Clara: a framework for implementing
hybrid typestate analyses
Technical Report Clara-2

Eric Bodden

Darmstadt University of Technology *
bodden@cs.tu-darmstadt.de

Abstract. We present CLARA, a novel static-analysis framework for the
implementation of hybrid static/dynamic typestate analyses. CLARA uses
static typestate analyses to automatically convert any AspectJ monitor-
ing aspect into a residual runtime monitor that only monitors events
triggered by program locations that the analyses failed to prove safe.
If the static analysis succeeds on all locations, this gives strong static
guarantees. If not, the efficient residual runtime monitor is guaranteed
to capture property violations at runtime.

Researchers can easily integrate their own static typestate analyses into
CLARA. We instantiated CLARA with three static typestate analyses
and applied these analyses to monitoring aspects generated from trace-
matches and by the JavaMOP runtime-monitoring tool.

CLARA is available as open source. We hope that other researchers will
soon be joining us in using CLARA, and that this will foster progress in
the field of typestate analysis.

1 Introduction

A typestate property describes which operations are available on a group of
inter-related objects, depending on this group’s internal state, the typestate.
Software engineers use typestate properties to describe important properties
of the programs they develop. For instance, a program should not write to a
connection handle while this handle is in state “closed”. Figure 1 shows a finite-
state machine that expresses the language of all program executions that violate
this property. Researchers have developed static [3,5,6,8,9] and dynamic [1,7]
analysis tools that, given a program and a set of typestate properties that this
program should adhere to, verify whether the program may violate these prop-
erties. While static-analysis tools inspect the program’s code, dynamic analysis
tools instrument the program under test with a runtime monitor that will notify
the user of any property violations that do occur at runtime. Many dynamic
analysis tools use a two-staged approach to instrument the program under test.
The tools generate instrumentation code in the form of AspectJ aspects. The

* At the time at which this research was conducted, Eric was a Ph.D. candidate at
McGill University, under supervision of Laurie Hendren.

user can then enable runtime checks for the program under test by weaving these
aspects into the program. That way, AspectJ has become a popular intermediate
representation for runtime-monitoring tools.

In this work we present CLARA, a novel framework that aids researchers
in implementing hybrid typestate analyses, i.e. static analysis with a dynamic
monitoring component. CLARA uses static typestate analyses to automatically
convert any AspectJ monitoring aspect into a residual runtime monitor that only
monitors events triggered by program locations that the analyses failed to prove
safe. If the analysis succeeds on all program locations then this is a strong static
guarantee that the given program cannot violate its typestate properties. Oth-
erwise, the residual runtime monitor is guaranteed to catch property violations
that do occur at runtime. Because this monitor is only notified about events at
the program locations that the static analysis failed to prove safe (often just a
few), the residually instrumented program usually executes much faster than a
fully instrumented program would execute.

2 The Clara framework

Figure 2 gives an overview of CLARA. The major design goal of CLARA was
to allow researchers to combine a wide range of static typestate analyses with a
wide range of runtime monitors. To achieve this goal, we needed to de-couple the
runtime-monitoring efforts from the static-analysis components. Because, as we
mentioned, AspectJ has become a very popular intermediate representation for
runtime monitors, we decided to use this same layer of abstraction for CLARA’s
input as well. Hence, with CLARA, the researcher first defines a set of runtime
monitors for typestate properties using a runtime-monitoring tool. Normally, this
tool would then generate a plain-AspectJ aspect. However, to communicate the
typestate properties themselves to CLARA’s static analyses the tool also gener-
ates a special annotation to the aspect, called a “dependency state machine”. It
is easy to extend the monitoring tools to generate these annotations and we have
modified JavaMOP and the tracematches compiler accordingly. If the monitor-
ing tool does not support generating annotations the researcher can also easily
write the annotation by hand.

As Figure 2 shows, CLARA first weaves the monitoring aspect into the pro-
gram. The dependency state machine defined in the annotation provides CLARA
with enough domain-specific knowledge to then analyze the woven program. Re-
searchers can add a number of static analyses to CLARA and have them applied
in any order. When any of these analyses determines that an instrumentation
point is irrelevant to all stated properties, i.e. can neither lead to a violation
of this property, nor can prevent a property violation, then CLARA disables the
instrumentation at this point. The result is an optimized instrumented program
that updates the runtime monitor only at locations that remain enabled.

In addition, users can instruct CLARA to modify the advice dispatch of the
monitoring aspect in such a way that the program under test can be used for
Collaborative Runtime Verification [4]. In Collaborative Runtime Verification,

cl()sc, reconnect, write close write

close
VR
R write U

reconnect

Fig. 1. “ConnectionClosed” example typestate property

compile & weave ‘

CLARA

I
! I
! 1
! I
! 1
! I
! 1
! I
! 1
1 :
| < !
| || static-analysis engine | optimized instru- Y b
: mented program test-run :
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
I

I

I

|

N, %

Fig. 2. Overview of CLARA

different users are sent differently configured versions of the program under test,
where each version only contains partial monitoring code. This usually helps
keep the monitoring overhead low. By design, this partitioning of instrumen-
tation points is orthogonal to the static-analysis engine, i.e. it can be used in
combination with any static analysis (or all of them).

3 Why researchers should use Clara

We believe that CLARA is an attractive framework to researchers in the fields of
both dynamic and static typestate analysis alike. Researchers who experiment
with dynamic typestate analysis through runtime monitoring can use CLARA’s
static analyses to obtain more efficient runtime monitors. For some monitoring
approaches, converting a “full” runtime monitor into a residual one can cause
speed-ups of several orders of magnitude [5,6] and can therefore make monitor-
ing approaches realistic that seem unrealistic without such static-analysis com-
ponent. In our experiments, we have seen such speedups with runtime monitors
generated from tracematches [1] and JavaMOP [7]. Making a runtime-monitoring

tool fit for CLARA is often easy. Many such tools already generate AspectJ as-
pects anyway. Augmenting the aspect with a dependency state machine is often
an easy task. CLARA then handles everything else automatically.

CLARA is also an attractive framework for researchers in the field of static
typestate analyses. The typestate-analysis problem is generally undecidable and
therefore any static typestate analysis must have some amount of false positives,
i.e. the analysis will report that the given program may violate its typestate
properties at program locations at which no violations will actually occur. A
purely static analysis would just require the user to deal with these false alarms.
Using CLARA, the analysis can be used to automatically specialize an appropriate
runtime monitor that only signals property violations as they actually occur
at runtime. Further, CLARA offers convenient abstractions and templates to
implement static typestate analyses. We provide CLARA pre-equipped with three
example analyses of varying precision and complexity [5,6].

CLARA is freely available as open source at http://bodden.de/clara/,
along with extensive documentation, the author’s dissertation, which describes
CLARA in detail, and with benchmark results. We hope that other researchers
will soon be joining us in using CLARA, and that this will foster progress in the
field of hybrid static/dynamic program analysis.

References

1. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhotédk, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding Trace Matching with
Free Variables to AspectJ. In: OOPSLA. pp. 345-364. ACM Press (Oct 2005)

2. Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoték, J., Lhotdk, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: abc: An extensible AspectJ
compiler. In: AOSD. pp. 87-98. ACM Press (Mar 2005)

3. Bierhoff, K., Aldrich, J.: Modular typestate checking of aliased objects. In: OOP-
SLA. pp. 301-320 (Oct 2007)

4. Bodden, E., Hendren, L., Lam, P., Lhotédk, O., Nacem, N.A.: Collaborative runtime
verification with tracematches. Journal of Logics and Computation (Nov 2008),
doi:10.1093/logcom /exn077

5. Bodden, E., Hendren, L.J., Lhotdk, O.: A staged static program analysis to im-
prove the performance of runtime monitoring. In: European Conference on Object-
Oriented Programming (ECOOP). LNCS, vol. 4609, pp. 525-549. Springer (2007)

6. Bodden, E., Lam, P., Hendren, L.: Finding Programming Errors Earlier by Eval-
uating Runtime Monitors Ahead-of-Time. In: Symposium on the Foundations of
Software Engineering (FSE). pp. 36-47. ACM Press (Nov 2008)

7. Chen, F., Rosu, G.: MOP: an efficient and generic runtime verification framework.
In: OOPSLA. pp. 569-588. ACM Press (Oct 2007)

8. DeLine, R., Fahndrich, M.: Typestates for objects. In: European Conference on
Object-Oriented Programming (ECOOP). LNCS, vol. 3086, pp. 465-490. Springer
(Jun 2004)

9. Dwyer, M.B., Purandare, R.: Residual dynamic typestate analysis: Exploiting static
analysis results to reformulate and reduce the cost of dynamic analysis. In: Interna-
tional Conference on Automated Software Engineering (ASE). pp. 124-133. ACM
Press (May 2007)

http://bodden.de/clara/

	Clara: a framework for implementinghybrid typestate analyses
	Eric Bodden

