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ABSTRACT

Context: Static analyses are well-established to aid in
understanding bugs or vulnerabilities during the development
process or in large-scale studies. A low false-positive rate is
essential for the adaption in practice and for precise results of
empirical studies. Unfortunately, static analyses tend to report
where a vulnerability manifests rather than the fix location.
This can cause presumed false positives or imprecise results.
Method: To address this problem, we designed an adaption
of an existing static analysis algorithm that can distinguish
between a manifestation and fix location, and reports error
chains. An error chain represents at least two interconnected
errors that occur successively, thus building the connection
between the fix and manifestation location. We used our tool
CogniCryptSUBS for a case study on 471 GitHub repositories,
a performance benchmark to compare different analysis con-
figurations, and conducted an expert interview. Result: We
found that 50% of the projects with a report had at least one
error chain. Our runtime benchmark demonstrated that our
improvement caused only a minimal runtime overhead of less
than 4%. The results of our expert interview indicate that with
our adapted version participants require fewer executions of
the analysis. Conclusion: Our results indicate that error chains
occur frequently in real-world projects, and ignoring them can
lead to imprecise evaluation results. The runtime benchmark
indicates that our tool is a feasible and efficient solution
for detecting error chains in real-world projects. Further, our
results gave a hint that the usability of static analyses may
benefit from supporting error chains.

Index Terms—Static analysis, error chains, false positive re-
duction, empirical studies

I. INTRODUCTION

Static analysis is a crucial tool that identifies software
bugs and vulnerabilities, and is highly recommended by ex-

M. Vogel conducted the work while affiliated with Paderborn University
and L. Winter while affiliated with Technische Universität Darmstadt.

perts [1], [2]. For cryptography, the available tools range from
command-line solutions [3], [4] over IDE integrations [5],
and software-as-a-service solutions [6], [7]. Researchers and
practitioners developed these tools to respond to the challenges
of using cryptography securely [8], [9]. Because of their abil-
ities, experts recommend integrating static analyses to detect
security bugs in the development cycle [2]. This ultimately
leads to more secure software for all users. However, previous
work has shown that many false positives hinder the adaption
of static analyses [10], [11]. Confusing reports may also
render the analysis’ result to be unresolved [12] or result
into effective false positives [13], [14]. Further, analyses with
many false positives may draw an imprecise picture of bugs
or vulnerabilities in software when used in empirical studies.

In 2004, Avizienis et al. [15] discussed the basic concept of
errors for security. In particular, they point out that one fault
can cause another error and these errors can propagate. The
propagation process transforms one error into multiple errors
that can occur across different components. This behavior of
an API usage is also known as multi-object protocol which
is prevalent in cryptographic APIs [16], [17]. Further, Lipp
et al. [18] revealed that static analyses rather report the
manifestation of an error than its root cause (fault). They argue
that this decision improves the precision of analyses, as not
every fault manifests as a vulnerability. An empirical study
[14] revealed that 20 % of the analyzed cryptographic misuses
could not be resolved, as the root cause did not match the
reported location. Concretely, while a misuse was reported,
the required fix was unclear from the report. Summarizing,
especially in cryptography, errors can propagate. Therefore, an
error can depend on other errors, thus resulting in error chains.
Such a dependent error in an error chain is a subsequent error
to its preceding errors of the error chain.

Typically, studies and tools do not address error chains. In
this paper, we aim to close this research gap. We focus on
the domain of cryptographic API misuses in Java as a well-
researched area with many detection tools that cannot (yet)



provide this granularity of information. Concretely, we want
to understand to which extent error chains occur in the wild,
if analyses that present the complete error chain are usable
in practice concerning the runtime, and if the presentation
of an error chain can improve the usability of a security-
focused static analysis. To achieve this, we will introduce
CogniCryptSUBS which is our adaption of an existing static
analysis to allow the detection of error chains. We will answer
the following three novel research questions:

• [RQ1] What is the distribution of dependent errors for
real-world applications?

• [RQ2] What is the runtime overhead of CogniCryptSUBS

compared to an error chain unaware version of
CogniCryptSAST?

• [RQ3] To which extent do experts consider
CogniCryptSUBS as usable compared to an error
chain unaware version of CogniCryptSAST?

By answering these research questions, we aim to provide
new insights into error chains in practice. Understanding error
chains for cryptographic API misuses in Java can support us
in understanding empirical studies in more depth. In partic-
ular, the insights can help us to understand the real-world
prevalence of error chains. Further, we gain new insights into
the challenges of expressing the dependency between a root
error and its subsequent errors for static analyses. In addition,
our expert interview sheds light on the possible usability
implications of reporting error chains.

To address this problem, we designed the first adaption of
an existing static analysis algorithm to distinguish between
root and subsequent errors. We adapted the algorithm of
an existing and established security-focused static analysis,
namely CogniCryptSAST[3]. CogniCryptSAST was used in sev-
eral empirical studies [3], [14], [19], [20] and can be used to
analyze further APIs beyond cryptography. Further, we quan-
titatively evaluated real-world repositories with our adaption,
called CogniCryptSUBS, measured the runtime overhead, and
conducted a user study.

The empirical evaluation for RQ1 revealed that at least half
of the projects with at least one cryptographic API contain
error chains. The runtime evaluation for RQ2 showed that our
adaptions lead to an on average overhead between 1%—4%.
The expert interview for RQ3 implicates that CogniCryptSUBS

helped the participants to identify the error chain more quickly
and reduced the required interaction time with the tool.

Overall, this paper presents the following contributions:
⋆ We present an algorithm for static analyses that can

distinguish between a root and subsequent errors.
⋆ We improve an existing open-source analysis to integrate

the suggested changes.
⋆ We show that error chains occur in the wild and affect

every second analyzed project.
⋆ We present a runtime evaluation that reveals that the

overall median runtime overhead of the more detailed
reporting is 3.78 %.

⋆ We report on an expert interview that revealed that the
participants appreciate the structured reporting of root

and subsequent errors and require fewer executions of
the analysis to resolve all potential problems.

In the remainder of the paper, we first introduce the basic
concepts of the analysis that we extend in Section II, followed
by a description of the terminology to present error chains.
We describe the required adaptions to an existing algorithm
in Section III. Section IV briefly describes the motivation of
our research questions, methodology, and findings. We cover
related work in Section V and limitations and future work in
Section VI. The paper ends with a conclusion in Section VII
and information about our artifacts in Section VIII.

II. FUNDAMENTALS OF CogniCryptSAST

To implement our static analysis adaption CogniCryptSUBS

to detect error chains, we extend the static analysis
CogniCryptSAST [3], [21]. Thus, this section introduces the
necessary information to understand our approach (c. f. Sec-
tion III-B). First, we introduce an example of a cryptographic
misuse (Section II-A), then explain the different error types
reported by CogniCryptSAST (Section II-B), and third, we
shortly describe the analysis of CogniCryptSAST (Section II-C).

A. Cryptographic Misuse Example

In Listing 1, we present an example of an insecure
file encryption in Java. Our example has two methods,
generateKey (Line 2) and encryptFile (Line 8). The
method generateKey generates a secret key using the
JCA classes DESKeySpec and SecretKeyFactory from
the given password. This method is called by the method
encryptFile in Line 11. The method encryptFile gen-
erates an initialization vector (Line 9), generates and initializes
a Cipher object in Line 10 and 11 respectively, and passes
the Cipher object to a CipherInputStream in Line 13.

Listing 1 exhibits seven different cryptographic misuses
detected by CogniCryptSAST. The first and second misuses
on Lines 4 and 5 respectively, occur because the insecure
algorithm DES is passed to the object keyFactory and
the class DESKeySpec is used. These two misuses result in
another report for the second parameter of the Cipher.init
method in Line 11, which results in an insecure cipher input
stream object in Line 13. Further, the misuse in Line 9 is due to
the static initialization vector, causing another misuse for the
third argument of the Cipher.init call in Line 11. Finally,
the Cipher object is initialized with an insecure algorithm
in Line 10 that also renders the Cipher object insecure.

B. CrySl and Error Types

CogniCryptSAST uses an allow-listing approach, where rules
describe the secure usage of cryptographic APIs in the domain-
specific language CrySL [3]. Currently, CrySL supports classes
of the Java Cryptography Architecture (JCA) and Java Secure
Socket Extension (JSSE) APIs. Violating a rule causes one of
two main error types: typestate errors and constraint errors.

A rule can express the secure order of method calls. If there
exists one typestate path for a specified object, an instance
of a class for which a CrySL rule exists, that violates the



1 public class FileEncrypt {
2 private static Key generateKey(String password) throws Exception {
3 DESKeySpec dks = new DESKeySpec(password.getBytes("utf8"));
4 SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
5 return keyFactory.generateSecret(dks);
6 }
7

8 public static String encryptFile(String password, String srcFile, String destFile) {
9 IvParameterSpec iv = new IvParameterSpec("123456".getBytes("utf-8"));

10 Cipher cipher = Cipher.getInstance("DES/CBC/PKCS5Padding");
11 cipher.init(Cipher.ENCRYPT_MODE, generateKey(password), iv);
12 InputStream is = new FileInputStream(srcFile);
13 CipherInputStream cis = new CipherInputStream(is, cipher);
14 // write cis into destFile and return
15 }
16 }

Listing 1. A simplified example of an insecure encryption observed in the wild. q represents an API misuse.

q
q

q
q
q

q

specified order, CogniCryptSAST reports a typestate error. A
typestate error can be an IncompleteOperationError
if the secure order is not completed or a TypestateError
for any other derivation of the secure call order.

Each rule can express constraints. A constraint error de-
scribes a violation of a requirement expressed by a rule,
such as a secure encryption algorithm. Overall, five different
constraint errors exist. A ConstraintError is reported
if a constraint on any of the objects specified in the CrySL
rule is violated. Some specified objects require a predicate
that signifies a guarantee from another API, i.e., a predicate
describes interactions between classes. The specified object
that can ensure a predicate is an ensuring object. If a specified
object requires a predicate that is not ensured by an ensuring
object, this results in a RequiredPredicateError. If
sensitive hard-coded information, insecure types, or forbidden
methods were used, CogniCryptSAST reports a HardCoded-
Error, NeverTypeOfError, or ForbiddenMethod-
Error, respectively.

Listing 1 illustrates the concept of ensuring and specified
objects. The rule for the JCA class CipherInputStream1

requires that the argument (Line 13) of the class Cipher is
generated securely. Thus, the object cis requires a security
guarantee from the class Cipher. The object cis is the
specified object and the object cipher is the ensuring object.
As the ensuring object is insecure due to the use of DES2 as
encryption algorithm (Line 10), the predicate is not ensured,
resulting in a RequiredPredicateError (Line 13).

C. Analysis Algorithm

The static analysis CogniCryptSAST uses allow-listing rules
to identify misuses [3], [21] (c. f. Section II-B). We present

1The respective CrySL rule is available online and the discussed
requirement is specified in Line 30 and 31 (tag 3.0.2-jca):
https://github.com/CROSSINGTUD/Crypto-API-Rules/blob/master/
JavaCryptographicArchitecture/src/CipherInputStream.crysl.

2The respective CrySL rule is available online and the secure
values for the argument are specified in Line 88 to 118 (tag 3.0.2-
jca): https://github.com/CROSSINGTUD/Crypto-API-Rules/blob/master/
JavaCryptographicArchitecture/src/Cipher.crysl

iv: IvParameterSpec keyFactory: SecretKeyFactory

cipher: Cipher

cis: CipherInputStream

RPE
in line 9

RPE
in line 5

CE
in line 4

RPE
in line 11

RPE
in line 11

CE
in line 10

RPE
in line 13 Legend:

RPE: RequiredPredicateError
CE: ConstraintError

Fig. 1. Dependent error tree of an error reported for CipherInputStream
in the code of Listing 1. The gray boxes mark different objects and the differnt
box colors help to differentiate misuse locations.

a shortened and simplified version of the (final) algorithm
in Listing 2. The analysis first parses the rules and builds
a finite state machine (FSM) for each rule (Line 18). Each
FSM encodes the call order for one class that is encoded in
the respective CrySL rule. Afterward, the analysis generates a
call graph with the analysis framework Soot [22] (Line 19).
This call graph serves as a starting point to identify allocation
sites that match the initial edge of all FSMs (Line 21).

For each identified seed, CogniCryptSAST uses IDEal [23]
and the matching FSM to perform a flow-, field-, and context-
sensitive typestate analysis. To retrieve the parameter values of
methods that are invoked on the seed object, CogniCryptSAST

executes a backward pointer analysis [24]. Both the results of
the typestate and backward analysis are stored in the respective
seed. A seed uses this information to report errors in three
stages. First, the results of the typestate analysis are used to
report typestate errors (c. f. Section II-B, Line 26). Second, a
seed validates the specified constraints and reports constraint
errors (c. f. Section II-B, Line 27). Third, a seed triggers



17 // Initialize analysis
18 fsms := parseRules(cryslRules)
19 cfg := generateCallGraph(program)
20 // Pre-analysis to identify crypto objects
21 for edge.allocation(fsms.classes) in cfg {
22 objects.add(edge)
23 }
24 // Analyze crypto objects traces
25 for seed in objects {
26 identifyTypeStateErrors(seed)
27 identifyConstraintErrors(seed)
28 }
29 // Propagate until all seeds updated
30 for handler.hasUpdates() {
31 for p in handler.updatedSeeds().preds() {
32 if p.noViolatedConstraints() &&

p.requiredPredicateError() {↪→

33 ensuredPredicate(p)
34 } else {
35 hiddenPredicate(p)
36 }
37 handler.passToUsingObjects(p)
38 }
39 // Handle and map subsequent errors
40 for rpe in requiredPredicateErrors {
41 if rpe.isSubsequent() {
42 precedingErrs := rpe.getHiddenPred()
43 identifyMatching(precedingErrs)
44 }
45 }
46 }

Listing 2. Simplified Pseudo-code of the Analysis Algorithm

the propagation of security guarantees, such as that a key is
generated securely (Line 25).

The aim of the propagation is to track security guarantees
across multiple objects. Each security guarantee is a predicate.
If a seed has no violated constraint and all required predicates
(Line 32), such as a salt for a password-based encryption must
be randomized securely, are ensured, it ensures its predicate
(Line 33). The ensured predicate is passed to a handler that
passes the newly ensured predicate further to all objects with
a CrySL rule that use the object of the ensured predicate
(Line 37). The propagation repeats when a seed receives a
new ensured predicate and terminates when all seeds finished
ensuring any predicate (Line 25).

III. DESIGN

In this section, we first discuss relevant terminology (Sec-
tion III-A). We then explain our approach and necessary
algorithm adaptations to detect error chains (Section III-B).

A. Terminology

To securely encrypt the file, the code must be modified
at four locations, and yet, analyses, such as CogniCryptSAST,
tend to report up to seven misuses (c. f. Listing 1). However,
the misuses actually form a tree of misuses (c. f. Figure 1).
We refer to errors with preceding errors as subsequent errors.
A subsequent error is caused by another misuse that is the
respective preceding error. For instance, the misuse reported

in Line 11 is a subsequent error caused by the insecure
initialization vector from the preceding error in Line 9. If
a developer fixes a preceding error, the subsequent error is
fixed, too (if all preceding errors are resolved). As a preceding
error can be a subsequent error too, we use the term root
error to describe any preceding error that is not a subsequent
error. In Figure 1, the ConstraintError in the right top
(Line 4) is a root error and is a directly preceding error
for the RequiredPredicateError in the middle (Line
11). This error is the subsequent error (Line 11) of the
root error (Line 4) and it as well is a preceding error of
the RequiredPredicateError (Line 13) at the bottom
of Figure 1. This error, is the subsequent error (Line 13)
of the two preceding errors (Line 4 and 11). The current
implementation of CogniCryptSAST — and other analyses in
the domain — only reports errors unsorted without reporting
their connection. Thus, the report may be confusing or include
effective false positives [12], [13], [14], and ultimately may
hinder the adaption of such tools [10], [11].

B. Hidden Predicate Approach Implementation

In the discussed example in Listing 1 and Figure 1, we
could see that error chains occur when passed arguments
do not hold a required property. Such properties can be de-
scribed as predicates (c. f. Section II-B). Since CogniCryptSAST

already provides a mechanism to identify predicates (c. f.
Section II-C), we decided to adapt its static analysis algorithm,
and we call it the Hidden Predicate Approach.

Hidden Predicate

A hidden predicate is generated if an ensuring object
fails to validate all its specifications (i.e., no predicate
was generated).

Our approach is based on the concept of tracking hidden
predicates – whenever a predicate failed to be ensured, we
collect a hidden predicate instead of an ensured predicate
(Line 35). The main design decision for our implementation is
that hidden predicates should be propagated in the same way
as ensured predicates. Consequently, we enriched the existing
propagation mechanism of CogniCryptSAST to integrate the
hidden predicate propagation. Our adaption (Listing 2) of the
CogniCryptSAST algorithm (c. f. Section II-C) has three main
changes: the generation of hidden predicates (Line 35), the
detection of subsequent errors (Line 41), and the mapping of
subsequent and preceding errors (Line 42 and 43).

To ensure that the algorithm propagates hidden predicates as
ensured predicates, we handle hidden predicates as a subclass
of ensured predicates. A seed generates a predicate either as
ensured or hidden (Line 32). A hidden predicate is generated
when a seed does not ensure a predicate (Line 35). The
generated hidden predicate is passed further to any object that
might require the hidden predicate to be ensured (Line 37).
Therefore, a seed receives hidden predicates by the same logic
as ensured predicates.



Seed SecretKeyFactory

ConstraintError
in line 4

Hidden predicate Seed Cipher

RequiredPredicateError
in line 11

generates propagates to

references receivesreports
requires to
be ensured

Fig. 2. Example reference between the SecretKeyFactory and Cipher
seed for Listing 1.

To connect the different errors to generate an error chain,
we rely on our hypothesis that subsequent errors are caused
by unfulfilled predicates. Thus, the seed checks for each
determined and reported required predicate error if this error
is a subsequent error (Line 40 and 41). The error is sub-
sequent if the seed received a hidden predicate (Line 42)
that includes the reason for the missing ensured predicate
(Line 43). Consider the example in Figure 2. The seed
for Cipher has a RequiredPredicateError. Thus,
the seed (Line 42) receives the hidden predicate that ref-
erences the seed for SecretKeyFactory. As this seed
has a ConstraintError, the algorithm can determine that
this ConstraintError is the root error of the discussed
RequiredPredicateError.

Note that our implementation of the hidden predicate ap-
proach enabled us to implement another improvement for a
well-known over approximation causing false positives. For
instance, a Cipher object uses a IvParamaterSpec object and
requires a securely randomized byte array generated by an
object of SecureRandom as IV only in the case of encryp-
tion and not for decryption. CogniCryptSAST falsely reports a
RequiredPredicateError for a static IV for decryption
and our change in CogniCryptSUBS and the CrySL rule set
no longer reports this false positive. For this change, we
leveraged an unused feature of CrySL’s grammar that can
express implications, and adapted the CrySL rules to include
the implications where required. Due to our changes with the
hidden predicate approach, we can track the implications. We
call this change that avoids instances of the above-mentioned
false positives backward error tracking (BET).

IV. EVALUATION

This Section, presents the results of our empirical study,
benchmark, and expert interview. For each research question,
we describe the motivation and methodology used to answer
the research question and discuss the obtained results.

A. Large-scale Study of JCA misuses in the wild (RQ1)

Previous work has pointed out that static analyses tend
to report the location where a bug or vulnerability man-
ifests, rather than where it is required to be fixed [18].
For Listing 1, consider the insecure initialization vector. The
insecurity manifests in Line 11 and should be fixed in Line
9. For cryptographic misuses, previous work showed that a
missing distinction between the dependency of errors can draw
imprecise results of API misuses in the wild [14]. Further,

this may hinder the adaption of static analyses for this critical
field, as this may cause effective false positives [13], [14].
Effective false positives are true positives reported by the
analysis that are perceived as false positives and not fixed
by developers because, e.g., developers do not understand the
report explanation [13]. Hence, the motivation of this research
question is to understand the dependency between errors in
the wild for cryptographic API misuses. In particular, we
were interested if dependent errors are common in real-world
projects, how errors can be depending on each other, and
which cryptographic classes are most commonly affected.

1) Methodology: To analyze real-world projects, we mined
popular projects on GitHub. We used a repository miner 3

to collect popular and active Java projects (c. f. Section I).
Concretely, all projects should be Java projects, have at least
100 stars (popular), at least one commit between 02/22/2022
and 08/22/2022 (active at the time of mining), and be no
fork (no duplicates). These filters resulted in 4,022 distinct
repositories.

To analyze the projects with CogniCryptSUBS, we require
binaries. Therefore, we first filtered for projects containing
a JCA class, namely java.security, javax.crypto,
or java.*, since our target domain is cryptography, and
identified 2,054 projects that may use the JCA. Second, we
tried to compile the remaining 2,054 projects automatically
with Maven and Gradle with a time limit of 20 minutes. We
succeeded for 634 repositories. To ensure that the projects
use JCA, we executed a lightweight OPAL [25] analysis that
identifies if any class of the JCA is used in the binaries. This
step reduced the number of projects that we analyzed with
CogniCryptSUBS to 505 repositories with in total 833 modules.
We use the term modules to attribute the number of bin
folders that we obtained through the compilation process.

With CogniCryptSUBS, we analyzed 505 Java repositories to
identify error chains in the wild. We analyzed each repository
with 3 GB memory, 2 MB stack size, and a timeout of 20
minutes for each project. With these restrictions, we received
reports for 471 repositories and 783 modules. The repositories
have 100 to 60,637 stars, and the median date of the latest
commit was 15 days before we started the study.

2) Findings: To answer RQ1, we first focus on the quantita-
tive results obtained through our analysis. Second, we discuss
one large example as a more qualitative inspection.

a) Quantitative Results: CogniCryptSUBS reports at
least one error for 306 of the 471 analyzed repositories.
In total, CogniCryptSUBS reports 3,964 errors with on
average 8.41 errors per repository, and 5.06 per module.
RequiredPredicateErrors, ConstraintErrors,
and IncompleteOperationErors are the most common
errors that CogniCryptSUBS observes in our dataset. Table I
presents the number of errors for each of the different error
types defined by CogniCryptSAST[3] (c. f. Section II-B). In
our dataset, error reports for the JCA classes Cipher,
MessageDigest, and SSLContext cause most errors.

3https://github.com/marvinvo/Repository Miner



TABLE I
OVERVIEW OF THE NUMBER OF IDENTIFIED MISUSES.

Error Type Errors Root Errors

RequiredPredicateError 1617 353
ConstraintError 810 111
IncompleteOperationError 732 1
TypestateError 185 8
HardCodedError 183 127
NeverTypeOfError 176 117
ForbiddenMethodError 17 -

The usage of the insecure algorithm MD5 or SHA1 in
MessageDigest is the most commonly reported misuse
with in total 297 errors in 213 modules and 179 repositories.

In 155 (50.7%) repositories of the 306 repositories con-
taining at least one error, CogniCryptSUBS reports at least one
dependent error. In our dataset, 717 errors are marked as
root errors and with 353 RequiredPredicateErrors are
the most prevalent error type. Overall, only 9 root errors are
typestate errors. Therefore, root errors caused by a specified
object that does not reach a predicate-ensuring state are edge
cases in our dataset. The remaining 98.7 % root errors are
constraint errors (c. f. Section II-B). The number of root errors
caused for each error type is presented in Table I.

In Listing 1, we showed that one subsequent error may
have multiple preceding errors. The results of CogniCryptSUBS

confirm this in practice. On average, each root error has 1.1
directly followed subsequent errors. Each subsequent error
has on average 1.54 preceding errors. For 134 subsequent
error trees the depth is equal or higher than 3. On average,
a dependent error is a directed-acyclic graph with 3.83 errors,
and the largest in our dataset contains 22 errors.

A few JCA and JSSE classes cause dependent errors.
Overall, CogniCryptSUBS reported dependent error pairs for 24
distinct JCA classes. Most of the root errors are reported for
the JCA classes SecretKeySpec (240), KeyStore (150),
and KeyManagerFactory (96) that either serve as key
store or wrapper. Thus, insecure keys cause most of the de-
pendent errors. As a result, the three JCA classes with most of
the subsequent errors require a key for their task. Namely, the
JCA classes Cipher, SSLContext, and Mac with 219, 79,
and 78 reported subsequent errors, respectively. Further, three
JCA classes, namely AlgorithmParameterGenerator,
IvParameterSpec, and GCMParameterSpec cause
only root errors in our study. We present an overview
of the number and dependencies between these classes in
Figure 3. Note, we removed self-loops from the classes
SecureRandom and KeyPair caused by requirements
within the class. For example, an instance of SecureRandom
can be initialized with a seed. This seed needs to be securely
randomized, and this requirement can be ensured by another
call sequence of SecureRandom.

RQ1

In-the-wild, every second project with cryptographic
misuses has dependent errors.

b) Case Study: In this case study, we investigate one of
the largest chains of subsequent errors found in our study. To
calculate the length, we computed each error’s preceding and
subsequent error tree and appended the subsequent tree to the
preceding error tree. This step results in a graph that we call
the dependent error tree of an error. The case study discusses
one of the errors with most edges in their dependent error tree.

We already discussed this case as an example in Figure 1
(c. f. Section III) which presents the dependent error tree for an
insecure file encryption. Listing 1 presents a minified example
resulting in this dependency tree. We observed this tree in a
Java project with 699 stars, and the tree is caused by three
mistakes to securely encrypt a file that we discussed in more
depth in Section III-B. First, the initialization vector is inse-
cure and resulting in three RequiredPredicateErrors
as shown in the left part of Figure 1. Second, the key
is insecure and causes the subtree that originates from the
RequiredPredicateError and ConstraintError of
the JCA class SecretKeyFactory. Third, the encryption
algorithm is insecure and causes the ConstraintError
in the Cipher object. Therefore, CogniCryptSUBS correctly
reported this dependent error tree.

B. Runtime Evaluation (RQ2)

To identify subsequent and root errors, we adapted the
algorithm to identify misuses to track more information. Thus,
we assume that our changes will cause a runtime overhead.
As the overall performance of an evaluation has an impact on
their usability for empirical studies and use by developers, we
were interested in the runtime impact of CogniCryptSUBS.

1) Methodology: To answer RQ2, we use a bench-
mark to compare the runtime of different configurations of
CogniCryptSAST including our adaption of CogniCryptSUBS.
Our initial assumption was that the overall number of errors
in an application will affect the runtime differences between
the different configurations. Specifically, we were more inter-
ested in the runtime overhead caused by our adaption of the
algorithm than on the general runtime of CogniCryptSAST. As
our motivation for the benchmarks started from a practical
perspective, we decided to include real-world examples rather
than synthetic test cases for our benchmark. Therefore, we
used the dataset and results obtained in RQ1 to select modules
that serve as a base for our benchmark.

To measure and compare the impact of the number of
reported errors, we choose four different sets with five different
modules each. The first, second, and third set includes modules
with different number of errors observed in the dataset without
a selection criteria focused on subsequent errors. Specifically,
the first set has modules that have one error, the second set has
modules with nine (observed average) errors, and the third set
has the modules with the highest number of errors. Further,



Fig. 3. JCA classes and their number of dependent errors. Each node presents the number of dependent errors for the JCA class. A directed edge shows the
number of preceding errors that cause subsequent errors in another class.

to focus on the impact of subsequent errors, the fourth set
includes the five modules with most subsequent errors.

We compared four different tool configurations (c. f. Ta-
ble II). We used the version of CogniCryptSUBS that we used
for our study in RQ1 (SUBS) including the BET and our
adaptions to the rule set (Section III-B). To ensure fairness,
all other three configurations used the latest (at the time
of the study) public CrySL rule set 4 without BET. Note,
we had to restructure and adapt the implementation of the
CogniCryptSAST algorithm to implement the functionality that
was required for CogniCryptSUBS. Therefore, our changes may
have an impact on the runtime. As a baseline, we used the
latest 5 published version of CogniCryptSAST (SAST).

We executed the benchmark within a Docker container on
a 2-core machine with 32 GB RAM. For each analysis exe-
cution, we assigned 10 GB RAM and 10 MB stacksize. Each
tool analyzed each module 10 times. For each measurement,
we measured the elapsed time after selected analysis phases,
such as the time in milliseconds to read the rules or collect
and report missing predicates. For CogniCryptSUBS, we also

4commit 82d575190e, https://github.com/CROSSINGTUD/Crypto-API-
Rules/tree/82d575190e/JavaCryptographicArchitecture

5commit 35d09163f, https://github.com/CROSSINGTUD/CryptoAnalysis/
commit/35d09163f

TABLE II
DIFFERENT TOOL CONFIGURATIONS USED IN THE BENCHMARK.

(SED = SUBSEQUENT ERROR DETECTION, BET = BACKWARD ERROR
TRACING, - = FEATURE NOT AVAILABLE)

Acronym Tool Ruleset SED BET

SUBS CogniCryptSUBS our improved on on
SUBSON CogniCryptSUBS latest public on -
SUBSOFF CogniCryptSUBS latest public off -
SAST CogniCryptSAST latest public - -

measure the time required to detect and map subsequent errors.
2) Findings: We present the results of our runtime bench-

mark with a box-and-whisker plot. Each row visualizes all data
points we collected for the specific measurement plotted. The
box plot presents the 25 % to 75 % quartile and the whisker
the variability outside the quartiles. The dots present a single
measurement.

Figure 46 presents the overall runtime differences between
all tools and configurations. Our finding is that for the whole
workflow of the analysis, CogniCryptSUBS with activated sub-
sequent error detection add a slight runtime overhead. On
median the runtime overhead of subsequent error detection

6We added plots for other steps in our artifact (c. f. Section VIII).



0 20 40 60 80 100 120 140 160
Seconds

SAST

SUBS

SUBSON

SUBSOFF

Total Analysis Time

Fig. 4. Total analysis time of all tool configurations as presented in Table II

(SUBSON) is 1.16 % and for the configuration with BET
(SUBS) is 3.78 %.

All tool configurations finished parsing the CrySL rules on
average in 2 seconds. However, SUBS caused a small runtime
overhead compared to the other configurations, which we
attribute to the extended rule set. The overall analysis time
of all tools and configurations confirms this observation, as
presented in Figure 4. Further, SUBS has a small runtime
overhead of 63 milliseconds compared to SAST, SUBSON, and
SUBSOFF. We also attribute this overhead to the improved
rule set that we only used in SUBS to enable BET.

After parsing the rules and constructing the call-graph
with the SOOT framework [22], all tools search for initial
analysis seeds. For the creation of the initial analysis seeds,
we observed that SUBS requires on average 107 milliseconds
more time. While we did not adapt the implementation for this
step for CogniCryptSUBS, we changed the rule to enable BET.
For collecting the initial seeds, the algorithm collects all rule
specifications. Therefore, we attribute this runtime overhead
of SUBS to the extension of the CrySL rules.

After the initialization of seeds, the tools start the actual
static analysis to identify misuses. Since we adapted this part,
we expect a runtime overhead of CogniCryptSUBS compared
to CogniCryptSAST. Since we adapted this part to implement
the detection of error chains, we expect a runtime overhead
of CogniCryptSUBS compared to CogniCryptSAST. The analysis
time for SUBSOFF and SAST have nearly the same average
and median time. The subsequent error detection in SUBSON
propagates hidden predicates and causes a median runtime
overhead of 8.4 % for the static seed analysis phase compared
to SUBSOFF. The improved rule set and BET of SUBS add
another runtime overhead of 0.4 % compared to SUBSON.

RQ2

The subsequent error detection causes a median run-
time overhead of 1 % and with BET of 4 %.

C. Expert Interview (RQ3)

In the previous research questions, we focused on subse-
quent errors that exist in the wild and the runtime overhead
caused by tracking subsequent errors. Our results suggest
that subsequent errors exist in the wild, and the runtime
overhead for their detection is low. Thus, we were interested
in understanding if information about subsequent errors has

more usefulness. Besides empirical analyses, reports may also
be interesting for users of an analysis. Specifically, we were
interested whether grouping and matching subsequent errors
to root errors can lead to an improved user experience.

1) Methodology: For this research question, we performed
an expert interview with a prototype we built that presents root
errors and matches subsequent errors grouped below the root
error. The prototype differs from the current implementation
of CogniCryptSUBS, which only reports references between
errors, such that the output is formatted to present a root
error and beneath the subsequent errors. During our in the
wild study (IV-A), we observed that errors sometimes occur
in tree structures. Presenting this information is interesting but
goes beyond the question if users may benefit from reports of
root errors, so we used a simple presentation. Nonetheless,
we believe that future work on the usable presentation of
subsequent errors is worth exploring.

We recruited five experts for the expert interview. The
experts were doctoral- or post-doctoral researchers that are
experienced in four different areas. Two researchers are ex-
perts for static analyses, one researcher focuses on software
tools and domain-specific languages, another is an expert for
distributed programming languages, and the last one focuses
on IT-security and distributed systems. Our experts have
on average 12.6 years experience with Java, and everyone
developed at least one project in Java. Three participants
developed several big projects and of these one thinks they are
an expert. Of our experts, two hesitated to call them a Java
expert, as they missed to keep track of the latest Java features.
All our experts had at least one course about cryptography
at university and three have deeper knowledge because they
either used cryptography before, have an IT-Security degree,
or even taught cryptographic concepts. Further, three of our
participants have prior experience with the Java standard
library for cryptography that is used in our code examples.

For the interviews, we used semi-structured interviews.
Specifically, we shortly introduced our research and collected
the profile of the participants. After the introduction, we asked
each participant to solve two different code examples. For
each code example, the participants had either the version of
CogniCryptSAST that supports subsequent errors or not. Due
to the number of participants, we could not draw statistical
conclusions and did not mix tasks and tools. Thus, the first
task should be solved with CogniCryptSAST and the second task
with our prototype. For the tasks, we asked the participants
to follow the think aloud approach [26], [27], and requested
the participants to inspect the reports of the analysis. Thus,
we avoided that experienced developers resolve the bugs
independent of the analysis. We allowed our participants to
ask clarification questions or use the internet. After each task,
we asked the participants questions on the usability of the
respective analysis tool. In the end, we resolved the differences
between both rounds and asked final questions. Overall, the
interviews had a duration of 40 to 60 minutes. We provided
the questions in our artifact (Section VIII).

We executed the expert interviews with a remote-desktop



tool to access a virtual machine with Eclipse as IDE installed.
The participants could execute the tool by running a script
from the integrated terminal. To review the actions and their
think aloud, we asked them in advance for consent to record
the screen of the VM and audio. Further, we asked each
participant for their explicit confirmation when we used direct
quotes to ensure that we preserve the intended meaning.

The cryptographic API misuses of both code examples can
be fixed by altering one line of code, and are as similar as
possible regarding the overall number of errors and root errors.
Both examples cover the transmission of a secret with AES
encryption. We created the examples based on our experience
in the domain with a focus on tasks that can be solved in a
reasonable time. The concrete root errors differ between both
examples to avoid a learning effect between both examples.
The first example spans over four class files with four root
errors within three class files. Due to subsequent errors,
CogniCryptSAST reports nine misuses. The second example
spans over three class files that are slightly larger than the
class files of the first examples. Overall, the second example
has three root errors in two class files resolving in a total of
ten misuses. The tasks are in our artifact (Section VIII).

2) Findings: For the first code example, the participants
started to resolve the reports by CogniCryptSAST applying two
main approaches. Three participants started with the error
reports for the main class and used them as an entry point
for fixing the example. In contrast, two participants started to
resolve the errors in the order that CogniCryptSAST reported
them. One participant commented on each error report before
they started resolving the error, and thus realized quickly that
some errors must be related somehow. Further, some partic-
ipants used the call-hierarchy function of Eclipse to identify
the insecure parameter for subsequent errors. In addition, the
participants skipped error messages they did not understand
or referred to the exact fix location. During the fixing process,
these errors often revealed as subsequent errors. Thus, the
skipping tactic resolved to be successful for this task.

Error chains caused confusion of participants when a root
error was fixed. In particular, when a participant resolved a
root error, the number of misuses decreased by more than one.
Due to their experience, the participants realized that the errors
must be linked to each other or are not relevant anymore. For
example, participant four (E4) said: “No violations found...
huh... I only fixed two bugs and three are gone. That’s always
cool.”. However, in some cases, the participants did not always
execute the analysis after resolving a root error and were
confused about a subsequent error. For example, participant
five (E5) said: “It is not clear to me how it detects if the key is
generated properly... Maybe it detects this from here [pointing
to generateKey() method] then it is potentially already fixed.
I need to run the analysis again.”.

For task 2, the chosen approach to solve the misuses
were more similar among the participants. This time, all
participants started with the first reported error that was in the
main class. Therefore, the participants may not have changed
their approach to resolve the reports. Overall, all participants

ran the analysis tool less often than during the first task.
Most participants presumed without any explanation from us
that they do not need to address subsequent errors, such as
participant one (E1): ”Subsequent errors... aha... so this is the
Cause-Effect-Chain I’m guessing. Maybe I’ll just ignore those
and see what happens”

The expert interview revealed that reporting subsequent
errors to users may have a positive impact on the user
experience. All participants agreed that CogniCryptSAST and
our prototype supported them in solving the tasks, such as
participant five (E5): ”[...]the first tool without the grouping,
without the prioritizing each of the error messages had to
be taken into consideration to see if they are relevant just to
find they have no real meaning because the problem doesn’t
occur at this location. With the second tool, I immediately
found the right errors. This of course is much more pleasant
to use [...].” Further, all experts agreed that during the second
task it was more clear which error should be resolved first.
However, one expert credited this to the experience gained
during the previous task. All five participants would pick our
prototype for a use in a security-related project. In addition,
two experts are affirmative that subsequent error detecting
makes the process to solve cryptographic misuses easier.
The three other experts had mixed feelings, as the change
“only” helps to identify the location, while the fix is equally
challenging for both tools. Three experts agree, one expert is
unsure if the presentation of the tool’s output increases the
acceptance, and one expert disagrees as they argue that for
security no error should be ignored.

RQ3

The expert interviews indicate that reporting root er-
rors supports users in fixing the relevant errors first.

V. RELATED WORK

a) Dependent Errors: Previous work on fault localization
shed a light on the limitations of the assumption that bugs
are locally and are isolated. Multiple studies have indicated
that bugs are not localized locally [28], [29], [30], [31].
Specifically, faults can spread over many methods or files [28],
[29] and even interfere with each other [30]. Thus, their work
confirms that bugs can depend more on each other as usually
presented and reported by static analyses.

Lipp et al. [18] discussed that vulnerabilities reports may
include the root cause, while static analyses tend to report the
manifestation location of a vulnerability. To evaluate static an-
alyzers against vulnerability reports, Lipp et al. [18] analyzed
for one application if the root cause and manifestation location
are in the same function. Their work focused solely on one
subsequent error, and their empirical study focused on one
application. In contrast, we consider error chains and evaluated
471 applications in our empirical study of error chains.

Besides empirical studies, Avizienis et al. [15] describe a
taxonomy of security errors. The taxonomy describes that a
root cause can cause an error that is propagated within a



program and between different components. The propagation
of errors that may cause a fault or vulnerability is called chain
of threats. While this work describe the propagation in theory,
our work showed that the error propagation can cause a tree
in practice rather than a chain for cryptographic misuses.

b) Cryptographic Misuses in the wild: The majority
of empirical studies of cryptographic misuses in the wild
draw an alarming picture of today’s software security. For
Android applications, studies report that 88 % to 99.7 % of
the applications contain at least one misuse [32], [3], [33].
An empirical study draw a similar insight for iOS applications
[34]. Another study [35] revealed that even Go programs using
an API that avoids some misuses by design [36] struggle
with cryptographic misuses. Within all analyzed applications,
83 % had at least one cryptographic misuse [35]. For Python
applications, a study revealed that 52 % of the applications
using a cryptographic API have a misuse [37]. For Maven,
a study revealed that 63 % of the artifacts have at least
one cryptographic misuse [3]. In contrast to most studies, we
“only” identified that 65 % of the analyzed applications have a
misuse. Thus, our results are similar to the one by Krüger et al.
[3] for Maven artifacts. However, no previous work inspected
the dependencies between cryptographic misuses.

c) Usability of Security Warnings: Previous work has
shown that a high false positive rate hinders the adaption of a
static analysis [10], [11], [13]. Our expert interview revealed
that CogniCryptSUBS may help to reduce confusing reports.
Thus, rendering the report to be unresolved [12] or considered
as effective false positives [13]. Further, Johnson et al. [10]
reported that poorly presented output has a negative impact
on the usability of a tool. However, some participants think
that a more intuitive presentation can minimize the effect. Our
changes are a step in this direction, according to our experts.
Further, the different configurations of CogniCryptSUBS allow
developers to balance between speed and quality [11].

VI. LIMITATIONS & FUTURE WORK

Our approach relies on the static analysis CogniCryptSAST

and the CrySL rule set. Thus, the precision and recall of
our approach depends on the accuracy of CogniCryptSAST, the
expressiveness of CrySL, and the used rule set. While we
tested the correctness of our implementation with test cases,
we acknowledge that a more in-depth analysis will be valuable
to assess the accuracy. Further, our analysis focuses on the
relevant area of cryptographic API misuses due to the well-
maintained CrySL rule set. Thus, analyses of further APIs are
still missing. Future work, could focus on other APIs and
understand error chains for these APIs by leveraging our work.
Specifically, due to the separation of the analysis logic and the
rules, “only” new CrySL rules for the APIs of interest need
to be specified. Thus, our work may be transferred to other
domains.

Recruiting participants for expert interviews or user studies
is challenging. For our expert interview (Section IV-C), we
only managed to recruit five experts and two of them may
have heard about the initial high-level ideas of this research.

Another limitation of the small number of participants is that
all participants had the same task and tool order. Therefore, the
findings may have a carryover effect between both tasks. We
tried to minimize the effect through the design of the tasks,
and yet the interview may have a bias. As a consequence,
the interviews do not provide statistical insights. Further, for
our interviews, we built a prototype that not yet implemented
a structured presentation for error chains in the way as they
occur in the wild. We acknowledge that implementing and
evaluating a structured presentation and a statistically-relevant
user study is an interesting future research topic.

The phenomenon we observed in Figure 2 is influenced by
the interconnected architecture of cryptographic APIs in Java.
Thus, this observation may not generalize to domains in which
API constraints are restricted to one class. Further, for other
security-related API misuses, presenting the root error may be
relevant, too. Consider a taint analysis that can detect SQL
injections. While, a SQL injection manifests at the vulnerable
call to the database, the dangerous input is the root cause that
may occur at a different location. As the analysis can reason
about this input, it should be possible for the analysis to report
subsequent errors.

VII. CONCLUSION

Many applications contain error chains that were so far
unstudied. To study these, we introduced CogniCryptSUBS

which utilizes an existing static analysis and extends its al-
gorithm to identify dependencies between errors. Specifically,
we can detect a root error and all its subsequent errors. With
CogniCryptSUBS we have shown that for cryptographic API
misuses error chains occur frequently in the wild. We further
find that dependencies between cryptographic API misuses
can be expressed as trees. CogniCryptSUBS has achieved a
negligible median runtime overhead of 1.16 %. Finally, we
conducted an expert interview to evaluate qualitatively and
show that a structured presentation of root errors and depen-
dent subsequent errors is helpful to fix misuses and improves
the usability of the analysis. Overall, we show that error chains
as relevant in the wild, and we provide a solution to detect
those that can be used for APIs beyond cryptography.

VIII. DATA AVAILABILITY

CogniCryptSUBS is available online as CogniCryptSAST re-
lease v3.1.0. The scripts and data that we collected during
the empirical study (Section IV-A), the benchmark (Sec-
tion IV-B), and the design and anonymized data of our
user study (Section IV-C) is available online on figshare:
https://doi.org/10.6084/m9.figshare.24473197.
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