Domain-specific Modelling with AToM?3

Hans Vangheluwe, Ximeng Sun, Eric Bodden

School of Computer Science, McGill University
Montréal, Québec, Canada
{hv, xsunl6, ebodde}@s.ncgill.ca

Abstract. Using domain-specific modelling environments maximallpstoains
users, matching their mental model of the problem domaid,alows them to
only build syntactically correct models. Anecdotal evidershows that domain-
specific modelling can drastically improve productivityvesll as product quality.
In this paper, the foundations of (domain-specific) modgllanguage design are
presented. Our guiding principle is tofbdeleverything”. It is indeed shown how
all aspects of language design can be explicitly (meta-gted enabling the ef-
ficient synthesis of domain-specific, visual, modellingiemvments. The case of
AToM3, A Tool for Multi-formalism and Meta Modelling, is elaboest. Con-
cepts are illustrated by modelling, analysis, simulatenmj eventual synthesis of
software for Traffic networks.

1 Dissecting a Modelling Language

To explicitly model domain-specific modelling languaged atiimately synthesize
visual modelling environments for those, we will break dawmodelling language into
its basic constituents. The following is based on a desorigiy Harel and Rumpe [1],
taking common programming language concepts and puttiew fim a more general
modelling context. An earlier version of this section appéeaas a tutorial at a 2006
MoDELS workshop [2].

The two main aspects of a model aresismtax(how it is represented) on the one
hand and itsemantic§what it means) on the other hand.

The syntax of modelling languages is traditionally paotid intoconcrete syntaand
abstract syntaxin textual languages for example, the concrete syntax dema of se-
guences otharacterstaken from aralphabet These characters are typically grouped
into words or tokens Certain sequences of words sentencesre considered valid
(i.e., belong to the language). The (possibly infinigeXof all valid sentences is said
to make up the language. Costagliola et. al. [3] presentradweork of visual language
classes in which the analogy between textual and visualckens, words, and sen-
tences becomes apparent. Visual languages are those tggsghose concrete syntax
is visual (graphical, geometrical, topological, ...) apoged to textual. For practical
reasons, models are often stripped of irrelevant concyetas information during syn-
tax checking. This results in an “abstract” representatibich captures the “essence”
of the model. This is called thebstract syntaxObviously, a single abstract syntax may
be represented using multiple concrete syntaxes. In pnogiag language compilers,
abstract syntax of models (due to the nature of programgjpigdlly represented in

Abstract Syntax Tred@\STs). As in the context of general modelling, models aterof
graph-like, this representation can be generalizellistract Syntax Graph@SGs).
Once the syntactic correctness of a model has been esthligh meaning must be
specified. This meaning must beiqueandprecise(to allow correct model exchange
and code synthesis for example). Meaning can be expressspoyfying asemantic
mapping functiorvhich maps every model in a language onto an elemensenzantic
domain For example, the meaning of Activity Diagrams may be givgmiapping it
onto Petri Nets. For practical reasons, semantic mappinguslly applied to the ab-
stract rather than to the concrete syntax of a model. Notalhleassemantic domain is a
modelling language in its own right which needs to be prgperbdelled (and so on,
recursively). In practice (in tools), the semantic mapgdinmgction maps abstract syntax
onto abstract syntax.

To continue this introduction of meta-modelling and modahsformation con-
cepts, languages will explictly be represented as (possifihite) as shown in Figure 1.
In the figure, insideness denotes the sub-set relationghip.dots represent models

Meta-Models

Transformations
model of transf
model of °

model of [[.]]

Semantic Domain
Concrete Syntax

Abstract Syntax (set A)

Fig. 1. Modelling Languages as Sets

which are elements of the encompassing set(s). As one cayslat some level of ab-
straction, represent a model as a graph structure, all magelshown as elements of the
set of all graphsraph. Though this restriction is not necessary, it is commonkduas

it allows for the elegant design, implementation and boapgting of (meta-)modelling
environments. As such, any modelling language becomes ssifpy infinite) set of
graphs. In the bottom centre of Figure 1 is the abstract gygg#A. It is a set of models
stripped of their concrete syntax.

Meta-modellings a heavily over-used term. Here, we will use it to denotegke
plicit description (in the form of a finite model in an appr@ie meta-modelling lan-
guage) of the abstract syntax geiof a modelling language. Often, meta-modelling
also covers a model of the concrete syntax. Semantics isuenwet covered. In the
figure, the sef is described by means of the modedta-model of A. On the one hand,
a meta-model can be useddbeckwhether a general model (a gragiglongs tathe
setA. On the other hand, one could, at least in principle, use a+/metdel togenerate
all elements oA\. This explains why the term meta-model and grammar are aoffed
inter-changeably.

Several languages are suitable to describe meta-modedsaffproaches are in com-
mon use:

1. A meta-model is @aype-graph Elements of the language described by the meta-
model are instance graphs. There must lmasphismbetween an instance-graph
(model) and a type-graph (meta-model) for the model to bbérlanguage. Com-
monly used meta-modelling languages are Entity RelatipnBfagrams (ERDS)
and Class Diagrams (adding inheritance to ERDs). The esprepower of this
approach is often not sufficient and an extomstraint languagésuch as the Ob-
ject Constraint Language (OCL) in the UML) specifying coastts over instances
is used to further specify the set of models in a languageilfgdtie expressive
power of first or higher order logic). This is the approachduby the OMG to
specify the abstract syntax of the UML.

2. An alternative general approach specifies a meta-modal tasnsformation (in
an appropriate formalism such as Graph Grammars [4]) whidten applied to
a model, verifies its membership of a formalismreguction This is similar to the
syntax checking based on (context-free) grammars usedgramming language
compiler compilers. Note how this approach can be used taeiggde inferencing
and other more sophisticated checks.

Both types of meta-models (type-graph or grammar) caimtegpreted(for flexi-
bility and dynamic modification) ocompiled(for performance). Note that when meta-
modelling is used to synthesize interactive, possiblyalistodelling environments, we
need to modelhento check whether a model belongs to a languagf&ek+handnod-
elling, checking is only done when explicitly requestedisiheans that it is possible to
create, during modelling, syntactically incorrect modétssyntax-directeanodelling,
syntactic constraints are enforced at all times duringrgltb prevent a user from creat-
ing syntactically incorrect models. Note how the latterm@ggh, though possibly more
efficient, due to its incremental nature —of constructiod eansequently of checking—
may render certain valid models in the modelling languageachable through incre-
mental construction. Typically, syntax-directed modgjlenvironments will be able to
give suggestions to modellers whenever choices with a finiteber of options present
themselves.

The advantages of meta-modelling are numerous. Firgxplicit model of a mod-
elling language can serve decumentatiorand asspecification Such a specification
can be the basis for thenalysisof properties of models in the language. From the meta-
model, a modelling environment may hatomaticallygenerated. The flexibility of the
approach is tremendous: new, possibly domain-specifiguages can be designed by

simply modifyingparts of a meta-model. As this modification is explicitly aeg to
models, the relationship between different variants of aetlong language is apparent.
Above all, with an appropriate meta-modelling tool, modifya meta-model and sub-
sequently generating a possibly visual modelling tool @eos of magnitudésterthan
developing such a tool by hand. The tool synthesigjgatableandless error-prone
than hand-crafting. As a meta-model is a model in an appaitgmodelling language
in its own right, one should be able to meta-model that laggisaabstract syntax too.
Such a model of a meta-modelling language is calledeta-meta-modeThis is de-
picted in Figure 1. It is noted that the notion of “meta-" idat#ve. In principle, one
could continue the meta- hierarchy ad infinitum. Luckilyireomodelling languages
can be meta-modelled by means of a model in the languagk iteéd meta-circularity
allows modelling tool and language compiler builderdtmtstraptheir systems.

A modelm in the Abstract Syntax set (see Figure 1) needs at least anzrete
syntax. This implies that a concrete syntax mapping funatios neededk maps an
abstract syntax graph onto a concrete syntax model. Suchdglneould be textual
(e.g.,an element of the set of all Strings), or visuald.,an element of the set of all
the 2D vector drawings). Note that the set of concrete mockatsbe modelled in its
own right. It is noted that grammars may be used to model aaVisoncrete syntax
[5]. Also, concrete syntax sets will typically be re-used ddferent languages. Often,
multiple concrete syntaxes will be defined for a single aritsyntax, depending on the
intended user. If exchange between modelling tools is dednan XML-based textual
syntax is appropriate. If in such an exchange, space andrpghce is an issue, a
binary format may be used instead. When the formalism istgide as in the case
of a circuit diagram, a visual concrete syntax is often usadhiman consumption.
The concrete syntax of complex languages is however rargisey visual. When for
example equations need to be represented, a textual cesgratix is more appropriate.

Finally, a modem in the Abstract Syntax set (see Figure 1) needs a unique &ad pr
cise meaning. This is achieved by providing a Semantic Doraad a semantic map-
ping function[[.]] . This mapping can be given informally in English, pragmaitic
with code or formally with model transformations. Naturahfjuages are ambiguous
and not very useful since they cannot be executed. Code autatde, but it is often
hard to understand, analyze and maintain. It can be verytbandderstand, manage and
derive properties from code. This is why formalisms such egp8 Grammars are often
used to specify semantic mapping functions in particularrmoedel transformations in
general. Graph Grammars are a visual formalism for spewififiansformations. Graph
Grammars are formally defined and at a higher level than d@dmplex behavior can
be expressed very intuitively with a few graphical rulesttRarmore, Graph Grammar
models can be analyzed and executed. As efficient executiynibm an issue, Graph
Grammars can often be seen as an executable specificatiomafaral coding. As such,
they can be used to automatically generate transformatidrtasts.

Not only semantic mapping, but also general model transdtions can be explicitly
modelled as illustrated by-transf— and its model in Figure 1. It is noted that models
can be transformed between different formalisms.

Within the context of this paper, we have chosen to use thevwiolg terminology
(see also [2]).

A languageis the set of abstract syntax models. No meaning is given éseth
models.

A concrete languageomprises both the abstract syntax and a concrete syntax map
ping functionk. Obviously, a single language may have several concreggi&ges
associated with it.

A formalismconsists of a language, a semantic domain and a semantidmgapp
function giving meaning to model in the language.

A concrete formalisncomprises a formalism together with a concrete syntax map-
ping function.

We will also focus on our tool AToMI[6]. It is noted that several other meta-environment
toolsets exists (see for exampiew. et a- envi r onnment . or g). We use our tool as it
closely follows the general framework described above.

Many challenges still remain for Model Driven Engineeridgs with programs,
models evolve over time. Model version control, based onmaing model differ-
ences is necessary. As even meta-models and models traasimns (in particular, of
semantics) may evolve, this must also be dealt with.

2 Modelling Traffic Networks

Domain- and formalism-specific modelling have the poténtagreatly improve
productivity [7]. They are able to exploit features inhdrema specific domain or for-
malism. This will for example enable specific analysis téghas or the synthesis of ef-
ficient code. The time required to construct such domaimdism-specific modelling
and simulation environments can however be prohibitiveisThather than using such
specific environments, generic environments are typiagid. Those are necessarily a
compromise.

To illustrate domain-specific modelling, we introduce aglified TimedTraffic for-
malism, a visual notation specific to the vehicle traffic domj8]. It is of course pos-
sible to model traffic systems using a variety of generic nflodgand simulation lan-
guages such asPSS, DEVS [9], and Petri Nets. We choose not to do this, but rather
build a TimedTraffic-specific modelling environment. This maximally consteairsers,
allowing them, by construction, tonly build syntactically and, for as far as this can be
statically checked, semantically correct models. Furtiee, theTimedTraffic-specific,
visual syntax used matches the users’ mental model of tHegrodomain.

Figure 2 shows a lattice of traffic-related Formalisms aremvant transformations
between them. At the top IBmedTraffic, a domain-specific formalism allowing the de-
scription of timed movement of cars through a traffic netwétknodeller may wish to
visualize the dynamics of a traffic systems, analyze priggesuch as liveness, and ob-
tain performance metrics such as average throughput. Tpostithis variety of goals,
Figure 2 shows howimedTraffic is mapped onto different formalisms. When timing
information is removed from a model, a conservative abstracan untimedTraffic
model is obtained. As shown in [10], an appropriate trama#dion ontoPetri Nets
then allows for analysis of pertinent properties such asnl@ss and conservation. For
timed analysis, mapping ontdmed Transition Petri Nets may be done. For performance
analysis by means of simulation, mapping onto Kt/S formalism (and simulation
using for example the pythonDEVS tool) is appropriate. Altgh desirable, imple-

simulate

TimedTraffic

simulate

£
DE\/S T
simulate descfibe semarftics
by mapping onto
simulate
analyze 3 ’
imap onto simulate
Imap onto ‘ Timed Transition Petri Nets ‘
descfibe semarftics
pythonDEVS 0
Py Fapeing oo possible behavipurs
simulate analyze:
simulate reachability,
analyze coverability,
DEVSJava ili
TINA Coverability Graph

simulate

Fig. 2. Various Traffic formalisms and transformations betweemthe

menting modelling environments which support the forrmasand transformations in
Figure 2 seems a daunting task. Tineta-modellingand model transformatiorcon-
cepts described in the previous section can however be oserbdel all formalisms
and transformations. We have implemented the entire figutréop brevity will demon-
strate the principles of our approach by showing the metdehand the operational
semantics offimedTraffic.

2.1 Modelling TimedTraffic

A modelling environment for the domain-specific formali3imedTraffic allows users
to model traffic flow by means of connected road segmentsacatdraffic lights. Traf-
fic signals impose constraints on how cars can be moved byrdnisformation. Fur-
thermore, the model ismed i.e.,cars move at a certain constant speed (in our chosen
abstraction) and traffic lights switch state every fixed nentdf time units.

We first introduce the abstract syntaxiahedTraffic and explain how it can be mod-
elled within the AToM modelling environment, along with the static semanticsolhi
imposes certain non-behavioural constraints. We then $tawwconcrete syntax infor-
mation can be added to allow synthesis of a visual modelbogfor TimedTraffic. We
also demonstrate how concrete syntax can change over tinefle¢ot state changes on
the abstract level. We finally model (operational) semaraichis formalism by means
of a graph grammar which describes how cars move throughemgraffic network.

Abstract Syntax The abstract syntax model or meta-modefrohedTraffic is shown
as a model in th&ntity Relationship formalism in Figure 3. This ER meta-model com-

car

|Attributes:

- plateno :: String

- speed :: Integer

- scheduletime :: Integer

- globalEventTime :: Integer
Cardinalities

- To carLink: 0to N

IAttributes”

- linkType :: String
Constraints:

> connecting

> disconnecting
Cardinalities:

- To roadSegment: O to 1
- From roadSegment: 0 to I

globallnfo

Attributes:
- globalTime :: Integer

|Attributes:
- linkType :: String
Cardinalities:

- To roadSegment: 0 to N
-Fromcar: 0to N

roadSegment

|Attributes:
- Length :: Integer [
- capacity :: Integer roadRight
Constraints: ATt UTeST
> initsetting - linkType :: String
A-“\[H?T(;pe : String Cardinalities: IConstraints:
IActions: - From carLink: 0 to N [&———{ > connecting
> connecting - From lightLink: 0 to N > disconnecting
> disconnecting - ToroadTop: 0to N Cardinalities:
Cardinalities: - From roadTop: 0 to N - To roadSegment: 0 to 1
" - To roadLeft: 0 to N - From roadSegment: 0 to [L

- To roadSegment: 0 to 1

- From roadSegment: 0 to | - From roadLeft: 0 to N

- To roadRight: 0 to N

- From roadRight: 0 to N

- To roadBottom: 0 to N

- From roadBottom: 0 to N

trafficlight
lightLink
|Attributes:
|Attributes: - currentstate :: Enum
- linkType :: String - scheduletime :: Integer
Cardinalities: [——| - direction :: Enum
~To roadSegment: 0 to 1 Cardinalities:
[AttrTbute ~ From traffichight: 0 to 2 - To lightLink: 0 to N
- linkType :: String
Constraints:
> connecting

> disconnecting
Cardinalities:

- To roadSegment: 0 to 1
- From roadSegment: 0 to [l

Fig. 3. Metamodel for the abstract syntax of Timed traffic

prises the following entities and relations:

roadSegmert€an be connected to other road segments. Also, since our ma@démed
model, road segments have a size to determine the time a eds b@ cross them. A
road segment may also have a finite capacity.

car Each car can move almost independently through the netWalrkost” because a
car is not allowed to cross a road segment which has a cortheaféc light showing
red. A car has a certain fixed speed and based on this and the leihgtimad segment,
a “schedule time” can be computed which gives the time ofdtd move, relative to the
last move time. For informational purposes, we also incladd¢obal event time, which
shows the global timestamp of the next scheduled move.

trafficLight A traffic light in our simple model can have two statesx] andgreen Just
like cars, they have a schedule time, which reflects the tihtlesir next state change.
globallnfoThis is singleton global entity for informational purpost®wing the global
time during the simulation.

relations There are multiple types of associations which indicatecWwhéntities may
be connected. These impose multiplicity constraints: a seEgment can only be con-
nected to at most one other road segment per direction (tifmrh, left, right). This is
enforced by setting cardinalitid® roadSegment: 0 to 1 andFrom roadSegnent :
0to 1.

The abstract syntax induced by this metamodel rigoroudiyneg all entities, their
attributes, their possible connections and constraintsrgyst them. Theiser of the
modelling environment foTrimedTraffic is however probably more concerned with the
concretesyntax. In the following, we show how such a concrete syn&axhme given to
each abstract counterpart using AT&M

Concrete Syntax Cars are rendered as a simple icon (constructed in Aidon
editor drawing tool) showing a bird’s eye view of a car. On thp car’s global move
time is displayed. See Fig. 6 for an example. Road segmetseationed above, can
be connected to zero to one other road segments on eachaiddlett which each road
segmentis connected to, each such segment contains fowsagach of which is made
visible when the segment is being connected and made iteisibdisconnection. The
effect of this is seen in Fig. 6, where only those arrows aséie that relate to existing
connections. In addition to the concrete syntax (an icon)efch entity, a concrete
syntax needs to be associated with each association. Twes tyffconcrete syntax are
typically used. On the one hand, associations can be rethtdgreneans of geometric
constraints. Connected road segments will for example seally placed next to one
another. On the other hand, a spline with a pointed arrow neayded as in the case
of the connection between a traffic light and a road segmetraffic light is modelled
by a traffic light icon along with two textual labels showirtgetcurrent state and the
number of time units until the next state switch. The actwdtch is triggered by a
graph grammar action as described below.

One concrete instance offanedTraffic model is shown in figure 6 which also shows
how it evolves over time. This behaviour is modelled in a grgpammar which we
explain in the following section.

Operational Semantics (Behaviour) The transformationof models is a crucial ele-
ment in all model-based endeavours. As models, meta-matelsmeta-meta-models
are all in essence attributed, typed graphs, we can trangtoem by means of graph
rewriting. The rewriting is specified in the form &raph Grammar [?] models. These
are a generalization, for graphs, of Chomsky grammars. Hneycomposed of rules.
Each rule consists of Left Hand Side (LHS) and Right Hand §rt¢S) graphs. Rules
are evaluated against an input graph, called the host glaphmatching is found be-
tween the LHS of a rule and a sub-graph of the host graph, treerute can be applied.
When arule is applied, the matching subgraph of the hostgeagplaced by the RHS
of the rule. Rules can have applicability conditions, ad @welactions to be performed
when the rule is applied. Some graph rewriting systems hamtral mechanisms to
determine the order in which rules are checked. After a rud¢citing and subsequent
application, the graph rewriting system starts the seagelina The graph grammar ex-
ecution ends when no more matching rules are found.

The behaviour of any syntactically valitimedTraffic model is given by a set of
Graph Grammar rules. Each car has an initial “next move time”. After eachvmo
(caused by a graph grammar rule) we recalculate the next timeebased on the car’s
speed attribute and thé engt h attribute of the road segment that has been moved to.
We can thus calculate the next move time of each car:

targetRoad Segmetength

carnextMoveTime-
carspeed

1)

Note that this move time is relative: it gives the number afdiunitsuntil its next
move Consequently, a car can be moved whenever its next movedinego (unless it
is blocked due to a red light). The rule in Fig. 4 reflects théssformation when a car
is moved to the right. The rule has a condition (not shown i the schedule time

f P B
—_—
g ==

I, > T

Fig. 4. MoveRight rule

34_? -
¥

6

must be 0 for this rule to apply. A further condition stateatthll traffic lights (if any)
connected to the right road segment (where the car intena®t@) should be in state
greenand the capacity of that road segment should not have beglmggar he rule itself
consists of a LHS which identifies the situation which shdddnatched. Each abstract
entity is assigned a label (a number): (1) left road segm@htight road segment; (3)
car; (4) connection between road segments (left to righ))cénnection between road
segments (right to left); (6) connection between car antrledd segment. The rule
moves the car by replacing matched entities. If a label orRIH& occurs on the LHS
this means that it reflects tisameentity. If it is a new label, it means thatrewentity
was created. If a label appears on the LHS and not on the RH&)tdp wasdeleted

In this example, 6 was removed and a connection 8 was addsdijrtte connecting
the car to the right road segment. The (concrete syntax}@nssolver running in the
background takes care of actually moving the car visuallyeadhe connection changes.
Also, after the move, the new schedule time is calculatedralang to equation 1. The
AToM?3 modelling tool reflects this by showirkPECI FI ED> on the RHS of each rule,
i.e., the new move time attribute specifiedby the rule. There are similar rules for
moving cars left, up, and down.

We also need to define the timed behaviour of the traffic lights do so as shown
in Fig. 5. Each time théefttime reaches 0, the rule applies and switches the traffic
light's state. In our very simple model, we then set the nesfttime” to 10. The figure
shows the rule for switching to green. There is also a simiié for switching to red.
The calculation of time progress is contained in a sevenid wihich only contains
actions given in the pseudo-code below:

m nSchedul eTi me = MAX gl obal Ti me += mi nSchedul eTi me
for each car in cars: for each car in cars:
i f car.schedul eTine < minSchedul eTi ne: car.schedul eTine -=
m nSchedul eTi me = nmi nSchedul eTi nme m nSchedul eTi me
for each light in trafficLights: for each light in trafficLights:
if light.schedul eTine < minSchedul eTime: |ight.schedul eTime -=
m nSchedul eTi me = nmi nSchedul eTi me m nSchedul eTi nme

First the minimal schedule time over all cars and traffic iggis calculated. Then
the global time is advanced by this offset and the offsetldragted from the schedule
times of all the cars and traffic lights (saturating at O te@wlblocked cars)i.e., we
make time progress. Note that this leaves at least one ceaffic tight with a schedule
time of 0, which means that one of the other transformatidesroan apply to actually
move the car or switch the light respectively. The seversf@mation rules are ordered
in the graph grammar with the following priorities:

1. turn light (red/green)
2. move car (left/right/up/down)
3. reschedule

This leads to the fact that first all traffic lights with a schidtime of 0 are switched.
If there is no such light or all have been switched alreadsnthll cars with a schedule
time of 0 are moved. Since all “move” rules have the same fyidhe move direction
is random(within the constraints given by connected red traffic lgyhEinally, when
all such cars are moved we know that no light or car with schetine 0 exists any
more and hence we can safely advance time by applyi@groatching) the last rule.

Example Simulation An

example of applying some

steps of the transformation

is shown in Figure 6 (to @ @

be read top to bottom, left i i
to right). We start with the

traffic light showing green

and a schedule time of 10 \ \
time units. The left car 2 2
(with a speed of 10) is A 1 A 1
about to move and the right

car (with a speed of 3) is to |]|:||::>

be moved in 4 time units.

The size of each road seg- .]]
ment is 40. According to Fig. 5. Light behaviour
the priorities stated above, the first match we obtain is tlle moving the left car
to the right, since its schedule time is 0. Afterwards, ohhlg tast rule can be applied
and hence we reschedule, which leads to the third subfigurte tHat the new sched-
ule time for the moved car is again 4 by equation (1). In thégestboth cars can move
since for both the move time is 4, which equals the global {iinee, for both, the offset
is 0 and one of the “move” rules can apply). Here, nondetestigally, the left car is
chosen and is moved back again, leading to the fourth subefigine next move time
for this car is now 8, by equation (1). In the next step, theoadccar is moved to the
left and also its next move time is recalculated. Accordimghte same equation, this
time we calculate a time of 17, adding #0= 13 to the previous move time 4. Then,
no more cars can move and so time is incremented by applysg¢ischedule” rule.
After doing so, the schedule time of the traffic light beco@eghich means that in the
subsequent step, the state of this light can be switcheatj.“Then again time passes
until the global time 17 (one but last subfigure) which enaltihe second car to move.

This simulation could be executed over an arbitrary amofititree and indeed AToM
allows for a continuous application of transformations.

3 Conclusions

In this paper, we demonstrated the use of meta-modellinggaagh transforma-
tion for domain-specific modelling. We visually specify thbstract syntax (meta-

globalTime:

-
.
State:
green
Lefttime:
10 globalTime:
X ~
—_— —
State:
green
Lefttime:
IS globalTime:
X -
—_— —_—
State:
green
Lefttime:
s globalTime:
|- | \
—_—
State:
green
Lefttime:
o globalTime:
—I= -
—_—

tate:

St
Lefttime:
A globalTime:
8
BB |
—_— —_—
State:
Lefttime:
o globalTime:
10
B8 .|
—_— —_—
State:
red
Lefttime:
10 globalTime:
10
BB |
—_— —_—
State:
red
Lefttime:
3 globalTime:
17
BB |
—_— —_—
State:
red
Lefttime:
3 globalTime:
17
] N -
—_— —_—

Fig. 6. Resulting simulation trace/animation

modelling) and concrete syntax of models we want to deal.vidBfhmeans of graph
transformation we visually define the manipulations on ¢h@®dels. This has the ad-
vantage that transformations are explicitely modelled hafe implemented these con-
cepts in our AToM tool following the ‘modeleverything” philosophy. To illustrate
our approach, we have modelled thenedTraffic formalism dedicated to vehicle traffic
network modelling. The syntax dimedTraffic was meta-modelled and the operational
semantics was modelled using a Graph Grammar. We also tedit@w a host of for-
malisms and transformations can be modelled to supportenirsgvdifferent types of
guestions about domain-specific models.

The main contribution of the paper is that it shows that miatpla domain-specific
problem elegantly and efficiently is possible. This enablesrs of specific modelling
formalisms to design specific applications, with relayvelinimal effort, Current and
future work addresses model evolution and multi-view mlagl by means of Triple
Graph Grammars. We are also modelling and generating a n&#baged (SVG/Ajax)
user interface for AToM which should lower the threshold for thenbdeleverything”
philosophy.

Acknowledgments

The Natural Sciences and Engineering Research Council RC3®Bf Canada is
gratefully acknowledged for partial support of this worke\&cknowledge the detailed
and helpful comments of the anonymous reviewers.

References

1. Harel, D., Rumpe, B.: Modeling languages: Syntax, seit&and all that stuff, part i: The
basic stuff. Technical report, Jerusalem, Israel (2000)

2. Giese, H., Levendovszky, T., Vangheluwe, H.: Summarheftorkshop on multi-paradigm
modeling: Concepts and tools. In Kiihne, T., ed.: Modelsiftv@are Engineering Workshops
and Symposia at MODELS 2006. LNCS 4364, Springer-Verla@2@52 — 262

3. Costagliola, G., Lucia, A.D., Orefice, S., Polese, G.: dsslfication framework to support
the design of visual languages. J. Vis. Lang. Comp8{2002) 573-600

4. Rozenberg, G.: Handbook of Graph Grammars and Computir@raph Transformation,
Volume 1. World Scientific (1997)

5. Minas, M.: Concepts and realization of a diagram editaregator based on hypergraph
transformation. Science of Computer Programmidg2002) 157-180

6. de Lara, J., Vangheluwe, H.: ATOMA tool for multi-formalism and meta-modelling. In:
European Joint Conference on Theory And Practice of So8BTAPS), Fundamental Ap-
proaches to Software Engineering (FASE). LNCS 2306, Spriffg002) 174 — 188 Greno-
ble, France.

7. Kelly, S., Tolvanen, J.P.: Visual domain-specific maulgliBenefits and experiences of using
metacase tools. In Bezivin, J., Ernst, J., eds.: Procesdihthe International workshop on
Model Engineering, ECOOP 2000. (2000) 9 pp.

8. Papacostas, C., Prevedouros, P.: Transportation Ergigeand Planning. Second edn. Pren-
tice Hall (1992)

9. Zeigler, B.P.: Theory of Modelling and Simulation. RabEer Krieger (1984)

10. Vangheluwe, H., de Lara, J.: Domain-Specific Modelliagdnalysis and design of traffic
networks. In Winter Simulation Conference, IEEE ComputeciSty Press (2004) 249 —
258 Washington, DC.

