
Modeling the Effects of Global Variables in
Data-Flow Analysis for C/C++

Philipp Dominik Schubert∗, Florian Sattler†, Fabian Schiebel‡, Ben Hermann§ and Eric Bodden∗‡
∗Paderborn University, Paderborn, Germany, {philipp.schubert, eric.bodden}@upb.de

†Saarland University, Saarbrücken, Germany, sattlerf@cs.uni-saarland.de
‡Fraunhofer IEM, Paderborn, Germany, fabian.schiebel@iem.fraunhofer.de

§Technische Universität Dortmund, Dortmund, Germany, ben.hermann@cs.tu-dortmund.de

Abstract—Global variables make software systems hard to
maintain and debug, and break local reasoning. They also impose
a non-trivial challenge to static analysis which needs to model
its effects to obtain sound analysis results. However, global
variable initialization, codes of corresponding constructors and
destructors as well as dynamic library code executed during load
and unload not only affect control flows but data flows, too. The
PhASAR static data-flow analysis framework does not handle
these special cases and also does not provide any functionalities
to model the effects of globals. Analysis writers are forced to
model the desired effects in an ad-hoc manner increasing an
analysis’ complexity and imposing an additional repetitive task.
In this paper, we present the challenges of modeling globals,
elaborate on the impact they have on analysis information, and
present a suitable model to capture their effects, allowing for
an easier development of global-aware static data-flow analyses.
We present an implementation of our model within the PhASAR
framework and show its usefulness for an IDE-based linear-
constant propagation that crucially requires correct modeling
of globals for correctness.

Index Terms—static analysis, global variables, C/C++

I. INTRODUCTION

Global variables are best avoided. Not only do they increase

the complexity of debugging and maintaining software systems

but they also break local reasoning [1]. Global variables are

used nonetheless to communicate information when using

shared memory parallelism, to implement singletons, and to

pass state across multiple functions without parameter passing.

Global variables are not only memory locations that can be

accessed at all points in a program but they also come with

code for initialization and de-initialization that is executed ”be-

fore” and ”after” main()—the actual program. The situation

gets more complex as there are a multitude of different (de-

)initializations depending on various conditions. Built-in types

such as int, long, double are (de-)initialized differently than

user-defined types, for instance. In addition, there is code that

is executed whenever a shared library is loaded or unloaded

which must be modeled, too.

A client data-flow analysis that verifies some property

on a given target program does not only require data-flow

information, but, in addition, information from various helper

analyses such as callgraph and points-to. Depending on the

complexity of the client analysis, it even requires information

of additional data-flow analyses. Global (de-)initializers may

affect all of these different analysis representations.

Static analyses are typically parameterized with a set of

entry points that specify where in the program the analysis

must start. Interestingly, the global (de-)initialization code

is not explicitly connected with the program’s actual entry

point(s) such as main(). If a user specifies main() as an

entry point to their analysis in a whole program analysis setup,

the analysis still misses all of the global code that is executed

”before” and ”after” main().

PhASAR [2] currently does not provide framework support

for modeling the effects of global variables and associated

code. Current existing analysis implementations model globals

in an ad-hoc manner or not at all. The effects of global

code is modeled by repurposing flow-function implementa-

tions making the analysis code unnecessary complex and

degrading analysis’ performance. It is also unlikely that an

ad-hoc handling of globals covers all possible scenarios and

leads to sound analysis implementations.

While an unsound handling of globals may be reasonable for

analyses such as uninitialized variables, which can safely ig-

nore global variables as those are automatically zero-initialized

in C and C++ if a programmer does not provide an initial

value, many others crucially depend on a sound and precise

handling of globals.

In this work, we thus present a structured overview on

how global variables and associated (de-)initialization code are

used in C/C++. We explain how these usages are represented

in LLVM’s [3] intermediate representation (LLVM IR) that

is the target of PhASAR [2] and many other analysis tools

for C and C++. We elaborate on how to precisely model

global effects for sound data-flow analysis and present an

extension that we implemented for PhASAR [2] to provide

framework support. We show the usefulness of our model and

its implementation by presenting a linear-constant propagation

that crucially depends on correctly handling globals.

In summary, this paper makes the following contributions:

• A comprehensive overview on the possible usages of global

variables and global code in C/C++.

• A model and its open-source implementation in PhASAR [2]

that allows static-analysis writers to easily and soundly

encode global effects into their analysis.

• A case study and an empirical evaluation that assesses the

importance of correctly handling globals [4].

12

2021 IEEE 21st International Working Conference on Source Code Analysis and Manipulation (SCAM)

DOI 10.1109/SCAM52516.2021.00010

20
21

 IE
EE

 2
1s

t I
nt

er
na

tio
na

l W
or

ki
ng

 C
on

fe
re

nc
e

on
 S

ou
rc

e
C

od
e

A
na

ly
si

s a
nd

 M
an

ip
ul

at
io

n
(S

C
A

M
) |

 9
78

-1
-6

65
4-

48
97

-0
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
SC

A
M

52
51

6.
20

21
.0

00
10

978-1-6654-4897-0/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on September 08,2022 at 13:10:06 UTC from IEEE Xplore. Restrictions apply.

1 // An exemplary header file:
2 Global var
3 Global var
4
5 Class member
6 Static class member
7 Static class member
8 Class default ctor
9 Class ctor

10 Class dtor
11
12
13 // The header’s respective implementation file:
14
15 Global var
16 Static init
17 Global in namespace
18 Anonymous namespace
19 Static class member
20 Global class var
21 Class default ctor
22
23
24 Class ctor
25
26 Class dtor
27
28 Local static
29
30
31
32 Global ctor
33
34 Global dtor
35
36
37
38

extern int i;
static inline int j = 1024;
struct Point {

int a, b;
static int c;
static inline int d = 73;
Point();
Point(int a, int b);
˜Point();

};
Point &getSingletonPoint();

#include "overview-globals.h"
int i;
static int k = 42;
namespace ns { int l = 13; }
namespace { int m = 9000; }
int Point::c = 2;
Point p(42, 13);
Point::Point() : a(0), b(0) {

printf("%d-%d", a, b);
}
Point::Point(int a, int b)

:a(a),b(b){printf("%d-%d", a, b);}
Point::˜Point() { printf("%d", d); }
Point &getSingletonPoint() {

static Point s(11, 22);
return s;

}
__attribute__((constructor))
void onLoad() { i = 9001; }
__attribute__((destructor))
void onUnload() { i = 0; }
int main() {

Point &q = getSingletonPoint();
return 0;

}

Fig. 1: An exemplary header and implementation file.

II. BACKGROUND AND PROBLEM DESCRIPTION

In the following, we first present the various possible usages

of global variables in C and C++ and describe their varying

semantics depending on the situation they are being used.

Then, we explain how the different semantics are represented

in LLVM IR. We use these insights to design suitable abstrac-

tions that allow for precisely modeling the effects of globals

in static data-flow analysis in Section III.

A. Globals in C and C++

We present the different usages of global variables and their

associated (de-)initialization code that is executed ”before” and

”after” the actual main program, respectively, by going through

the code of Figure 1 line by line. We annotated the code to

improve readability.

a) Built-in typed global variables: Line 2 declares a

global variable that can be used across one or more com-

pilation units as long as they contain a declaration of i. The

variable i needs to be defined in exactly one compilation unit

in which it is then automatically zero initialized as no explicit

initial value is specified (cf. Line 15). The linker refers all

users of i to this definition. In C and C++, all global variables

are initialized with zero at compile time if no value is provided

by the user as this does not entail any runtime costs.

Since C++17, the C++ standard allows for static inline

definitions of global objects, i.e., functions and variables in

header files (cf. Line 3). Due to the inline keyword this does

not constitute a violation of the one definition rule (ORD). The

one definition rule prescribes that non-inline objects (since

C++17) and non-inline functions cannot have more than one

definition in the entire program. Violations of that rule that

span translation units are not required to be diagnosed and

result in undefined behavior. Defining objects in header files

using the inline keyword may produce multiple but equal

definitions of the global object and therefore, it does not matter

which definition the linker eventually arbitrarily picks and puts

into the globals section of the final binary.

Line 6 and Line 7 depict analogous situations for class or

struct types. Line 6 declares a global variable c that is part of

the Point type. Similarly to the aforementioned situation, it

must be defined in exactly one compilation unit (cf. Line 19).

Consequently, the inline keyword allows for a definition in

a header file without breaking ODR.

Line 16 defines the variable k that can be accessed globally

but only within the compilation unit it is defined in. Line 18

shows an analogous situation using C++’s anonymous names-

paces. The variable l is available across multiple compilation

units within the namespace ns.

b) Class/struct typed global variables: Line 20 defines

the global variable p. Its constructor runs ”at startup” before

the C runtime starts the program’s execution at main(). Its

destructor is called before exiting the program at the end of

main(). An analogous situation is depicted in Line 28. The

function getSingletonPoint() implements a thread-safe

singleton, sometimes referred to as Scott-Meyers-Singleton,

of type Point. The variable is initialized exactly once when

getSingletonPoint() is called for the first time. Its de-

structor is called before the program exits.

c) Global con-/destructors: The definition of onLoad()

in Line 32 presents a global constructor. Function definitions

that are annotated with the constructor attribute are exe-

cuted while the compilation unit that defines these functions

is loaded by the loader or the dynamic linker. Functions that

are annotated with the destructor attribute present global

destructors and are executed before the program exists. Line 34

shows an example for such a function. Even though the global

constructor/destructor mechanism is currently not part of the

C++ standard, it is often used in the context of shared libraries

and therefore, should be supported by an analysis. Shared

libraries may define several global con- and/or destructors that

are executed when a shared library is explicitly loaded by

another program using dlopen() or dlsym() and dlclose

(), respectively. In combination, this mechanism is used to

implement plugins that (de-)register themselves within some

other application that uses them.

B. Representation in LLVM IR

All types of global variables presented in the previous

section can be found in the LLVM IR as well. Global variables

whose access is restricted to the compilation unit or the

function they are defined in are marked as internal global

13

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on September 08,2022 at 13:10:06 UTC from IEEE Xplore. Restrictions apply.

. Global built-in data types such as int, char or double are

automatically initialized with zero.

Global variables of user-defined types are statically ini-

tialized with zero, too. Semantically, all data members of

the given type are initialized with zero. Constructors and

destructors come into play later.

LLVM provides two special global array variables llvm.

global_ctors and llvm.global_dtors that carry infor-

mation on the con- and destructors of global variables of

user-defined types as well as global con- and destructors. The

functions referenced by these arrays will be called in ascending

order of priority, i.e., lowest first when the module is (un-

)loaded by the loader or the dynamic linker. The order of

functions with the same priority is not defined. Programs that

introduce dependencies between global variables whose (de-

)initialization code has the same priority are invalid.

When our module in Figure 1 is loaded, onLoad() is

executed. After onLoad() has been executed, or before—in

our case the priorities are equal, a special function respon-

sible for executing the initialization code of all global, user-

defined type variables is executed. Such a function is emitted

for each compilation unit, if necessary. The linker handles

merging these functions whenever modules are linked. The

function itself calls other automatically generated functions

each of which is responsible for initializing an individual

global variable of a user-defined type. In our example, the

function calls p’s constructor to correctly initialize it at the

program’s startup. It also registers p’s destructor to be called

using the C runtime’s __cxa_atexit() function. The global

variables’ constructors are called in order of definition. Their

destructors are called in reverse order once the program exits

or the module is unloaded. Global destructors such as our

onUnload() function are registered in the llvm.global

_dtors variable in an analogous way.

The Point singleton, like the other global variables, is zero

initialized. Its initialization takes place at the very first call to

getSingletonPoint(). Depending if a compiler generated

guard variable has been set atomically, its constructor is called

and its destructor is registered in the C runtime. In case

the guard variable is already set, this step is skipped and a

reference to the initialized instance is returned directly.

III. MODELING THE EFFECTS OF GLOBALS

In this section, we present how global variables are currently

handled by analysis writers and how one can model the

behavior of global variables in a more stringent manner.

A. Status Quo

Current analyses that come with Soot [5] or PhASAR [2]

either ignore global variables completely or they repurpose an

analysis’ flow-function implementations to model their effects.

The current scheme for modeling global variables that is

often found in practice is shown in Listing 1. The scheme

uses the flow function implementation by adding additional

code that is executed once at the very beginning of an analysis.

Because this scheme uses a call to the flow function that would

39FlowFunctionPtrType getNormalFlowFunction(N Curr, N Succ) {
40static bool InitGlobals = false;
41if (!InitGlobals && InitialSeeds.count(Curr)) {
42InitGlobals = true;
43std::set<D> ToGenerate;
44for (auto &Global : getGlobals())
45if (Global.isConstant())
46ToGenerate.insert(&Global);
47auto GlobalsFF = std::make_shared<GenAll<D>>(ToGenerate,
48ZeroValue);
49// compute the flow function for the actual statement
50auto CurrFF = getNormalFlowFunction(Curr, Succ);
51return std::make_shared<Union<D>>({GlobalsFF, CurrFF});

Listing 1: An excerpt of global-variable-handling code using

an IFDS [6]/IDE [7] normal flow function implementation.

normally be used to model the intra-procedural effects of the

Curr statement, the query for Curr must be performed within

the global-handling code and its result must be combined

with the flow function that describes the effects of the global

variables (cf. Line 51). The scheme as is, besides increasing

the analysis’ complexity, ignores code for (de-)initializing

global variables. This handling is also not quite correct as

it would not work if non-intra-procedural, i.e., non-normal,
statements are chosen as entry points. One would therefore

need to replicate the global-handling code in the flow functions

that handle call and return flows, too.

We next describe how the most laborsome parts of modeling

globals can be shifted to an analysis framework.

B. Control Flows

To conduct an inter-procedural, i.e., whole program analysis,

an inter-procedural control-flow graph (ICFG) is required. An

ICFG must be parameterized with one or more entry points

E0, . . . , En. In case one wishes to conduct a whole program

analysis, main() is usually chosen as an entry point. However,

by choosing main() as an entry point, the ICFG misses

lots of control flows that may be crucially important to the

client analysis since a lot of functionalities involved in (de-

)initialization are executed ”before” and ”after” main().

To produce a sound ICFG that supports whole program

analysis, an ICFG algorithm must respect and analyze the

global constructors. While analyzing the transitively reachable

functions it must also register all functions that are registered

to the C runtime using __cxa_atexit() and retain their

order. Only then an ICFG algorithm may analyze the control

flows starting at main(). Once the control flows of main

()—the main program, and transitively reachable functions

have been computed, the algorithm must continue analysis in

the global destructors and also the destructors that have been

previously registered using __cxa_atexit() in reverse order

until all control flows have been analyzed and a complete

model of the program under analysis has been constructed.

A schematic overview of an ICFG that respects global

variables and global code for a given target program is shown

in Figure 2. First, a global-aware ICFG must respect the

primary initialization of global variables in order of appear-

ance in the code indicated by the box labeled I . Note that

14

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on September 08,2022 at 13:10:06 UTC from IEEE Xplore. Restrictions apply.

C0 · · · Cud
i

· · · Cn

Built-in Init main() E1 · · ·

D1D0 · · · Dud
m

I

C

D

← initial seeds ← artificial control-flow edge

Fig. 2: Schematic overview of a global-aware ICFG.

these initializations are not bundled in a function and do

not represent instructions in LLVM IR. After considering the

global variables, an artificial control-flow edge to the first

global constructor C0 must be introduced. The ICFG must

determine the registered global constructors using the special

@llvm.global_ctors variable, sort the functions according

to their priority, analyze them, and introduce artificial control-

flow edges between them. The return instructions of the first

n − 1 global constructors conceptually transfer control to

the next global constructor. As the behavior is not defined

whenever two global constructors have the same priority, it

does not matter in which order the ICFG organizes them; user

code is not allowed to depend on initialization order in that

case. We denote global constructors as Ci in Figure 2. Global

constructors and destructors can call arbitrary functions of the

program, however, we do not represent that fact in Figure 2 to

avoid cluttering. CUD denotes the special function, introduced

by the compiler, that calls the constructors and registers the

respective destructors of global variables of user-defined types.

Once all global constructors have been analyzed, the control

flow is artificially transferred to the actual user-defined entry

point(s), i.e., main() (and potentially a set of other entry

points Ei). After constructing the control flows for the main

program, an artificial control flow edge to the first global

destructor D0 are introduced. Similar to the constructors, the

destructors are also chained according to their priority. The

last global destructor transfers control flow to box that we

denote as Dud in Figure 2. Dud is the sequence of calls to

the destructors of global variables of user-defined types that

have been registered in the C runtime. The Dud destructors

are called in reverse order of registration.

C. Data Flows

Similar to an ICFG algorithm that needs to be parameterized

with a set of entry points, a data-flow solver needs to start at

some program location(s). In the Soot [5] and PhASAR [2]

frameworks, these program location(s) are referred to as initial
seeds. Both frameworks allow analysis writers to specify the

initial seeds by implementing a function of the appropriate

problem interface that represents the analysis problem to be

solved. The initial seeds mechanism allows analysis writers

to not only specify the program locations but also data-flow

facts that initially hold at these locations. The initial seeds

implementation returns a mapping from start locations to a

set of data-flow facts that hold initially.

Rather than using the flow-function implementations as

described in Section III-A, the initial seeds can be used to

model the effects of the primary initialization denoted by the

I box in Figure 2. In addition to the ordinary initial seeds that

an analysis writer specifies for their analysis, they can iterate

the global variables and their primary initializations in order of

occurrence and model the effects by creating a set of data-flow

facts that represents the behavior according to their concrete

analysis problem. The propagation of this set of data-flow

facts that represents the global variables is then started at the

beginning, i.e., the first statement, of C0. Due to the artificial

control-flow edges introduced in the global-aware ICFG, the

flow facts are made available to the global constructors and

the behavior of those constructors can be modeled soundly.

After the solver propagated the flow facts through the code

in the box labeled C, they now capture the effects of any

initializing code and can then safely propagated into main()

(and potential other user-defined initial seeds Ei). At the end

of main(), the global variables are propagated through the

chain of global destructors and destructors of global variables

of user-defined types Dud as indicated by the box labeled D.

To make the global variables available for analysis as data-

flow facts at all statements, they are propagated into any

potential call target at a given call site and propagated back

to the caller at the callee’s respective exit site(s). Data-flow

facts that represent global variables must be killed at call-
to-return flows to make the effects of callees visible to the

subsequent program. In case only function declarations are

available as call targets at a given call site, global variables

are automatically killed by the call flow and instead must

be propagated along the call-to-return flow. Otherwise, the

globals would, again, not be available to the subsequent

program. We discovered this special case while using the

scheme presented here in a complex data-flow analysis we

recently implemented.

IV. IMPLEMENTATION

We implemented the scheme presented in Section III within

PhASAR [2]. We extended the existing LLVM-based ICFG

implementation with functionalities that allow analysis writers

to easily retrieve the global constructors and destructors. We

also added an additional option to the ICFG’s constructor

to allow for ICFG construction that respects the functions

that are called ”before” and ”after” the user-specified entry

points, e.g. main(), and correctly reflects the actual semantics

of global variables and their (de-)initializers. If enabled, the

global initializers Ci and Cud are analyzed first and registered

destructors Dud are recorded. The ICFG then adds artificial

control-flow edges to the actual user-defined entry points.

From the exit sites of the user-defined entry point functions

artificial control-flow edges to the global destructors Di and

registered destructors Dud are added as shown in Figure 2.

We also generalized the initialSeeds() implementation

which, until now, has been shared across the IFDS [6] and

15

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on September 08,2022 at 13:10:06 UTC from IEEE Xplore. Restrictions apply.

IDE [7] problem interfaces. This, however, prevented analysis

writers from specifying data-flow facts with initial values

other than ⊥ in IDE problems making it impossible to en-

code the effects of primary global initializations within the

initialSeeds() implementation. Our generalization now

also allows for arbitrary initial edge functions in IDE [7].

PhASAR’s pre-defined flow function implementations for

automated parameter mapping for call and return flows have

also been extended. We added additional parameters to the

respective flow functions that allow for automatically handling

the data flows of global variables as described in Section III-C.

V. CASE STUDY: CONSTANT PROPAGATION

We demonstrate the usefulness of our PhASAR extension

G+ by presenting how the new functionalities can be used

to add global variable support to PhASAR’s existing linear-

constant propagation encoded within the IDE [7] framework.

We then present a quantitative evaluation that assesses the

importance of correctly handling global variables (and code).

A. An Analysis Writer’s Perspective

When constructing the target program’s ICFG to conduct

a global-aware whole program analysis, we specify main()

as an entry point and, in addition, turn on the option for

global (de-)initializer awareness. The ICFG implementation

then automatically analyzes the global code and introduces

artificial control flows.

To capture the primary initialization (cf. I-labeled box

Figure 2) we make use of the initialSeeds(). We iterate

the global variables using LLVM’s standard API and create

G a set of pairs of variables and associated edge functions

describing their initialization. The set, among others, includes

i �→ λx.42, j �→ λx.1024. We query the ICFG for C0 and

return as initial seeds a mapping from C0’s first statement to

G. We use the extended flow functions for automated handling

of inter-procedural flows, i.e., call, return, call-to-return, and

enable the option allowing for automated handling of global

variables. The correct propagation is then automatically han-

dled by PhASAR’s solver implementation which propagates

the data-flow facts according to the global-aware ICFG.

B. Global Variables in Real-World Programs

Our empirical evaluation addresses the research questions:

• RQ1: To what extend are global variables used in real-

world programs?

• RQ2: How much precision does an analysis gain by

making it global-aware?

• RQ3: What is the runtime cost of making an analysis

global-aware?

To address RQ1, we counted the number of global vari-

ables for each benchmark program, recorded their respective

types and determined their users by following their def-use

chains. To address RQ2, we ran a global-oblivious as well

as a global-aware IDE [7]-based linear-constant analysis that

has been independently implemented in PhASAR on each

benchmark target and compared the data-flow facts that have

TABLE I: Results for the IDE-based linear-constant analysis.

program #g #u #gen
#ntvas #ntvae runtime [s]

G+ G− G+ G− G+ G−
bison 1,806 7,130 113 113 0 113 78 2582 2295
brotli 163 272 0 0 0 0 0 143 142
curl 1,880 2,119 17 17 0 17 8 730 698
file 168 267 5 5 0 4 0 1 1
gravity 1,194 3,333 17 17 0 16 10 60586 60482
grep 415 978 60 60 0 60 46 290 256
gzip 351 2,007 97 97 0 96 15 63 47
htop 1,521 2,355 44 44 0 41 20 632 596
libjpeg 184 346 0 19780 19989
libpng 454 560 0 97 114
libssh 1,853 1,997 7 1232 1301
libtiff 1,309 1,422 1 560 645

libvpxd 1,372 2,778 19 19 0 19 0 10645 10160
libvpxe 1,682 3,191 21 21 0 21 1 12558 11974
libxml2 4,969 8,475 92 28555 29689
libzmq 1,191 3,154 0 1866 2481
lrzip 782 1,415 4 4 0 4 4 250 252
lz4 396 1,189 13 13 0 13 5 115 108
openssl 1,835 1,899 14 1642 2005
openvpn 4,343 4,893 41 41 0 0 0 21979 21994
opus 467 606 2 415 516
tmux 5,193 5,916 40 40 0 0 0 22246 22333
xz 455 932 48 48 0 46 35 33 26

been generated and propagated by the analyses. We measured

the analysis’ running times to be able to comment on the

expense that propagating the additional (global) variables

incurs (RQ3).

1) Experimental Setup: We have evaluated our framework

extension G+ using as benchmark subjects 23 C/C++ programs

that we obtained from Github. We compiled the programs to

LLVM IR using WLLVM and subjected the resulting bitcode

files to a linear-constant propagation, once using a global-

oblivious G− and once using a global-aware G+ version of

the analysis. The target programs’ corresponding LLVM IR

ranges from 2,357 to 684,202 lines of code. We measured the

running times for the experiments on an dual socket system

with 2x Intel(R) Xeon(R) CPU E5-2630v4@2.20GHz CPUs

and 256GB main memory, running Debian 10. We ran each

experiment ten times and computed the mean time it took to

execute the analysis. The mean relative standard deviation for

all projects is 1.1%. Table I shows our results. The columns

of the table present (from left to right) for each target subject

the number of global variables, the number of their users, the

number of global integer-typed variables that the analysis can

potentially track, the number of constant variables that hold

at the start of main() and the number of constant variables

that hold at the end of main()—once using a globals-aware

(G+) and once using the plain, unmodified constant analysis

(G−)—as well as the running times in seconds. Our benchmark

programs, the raw as well as the processed data produced in

our evaluation are available in our artifact [4].

2) RQ1: Usages of Global Variables: Table I shows that all

of our real-world target programs make use of global variables.

The amount of global variables used ranges from 163 to 5,193

with an average of 1,478. These global variables, on average,

16

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on September 08,2022 at 13:10:06 UTC from IEEE Xplore. Restrictions apply.

have 2,580 users. Global con- and destructors using the __

annotate__ keyword are used by two projects (libssh and

libzmq) and thus seem to be used less frequently.

Global variables are frequently used throughout all of our

target subjects. Hence, it is important for an analysis to

model them correctly.

3) RQ2: Precision: Our results for G+ show that most

of the integer-typed global variables that are constant at the

beginning of main() remain constant or linearly depending

on constants throughout the whole main() function, i.e.,

the program. The openvpn and tmux programs present two

exceptions where none of these variables remains constant.

However, the results for G− shows the necessity of handling

global variables. Since global variable initialization is not

taken into account by G−, it cannot find constant global

variables at the beginning of main(). As the amount of

constant globals at the end of main() indicates, there seem

to be a few stores of constant values (or literals) to some of

these globals. Still, the number of constant global variables at

the end of the program lacks far behind G+.

While ignoring global variables might be acceptable for

analyses that are used for bug finding, especially analyses

that are concerned with software security or are used as a

basis for program optimizations cannot afford to ignore these

variables (and respective code of global (de)initializers).

4) RQ3: Performance: As our results in Table I show,

analyzing global variables impedes performances. This is

because global variables need to be propagated through the

complete program under analysis to represent the fact that

they can be accessed (and modified) at any point in the

program. Surprisingly, libraries benefit from our model. This is

because PhASAR’s points-to-based ICFG implementation and

the global-oblivious analysis cause expensive repropagations

when no dedicated main() function (or C and D control flows

cf. Figure 2) is present and global variables are discovered. Be-

sides the implementation effort, this behavior can be mitigated

in which case we expect G− to be slightly less expensive than

G+ similar to the non-library target subjects.

Supporting global variables impedes an analysis’ per-

formance. Making the IDE-based linear-constant analysis

global-aware causes a performance hit of 7.5 % for ordinary

programs and a performance gain of 12.6 % for libraries.

VI. RELATED WORK

Modeling the effects of global variables in static analysis is

a demanding task. Doing so in a sound manner is virtually im-

possible for many realistic target programs. However, current

analysis frameworks such as Soot [5] and PhASAR [2] do not

provide any framework support for modeling global variables.

Unfortunately, the compiler community does not provide

solutions for comprehensive data-flow analysis of globals

either. Optimizing compilers have to be rather conservative

when it comes to performing code transformations, of course.

While LLVM provides some optimizations w.r.t. global vari-

ables such as globalsmodref, constmerge, globalopt,

and internalize, these are all rather simple analyses that

back off as soon as a global variable’s address is taken or its

initialization is more complex. LLVM’s implementations for

(inter-procedural) constant propagation and constant folding

does not optimize code that involves non-immutable globals

with non-trivial (primary) initializers, and does not to aim to

proof any properties for such variables or their users.

VII. CONCLUSION

In this paper, we have presented an overview on the com-

plex semantics of global variables in C and C++ and how

they map to LLVM’s intermediate representation. Based on

our observations, we presented a scheme that can be used

to soundly model the effects of global variables in data-

flow analysis. We extended the PhASAR [2] framework and

implemented new functionalities that allow analysis writers

to model globals in an easier and more structured manner.

We presented a possible usage of the proposed scheme and

showed its usefulness by extending PhASAR’s current IDE-

based linear-constant propagation adding support for global

variables. Using the proposed scheme allows one to trivially

add sound, full-global support to any data-flow analysis.

ACKNOWLEDGMENT

This work was partially supported by the Heinz Nixdorf

Foundation and the German Research Foundation (DFG)

within the Collaborative Research Centre 901 ”On-The-Fly

Computing” (grant no. 160364472-SFB901/3), project ”Per-

volution” (grant no. AP 206/11-1 and SI 2171/2-1), project

”Green Configuration” (grant no. SI 2171/3-1), and project

”Congruence” (grant no. AP 206/14-1).

REFERENCES

[1] W. Wulf and M. Shaw, “Global variable considered harmful,” SIGPLAN
Not., vol. 8, no. 2, p. 28–34, Feb. 1973. [Online]. Available:
https://doi.org/10.1145/953353.953355

[2] P. D. Schubert, B. Hermann, and E. Bodden, “Phasar: An inter-procedural
static analysis framework for c/c++,” in Tools and Algorithms for the
Construction and Analysis of Systems, T. Vojnar and L. Zhang, Eds.
Cham: Springer International Publishing, 2019, pp. 393–410.

[3] C. Lattner and V. Adve, “Llvm: A compilation framework for
lifelong program analysis & transformation,” in Proceedings of
the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization, ser. CGO ’04. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 75–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=977395.977673

[4] Supplementary material. [Online]. Available: https://drive.google.com/
drive/folders/1zYKsAXhg1Xt qY-7GP9M7q3DLzk6PzEG?usp=sharing

[5] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot - a java bytecode optimization framework,” in Proceedings of the
1999 Conference of the Centre for Advanced Studies on Collaborative
Research, ser. CASCON ’99. IBM Press, 1999, p. 13.

[6] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural dataflow
analysis via graph reachability,” in Proceedings of the 22Nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
ser. POPL ’95. New York, NY, USA: ACM, 1995, pp. 49–61. [Online].
Available: http://doi.acm.org/10.1145/199448.199462

[7] M. Sagiv, T. Reps, and S. Horwitz, “Precise interprocedural dataflow
analysis with applications to constant propagation,” Theor. Comput.
Sci., vol. 167, no. 1-2, pp. 131–170, Oct. 1996. [Online]. Available:
http://dx.doi.org/10.1016/0304-3975(96)00072-2

17

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on September 08,2022 at 13:10:06 UTC from IEEE Xplore. Restrictions apply.

