
PhASAR: An Inter-procedural Static
Analysis Framework for C/C++

Philipp Dominik Schubert1(B) ,
Ben Hermann1(B) , and Eric Bodden1,2(B)

1 Heinz Nixdorf Institute, Paderborn University, 33102 Paderborn, Germany
{philipp.schubert,ben.hermann,eric.bodden}@upb.de

2 Fraunhofer IEM, 33102 Paderborn, Germany

Abstract. Static program analysis is used to automatically determine
program properties, or to detect bugs or security vulnerabilities in pro-
grams. It can be used as a stand-alone tool or to aid compiler optimiza-
tion as an intermediary step. Developing precise, inter-procedural static
analyses, however, is a challenging task, due to the algorithmic complex-
ity, implementation effort, and the threat of state explosion which leads
to unsatisfactory performance. Software written in C and C++ is noto-
riously hard to analyze because of the deliberately unsafe type system,
unrestricted use of pointers, and (for C++) virtual dispatch. In this
work, we describe the design and implementation of the LLVM-based
static analysis framework PhASAR for C/C++ code. PhASAR allows
data-flow problems to be solved in a fully automated manner. It pro-
vides class hierarchy, call-graph, points-to, and data-flow information,
hence requiring analysis developers only to specify a definition of the
data-flow problem. PhASAR thus hides the complexity of static analysis
behind a high-level API, making static program analysis more accessible
and easy to use. PhASAR is available as an open-source project. We
evaluate PhASAR’s scalability during whole-program analysis. Analyz-
ing 12 real-world programs using a taint analysis written in PhASAR,
we found PhASAR’s abstractions and their implementations to provide a
whole-program analysis that scales well to real-world programs. Further-
more, we peek into the details of analysis runs, discuss our experience
in developing static analyses for C/C++, and present possible future
improvements. Data or code related to this paper is available at: [34].

Keywords: Inter-procedural static analysis · LLVM · C/C++

1 Introduction

Programming languages from the C/C++ family are chosen as the implemen-
tation language in a multitude of projects especially in cases where a direct
interface with the operating system or hardware components is of importance.
Large portions of any operating system and virtual machine (such as the Java

c© The Author(s) 2019
T. Vojnar and L. Zhang (Eds.): TACAS 2019, Part II, LNCS 11428, pp. 393–410, 2019.
https://doi.org/10.1007/978-3-030-17465-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17465-1_22&domain=pdf
http://orcid.org/0000-0002-8674-1859
http://orcid.org/0000-0001-9848-2017
http://orcid.org/0000-0003-3470-3647
https://doi.org/10.1007/978-3-030-17465-1_22

394 P. D. Schubert et al.

VM) are written in C or C++. The reason for this is oftentimes the amount
of control the programmer has over many aspects that allow for the creation
of very efficient programs—but also comes with the obligation to use these fea-
tures correctly to avoid introducing bugs or opening the program to security
vulnerabilities.

To aid developers in creating correct and secure software, a multitude of
checks have been included into compilers such as GCC [4] and Clang [2]. Var-
ious additional tools such as Cppcheck [12], clang-tidy [9], or the Clang Static
Analyzer [8] provide additional means to check for unwanted behavior. Compiler-
check passes and additional checkers both use static program analysis to provide
warnings to their users. However, to create warnings in a timely fashion, these
tools use comparatively simple analyses that provide either only checks for sim-
ple properties, or suffer from a large number of false or missed warnings, due to
the imprecision or unsoundness of the used analysis.

For programs written in Java, program-analysis frameworks like Soot [16],
WALA [33], and Doop [13] are available which allow for a more precise data-flow
analysis to determine more intricate program problems. Furthermore, algorith-
mic frameworks such as Interprocedural Finite Subset (IFDS) [24], Interpro-
cedural Distributive Environments (IDE) [26], or Weighted Pushdown Systems
(WPDS) [25] can be used to describe dataflow problems and efficiently compute
their possible solutions.

So far, such implementations have not been openly available for programs
written in C/C++. This work thus presents the novel program-analysis frame-
work PhASAR, an extension to the LLVM compiler infrastructure [17]. In its
inception, we used our experience in developing previous such frameworks for
JVM-based languages, namely Soot [16] and OPAL [14], to design a flexible
framework that can be adapted to several different types of client analyses.
Besides solving data-flow problems, PhASAR can be used to achieve other
related goals as well, for instance, call-graph construction, or the computation
of points-to information. Its features can be used independently and be included
into other software. PhASAR’s implementation is written entirely in C++ and
is available as open source under the permissive MIT license [23].

PhASAR is intended to be used as a static analyzer. Therefore, it does not
substitute but complement features from the LLVM toolchain and provides also
for analyses which during compilation would be prohibitively expensive.

This paper makes the following contributions:

– It provides a user-centric description of PhASAR’s architecture, its infras-
tructure, and data-flow solvers,

– it presents a case-study that shows PhASAR’s overall scalability as well as
the precise runtimes of a concrete static analysis, and

– it discusses our experience in developing static analyses for C/C++.

2 Related Work

There are several established and well-maintained tools and frameworks for the
Java ecosystems. Frameworks from academia include Soot [16], which is a static

PhASAR: An Inter-procedural Static Analysis Framework for C/C++ 395

analysis framework that allows call-graph construction, computation of points-
to information and solving of data-flow problems for Java and Android. Soot
does not support inter-procedural data-flow analyses directly. However, a user
can solve such problems using the Heros [7] extension that implements an IFD-
S/IDE solver. The WALA [33] framework provides similar functionalities for Java
bytecode, JavaScript and Python. OPAL [14] allows for the implementation of
abstract interpretations of Java bytecode. Also the manipulation of bytecode is
supported. A declarative approach is implemented by the Doop framework [13].
Doop uses a declarative rule set to encode an analysis and solves it using the
logic-based Datalog solver. The framework allows for pointer analysis of Java
programs and implements a range of algorithms that can be used for context
insensitive, call-site and object sensitive analyses.

Tooling for C/C++ includes Cppcheck [12] which aims for a result without
false positives and allows to encode simple rules as well as the development
of more powerful add-ons. The clang-tidy tool [9] provides built-in checks for
style validation, detection of interface misuse as well as bug-finding using simple
rules, but can be extended by a user. Checks can be written on preprocessor level
using callbacks or on AST level using AST matchers that can be specified using
an embedded domain specific language (EDSL). The Clang Static Analyzer [8]
uses symbolic execution and allows custom checks to be written. The SVF [31]
framework computes points-to information for constructing sparse value flow and
memory static single assignment (SSA). Hence, it can be used for analyses that
rely on those information such as memory leak detection or null pointer analysis.
Additionally, more precise pointer analysis can be build on top of SVF’s results.
However, as the computation of memory SSA does require a significant amount
of computation, using SVF may not pay off for problems that can be encoded
using distributive frameworks, which allow fast, summary-based solutions.

There are also commercial, closed-source tools for static analysis such as
CodeSonar [10] and Coverity [11], both of which support analyses for C, C++,
Java and other languages. Whereas these products are attractive to industry as
they provide polished user interfaces, they are not usable for evaluating novel
algorithms and ideas in static-analysis research.

3 Data-Flow Analysis

Data-flow analysis is a form of static analysis which works by propagating infor-
mation about the property of interest—the data-flow facts—through a model of
the program, typically a control-flow graph, and captures the interactions of the
flow facts with the program. The interaction of a single statement s with a data-
flow fact is described by a flow function. There are two orthogonal approaches [27]
that can be used in order to solve inter-procedural (whole program) data-flow
problems: the call-strings and functional approach. For the call-strings approach
we refer the reader to related work [15,27]. In the following we briefly present
the functional approach using a linear constant propagation that we apply to
a small program shown in Listing 1.1. A linear constant propagation is a data-
flow analysis that precisely tracks variables with constant values and variables

396 P. D. Schubert et al.

that linearly (c = a · x + b, with a, b constant values) depend on constant val-
ues through the program. Non-linear dependencies are over-approximated. In
our example, we restrict the analysis to keep track of integer constants only.
Such an analysis can be used to perform program optimizations by replacing
variables with their constant values, and folding expressions that use constant
values, eventually possibly also removing dead code. The analysis would be able
to optimize the program shown in Listing 1.1 to int main() {return 12; }.
1 int i nc (int p) { return ++p ; }
2 int main () {
3 int a = 1 ;
4 int b = 2 ;
5 int c = 3 ;
6 a = inc (a) ; // cs1
7 b = inc (b) ; // cs2
8 c = b ∗ 4 ;
9 return c ;

10 }
Listing 1.1. Program P

If the flow functions of the problem to be solved are monotone and distribu-
tive over the merge operator, it can be encoded using Inter-procedural Finite
Distributive Subset (IFDS) or Inter-procedural Distributive Environments (IDE).
Unlike the call-string approach which is limited to a certain level of context-
sensitivity (commonly denoted as k), IFDS and IDE are fully context-sensitive,
i.e., k = ∞. In IFDS [24] and its generalization IDE [26], a data-flow problem
is transformed into a graph reachability problem. The reachability is computed
using the so called exploded super-graph (ESG). If a node (si, di) in the ESG
is reachable from a special tautological node Λ, the data-flow fact represented
by di holds at statement si. The ESG is built according to the flow functions
which can be represented as bipartite graphs. Functions for generating (Gen) and
destroying (Kill) data-flow facts can be encoded into flow functions making the
framework compatible to more traditional approaches to data-flow analysis. The
composition f ◦ g of two functions can be computed by composing their corre-
sponding bipartite graphs, i.e., merging the nodes of g with the corresponding
nodes of the domain of f . The ESG for the complete program is constructed
by replacing every node of the inter-procedural control-flow graph (ICFG) with
the graph representation of the corresponding flow function. Scalability issues
due to context-sensitivity are mitigated through summaries that are computed
by composition of all bipartite graphs of a function for a given input. These
summaries are reused for subsequent calls to an already summarized function.

The complexity of the IFDS algorithm is O(|N | · |D|3) where |N | is the
number of nodes on the ICFG (or number of program statements) and |D| the
size of the data-flow domain that is used. To make the analysis scale, the domain
D should thus be kept small.

In IDE, a generalization of the IFDS framework, the edges of the ESG are
additionally annotated with so-called edge functions. With the help of those
edge functions, an additional value-computation problem can be encoded, which
is solved while performing the reachability computation. The complexity of the

PhASAR: An Inter-procedural Static Analysis Framework for C/C++ 397

IDE algorithm is the same as for the IFDS algorithm. Many problems can be
solved more efficiently by encoding them with IDE rather than IFDS, because
IDE uses two domains to solve a given problem. In addition to the domain D of
the data-flow facts, the value computation problem is formulated over a second
value domain V , which can be large, even infinite. Crucially, for a given fixed-size
program, the complexity of both IFDS and IDE depends only on the size of D.

Let us consider a linear constant propagation to be performed on the example
program shown in Listing 1.1. Using IFDS, the data-flow domain can be encoded
by using pairs of V × Z program variables and integer values. However, this
strategy leads to a huge domain D and prevents the generation of effective
summaries. For each call to inc() in Listing 1.1 with a different input value a, a
new summary must be generated. In the example, we would obtain summaries
{(p, 1) �→ (<ret>, 2)} for call site cs1 and {(p, 2) �→ (<ret>, 3)} for cs2.

With IDE, the problem can be encoded in a more elegant and efficient way,
by using V as the data-flow domain and Z as the value domain. The ESG for
a linear constant propagation performed on Listing 1.1 using IDE is shown in
Fig. 1. As the context-dependent part of the analysis is encoded using the edge
functions, only one summary is generated for the inc() function, λx. x + 1.

Performing a reachability check on the ESG for variable c at line 9, one finds
that c can be replaced by the literal 12. Because the return statement is the
program’s only observable effect, all other statements can be safely removed.

Fig. 1. Exploded super graph for the program P in Listing 1.1

398 P. D. Schubert et al.

4 Architecture

Precise data-flow analysis requires information from multiple supporting analy-
ses which are typically run earlier, such as class-hierarchy, call-graph, and points-
to analysis. Algorithmic frameworks like IFDS provide a generalized algorithm
that is then parameterized for each individual data-flow problem. The infrastruc-
ture provided by these basic analyses and algorithmic frameworks is necessary
to allow analysis designers to efficiently concentrate on the goal of a data-flow
analysis. PhASAR is the first framework to provide such infrastructure for pro-
grams written in the C/C++ language family. Its infrastructure is designed
modularly, such that analysis developers can choose the components necessary
for their individual goals. In Fig. 2 we present the high-level architecture of the
framework.

LLVM API

Command-Line Interface

Tool A

Control Flow Points-To Database

IFDS/IDE Monotone

Pl
ug

in
 A

Pl
ug

in
 B

...

...Tool B

Fig. 2. PhASAR’s high-level architecture

We allow PhASAR to be used in
multiple ways. The first (and easi-
est) way is through its command-
line interface. Its implementation
can be seen as a blueprint to cre-
ate other tools which use PhASAR.
The command-line interface pro-
vides a means to execute basic
analyses such as call-graph con-
struction or pointer analysis or run
pre-defined IFDS/IDE-based anal-
yses. The output of these analyses
can then be processed using other tooling or presented to the user directly.

The command-line interface can also be extended with custom analyses, pro-
vided as separately compiled plugins. Currently, custom control-flow or call-
graph analyses and custom data-flow analyses can be packaged in this way.
The command-line interface acts as the runtime for these plugins and delegates
control to the plugin at the appropriate times providing necessary information.
Plugin providers need to create an implementation of a pre-defined C++ class
wrapping their analysis code. The plugin is compiled separately and then pro-
vided to PhASAR in form of a shared object library.

PhASAR can also be included into other tools by using it as a library. This
way of using PhASAR provides the most flexibility as developers can freely select
the components that should be part of an analysis and can reuse even parts of
the components provided by the framework.

PhASAR allows analysis developers to specify arbitrary data-flow problems,
which are then solved in a fully-automated manner on the specified LLVM IR
target code. Solving a static analysis problem on the IR rather than the source
language makes the analysis generally easier. This is because it removes the
dependency on the concrete source language, as the IR is usually simpler since
the IR involves no nesting and has fewer instructions. Various compiler front-
ends for a wide range of languages targeting LLVM IR exist. Hence, PhASAR
is able to analyze programs written in languages other than C/C++, too. The

PhASAR: An Inter-procedural Static Analysis Framework for C/C++ 399

framework computes all required information to perform an analysis such as
points-to, call-graph, type-hierarchy as well as additional parameterizable taint
and typestate analyses.

PhASAR provides various capabilities and interfaces to compute data-flow
problems or aid other types of analyses. First, the framework contains inter-
faces and implementations for the computation of an ICFG; we provide some
parameterizable implementations for the LLVM IR.

Next, PhASAR currently supports the computation of function-wise points-
to information using LLVM’s implementations of the Andersen-style [6] or
Steensgard -style [30] algorithms. Points-to information and ICFG computation
can be combined to obtain more precise results. We discuss the quality of points-
to information and our current efforts to improve their quality in Sect. 8.

To resolve virtual function calls in C++, we provide means to construct a
type hierarchy. We construct the type hierarchy for composite types and recon-
struct the virtual-method tables from the IR, which together with the hierarchy
information allow PhASAR to resolve potential call targets at a given call-site.

PhASAR provides implementations of IDE and IFDS solvers as described by
Reps et al. [24] including the extensions of Naeem et al. [20]. We implemented
IFDS as a specialization of IDE using a binary lattice only using a top and
a bottom element much alike the Heros implementation [7]. Both solvers are
accompanied by a corresponding interface for problem definition. To solve a
data-flow problem using the IDE or IFDS solver, the data-flow problem must be
encoded by implementing this interface. We present this in detail in Sect. 5.

For non-distributive data-flow problems PhASAR provides an implementa-
tion of the traditional monotone framework which allows one to solve intra-
procedural problems. The framework provides an inter-procedural version as
well that uses a user-specified context in order to differentiate calling-contexts.
PhASAR provides a context interface and implementations of this interface that
realize the call-strings and value-based approach VASCO [22], in which context-
sensitivity is achieved by reusing information that has been computed for previ-
ous calls under the same context. The framework also implements a version of
the context class to represent a null context. This context has the same effect as
applying the monotone framework directly in an inter-procedural setting. Both
solvers are accompanied by corresponding interfaces for problem descriptions
which must be implemented to encode the data-flow problem. The details are
provided in Sect. 5.

All of PhASAR’s data-flow solvers are implemented in a fully generic manner
and heavily make use of templates and interfaces. For instance, a solver follows
a target program’s control-flow that is specified through an implementation of
either the CFG or the ICFG interface. Analysis developers can parameterize a
solver with an existing implementation or they can provide their own custom
implementation. They can run a forward or backward analysis depending on
the direction of the chosen control-flow graph. Moreover, all data-flow related
functionality is hidden behind interfaces. A solver queries the required func-
tionality such as flow functions or merge operations for the underlying lattice

400 P. D. Schubert et al.

whenever necessary. We have specified problem interfaces on which the corre-
sponding solver operates. Thus, analysis developers encode their data-flow prob-
lem by providing an implementation for the problem interface and provide this
implementation to the accompanying solver. PhASAR is able to solve a problem
on other IRs when suitable implementations for the IR specific parts such as
the control-flow graphs and problem descriptions are provided by the analysis
developer.

5 Implementation

Our goal with PhASAR is easing the formulation of a data-flow analysis such
that an analysis developer only needs to focus on the implementation of the
problem description rather than providing details how the problem is solved.

PhASAR achieves parts of its generalizability through template parameters.
These template parameters include, among others, N, D, M. They are consistently
used throughout the implementation of PhASAR. N denotes the type of a node in
the ICFG, i.e., typically an IR statement, D denotes the domain of the data-flow
facts, and M is a placeholder for the type of a method/function. When analyzing
LLVM IR, N is always of type const llvm::Instruction* and M is of type const
llvm::Function*, whereas D depends on the specific data-flow analysis that the
developer wants to encode. For our example using linear constant propagation
described in Sect. 3, D = pair<const llvm::Value *, int> could be used to
capture the property of interest. LLVM’s Value type is quite useful as it is a
super-type that is located high in the type hierarchy. This allows an analysis
developer to use values of all of Value’s subtypes in the value domain, which
makes it highly flexible.

5.1 Encoding an IFDS Analysis

Listing 1.2 shows the interface for an IFDS problem. An analysis developer has to
define a new type—the problem description—implementing the FlowFunctions
interface.

template <typename N, typename D, typename M> struct FlowFunctions {
virtual ˜FlowFunctions () = default ;
virtual FlowFunction<D> ∗getNormalFlowFunction (N curr , N succ) = 0 ;
virtual FlowFunction<D> ∗ getCal lFlowFunct ion (N cal lStmt ,

M destMthd) = 0 ;
virtual FlowFunction<D> ∗getRetFlowFunction (N c a l l S i t e ,

M calleeMthd ,
N exitStmt ,
N r e t S i t e) = 0 ;

virtual FlowFunction<D> ∗
getCallToRetFlowFunction (N c a l l S i t e , N r e tS i t e , set<M> c a l l e e s) = 0 ;

} ;

Listing 1.2. Interface for specifying flow functions in IFDS/IDE

The flow function factories shown in Listing 1.2 handle the different types of
flows. The four factory functions each have an individual purpose:

PhASAR: An Inter-procedural Static Analysis Framework for C/C++ 401

– getNormalFlowFunction handles all intra-procedural flows.
– getCallFlowFunction handles inter-procedural flows at a call-site. Usually,

the task of this flow function factory is to map the data-flow facts that hold
at a given call-site into the callee method’s scope.

– getRetFlowFunction handles inter-procedural flows at an exit statement
(e.g. a return statement). This maps the callee’s return value, as well as data-
flow facts that may leave the function by reference or pointer parameters,
back into the caller’s context/scope.

– getCallToRetFlowFunction propagates all data-flow facts that are not
involved in a call along-side the call-site, typically stack-local data not refer-
enced by parameters.

These flow function factories are automatically queried by the solver, based
on the inter-procedural control-flow graph.

The functions in Listing 1.2 are factories since they have to return small
function objects of type FlowFunction which is shown in Listing 1.3. As a
FlowFunction is itself an interface, an analysis developer has to provide a suit-
able implementation. The member function computeTargets() takes a value of
a dataflow fact of type D and computes a set of new dataflow facts of the same
type. It specifies how the bipartite graph for the statement that represents the
flow function is constructed and can be thought of an answer to the question
“What edges must be drawn?”.

template <typename D> struct FlowFunction {
virtual ˜FlowFunction () = default ;
virtual set<D> computeTargets (D source) = 0 ;

} ;

Listing 1.3. Interface for a flow function in IFDS/IDE

As flow function implementations often follow certain patterns, we provide
implementations for the most common patterns as template classes. Many use-
ful flow functions like Gen, GenIf, Kill, KillAll, and Identity are already
implemented and can be directly used. Any number of flow functions can be
easily combined using our implementations of the Compose and Union flow func-
tions. We also provide MapFactsToCallee and MapFactsToCaller flow functions
that automatically map parameters into a callee and back to a caller, since this
behavior is frequently desired. Flow functions which are stateless, e.g. Identity
or KillAll, are implemented as a singleton.

5.2 Encoding an IDE Analysis

If an analysis developer wishes to encode their problem within IDE, they have
to additionally provide implementations for the edge functions. With help of the
edge functions, an analysis developer is able to specify a computation which is
performed along the edges of the exploded super-graph leading to the queried
node (c.f. Fig. 1). The interface for the edge function factories and their respon-
sibilities are analogous to the flow function factories in Listing 1.2.

402 P. D. Schubert et al.

Each edge function factory must return an edge function implemen-
tation: a small function object similar to a flow function which has a
computeTarget() function, a compose, a merge, and an equality-check oper-
ation. The EdgeFunction interface is shown in Listing 1.4.

template <typename V> class EdgeFunction {
public :

virtual ˜EdgeFunction () = default ;
virtual V computeTarget (V source) = 0 ;
virtual EdgeFunction<V> ∗
composeWith (EdgeFunction<V> ∗ secondFunction) = 0 ;
virtual EdgeFunction<V> ∗
joinWith (EdgeFunction<V> ∗ otherFunct ion) = 0 ;
virtual bool equa l t o (EdgeFunction<V> ∗ other) const = 0 ;

} ;

Listing 1.4. Interface for an edge function in IDE

As this interface is more complex than the flow function interface, we explain
the purpose of each function. The computeTarget() function describes a com-
putation over the value domain V in terms of lambda calculus.

The composeWith() function encodes how to compose two edge functions.
In most scenarios, this function can be implemented as (f ◦ g)(x) = f(g(x)). To
avoid additional boilerplate code, we provide an EdgeFunctionComposer class
that performs this job and can be used as a super class.

joinWith() encodes how to join two edge functions at statements where two
control-flow edges lead to the same successor statement. Depending if a may or
a must-analysis is performed, implementations of this function typically check
which edge function computes a value that is higher up in the lattice, i.e., a
more approximate value, and returns the corresponding edge function. For our
linear constant propagation from Sect. 3, this function would return one of the
edge functions if both describe the same value computation, the bottom edge
function if both of them encode the ⊥ value and the edge function encoding the
top element otherwise. The intuition here is to always pick the element that is
higher in the lattice as it represents more information.

The equal to() interface function has to be implemented to return true if
both edge functions describe the same value computation, false otherwise.

A complete implementation of the IDE linear constant propagation can be
found along with PhASAR’s other examples at our website [23].

5.3 Encoding a Monotone Analysis

If an analysis developer wishes to encode a problem that does not satisfy the
distributivity property, they have to make use of the monotone-framework imple-
mentation or its inter-procedural variant. The interface for specifying an inter-
procedural monotone problem is shown in Listing 1.5. Similar to an IFDS/IDE
problem, an analysis developer has to specify flow functions for intra- and inter-
procedural flows. But in contrast to IFDS/IDE, these flow functions do not oper-
ate on single, distributive data-flow facts, but on sets of data-flow facts instead.
The solver calls the flow functions and provides the set of data-flow facts which

PhASAR: An Inter-procedural Static Analysis Framework for C/C++ 403

hold right before the current statement. The return value to be computed in the
flow function is a set of data-flow facts that hold after the effects of the current
statement. The join() function specifies how information is merged when two
branches join at a common successor statement. This is typically implemented
as set-union or set-intersection depending on whether a may or must-analysis
has to be solved. Algorithms from C++’s STL may be used here. Finally, the
sqSubSetEqual() function must be implemented to determine if the amount
of information between two sets has increased in order to check if a fixpoint
is reached. The context that is used for the inter-procedural analysis can be
specified by the analysis developer using the template parameter. An analysis
developer can provide a pre-defined context class in order to parameterize the
analysis to be a call-strings approach, a value-based approach, or they can define
their own context to be used.

template <typename N, typename D, typename M, typename I>
struct InterMonotoneProblem {

InterMonotoneProblem (I I c f g) : ICFG(I c f g) {}
virtual ˜ InterMonotoneProblem () = default ;
virtual set<D> j o i n (const set<D> &Lhs , const set<D> &Rhs) = 0 ;
virtual bool sqSubSetEqual (const set<D> &Lhs ,

const set<D> &Rhs) = 0 ;
virtual set<D> normalFlow (N Stmt , const set<D> &In) = 0 ;
virtual set<D> ca l lF low (N Ca l lS i t e , M Cal lee , const set<D> &In) = 0 ;
virtual set<D> returnFlow (N Ca l lS i t e , M Cal lee , N RetStmt ,

N RetSite , const set<D> &In) = 0 ;
virtual set<D> callToRetFlow (N Ca l lS i t e , N RetSite ,

const set<D> &In) = 0 ;
} ;

Listing 1.5. Interface for describing an interprocedural problem for the monotone
framework

5.4 Handling of Intrinsic and Libc Function Calls

LLVM currently has approximately 130 intrinsic functions. These functions are
used to describe semantics in the analysis and optimization phase and do not
have an actual implementation. Later-on in the compiler pipeline, the back-end is
free to replace a call to an intrinsic function with a software or a hardware imple-
mentation – if one exists for the target architecture. Introducing new intrinsic
functions is preferred over introducing novel instructions to LLVM since, when
introducing a new instruction, all optimizations, analyses, and tools built on top
of LLVM have to be revisited to make them aware of the new instruction. A call
to an intrinsic function can be handled as an ordinary function call.

The functions contained in the libc standard library represent special tar-
gets as well as these functions are used by virtually all practical C and C++1

programs. Moreover, the functions contained in the standard library cannot be
analyzed themselves as they are mostly very thin wrappers around system calls
and are often not available for the analysis. In many cases, however, it is not nec-
essary to analyze these functions when performing a data-flow analysis. PhASAR

1 The compiler translates many of C++’s features into ordinary calls to libc.

404 P. D. Schubert et al.

models all of them as the identity function. An analysis developer can change the
default behavior and model different effects by using special summary functions.
The SpecialSummaries class can be used to register flow and edge functions
other than identity. This class is aware of all intrinsic and libc functions.

5.5 A Note on Soundness

Livshits et al. have introduced the notion soundy analyses [18]. Soundy analyses
use sensible underapproximations to cope with certain language features that
would otherwise make an analysis impractically imprecise. Analyses in PhASAR
are currently soundy. For instance, PhASAR’s ICFG misses one control-flow edge
in the presence of setjmp()/longjmp(). Functions that are loaded dynamically
from shared object libraries using dlsym() cannot be handled either. PhASAR’s
data-flow solvers treat calls to dynamically loaded libraries and libraries for
which function definitions are missing as identity, unless the analysis developer
specifies otherwise. A sound handling would be to set all variables involved in
such calls to �, which again, may lead to large imprecision.

6 Scalability

In this section, we present the runtime measurements for two concrete static
analyses – IFDSSolverTest we name I and IFDSTaintAnalysis we name T

– that are both implemented in PhASAR. I is a trivial IFDS analysis which
passes the tautological data-flow fact Λ through the program. The analysis acts
as a baseline as it is the most efficient IFDS/IDE analysis that can possibly
be implemented. T implements a taint analysis. A taint analysis tracks values
that have been tainted by one or more sources through the program and reports
whenever one of the tainted values reaches a sink, which can be functions or
instructions. Our taint analysis treats the command-line parameters argc and
argv that are passed into the main() function as tainted. Functions that read
values from the outside (e.g. fread()) are interpreted as sources. Functions that
can leak tainted variables to the outside such as printf() or fwrite() are
considered sinks. As a potentially large amount of tainted values have to be
tracked through the program, analysis T will provide insights into the scalability
of PhASAR’s IFDS/IDE solver implementation.

Table 1 shows the programs that we analyzed. For each program, the IR’s
lines of code, number of statements, pointers, and allocation sites have been
measured with PhASAR. The LLVM IR has been compiled with the Clang
compiler using production flags. The figures give an intuition for the program’s
complexity. The programs that we analyzed comprise some C programs like
some of the coreutils [3] as well as two C++ programs like PhASAR itself and
a PhASAR-based tool MPT. In addition, it shows the runtimes of the analyses
I and T separated into different phases (in the format runtime I/runtime T).
We measured the runtimes for the construction of points-to information (PT),
class hierarchy (CH), call-graph (CG), data-flow information (DF), and the total

PhASAR: An Inter-procedural Static Analysis Framework for C/C++ 405

runtime (Σ). We also measured the number of function summaries ψ(f) that
could be reused while solving the analysis. The latter one is a good indicator for
the quality of the data-flow domain D, as higher reuse indicates a more efficient
analysis. #G and #K denote the number of facts that have been generated or
killed in the taint analysis, respectively.

We measured the runtimes by performing 15 runs for each analysis on a
virtual machine running on an Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30 GHz
machine with 128 GB memory. We removed the minimum and maximum values
and computed the average of the remaining 13 values for each of the four analysis
steps and the total runtime. We used an on-the-fly call-graph algorithm that
uses points-to information for the coreutils. For PhASAR and MPT, we used a
declared type-analysis (DTA) call-graph algorithm in order to reduce the amount
of memory required to reproduce our results. In addition, we found that DTA
performed well enough on our C++ target programs.

With one exception, PhASAR is able to analyze a program from coreutils
within a few seconds. Analyzing cp using T takes around 13 min. This is because
a large amount of facts is generated which must then be propagated by the
solver. This result shows the cubic impact of the number of data-flow facts
on IFDS/IDE’s complexity. Analyzing the million-line programs PhASAR and
MPT ranges from 7 to 18 min. As one can observe for PhASAR, an analysis may
destroy data-flow facts more often than it generates them. This is caused by
C++’s exceptional control-flow where the same fact is destroyed during normal
and exceptional flow.

We observed that the DF part of T actually runs faster than I for our C++
target programs. This is because T should behave very similar to the solvertest
for the C++ target programs, as only very few facts are actually generated.
Furthermore, T will take shortcuts whenever it plugs in the desired effects at
call-sites of source and sink functions. I in contrast, follows these calls making
it slower than T.

Table 1. Program’s characteristics and performance figures for analyses I/T

Program kLOC Stmts Ptrs Allocs CH [ms] PT [s] CG [s] DF [s] Σ [s] #ψ(f) #G #K

wc 132 63166 10644 396 24/24 1.0/1.0 0.1/0.1 0.2/11 2/13 119/125 10202 6830

ls 152 71712 13200 438 27/27 1.4/1.4 1.1/1.2 0.6/1.0 4/5 836/839 79 74

cat 130 62588 10584 391 24/24 1.0/1.0 0.0/0.0 0.1/1.3 2/3 21/22 2525 1262

cp 141 67097 11722 443 32/30 1.3/1.3 0.6/0.6 0.4/789 3/792 547/737 16999 12839

whoami 129 61860 10433 389 24/23 1.0/1.0 0.0/0.0 0.1/0.3 2/2 8/11 97 92

dd 137 65287 11150 408 25/25 1.1/1.0 0.2/0.2 0.2/37 2/40 164/176 14711 11058

fold 130 62201 10509 390 24/23 1.0/1.0 0.0/0.0 0.1/0.3 2/2 17/22 107 102

join 134 64196 11042 402 24/24 1.0/1.0 0.0/0.0 0.1/0.5 2/3 91/95 104 94

kill 130 62304 10527 394 24/24 1.0/1.0 0.0/0.0 0.1/0.1 2/2 24/24 22 4

uniq 131 62663 10650 396 24/24 1.0/1.0 0.0/0.0 0.1/0.4 2/2 50/53 96 90

MPT 3514 1351735 755567 176540 906/903 22/22 8.8/8.8 458/379 519/439 12531/12532 20 9

PhASAR 3554 1368297 763796 178486 962/946 23/23 24/24 987/917 1064/993 25778/25782 56 77

406 P. D. Schubert et al.

Analyzing all of the 97 coreutils, PhASAR, and MPT requires a total analysis
time of of 30 min for I and 1 h and 31 min for T. These measurements show that
PhASAR is capable of analyzing even a million-line program within minutes,
even though PhASAR’s algorithms and data structures have not yet undergone
manual optimization.

7 Guidelines for the Analysis on Real-World Code

In this section, we share our experience in analyzing real-world C/C++ pro-
grams. Although the LLVM IR is expressive enough to capture arbitrary source
languages, we found that the characteristics and complexity of the source lan-
guage propagate into the IR. Observe the following call-site in LLVM IR:
%retval = call i32 %fptr(%class.S∗ dereferenceable(4) %ptr, i32 5), assuming C to be the
source language, a plain function pointer is called. If C++ is the source language,
we cannot be sure whether a function pointer or a virtual member function of
class S is called. This is the reason why we observed that the analysis runtime
for C++ target programs is usually much higher than for C programs.

For more complex languages like C++ we have to keep track of special mem-
ber functions. These functions are mapped into ordinary LLVM IR functions
that Clang places in a well-defined order in the generated IR. For some analyses
like the declared-type analysis (DTA) call-graph algorithm, we need to be aware
of these special member functions in order to preserve high precision.

We also found that even a well-debugged analysis that has been hardened on
a large variety of test programs may still fail on production code as some corner
cases have not been thought of. The large amount of information available to an
analysis run makes debugging errors hard. A standard debugger does not suffice
because an analysis writer has to step through a lot of code that is not relevant
for them. For Java, a special dedicated debugger for static analysis has been
developed [21] which shows the relevance of the problem.

Depending on the optimization passes that have been applied to code in
LLVM IR before it is handed over to the analysis, it may have very different
characteristics. Although optimization passes are required to have no impact
on the semantics, the structure of the IR code changes. In our experience, it is
helpful to start developing an analysis on small test programs that are translated
into IR without optimization passes, and cover as many cases as the analysis
should find. Once an analysis handles these test cases correctly or with the
desired precision, optimization passes should be applied to the test cases. After
rerunning the analysis the results should be checked against their unoptimized
version. When applying an analysis to production code, the code should be
compiled using production flags in order to analyze code that is as close as
possible to what actually runs on the machine.

We found that the usage of debug symbols is helpful. The Clang compiler’s
-g flag can be added to propagate the debug symbols into the IR. Those can
then be queried using LLVM’s corresponding API. However, the debug symbols
may not always present, which is why an analysis should not rely on them.

PhASAR: An Inter-procedural Static Analysis Framework for C/C++ 407

8 Future Work

In this section we briefly summarize our plans for future improvements.
It would be interesting to evaluate the use of PhASAR for analyzing a differ-

ent IR. One type of IR might advantages over others for different analysis prob-
lems. We plan to additionally support the GENERIC, GIMPLE and RTL [5,19]
IR from the GCC project.

Another interesting framework for data-flow analysis is Weighted Pushdown
Systems (WPDS) [25,28]. WPDS is able to compute an analysis within a stack
automaton. WPDS allows for more compact data structures, the generation of
witnesses, as well as precise queries specifying paths of interest using regular
expressions. We plan to support WPDS is a future version of PhASAR using
the weighted/nested-word automaton library [32].

Checking the correctness of an IFDS/IDE analysis is complex since checking
the correctness of the underlying ESG is tedious and time consuming. A high
quality visualization may help reduce the amount of time spent debugging an
analysis. A graphical user interface will reduce the amount of knowledge that is
required to use the framework.

Since the flow and edge functions have to be implemented in a general purpose
programming language, they require some amount of boilerplate code. It remains
an open question if one could design a non-Turing-complete EDSL with a library
like boost::proto [1] which simplifies the task of encoding analysis problems.

PhASAR currently uses LLVM’s points-to information which is rather impre-
cise. We plan to integrate a more precise pointer analysis into PhASAR to sup-
port more precise call-graph construction and client analyses by adapting the
demand-driven Boomerang approach presented in [29] to PhASAR.

9 Conclusion

In this paper, we presented our implementation of a static analysis framework for
programs written in C/C++ named PhASAR. We presented its architecture and
implementation from a user’s perspective to make practical static analysis more
accessible. We presented experiments which have shown PhASAR’s scalability
and discussed the runtimes of the key parts of two concrete client analyses.

With PhASAR we strive toward the goals of providing a framework for static
analysis targeting (but not limited to) C/C++, a base for quickly evaluating
novel ideas and applications, and a suitable way of handling the complexity.
PhASAR is open-source and available online [23] under the permissive MIT
licence, and therefore, open for contributions, feedback and use. PhASAR has
already received tremendous support in the research community and from prac-
titioners as 223 stars and 26 forks on GitHub show.2

2 As of 8am February 07, 2019.

408 P. D. Schubert et al.

Acknowledgments. This work was partially supported by the German Research
Foundation (DFG) within the Collaborative Research Centre “On-The-Fly Comput-
ing” (SFB 901) and the Heinz Nixdorf Foundation. We would also like to thank Richard
Leer for his assistance in developing and improving the framework.

References

1. Boost.proto, August 2018. https://www.boost.org/doc/libs/1 68 0/doc/html/
proto.html

2. Clang: a C Language Family Frontend for LLVM, July 2018. http://clang.llvm.
org/

3. CoreUtils, July 2018. https://www.gnu.org/software/coreutils/coreutils.html
4. GCC, the GNU Compiler Collection, July 2018. https://gcc.gnu.org/
5. GNU Compiler Collection (GCC) Internals, July 2018. https://gcc.gnu.org/

onlinedocs/gccint/
6. Andersen, L.O.: Program analysis and specialization for the C programming lan-

guage. Technical report (1994)
7. Bodden, E.: Inter-procedural data-flow analysis with IFDS/IDE and Soot. In: Pro-

ceedings of the ACM SIGPLAN International Workshop on State of the Art in Java
Program Analysis, SOAP 2012, pp. 3–8. ACM, New York (2012). https://doi.org/
10.1145/2259051.2259052

8. Clang Static Analyzer, August 2018. https://clang-analyzer.llvm.org/
9. Clang-Tidy, August 2018. http://clang.llvm.org/extra/clang-tidy/

10. CodeSonar, August 2018. https://www.grammatech.com/products/codesonar/
11. Coverity, August 2018. https://scan.coverity.com/
12. Cppcheck, August 2018. http://cppcheck.sourceforge.net/
13. Doop, August 2018. http://doop.program-analysis.org/
14. Eichberg, M., Hermann, B.: A software product line for static analyses: the OPAL

framework. In: Proceedings of the 3rd ACM SIGPLAN International Workshop on
the State of the Art in Java Program Analysis, SOAP 2014, pp. 1–6. ACM, New
York (2014). https://doi.org/10.1145/2614628.2614630

15. Kam, J.B., Ullman, J.D.: Monotone data flow analysis frameworks. Acta Informat-
ica 7(3), 305–317 (1977). https://doi.org/10.1007/BF00290339

16. Lam, P., Bodden, E., Lhoták, O., Hendren, L.: The Soot framework for Java pro-
gram analysis: a retrospective, October 2011

17. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program
analysis & transformation. In: Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-Directed and Runtime Optimiza-
tion, CGO 2004, p. 75. IEEE Computer Society, Washington, DC (2004). http://
dl.acm.org/citation.cfm?id=977395.977673

18. Livshits, B., et al.: In defense of soundiness: a manifesto. Commun. ACM 58(2),
44–46 (2015). https://doi.org/10.1145/2644805

19. Merrill, J.: GENERIC and GIMPLE: a new tree representation for entire functions.
In: Proceedings of the GCC Developers Summit, pp. 171–180 (2003)

20. Naeem, N.A., Lhoták, O., Rodriguez, J.: Practical extensions to the IFDS algo-
rithm. In: Gupta, R. (ed.) CC 2010. LNCS, vol. 6011, pp. 124–144. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-11970-5 8

21. Nguyen, L., Krüger, S., Hill, P., Ali, K., Bodden, E.: VisuFlow, a debugging envi-
ronment for static analyses. In: International Conference for Software Engineering
(ICSE), Tool Demonstrations Track, 1 January 2018

https://www.boost.org/doc/libs/1_68_0/doc/html/proto.html
https://www.boost.org/doc/libs/1_68_0/doc/html/proto.html
http://clang.llvm.org/
http://clang.llvm.org/
https://www.gnu.org/software/coreutils/coreutils.html
https://gcc.gnu.org/
https://gcc.gnu.org/onlinedocs/gccint/
https://gcc.gnu.org/onlinedocs/gccint/
https://doi.org/10.1145/2259051.2259052
https://doi.org/10.1145/2259051.2259052
https://clang-analyzer.llvm.org/
http://clang.llvm.org/extra/clang-tidy/
https://www.grammatech.com/products/codesonar/
https://scan.coverity.com/
http://cppcheck.sourceforge.net/
http://doop.program-analysis.org/
https://doi.org/10.1145/2614628.2614630
https://doi.org/10.1007/BF00290339
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673
https://doi.org/10.1145/2644805
https://doi.org/10.1007/978-3-642-11970-5_8

PhASAR: An Inter-procedural Static Analysis Framework for C/C++ 409

22. Padhye, R., Khedker, U.P.: Interprocedural data flow analysis in soot using value
contexts. In: Proceedings of the 2nd ACM SIGPLAN International Workshop on
State of the Art in Java Program Analysis, SOAP 2013, pp. 31–36. ACM, New
York (2013). https://doi.org/10.1145/2487568.2487569

23. Phasar, July 2018. https://phasar.org
24. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via

graph reachability. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 1995, pp. 49–61. ACM,
New York (1995). https://doi.org/10.1145/199448.199462

25. Reps, T., Schwoon, S., Jha, S.: Weighted pushdown systems and their application to
interprocedural dataflow analysis. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694,
pp. 189–213. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44898-
5 11. http://dl.acm.org/citation.cfm?id=1760267.1760283

26. Sagiv, M., Reps, T., Horwitz, S.: Precise interprocedural dataflow analysis with
applications to constant propagation. Theor. Comput. Sci. 167(1–2), 131–170
(1996). https://doi.org/10.1016/0304-3975(96)00072-2

27. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. New
York University, Computer Science Department, New York (1978). https://cds.
cern.ch/record/120118

28. Späth, J., Ali, K., Bodden, E.: Context-, flow- and field-sensitive data-flow analysis
using synchronized pushdown systems. In: ACM SIGPLAN Symposium on Prin-
ciples of Programming Languages (POPL 2019), 13–19 January 2019 (to appear)

29. Späth, J., Nguyen, L., Ali, K., Bodden, E.: Boomerang: demand-driven flow- and
context-sensitive pointer analysis for Java. In: European Conference on Object-
Oriented Programming (ECOOP), 17–22 July 2016

30. Steensgaard, B.: Points-to analysis in almost linear time. In: Proceedings of the
23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 1996, pp. 32–41. ACM, New York (1996). https://doi.org/10.1145/
237721.237727

31. SVF, August 2018. https://github.com/SVF-tools/SVF/
32. WALi-OpenNWA, July 2018. https://github.com/WaliDev/WALi-OpenNWA
33. WALA, August 2018. http://wala.sourceforge.net/wiki/index.php/Main Page
34. Schubert, P.D., Hermann, B., Bodden, E.: Artifact and instructions to generate

experimental results for TACAS 2019 paper: PhASAR: An Inter-procedural Static
Analysis Framework for C/C++ (artifact). Figshare (2019). https://doi.org/10.
6084/m9.figshare.7824851.v1

https://doi.org/10.1145/2487568.2487569
https://phasar.org
https://doi.org/10.1145/199448.199462
https://doi.org/10.1007/3-540-44898-5_11
https://doi.org/10.1007/3-540-44898-5_11
http://dl.acm.org/citation.cfm?id=1760267.1760283
https://doi.org/10.1016/0304-3975(96)00072-2
https://cds.cern.ch/record/120118
https://cds.cern.ch/record/120118
https://doi.org/10.1145/237721.237727
https://doi.org/10.1145/237721.237727
https://github.com/SVF-tools/SVF/
https://github.com/WaliDev/WALi-OpenNWA
http://wala.sourceforge.net/wiki/index.php/Main_Page
https://doi.org/10.6084/m9.figshare.7824851.v1
https://doi.org/10.6084/m9.figshare.7824851.v1

410 P. D. Schubert et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	PhASAR: An Inter-procedural Static Analysis Framework for C/C++
	1 Introduction
	2 Related Work
	3 Data-Flow Analysis
	4 Architecture
	5 Implementation
	5.1 Encoding an IFDS Analysis
	5.2 Encoding an IDE Analysis
	5.3 Encoding a Monotone Analysis
	5.4 Handling of Intrinsic and Libc Function Calls
	5.5 A Note on Soundness

	6 Scalability
	7 Guidelines for the Analysis on Real-World Code
	8 Future Work
	9 Conclusion
	References

