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ABSTRACT

Jupyter notebooks are now widely adopted by data analysts as they
provide a convenient environment for presenting computational
results in a literate-programming document that combines code
snippets, rich text, and inline visualizations. Literate-programming
documents are intended to be computational narratives that are
supplemented with self-explanatory text, but, recent studies have
shown that this is lacking in practice. Efforts in the software en-
gineering community to increase code comprehension in literate
programming are limited. To address this, as a first step, this paper
presents a prototype Jupyter notebook annotator, HeaderGen, that
automatically creates a narrative structure in notebooks by clas-
sifying and annotating code cells based on the machine learning
workflow. HeaderGen generates a markdown cell header for each
code cell by statically analyzing the notebook, and in addition, asso-
ciates these cell headers with a clickable table of contents for easier
navigation. Further, we discuss our vision and opportunities based
on this prototype.
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1 INTRODUCTION

Literate programming is a programming paradigm of interleaving
code snippets with visualization and explanatory text [4]. Jupyter
notebook is an open-source literate-programming tool for develop-
ing interactive documents that augment executable code snippets
with rich text. Jupyter notebooks are evolving as the de-facto tool
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for data analysts and machine learning experts [7]. Jupyter note-
books are used as a “detailed lab notebook”, where, the exploratory
process of extracting insights from the underlying data is detailed
with accompanying descriptive text [3]. Literate programming plays
an important role in sharing and reproducibility of computational
results, especially in platforms such as Kaggle,! where the data
science community comes together to share and learn.

Jupyter notebooks are composed of a sequence of cells. These
cells can be of three types: code, markdown, or raw. Code cells are
used to write executable code snippets. Markdown cells contain
rich text, where, the markdown language can be used to format
explanatory text. Raw cells are for rendering different code formats
into HTML or LaTeX. Figure 1 presents a simple Jupyter notebook
containing three code cells, three markdown cells which are ren-
dered HTML H3 header text, and an inline visualization which is
the output of the last code cell. Note that a raw cell is not shown
here.

Import Libraries

import matplotlib.pyplot as plt
import numpy as np

Markdown
Cells Calculate Sine Values Code
(rendered) t = np.arange(0.0, 2*np.pi, 0.601) Cells
s = np.sin(t)
Visualize
plt.plot(t, s)
plt.show()
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Figure 1: A simple Jupyter notebook

Jupyter notebooks are widely used as walk-through guides for
beginners, especially in platforms such as Kaggle. To cultivate best
practices in learners it is therefore important to also follow these
practices and to maximize code comprehension in such environ-
ments.

However, studies have shown that this is not the case and data
analysts tend to sway away from literate programming principles:

1) Wang et al. [12], found that even notable Jupyter notebooks
(i.e., advocated by the Jupyter team) contain signs of poor coding
practices such as unused variables and deprecated APIs.

https://www.kaggle.com/
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2) Rule et al. [9], in a series of large scale study and interviews,
reported that analysts describe their notebooks to be “messy” and
needed further refactoring and annotation to be presentable to
others. Furthermore, authors note analysts are using markdown
headers to organize the structure of their notebooks. However,
a quarter of the notebooks they studied had no markdown cells,
showing a lack of narrative structure.

3) Kery et al. [3], interviewed 21 data scientists to study liter-
ate programming behavior. Authors found that the notebooks are
often structured mainly through cell structure rather than using
descriptive markdown cells to create a narrative.

4) Pimentel et al. [8], in a large scale study of 1.4 million note-
books, found that notebooks often contained out-of-order cells
which makes reproducibility difficult and hampers the narrative
structure of notebooks. In addition, their study found that more
than 90% of the markdown cells in notebooks contained headers
(H1, H2, and H3). This shows that analysts are using headers in
markdown cells for creating a narrative structure.

While these earlier studies highlight the need for tool support
in improving literate programming practices, efforts to improve
coding practices, code comprehension, and bug detection in Jupyter
notebooks are still in the early stages.

To this end, this paper presents a proof-of-concept (POC) Jupyter
notebook annotator called HeaderGen for automatically generating
descriptive markdown header cells by statically analyzing the note-
book. Header cells are annotations to the respective code cells that
follow and in addition these header cells are associated with a click-
able Table of Contents at the top of the notebook. Although headers
are not a direct replacement for detailed descriptions, they can en-
able easy navigation and improve code comprehension. Moreover,
several other capabilities can be realized based on the analysis infor-
mation gathered by HeaderGen. While Jupyter notebooks support
many programming languages, we target Python, considering that
it is used in the vast majority of notebooks [9]. We implement a
static analyzer for identifying all function calls in a notebook. The
analyzer resolves each call to the target function’s definition. For
instance, plt.plot is recognized as matplotlib.pyplot.plot and there-
fore a function of the library matplotlib. HeaderGen generates an
appropriate cell header based on the utility of these function calls.

In this work, we present: 1) an approach to automatically an-
notate Jupyter notebooks based on static analysis results and 2)
our vision for advancing the development of tools to support data
scientists, specifically tools that improve code comprehension, bug
detection, and enforce best practices in Jupyter notebooks.

2 PROOF OF CONCEPT: ANNOTATOR

Machine learning (ML) based data analysis is carried out in sequen-
tial phases, often with feedback loops between phases [1]. Although
several workflows exist in the literature, we present a common and
simplified workflow for solving ML problems as shown in the Fig-
ure 2. Data analysts tend to form narratives in their notebooks
based on this workflow. This is evident in platforms such as Kaggle.

A notebook presenting a solution to an ML problem typically
consists of three phases.
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1) Data Phase: where the dataset is ingested, validated, and pre-
processed according to the context of the problem.

2) Model Phase: where a specific model is trained on a clean
training dataset generated in the previous phase. Furthermore, the
predictions of the model are typically evaluated using a separate
test dataset.

3) Post Development Phase: finally, the trained model is prepared
for deployment in an external application or simply saved for use
in a different context.

Post Development
Data Phase Model Phase Phase
Data Data Data Model Model Model
Ingestion | | Validation Pre-processing Training Evaluation Deployment

[ Visualization ‘

Figure 2: A simplified workflow of solving ML problems

As a first step towards bringing tool support to improve the
coding practices of data analysts, we implement a Jupyter notebook
annotator called HeaderGen that associates code cells with the ML
phases. HeaderGen annotates notebooks with markdown cells based
on the ML phases and provides an overview of the notebook by
generating a clickable Table of Contents at the top of the notebook.

Cell headers are generated in two steps. First, function calls in
each code cell are identified using static analysis methods. Then,
these function calls are matched against a pre-built function-to-
ML-phase mapping. We briefly discuss this two-step process as
follows.

2.1 Identifying Function Calls

Statically identifying function calls in a dynamic programming
language like Python is challenging. For Python, precise call graph
generation is an evolving topic and existing call graph generation
algorithms for Python are not practical for use in our analysis [6].
Fortunately, our requirement is the identification of all call sites
(i.e., where a function call exists) and determining the library it
belongs to, hence, a complete call graph is not required for our
analysis. Yet, currently, no tool exists that can generate call site
information for a Jupyter notebook. Therefore, as a starting point
for our POC, we implement a static analyzer for identifying call
sites in Jupyter notebooks. HeaderGen can identify call sites and
trace the function calls back to their library of origin. To do this,
a Jupyter notebook is taken as an input and first converted into a
native Python script. Next, the Abstract Syntax Tree (AST) of the
Python script is generated using the built-in AST library. This is
followed by an iterative analysis of the AST in two steps.

First, the AST is analyzed to gather information about: 1) Imports,
i.e., names of the imported third-party libraries and 2) Variable
aliases, i.e., different identifiers referring to the same underlying
variable. Then, the import and alias information is used to resolve
the function call to the library where it is defined (see Figure 3).

The operational sequence of HeaderGen is listed as follows:

(1) Analyze import statements

Python allows multiple ways to import libraries and also
provides ways to import libraries with an alias. Import nodes
in the AST are analyzed to gather the import information.
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(2) Analyze assignment statements
Assignment nodes in the AST are analyzed to generate alias
information for all variables.

(3) Separate Library Calls
In the second iteration, every Call node in the AST is visited
and the function calls are categorized into built-in, user-
defined and library functions. The line number of the func-
tion is also stored for mapping it back to its cell.

(4) Recognize Library
Using import and alias information, function calls are re-
solved back to its library.

(5) Tag ML Phase
Library calls are matched with the function-to-ML-phase map-
ping to find the appropriate tag.

"imports_info": {

Imports _w» . - . \

Information plt": "matplotlib.pyplot
'plt’ to
‘matplotlib.pyplot’
"library calls": {
Li "320: [
ine __w»v ‘
Number

"source_func_call": "plt.plot",
"func_call": "matplotlib.pyplot.plot",
"ml_pipeline tag": [

"VISUALIZATION"
ML Phase _/v]

Tag }
1

Figure 3: Analysis information of an example notebook

Figure 3 shows a section of the analysis information of a real-
world Jupyter notebook. Here, the original call pit.plot, at line num-
ber 32, is recognized as matplotlib.pyplot.plot based on the import
information gathered in the first iteration of the analysis.

We note that HeaderGen does not perform well with several
advanced Python features such as eval functions, higher-order
functions, and situations where type information is lacking due to
dynamic typing in Python. However, our POC is still in the early
stages and new research in this direction is promising — PyCG [10],
Google’s Pytype,? and Facebook’s Pyre?.

2.2 Library Mapping

For the current POC we have built a function-to-ML-phase map-
ping for a few popular machine learning libraries. To establish the
mapping, we manually inspected the respective official API docu-
mentation. In cases where the classification is uncertain, or when a
function can be used in multiple phases, such functions are mapped
to multiple phases by process of elimination. For instance, a call to
the Keras API “keras.layers.LSTM” is mapped to a single phase as
“MODEL TRAINING”, whereas, a call to the Numpy API “numpy.array”
is mapped as “DATA INGESTION, DATA PREPROCESSING”. All the
phases shown in Figure 2 are considered in the mapping.

Zhttps://github.com/google/pytype
3https://github.com/facebook/pyre-check
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sc = MinMaxScaler(feature range=(0,1))
training set scaled = sc.fit transform(training set)

(a) Code cell before analysis

DATA PREPROCESSING (2)

sc = MinMaxScaler(feature_range=(0,1))
training set scaled = sc.fit transform(training set)

(b) Code cell annotated with cell header after analysis

Figure 4: Example of an annotated code cell

Table of Contents

® [IMPORTS (9) | CONFIGURATION (1)
® FUNCTION DECLARATION (2)

® DATA INGESTION (1)

DATA PREPROCESSING (2)

® MODEL TRAINING (12)

® MODEL EVALUATION (2)

e VISUALIZATION (7)

Figure 5: Table of contents generated at the top of notebooks

2.3 Notebook Annotation

The analysis is not performed directly on the Jupyter notebook,
instead, before the analysis, notebooks are first converted into
native Python scripts. Therefore, additional helper functions are
implemented to: 1) convert between Jupyter notebook and Python
script, 2) map line numbers in Python scripts back to its respective
notebook cell, 3) generate table of contents, and 4) add analysis
results as markdown cells into the notebook.

Figure 4 shows a section of the same notebook before and after
the analysis. Here, a code cell is annotated with a markdown cell as
a header. The number inside the brackets represents the number of
calls for a particular tag, for instance, “DATA PREPROCESSING (2)”
means two function calls associated with data pre-processing is
identified in the following code cell. Figure 5 shows the table of
contents that is generated at the top of a notebook. The contents of
the notebook can be navigated using the hyperlinked sections.

3 FUTURE WORK

HeaderGen is only a first demonstration of the possibilities of using
static analysis techniques to bring tool support to literate program-
ming. We therefore list some ideas for future direction in this area.
Boilerplate Notebook Generation. Code generators exist for
other domains, for instance CogniCrypt [5] for cryptography. How-
ever, nothing equivalent exists for ML literate programming. We
suggest that a code generator for various ML models is worthy to
be explored. Such a generator can support data analysts by prepar-
ing a boilerplate notebook that is structured according to the ML
workflow with markdown headers and table of contents.
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Cell Restructuring. Cells cluttered with functions from multi-
ple ML phases can be flagged for refactoring, such that individual
cells are logically separated to aid code comprehension in spirit of
literate programming.

Automated API Mapping. ML libraries are continuously evolv-
ing and new libraries and APIs are being developed regularly. There-
fore, manually mapping each of them to ML phases is not advisable.
Natural language processing techniques can be explored to auto-
mate function-to-ML-phase mapping.

Phase Targeted Feedback. Along with boilerplate notebook
generation, the generated notebook can be followed by continuous
static analysis. One can use the analysis results to nudge analysts in
the right direction by giving real-time targeted feedback based on
the ML phase the analyst is currently working on. For instance, if
an analyst is writing a custom pre-processing function for a specific
model, a feedback can be presented with a list of already available
pre-processing functions for that specific model.

Phase Based Notebook Mining. Another potential area that
can be explored is code mining for ML notebooks. This can be useful
for analysts looking for code examples for a specific model and
library. The ML workflow can be exploited here as well, for instance,
a query language can be developed to enable listing of all code cells
of a specific ML phase. For instance, listing all data pre-processing
cells of notebooks implementing a certain ML model.

Teaching Framework. Considering the wide adoption of Jupyter
notebooks for teaching, a framework for teaching ML program-
ming by keeping the learner in check using static analysis can be
effective. Experts can define a high-level protocol for implementing
a specific model (e.g., API patterns). Then, the learner is actively
encouraged to follow a specific pattern of API usage, followed up
with real-time feedback as the learner tackles individual ML phases.

Bug Detection for Deep Learning. In the last 5 years an array
of empirical studies have investigated the programming challenges
faced by analysts. The most recent work by Humbatova et al. [2],
presents a taxonomy of deep learning faults faced by analysts. Tool
support to tackle faults based on this taxonomy can be explored.

Dynamic and Static Analysis. Rule et al. [9] found from a
sample of 1 million notebooks that the median notebook contains
85 lines of code. Considering the small size of notebooks, a hybrid
approach combining dynamic and static analysis can be explored.

4 RELATED WORK

Research at the intersection of static analysis and literate program-
ming seems to be lacking. The only other relevant work that directly
targets Jupyter notebooks is by Wang et al. [11]. The authors imple-
ment a tool called Osiris, which attempts to improve reproducibility
by recognizing and satisfying dependencies between code cells.
Osiris provides all possible execution orders that reproduce the
original notebook results.

On the other hand, multiple studies have indicated that experts
in the ML community lack sufficient knowledge of software en-
gineering and code-quality principles. Wang et al. [12] recently
highlighted the need for research in the direction of improving
software quality and reliability in the literate-programming world,
specifically for Jupyter notebooks. Kery et al. [3] and Rule et al. [9]
investigated coding behavior in Jupyter notebooks. Kery et al. [3]
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found that a narrative structure is often created using cell struc-
ture rather than with explanatory markdown cells. Rule et al. [9]
found that analysts are willing to spend time documenting their
notebooks but note that analysts would benefit from tool support
for structuring and annotation.

5 CONCLUSION

While the software engineering community has been investigating
the challenges faced by data scientists in literate programming,
tool support to mitigate these challenges is lacking. To this end, in
this preliminary work, we make an argument for bringing static
analysis based tool support to literate programming by building
HeaderGen, a proof-of-concept Jupyter notebook annotator. Head-
erGen can automatically annotate notebooks by adding markdown
cells to Jupyter notebooks. We further put forward our vision and
opportunities for further development of our annotator.
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