2.0.0).

FUM enabled us to classify the FUM types of code samples
of API misuses we collected from the MUBench Dataset [3],
as well as Li’s [42] five most common API misuse patterns
for each of their categories. In total, we were able to extract
88 usage constraint examples that are also API misuses based
on definition IV.4 (cf. section IV-D). Our data set consists
of general API misuse cases as we assess a domain-specific
tool’s capabilities and then provide targeted improvements.
The distribution of the examples for individual FUM types
is shown in Table I and the protocols of our evaluation per
code sample can be found in the artifact [74] we provide.

We examined whether the usage constraints could be speci-
fied via CrySL-rules. Upon inspection, only 27 of 88 samples
were specifiable using CrySL. Due to bugs in CrySL and Cog-
niCrypt we uncovered and reported [74], fewer code samples
were detectable with our rule specifications. Table I shows the
simplified results where we only discuss whether code samples
of API usage constraints were specifiable with CrySL. Overall,
the coverage of FUM types (cf. column Currently) is limited.
However, this was to be expected since CrySL and CogniCrypt
are designed specifically for the domain of cryptographic APIs
(cf. definition IV.1: domain-specific API) and the scope of
FUM reaches far beyond just this domain.

As the next step of our case study, we assume that it is a
sensible goal to adapt the domain of CrySL and CogniCrypt
to general API misuse detection. Whether such a broadened
domain makes sense with regards to usability or performance,
is not focus of this evaluation. To see to which extent one could
mitigate the identified weaknesses of CrySL and CogniCrypt,
we derive theoretical improvements (in the form of language
extensions) to CrySL detailed in the provided artifact [74].
We focused on those FUM types that had the highest preva-
lence in our test samples but which were not already fully
covered. However, our derived code samples did not contain a
sufficient amount of examples to derive a proper improvement
suggestion for the remaining types of Multiple Assignments
and Post-Call(s).

It seems plausible that, when implementing the suggested
extensions, the number of specifiable samples would increase
from 27 to 82 out of 88 (92% in total). We discussed our
findings with the developers of CrySL and CogniCrypt, which
they will take into consideration for future development.

The case study revealed that FUM can be practically used to

assess the current development state of API misuse detectors
and that further FUM can be used to identify weaknesses and
derive useful improvement suggestions.

API Usage Constraints Currently Improvements

Return
Value

0 Post-Call(s) 0 0
16 Post-Null-Check 0 16

Passed
Argu-
ments

1 Argument State 1 1
3 String Format 3 3
1 Number Range 1 1
0 Argument Correlation 0 0
0 Argument Type 0 0
5 Pre-Null-Check 0 5

Method
Call

19 Method Call Sequence 19 19
20 Controlling Method Call 0 20
3 Forbidden Method Call 3 3

Multiple
Assign-
ments

14 Exception Handling 0 14
1 Context 0 0
4 Synchronization 0 0
1 Threading 0 0
0 High-Level Constraints 0 0

Summary 88 27 82

Table I: Simplified results of the evaluation of CrySL’s cov-
erage of FUM types contrasted with proposed improvements.
Currently shows CrySL’s coverage. Improvements shows the
coverage once proposed improvements are applied. Dots sym-
bolize the feasibility of specifying FUM types and respectively
detecting their violations, i.e., API misuses. =̂ no API usage
constraints are specifiable for this type, =̂ all API usage
constraints are specifiable. The values show the number of
examples per FUM type.

VIII. CONCLUSION

This paper has presented three main contributions: (i) an
overview of research on API misuses for the language Java,
(ii) unified definitions around the term API misuse, and (iii)
FUM - a framework for API usage constraint and misuse
classification which is based on the localization of usage
constraints on a method-call level.

While classification frameworks already exist specifically
for evaluating the capabilities of API misuse detectors (e.g.,
MuC [1]), FUM focuses on an earlier level — API usage con-
straints instead of API misuses — because only the violation
of API usage constraints are API misuses (cf. definition IV.4).

We have shown that, compared to MuC, FUM has three
advantages: (1) FUM is more fine-granular with new API
usage constraint types, (2) FUM allows the localization of
API usage constraints and API misuses as each type is
associated with the different parts of an API usage (i.e., an API
method call), and (3) FUM was designed to be comprehensible
and exhaustive for API designers/experts providing a more
intuitive view on API misuses.

Furthermore, a case study with the API misuse detector
CogniCrypt showed that FUM can be practically used to
assess the current development state of such detectors and that
FUM can effectively assist the identification of weaknesses
and guide useful improvements.
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